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Abstract. Mathematical programs with equilibrium constraints (MPECs) are nonlinear
programs which do not satisfy any of the common constraint qualifications. In order to
obtain first order optimality conditions, constraint qualifications tailored to MPECs have
been developed and researched in the past. In this paper we introduce a new Abadie-type
constraint qualification for MPECs. We investigate necessary conditions for this new CQ,
discuss its relationship to several existing MPEC constraint qualifications and introduce a
new Slater-type constraint qualification. Finally, we prove a new stationarity concept to
be a necessary optimality condition under our new Abadie-type CQ.
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1 Introduction

Consider the constrained optimization problem

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0.
(1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp, G : Rn → Rl, and H : Rn → Rl are
continuously differentiable functions. Problems of this kind are usually called mathemat-
ical programs with equilibrium constraints, MPEC for short, or sometimes mathematical
programs with complementarity constraints. See, e.g., the two monographs [6, 10] for more
information.

It is well-known (see, e.g., [2, 14]) and easily verified that the MPEC (1) does not satisfy
most of the common constraint qualifications known from standard nonlinear programming
at any feasible point. (One exception to this is the Guignard constraint qualification, see
[4] for details.) Consequently, the usual Karush-Kuhn-Tucker conditions associated with
the program (1) can, in general, not be viewed as first order optimality conditions for (1).

It has therefore been the subject of intensive research [8, 9, 13] during the last few
years to find suitable MPEC constraint qualifications under which a local minimizer of the
problem (1) satisfies some first order optimality conditions.

In this paper we introduce a new Abadie-type constraint qualification for MPECs.
We examine the relationship between this constraint qualification and existing ones, and
show it to be weaker than any of the existing ones. We also introduce a new Slater-type
constraint qualification for MPECs and show that it also implies our Abadie-type condition.
Furthermore, we introduce a new optimality condition which holds under our Abadie-type
CQ.

The organization of this paper is as follows: Section 2 reviews some existing constraint
qualifications together with some stationarity concepts related to the problem (1). Section
3 contains an Abadie-type approach to first order optimality conditions for (1). In Sec-
tion 4 we proceed to compare our Abadie-type constraint qualification to some constraint
qualifications used in [6]. It turns out that, in a special situation, our Abadie-type con-
straint qualification is equivalent to one used in [6], although its derivation is different. We
conclude this paper with a summary of our results in Section 5.

The notation used in this paper is rather standard: Rn denotes the n-dimensional
Euclidean space. For x ∈ Rn and y ∈ Rm, we simply write (x, y) for the (n+m)-dimensional
column vector (xT , yT )T . Given x ∈ Rn and a subset δ ⊆ {1, . . . , n}, we denote by xδ the
subvector in R|δ| consisting of all components xi with i ∈ δ. Finally, inequalities of vectors
are defined componentwise.
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2 Constraint Qualifications and Stationarity Concepts

This section reviews some existing constraint qualifications for the MPEC (1) as well as
some existing first order optimality conditions. Additional (new) constraint qualifications
and stationary concepts will be introduced in Section 3.

Before we begin, we need to introduce some notation. Given a feasible vector z∗ of the
MPEC (1), we define the following sets of indices:

α := α(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) > 0}, (2a)

β := β(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) = 0}, (2b)

γ := γ(z∗) := {i | Gi(z
∗) > 0, Hi(z

∗) = 0}. (2c)

The set β is known as the degenerate set. If it is empty, the vector z∗ is said to fulfill strict
complementarity. As we shall see, it will become convenient to split β into its partitions,
which are defined as follows:

P(β) := {(β1, β2) | β1 ∪ β2 = β, β1 ∩ β2 = ∅}. (3)

To define altered constraint qualifications, we introduce the following program, dependent
on z∗, and called the tightened nonlinear program TNLP := TNLP(z∗):

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

Gα∪β(z) = 0, Gγ(z) ≥ 0,
Hα(z) ≥ 0, Hγ∪β(z) = 0.

(4)

The above nonlinear program is called tightened since the feasible region is a subset of the
feasible region of the MPEC (1). This implies that if z∗ is a local minimizer of the MPEC
(1), then it is also a local minimizer of the corresponding tightened nonlinear program
TNLP(z∗).

The TNLP (4) can now be used to define suitable MPEC variants of the standard
linear independence, Mangasarian-Fromovitz- and strict Mangasarian-Fromovitz constraint
qualifications (LICQ, MFCQ, and SMFCQ for short).

Definition 2.1 The MPEC (1) is said to satisfy the MPEC-LICQ (MPEC-MFCQ, MPEC-
SMFCQ) in a feasible vector z∗ if the corresponding TNLP(z∗) satisfies the LICQ (MFCQ,
SMFCQ) in that vector z∗.

Since we will need them in Section 3, we explicitly write down the conditions for MPEC-
MFCQ: The gradient vectors

∇hi(z
∗) ∀i = 1, . . . , p,

∇Gi(z
∗) ∀i ∈ α ∪ β,

∇Hi(z
∗) ∀i ∈ γ ∪ β

(5a)
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are linearly independent, and there exists a vector d ∈ Rn such that

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β,

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β,

∇gi(z
∗)T d < 0 ∀i ∈ Ig.

(5b)

MPEC-LICQ and MPEC-SMFCQ can be expanded similarly.
As mentioned earlier, classic KKT conditions are not appropriate in the context of

MPECs. We therefore introduce two stationarity conditions used in [11, 13].
A feasible point z of the MPEC (1) is called weakly stationary [13] if there exists a

Lagrange multiplier λ = (λg, λh, λG, λH) such that the following conditions hold:

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

λG
α free, λG

β free, λG
γ = 0,

λH
γ free, λH

β free, λH
α = 0,

g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0.

(6)

A feasible point z of the MPEC (1) is called strongly stationary [13] or primal-dual station-
ary [11] if there exists a Lagrange multiplier λ = (λg, λh, λG, λH) such that the following
conditions hold:

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

λG
α free, λG

β ≥ 0, λG
γ = 0,

λH
γ free, λH

β ≥ 0, λH
α = 0,

g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0.

(7)

Note that the difference between the two stationarity conditions is the sign-restriction im-
posed on λG

β and λH
β in the case of strong stationarity. It is easily verified that strong

stationarity coincides with the KKT conditions of the MPEC (1) (see, e.g., [4]). Further-
more, in the nondegenerate case, i.e. if β = ∅, strong stationarity is identical to weak
stationarity.

Other stationary conditions are derived and examined elsewhere, among which are
C-stationarity [13] and M-stationarity [8, 9]. Both lie between the weak and strong sta-
tionarity conditions (6) and (7), respectively. Hence they all coincide in the nondegenerate
case, whereas, in general, differences occur in the properties of the multipliers λG

β and λH
β .

Since we will need it repeatedly in the following sections, we now define another program
derived from the MPEC (1). Given a partition (β1, β2) ∈ P(β), let NLP∗(β1, β2) denote
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the following nonlinear program:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

Gα∪β1(z) = 0, Hα∪β1(z) ≥ 0,
Gγ∪β2(z) ≥ 0, Hγ∪β2(z) = 0.

(8)

Note that the program NLP∗(β1, β2) depends on the vector z∗.
Also, a local minimizer z∗ of the MPEC (1) is a local minimizer of the NLP∗(β1, β2)

since z∗ is feasible for the latter program and its feasible region is a subset of the feasible
region of the MPEC (1).

3 Abadie-type Approach to Optimality Conditions

We divide this section into three parts: Section 3.1 contains the definition of our Abadie-
type constraint qualification (MPEC-Abadie CQ) as well as some discussion on it. Several
sufficient conditions for the MPEC-Abadie CQ to hold are given in Section 3.2. Finally,
Section 3.3 provides a stationarity concept which holds under the MPEC-Abadie CQ.

3.1 The MPEC-Abadie Constraint Qualification

In Definition 2.1 we introduced MPEC variants of some common constraint qualifications.
The question arises whether a suitable variant of the Abadie constraint qualification can
be found. Since it is among the weaker constraint qualification of standard nonlinear
programming, this question seems to be of some importance.

Some background is needed before we can delve into this question, however. Consider
therefore the MPEC (1) and let Z denote its feasible region. Then the tangent cone of (1)
in a feasible point z∗ is defined by

T (z∗) :=
{
d ∈ Rn

∣∣ ∃{zk} ⊂ Z,∃tk ↘ 0 : zk → z∗ and
zk − z∗

tk
→ d

}
. (9)

Note that the tangent cone is closed, but not convex, in general.
If we set θ(z) := G(z)T H(z), then the standard linearized tangent cone of the MPEC

(1) in a feasible point z∗ is given by

T lin(z∗) := {d ∈ Rn | ∇gi(z
∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ α ∪ β,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ γ ∪ β,

∇θ(z∗)T d = 0 }.

(10)
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An easy calculation shows that the following characterization of the linearized tangent cone
is equivalent to the one in (10):

T lin(z∗) = {d ∈ Rn | ∇gi(z
∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α,

∇Hi(z
∗)T d = 0, ∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ β,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ β }.

(11)

It is well-known that the inclusion

T (z∗) ⊆ T lin(z∗). (12)

holds, and the standard Abadie constraint qualification (abbreviated ACQ) for nonlinear
programs requires equality in (12):

T (z∗) = T lin(z∗). (13)

While this condition is likely to be satisfied for standard nonlinear programming, it is
not appropriate for the MPEC (1). As simple examples show, the tangent cone T (z∗) is,
in general, not convex, whereas the linearized cone T lin(z∗) is polyhedral and hence, in
particular, convex. This circumstance suggests the definition of the following cone:

T lin
MPEC(z∗) := {d ∈ Rn |∇gi(z

∗)T d ≤ 0,∀i ∈ Ig,

∇hi(z
∗)T d = 0,∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0,∀i ∈ α,

∇Hi(z
∗)T d = 0,∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0,∀i ∈ β,

∇Hi(z
∗)T d ≥ 0,∀i ∈ β,

(∇Gi(z
∗)T d) · (∇Hi(z

∗)T d) = 0, ∀i ∈ β }.

(14)

This set has appeared in [13, 11] before, but was not investigated further in either paper.
Here, it will play an important role.

Obviously, we have

T lin
MPEC(z∗) ⊆ T lin(z∗), (15)

which can be seen by comparing T lin
MPEC(z∗) with the representation (11) of T lin(z∗). How-

ever, the relationship between T (z∗) and T lin
MPEC(z∗) is not that apparent. To shed some

light on this, consider the nonlinear program NLP∗(β1, β2) associated with an arbitrary
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partition (β1, β2) ∈ P(β). Let TNLP∗(β1,β2)(z
∗) be the tangent cone of NLP∗(β1, β2), and let

T lin
NLP∗(β1,β2)(z

∗) be the standard linearized tangent cone of NLP∗(β1, β2), i.e.,

T lin
NLP∗(β1,β2)(z

∗) = {d ∈ Rn |∇gi(z
∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α ∪ β1,

∇Hi(z
∗)T d = 0, ∀i ∈ γ ∪ β2,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ β2,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ β1 }.

(16)

Then the following result holds.

Lemma 3.1 Let z∗ be a feasible vector of the MPEC (1). Then the following statements
hold:

(a) T (z∗) =
⋃

TNLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

,

(b) T lin
MPEC(z∗) =

⋃
T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

.

Proof. Both equalities are easily verified. Also, the one in (b) has been stated previously
in [11]. �

Lemma 3.1 demonstrates that the tangent set T lin
MPEC(z∗) is non-convex in general, which

gives hope that it may be more likely to be equal to the tangent cone T (z∗). This of course
gives rise to the question whether the inclusion (12) from nonlinear program transfers to
the tangent set T lin

MPEC(z∗). This is indeed so, as we prove in the following lemma.

Lemma 3.2 The inclusion

T (z∗) ⊆ T lin
MPEC(z∗). (17)

holds for all feasible z∗.

Proof. It is known from nonlinear programming that

TNLP∗(β1,β2)(z
∗) ⊆ T lin

NLP∗(β1,β2)(z
∗)

(see (12)). It follows immediately that⋃
TNLP∗(β1,β2)(z

∗)
(β1,β2)∈P(β)

⊆
⋃

T lin
NLP∗(β1,β2)(z

∗).
(β1,β2)∈P(β)

(18)

Together with the two equalities of Lemma 3.1, this yields

T (z∗) =
⋃

TNLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

⊆
⋃

T lin
NLP∗(β1,β2)(z

∗)
(β1,β2)∈P(β)

= T lin
MPEC(z∗),

which proves the result. �
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In view of Lemma 3.2, the inclusion (15) is supplemented to yield the following:

T (z∗) ⊆ T lin
MPEC(z∗) ⊆ T lin(z∗). (19)

As mentioned before, T lin
MPEC(z∗) is, in general, a nonconvex cone, and it therefore seems

reasonable to require that the equality T (z∗) = T lin
MPEC(z∗) holds. This is precisely how we

define our MPEC variant of the Abadie constraint qualification.

Definition 3.3 The MPEC (1) is said to satisfy MPEC-ACQ in a feasible vector z∗ if

T (z∗) = T lin
MPEC(z∗)

holds.

As in the case of standard nonlinear programming, it is not difficult to find examples where
the MPEC-ACQ is not satisfied. In fact, such an example may be taken from nonlinear
programming and expanded with unproblematic equilibrium constraints (G(·) and H(·))
to serve as an example in our scenario.

Far more interesting is, of course, when we might expect MPEC-ACQ to hold.

3.2 Sufficient Conditions for MPEC-ACQ

The following corollary to Lemma 3.1 gives a first insight into this question.

Corollary 3.4 If, for every partition (β1, β2) ∈ P(β), the Abadie constraint qualification
holds for NLP∗(β1, β2), i.e.

TNLP∗(β1,β2)(z
∗) = T lin

NLP∗(β1,β2)(z
∗) ∀(β1, β2) ∈ P(β),

then

T (z∗) = T lin
MPEC(z∗),

i.e. MPEC-ACQ holds.

Note that the condition that Abadie CQ hold for all NLP∗(β1, β2) has appeared in [11] and
was used in conjunction with other assumptions to prove a result for a necessary optimality
condition.

Before we can prove our next result, which will clarify the relationship between MPEC-
MFCQ and MPEC-ACQ, we need the following lemma.

Lemma 3.5 If a feasible point z∗ of the MPEC (1) satisfies MPEC-MFCQ, then classic
MFCQ is satisfied in z∗ by the corresponding nonlinear program NLP∗(β1, β2) (8) for any
partition (β1, β2) ∈ P(β).
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Proof. The set of linear equations


∇hi(z

∗)T (i = 1, . . . , p)
∇Gi(z

∗)T (i ∈ α ∪ β1)
∇Hi(z

∗)T (i ∈ γ ∪ β2)
∇Gi(z

∗)T (i ∈ β2)
∇Hi(z

∗)T (i ∈ β1)

 d̂ =



0
...
0
1
...
1



 p + |α ∪ β1|+ |γ ∪ β2| |β2|+ |β1|

has a solution d̂ because the coefficient matrix has full rank (MPEC-MFCQ holds in z∗,
see (5a)).

We now choose d ∈ Rn to satisfy the conditions (5b) of MPEC-MFCQ and set

d(δ) := d + δd̂.

It is easy to see that d(δ) satisfies the following conditions for all δ > 0:

∇hi(z
∗)T d(δ) = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d(δ) = 0, ∀i ∈ α ∪ β1,

∇Hi(z
∗)T d(δ) = 0, ∀i ∈ γ ∪ β2,

∇Gi(z
∗)T d(δ) > 0, ∀i ∈ β2,

∇Hi(z
∗)T d(δ) > 0, ∀i ∈ β1.

(20)

Since the inequality in (5b) is strict, we have

∇gi(z
∗)T d(δ) < 0, ∀i ∈ Ig (21)

for all δ > 0 sufficiently small.
We have therefore shown the existence of a vector satisfying the conditions (20) and

(21), which is part of the MFCQ for NLP∗(β1, β2). Additionally, the gradient vectors

∇hi(z
∗), ∀i = 1, . . . , p,

∇Gi(z
∗), ∀i ∈ α ∪ β1,

∇Hi(z
∗), ∀i ∈ γ ∪ β2

are linearly independent since they are a subset of the linearly independent gradient vectors
(5a) in MPEC-MFCQ. This completes the conditions for MFCQ for NLP∗(β1, β2), and
hence the proof. �

We are now able to prove the following theorem which shows that, analogous to standard
nonlinear programming, MPEC-MFCQ implies MPEC-ACQ.

Theorem 3.6 If a feasible point z∗ satisfies MPEC-MFCQ, it also satisfies MPEC-ACQ.

9



Proof. Since, by Lemma 3.5, MPEC-MFCQ implies MFCQ for every NLP∗(β1, β2) with
(β1, β2) ∈ P(β), which in turn implies that Abadie CQ holds for every such NLP∗(β1, β2)
(see, e.g., [1]), we have, by Corollary 3.4, that MPEC-ACQ holds. �

The following example (taken from [11]) demonstrates that the reverse of Theorem 3.6
does not hold:

min f(z) := z1 − z2

s.t. g(z) := z2 ≤ 0,
G(z) := z1 ≥ 0,
H(z) := z1 + z2 ≥ 0,
G(z)T H(z) = z1(z1 + z2) = 0.

The origin z∗ = (0, 0) is the unique minimizer. It is easily verified that

T (z∗) = T lin
MPEC(z∗) = {(d1, d2) | d2 ≤ 0, d1 + d2 = 0},

showing that MPEC-ACQ holds in z∗, whereas MPEC-MFCQ does not hold in z∗.
The fact that T (z∗) = T lin

MPEC(z∗) holds in the above example also follows from the
following result.

Theorem 3.7 Let z∗ be a feasible point of the MPEC (1) and assume that the functions
g(·), h(·), G(·), and H(·) are affine linear. Then MPEC-ACQ holds in z∗.

Proof. By assumption, the functions making up the constraints of each NLP∗(β1, β2) with
(β1, β2) ∈ P(β) are affine-linear. Hence Abadie CQ holds for all NLP∗(β1, β2) (see, e.g., [1,
Lemma 5.1.4]). By Corollary 3.4, MPEC-ACQ holds. �

Note that Theorem 3.7 demonstrates MPEC-ACQ to be a fairly weak constraint qualifi-
cation.

In classical mathematical program the special case of a convex program is often con-
sidered. A constraint qualification closely linked with convex programs are the Slater and
weak Slater constraint qualifications (referred to as SCQ and WSCQ respectively in the
following), see, e.g., [7].

Since SCQ requires equality constraints to be linear, the MPEC (1) will never satisfy
SCQ in any feasible point due to its complementarity term. In order to define a suitable
variant of SCQ for MPECs, we must first formulate the subset of MPECs we want to
consider.

Consider therefore the following program:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0,
(22a)
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where f : Rn → R and g : Rn → Rm are continuously differentiable and the component
functions gi : Rn → R, i = 1, . . . ,m, are convex. Furthermore, h : Rn → Rp, G : Rn → Rl,
and H : Rn → Rl are affine linear, i.e. they take the following format:

hi(z) := vT
i z + ηi, i = 1, . . . , p,

Gi(z) := wT
i z + χi, i = 1, . . . , l,

Hi(z) := xT
i z + ξi, i = 1, . . . , l.

(22b)

In analogy to standard nonlinear programming, we call a program of this type MPEC-
convex. Note, however, that (22) is not convex.

We shall now define an appropriate modification of the Slater constraint qualification.

Definition 3.8 The program (22) is said to satisfy weak MPEC-SCQ or MPEC-WSCQ
in a feasible vector z∗ if there exists a vector ẑ such that

gi(ẑ) < 0, ∀i ∈ Ig,

hi(ẑ) = 0, ∀i = 1, . . . , p,

Gi(ẑ) = 0, ∀i ∈ α ∪ β,

Hi(ẑ) = 0, ∀i ∈ γ ∪ β.

(23)

It is said to satisfy MPEC-SCQ if there exists a vector ẑ such that

gi(ẑ) < 0, ∀i = 1, . . . ,m,

hi(ẑ) = 0, ∀i = 1, . . . , p,

Gi(ẑ) = 0, ∀i = 1, . . . , l,

Hi(ẑ) = 0, ∀i = 1, . . . , l.

(24)

Note that, just as in standard nonlinear programming, the weak MPEC-Slater CQ is
characterized by the fact that it depends on the vector z∗ (through the sets Ig, α, β, and
γ). The appeal of the MPEC-Slater CQ is that it is stated independently of z∗. However,
MPEC-SCQ is potentially much more restrictive than MPEC-WSCQ, since we require
equality for Gγ(ẑ) = 0 and Hα(ẑ) = 0. Note that MPEC-SCQ implies MPEC-WSCQ,
analogeous to standard nonlinear programming.

We now show the weak MPEC-Slater CQ to imply MPEC-ACQ. Unfortunately it is not
possible to reduce the proof of the following theorem to results from nonlinear programming
and Coroallary 3.4 as was the case for Theorems 3.6 and 3.7. This is because neither
MPEC-WSCQ, nor MPEC-SCQ implies that the Slater constraint qualification holds for
any NLP∗(β1, β2). We therefore have to fall back on a more elementary proof.

Theorem 3.9 Let z∗ be a feasible point of the program (22). If it satisfies MPEC-WSCQ,
it also satisfies MPEC-ACQ.

11



Proof. By virtue of Lemma 3.2 we know that T (z∗) ⊆ T lin
MPEC(z∗). Therefore, all that

remains to be shown is

T lin
MPEC(z∗) ⊆ T (z∗). (25)

We take the same path here as was taken in [5]. To this end, we define the following cone:

T strict
MPEC(z∗) := {d ∈ Rn |∇gi(z

∗)T d < 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α,

∇Hi(z
∗)T d = 0, ∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ β,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ β,

(∇Gi(z
∗)T d) · (∇Hi(z

∗)T d) = 0, ∀i ∈ β }.

(26)

Note that the difference between T strict
MPEC(z∗) and T lin

MPEC(z∗) (see (14)) lies in the strict
inequality for g(·).

Now, to prove (25), we show the following two inclusions:

T lin
MPEC(z∗) ⊆ cl(T strict

MPEC(z∗)) ⊆ T (z∗). (27)

To prove the first inclusion of (27), we take a vecor ẑ satisfying the Slater conditions (23)
and set

d̂ := ẑ − z∗.

Now the following holds for all i ∈ Ig because g(·) is convex by assumption:

∇gi(z
∗)T d̂ ≤ gi(ẑ)︸︷︷︸

<0

− gi(z
∗)︸ ︷︷ ︸

=0

< 0, ∀i ∈ Ig. (28)

Similarly, the following hold for the linear functions h(·), G(·), and H(·):

∇hi(z
∗)T d̂ = vT

i ẑ − vT
i z∗ = hi(ẑ)︸ ︷︷ ︸

=0

−hi(z
∗)︸ ︷︷ ︸

=0

= 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d̂ = wT

i ẑ − wT
i z∗ = Gi(ẑ)︸ ︷︷ ︸

=0

−Gi(z
∗)︸ ︷︷ ︸

=0

= 0, ∀i ∈ α ∪ β,

∇Hi(z
∗)T d̂ = xT

i ẑ − xT
i z∗ = Hi(ẑ)︸ ︷︷ ︸

=0

−Hi(z
∗)︸ ︷︷ ︸

=0

= 0, ∀i ∈ γ ∪ β.

(29)

We now use the vector d̂, which we know has the properties (28) and (29), to define the
following function:

d(δ) := d + δd̂,
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where d ∈ T lin
MPEC(z∗) is chosen arbitrarily.

We want to show that d(δ) ∈ T strict
MPEC(z∗) for all δ > 0. To this end, let δ > 0 be fixed

for the time being. Then the following holds:

∇gi(z
∗)T d(δ) = ∇gi(z

∗)T d︸ ︷︷ ︸
≤0

+δ∇gi(z
∗)T d̂︸ ︷︷ ︸

<0

< 0, ∀i ∈ Ig,

∇hi(z
∗)T d(δ) = ∇hi(z

∗)T d + δ∇hi(z
∗)T d̂ = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d(δ) =


∇Gi(z

∗)T d︸ ︷︷ ︸
=0

+δ∇Gi(z
∗)T d̂︸ ︷︷ ︸

=0

= 0, ∀i ∈ α,

∇Gi(z
∗)T d︸ ︷︷ ︸

≥0

+δ∇Gi(z
∗)T d̂︸ ︷︷ ︸

=0

≥ 0, ∀i ∈ β,

∇Hi(z
∗)T d(δ) =


∇Hi(z

∗)T d︸ ︷︷ ︸
=0

+δ∇Hi(z
∗)T d̂︸ ︷︷ ︸

=0

= 0, ∀i ∈ γ,

∇Hi(z
∗)T d︸ ︷︷ ︸

≥0

+δ∇Hi(z
∗)T d̂︸ ︷︷ ︸

=0

≥ 0, ∀i ∈ β.

Furthermore, for all i ∈ β it holds that

(∇Gi(z
∗)T d(δ)) · (∇Hi(z

∗)T d(δ)) = (∇Gi(z
∗)T d) · (∇Hi(z

∗)T d)︸ ︷︷ ︸
=0

+ δ(∇Gi(z
∗)T d) · (∇Hi(z

∗)T d̂)︸ ︷︷ ︸
=0

+ δ (∇Gi(z
∗)T d̂)︸ ︷︷ ︸

=0

·(∇Hi(z
∗)T d)

+ δ2 (∇Gi(z
∗)T d̂)︸ ︷︷ ︸

=0

· (∇Hi(z
∗)T d̂)︸ ︷︷ ︸

=0

= 0.

Comparing the properties of d(δ) to T strict
MPEC(z∗) (see (26)), we see that d(δ) ∈ T strict

MPEC(z∗)
for all δ > 0. Since cl(T strict

MPEC(z∗)) is closed by definition, it holds that d = limδ↘0 d(δ) ∈
cl(T strict

MPEC(z∗)). Hence, the inclusion

T lin
MPEC(z∗) ⊆ cl(T strict

MPEC(z∗)) (30)

holds.
To prove the second inclusion of (27), let d ∈ T strict

MPEC(z∗) and {tk} be a sequence with
tk ↘ 0. Setting

zk := z∗ + tkd,

we have

zk → z∗ and
zk − z∗

tk
→ d.
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If we can prove that {zk} ⊂ Z, it would follow that d ∈ T (z∗) (see (9)) and we would have
shown T strict

MPEC(z∗) ⊆ T (z∗), and, since T (z∗) is closed, also that cl(T strict
MPEC(z∗)) ⊆ T (z∗).

Let us therefore check whether zk ∈ Z. By the mean value theorem, it holds that there
exists a vector ζ on the connecting line between zk and z∗ such that the following holds:

gi(z
k) = gi(z

∗) +∇gi(ζ)T (zk − z∗)

= gi(z
∗) + tk∇gi(ζ)T d

=


gi(z

∗)︸ ︷︷ ︸
=0

+tk ∇gi(ζ)T d︸ ︷︷ ︸
<0, ∀k>k0

, ∀i ∈ Ig

gi(z
∗)︸ ︷︷ ︸

<0

+tk∇gi(ζ)T d, ∀i /∈ Ig

 ≤ 0, ∀k > k1,

where k0 ≥ 0 and k1 ≥ k0 are sufficiently large integers. Note that the convexity of g(·)
does not enter here.

The linear functions are handled similarly:

hi(z
k) = vT

i zk + ηi = vT
i z∗ + ηi︸ ︷︷ ︸

=0

+tk vT
i d︸︷︷︸
=0

= 0, ∀i = 1, . . . , p,

Gi(z
k) = wT

i zk + χi =



wT
i z∗ + χi︸ ︷︷ ︸

=0

+tk wT
i d︸︷︷︸

=0

, ∀i ∈ α

wT
i z∗ + χi︸ ︷︷ ︸

=0

+tk wT
i d︸︷︷︸
≥0

, ∀i ∈ β

wT
i z∗ + χi︸ ︷︷ ︸

>0

+tkw
T
i d, ∀i ∈ γ


≥ 0, ∀k > k2,

Hi(z
k) = xT

i zk + ξi =



xT
i z∗ + ξi︸ ︷︷ ︸

>0

+tkx
T
i d, ∀i ∈ α

xT
i z∗ + ξi︸ ︷︷ ︸

=0

+tk xT
i d︸︷︷︸
≥0

, ∀i ∈ β

xT
i z∗ + ξi︸ ︷︷ ︸

=0

+tk xT
i d︸︷︷︸
=0

, ∀i ∈ γ


≥ 0, ∀k > k3,

with k2 ≥ 0 and k3 ≥ 0 sufficiently large integers.
Finally, taking into consideration the definition of T strict

MPEC(z∗) (see (26)), the following
holds for the product Gi(z

k) ·Hi(z
k):

Gi(z
k) ·Hi(z

k) =



(wT
i z∗ + χi︸ ︷︷ ︸

=0

+tk wT
i d︸︷︷︸

=0

)(xT
i z∗ + ξi + tkx

T
i d) ∀i ∈ α

(wT
i z∗ + χi︸ ︷︷ ︸

=0

+tkw
T
i d)(xT

i z∗ + ξi︸ ︷︷ ︸
=0

+tkx
T
i d) = t2k (wT

i d)(xT
i d)︸ ︷︷ ︸

=0

∀i ∈ β

(wT
i z∗ + χi + tkw

T
i d)(xT

i z∗ + ξi︸ ︷︷ ︸
=0

+tk xT
i d︸︷︷︸
=0

) ∀i ∈ γ


= 0.
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The above results demonstrate that zk ∈ Z for all k ≥ max{k0, k1, k2, k3} and hence
d ∈ T (z∗). As was already mentioned, T (z∗) is closed, yielding that cl(T strict

MPEC(z∗)) ⊆ T (z∗).
Together with (30), we therefore have T lin

MPEC(z∗) ⊆ T (z∗) and hence MPEC-ACQ is
satisfied, concluding this proof. �

The following corollary follows immediately from Theorem 3.9 and Definition 3.8.

Corollary 3.10 Let z∗ be a feasible point of the program (22). If it satisfies MPEC-SCQ,
it also satisfies MPEC-ACQ.

3.3 First Order Optimality Conditions

The next question is, of course, which first order optimality conditions can be obtained
using MPEC-ACQ. We cannot expect strong stationarity since MPEC-ACQ is implied by
MPEC-MFCQ which, in turn, is not sufficient for strong stationarity (see [13, 3]). However,
our next result shows that MPEC-ACQ does imply a weaker stationarity concept.

Theorem 3.11 Let z∗ ∈ Rn be a local minimizer of the MPEC (1). If MPEC-ACQ holds
in z∗, then there exists a Lagrange multiplier λ∗ such that (z∗, λ∗) satisfies the following
stationarity conditions:

0 = ∇f(z∗) +
m∑

i=1

(λg
i )
∗∇gi(z

∗) +

p∑
i=1

(λh
i )
∗∇hi(z

∗)−
l∑

i=1

[
(λG

i )∗∇Gi(z
∗) + (λH

i )∗Hi(z
∗)
]
,

(λG
α )∗ free,

(λH
γ )∗ free,

(λG
i )∗ ≥ 0 ∨ (λH

i )∗ ≥ 0 ∀i ∈ β
(λG

γ )∗ = 0,

(λH
α )∗ = 0,

g(z∗) ≤ 0, (λg)∗ ≥ 0, g(z∗)T (λg)∗ = 0.

(31)

In particular, (z∗, λ∗) is weakly stationary.

Proof. It is known from nonlinear programming (cf., e.g., [5]) that if z∗ is a local minimizer
of the MPEC (1), then it is B-stationary, i.e. the following holds:

∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗). (32)

Since MPEC-ACQ holds, (32) is equivalent to the following:

∇f(z∗)T d ≥ 0 ∀d ∈ T lin
MPEC(z∗) =

⋃
T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

, (33)

cf. Lemma 3.1 (b).
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Choosing a partition (β1, β2) ∈ P(β) arbitrarily, it follows from (33) that

∇f(z∗)T d ≥ 0 ∀d ∈ T lin
NLP∗(β1,β2)(z

∗). (34)

We now follow standard arguments from nonlinear programming. The condition (34) can
also be written as

−∇f(z∗)T d ≤ 0 ∀d ∈ Rn with Ad ≤ 0,

where the matrix A ∈ R(|Ig |+2p+2|α|+2|γ|+3|β|)×n is given by

A :=



∇gi(z
∗)T (i ∈ Ig)

∇hi(z
∗)T (i = 1, . . . , p)

−∇hi(z
∗)T (i = 1, . . . , p)

∇Gi(z
∗)T (i ∈ α ∪ β1)

−∇Gi(z
∗)T (i ∈ α ∪ β1)

∇Hi(z
∗)T (i ∈ γ ∪ β2)

−∇Hi(z
∗)T (i ∈ γ ∪ β2)

−∇Gi(z
∗)T (i ∈ β2)

−∇Hi(z
∗)T (i ∈ β1)


.

Farkas’ theorem of the alternative (cf., e.g., [7, Theorem 2.4.6]) yields that

AT y = −∇f(z∗), y ≥ 0

has a solution. Now let us denote the components of y by λg
Ig

, λh+, λh− (λh+, λh− ∈ Rp),

λG+
α∪β1

, λG−
α∪β1

, λH+
γ∪β2

, λH−
γ∪β2

, λG
β2

, and λH
β1

, in that order. We then set λh := λh+ − λh−,

λG
α∪β1

:= λG+
α∪β1

− λG−
α∪β1

, and λH
γ∪β2

:= λH+
γ∪β2

− λH−
γ∪β2

. Additionally, we set λg
i := 0 (i /∈ Ig),

λG
γ := 0, and λH

α := 0. The resulting vector λ = (λg, λh, λG, λH) satisfies the conditions for
A-stationarity. Setting λ∗ := λ completes the proof. �

Note that the proof of Theorem 3.11 holds for an arbitrary partition (β1, β2) of the index
set β. Hence we can choose, a priori, such a partition and obtain corresponding Lagrange
multipliers (λG)∗ and (λH)∗ such that (λG

i )∗ ≥ 0 for all i ∈ β1 and (λH
i )∗ ≥ 0 for all i ∈ β2.

Motivated by Theorem 3.11, we call a weakly stationary point z∗ of the MPEC (1)
A-stationary if there exists a corresponding Lagrange multiplier λ∗ such that

(λG
i )∗ ≥ 0 or (λH

i )∗ ≥ 0 ∀i ∈ β,

i.e., z∗ is A-stationary if and only if (31) holds for some multiplier λ∗. Here, the letter
‘A’ may stand for ‘alternative’ since, for each i ∈ β, we have the alternative that either
(λG

i )∗ ≥ 0 or (λH
i )∗ ≥ 0 (or both) hold. However, the letter ‘A’ may also be interpreted

as an abbreviation for ‘Abadie’ since this stationarity concept holds under MPEC-Abadie
CQ.

16



The condition (33), i.e.

∇f(z∗)T d ≥ 0 ∀d ∈ T lin
MPEC(z∗), (35)

has appeared before in [13] under the name “B-stationarity”. This is somewhat misleading,
since more commonly, (32) is called B-stationarity (cf., e.g., [11]). We shall therefore call
(35) MPEC-linearized B-stationarity to avoid confusion. The name is motivated by the
fact that (35) involves the MPEC-linearized cone T lin

MPEC(z∗).
Note that the proof of Theorem 3.11 yields that MPEC-linearized B-stationarity implies

A-stationarity.
Also note that under both MPEC-LICQ and MPEC-SMFCQ, A-stationarity implies

strong stationarity. This is easily verified if one considers that both these constraint qual-
ifications imply the uniqueness of the Lagrange multiplier and the fact that the partition
(β1, β2) for A-stationarity should hold can be chosen a priori. See [3] for more details, as
well as a different derivation of A-stationarity.

4 Comparison between the basic CQ [6] and MPEC-

ACQ

The question was raised by Danny Ralph [12] whether MPEC-ACQ may be identical to
the basic CQ used in [6]. In this section we try to shed some light on this. It may be noted
in advance that in the absense of upper-level constraints and if the lower level constraints
take on a certain form, then the basic CQ and MPEC-ACQ do indeed coincide. To see
this, however, some effort is required. The remainder of this section is dedicated to that
question.

Let us therefore consider an MPEC in the notation used in [6]:

min f(x, y)

s.t. (x, y) ∈ Z ⊂ Rn+m,

y ∈ S := SOL(F (x, ·), C(x))

(36)

with

C(x) := {y ∈ Rm | g(x, y) ≤ 0}. (37)

Here y ∈ SOL(F (x, ·), C(x)) denotes a solution of the variational inequality

y ∈ C(x),

(v − y)T F (x, y) ≥ 0, ∀v ∈ C(x).
(38)

Since we are interested in mathematical programs with nonlinear complementarity prob-
lems as constraints rather than variational inequalities, we consider the case where g(x, y) :=
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−y. Then the program (36) reduces to the following program:

min f(x, y)

s.t. (x, y) ∈ Z,

y ≥ 0,

(v − y)T F (x, y) ≥ 0, ∀v ≥ 0,

which obviously is equivalent to the following program:

min f(x, y)

s.t. (x, y) ∈ Z,

y ≥ 0, F (x, y) ≥ 0, yT F (x, y) = 0.

(39)

Now, the basic CQ from [6] is said to hold in (x∗, y∗) if there exists a nonempty set M ′ of
Lagrange multipliers of the variational inequality (38) such that

T ((x∗, y∗);F) = T ((x∗, y∗); Z) ∩

( ⋃
λ∈M ′

Gr(LS(x∗,y∗,λ))

)
, (40)

where F denotes the feasible region of (39), Gr(·) denotes the graph of a multifunction and

LS(x∗,y∗,λ)(dx) = SOL(∇xL(x∗, y∗, λ)dx,∇yL(x∗, y∗, λ),K(x∗, y∗, λ; dx)) (41)

is the solution set of the affine variational inequality

dy ∈ K(x∗, y∗, λ; dx), (42)

(v − dy)T (∇xL(x∗, y∗, λ)dx +∇yL(x∗, y∗, λ)dy) ≥ 0, ∀v ∈ K(x∗, y∗, λ; dx),

where

L(x, y, λ) := F (x, y) +
l∑

i=1

λi∇ygi(x, y) = F (x, y)− λ (43)

is the Lagrangian,

K(x∗, y∗, λ; dx) := {dy ∈ Rm | (dx, dy) ∈ K(x∗, y∗, λ)} (44)

is the directional critical set, and

K(x∗, y∗, λ) :=
{
(dx, dy) ∈ Rn+m |
∇xgi(x

∗, y∗)T dx +∇ygi(x
∗, y∗)T dy ≤ 0, ∀i ∈ {i | gi(x

∗, y∗) = 0 ∧ λi = 0},
∇xgi(x

∗, y∗)T dx +∇ygi(x
∗, y∗)T dy = 0, ∀i ∈ {i | gi(x

∗, y∗) = 0 ∧ λi > 0}
}

=
{
(dx, dy) ∈ Rn+m |
eT

i dy ≥ 0, ∀i ∈ {i | y∗i = 0 ∧ λi = 0},
eT

i dy = 0, ∀i ∈ {i | λi > 0}
}

(45)

18



is the lifted critical cone (ei ∈ Rm is the i-th unit vector).
If, in (40), M ′ is assumed to be the whole set of Lagrange multipliers, the full CQ is

said to hold.
The Lagrange multipliers λ of the variational inequality (38) must satisfy the following

conditions:

L(x, y, λ) = F (x, y)− λ = 0,

λ ≥ 0, y ≥ 0, λT y = 0.
(46)

Hence λ∗ := F (x∗, y∗) is the only Lagrange multiplier and M ′ := {λ∗} reduces to a single-
ton, so that the basic and full CQ coincide. Note also that, because of the complementarity
conditions in (46), λi > 0 implies gi(x

∗, y∗) = −y∗i = 0 in (45).
Let us again consider the basic CQ (40). Note that it is somewhat different from our

MPEC-ACQ since we also linearize the upper level constraints. We void this difference in
our subsequent discussion by setting Z := Rn+m. Combining this with the fact that M ′

reduces to a singleton for our program (39) results in the basic (or full) CQ reducing to

T ((x∗, y∗);F) = Gr(LS(x∗,y∗,λ∗)). (47)

Now, by virtue of [6, (1.3.14)], dy ∈ LS(x∗,y∗,λ∗)(dx) holds if and only if there exists a
multiplier µ such that

∇xL(x∗, y∗, λ∗)dx +∇yL(x∗, y∗, λ∗)dy − AT µ = 0,

Ady − b ≥ 0,

µ ≥ 0,

µT (Ady − b) = 0,

(48)

with

A :=

 eT
i i ∈ {i | y∗i = 0 ∧ λ∗i = 0}

−eT
i

eT
i

i ∈ {i | λ∗i > 0}

 , b := 0.

Combining z := (x, y) and d = (dx, dy), and remembering that λ∗ = F (x∗, y∗), the set
Gr(LS(x∗,y∗,λ∗)) can be written as follows:

Gr(LS(z∗,λ∗)) = {d ∈ Rn+m | ∃µ : ∇F (z∗)T d− AT µ = 0, (49a)

µ ≥ 0, µT Ady = 0, (49b)

eT
i dy ≥ 0, i ∈ β (49c)

eT
i dy = 0, i ∈ γ}, (49d)

where β and γ (and α, see below) are defined as in (2), for the program (39).
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The conditions (49c) and (49d) reduce to dn+i ≥ 0 for i ∈ β and dn+i = 0 for i ∈ γ
respectively. From (49a) it follows that∇Fi(z

∗)T d = 0 for i ∈ α, and∇Fi(z
∗)T d = µj(i) ≥ 0

for i ∈ β, where the index j depends on i.
Let us now consider (49b):

µT Ady = µT


dn+i i ∈ β
=0︷ ︸︸ ︷

−dn+i

dn+i︸︷︷︸
=0

i ∈ γ


=

∑
i∈β

µj(i)dn+i

=
∑
i∈β

(∇Fi(z
∗)T d︸ ︷︷ ︸

≥0

) dn+i︸︷︷︸
≥0

= 0.

From this, it follows that

(∇Fi(z
∗)T d) · dn+i = 0, ∀i ∈ β.

Collecting everything we have gathered about Gr(LS(z∗,λ∗)), we arrive at the following
result:

Gr(LS(z∗,λ∗)) = {d ∈ Rn+m | ∇Fi(z
∗)T d = 0, ∀i ∈ α,

dn+i = 0, ∀i ∈ γ,

∇Fi(z
∗)T d ≥ 0, ∀i ∈ β,

dn+i ≥ 0, ∀i ∈ β,

(∇Fi(z
∗)T d) · dn+i = 0, ∀i ∈ β},

which is equal to T lin
MPEC(z∗) of the MPEC (39). Hence the basic CQ [6] and MPEC-ACQ

coincide in this case. Note however, that we considered a program in the format (39) and
in the absense of upper-level constraints.

5 Summary

If we collect the constraint qualifications we have covered in this paper and put them in
relation to each other, we get the following chain of implications for any feasible point z∗:

affine MPEC =⇒
MPEC-LICQ =⇒ MPEC-SMFCQ =⇒ MPEC-MFCQ =⇒ MPEC-ACQ.

MPEC-SCQ =⇒ MPEC-WSCQ =⇒
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The implications MPEC-LICQ ⇒ MPEC-SMFCQ ⇒ MPEC-MFCQ transfer directly from
nonlinear programming since the constraint qualifications involved are defined via TNLP,
which is a nonlinear program (see Definition 2.1). The other implications were proved in
Section 3 (see Theorems 3.6, 3.7, and 3.9 and Definition 3.8).

Of perhaps even greater interest is the relationship between the stationarity concepts
mentioned in this paper. To this end, let us recall the various stationarity concepts: A
feasible vector z∗ of the MPEC (1) is called

• B-stationary if ∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗);

• MPEC-linearized B-stationary if ∇f(z∗)T d ≥ 0 ∀d ∈ T lin
MPEC(z∗);

• linearized B-stationary if ∇f(z∗)T d ≥ 0 ∀d ∈ T lin(z∗).

The notion of linearized B-stationarity is new and included here only for the sake of com-
pleteness. In view of the inclusions (19), we have

lin. B-stationarity =⇒ MPEC-lin. B-stationarity =⇒ B-stationarity.

We further recall that a weakly stationary point z∗ (see (6)) with corresponding Lagrange
multiplier λ∗ is called

• A-stationary if (λG
i )∗ ≥ 0 or (λH

i )∗ ≥ 0 for all i ∈ β;

• C-stationary if (λG
i )∗(λH

i )∗ ≥ 0 for all i ∈ β (see [13]);

• strongly stationary if (λG
i )∗ ≥ 0 and (λH

i )∗ ≥ 0 for all i ∈ β.

The following graph now attempts to clarify the relationship between the various station-
arity concepts.
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The implications

local minimizer
MPEC-MFCQ

=⇒ C-stationary,

MPEC-linearized B-stationary
MPEC-SMFCQ

=⇒ strongly stationary,

and

local minimizer
MPEC-SMFCQ

=⇒ strongly stationary

have been shown in [13] and do not follow from our analysis, whereas the equivalence

strongly stationary ⇐⇒ linearized B-stationary

follows by the following arguments: For the forward implication, multiply the first line of
(7) by d with d ∈ T lin(z∗):

∇f(z∗)T d = −
∑
i∈Ig

λg
i︸︷︷︸

≥0

∇gi(z
∗)T d︸ ︷︷ ︸

≤0

−
p∑

i=1

λh
i ∇hi(z

∗)T d︸ ︷︷ ︸
=0

+
∑
i∈α

λG
i ∇Gi(z

∗)T d︸ ︷︷ ︸
=0

+
∑
i∈γ

λH
i ∇Hi(z

∗)T d︸ ︷︷ ︸
=0

+
∑
i∈β

[
λG

i︸︷︷︸
≥0

∇Gi(z
∗)T d︸ ︷︷ ︸

≥0

+ λH
i︸︷︷︸
≥0

∇Hi(z
∗)T d︸ ︷︷ ︸

≥0

]
≥ 0.

For the reverse implication, we express linearized B-stationarity as

−∇f(z∗)T d ≤ 0 ∀d with Ad ≤ 0

with an appropriare matrix A. Farkas’ theorem of the alternative (cf., e.g., [7, Theorem
2.4.6]) yields the existence of a y ≥ 0, such that

AT y = −∇f(z∗).

From this, it is immediately apparent that multipliers satisfying strong stationarity (7)
exist. (Compare also to the proof of Theorem 3.11, where the same technique was used.)

All other implications follow from our results in Section 3.
The implication

strongly stationary =⇒ C-stationary

was not included in the graph for esthetic reasons, although it does, of course, hold.
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