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Abstract

This paper considers optimization problems with cardinality constraints. Based
on a recently introduced reformulation of this problem as a nonlinear program
with continuous variables, we first define some problem-tailored constraint
qualifications and then show how these constraint qualifications can be used
to obtain suitable optimality conditions for cardinality constrained problems.
Here, the (KKT-like) optimality conditions hold under much weaker assump-
tions than the corresponding result that is known for the somewhat related
class of mathematical programs with complementarity constraints.

Key Words: Cardinality constraints, constraint qualifications, optimality condi-
tions, KKT conditions, strongly stationary points.



1 Introduction

Consider the cardinality-constrained optimization problem

min
x

f(x) s.t. x ∈ X, ‖x‖0 ≤ κ (1)

with a set X ⊆ Rn described by some standard constraints

X :=
{
x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . ,m), hi(x) = 0 (i = 1, . . . , p)

}
(2)

and ‖x‖0 denoting the number of nonzero components of the vectorx. Throughout
the paper, we assume implicitly that f, gi, hi : Rn → R are continuously differen-
tiable, and that the parameter κ is less than n (otherwise, there would be no sparsity
constraint on the cardinality of the solution vector).

Problem (1) has many important applications including portfolio optimization
problems with constraints on the number of assets [6], the subset selection problem
in regression [15], or the compressed sensing technique applied in signal processing
[8]. It is, however, very difficult to solve due to the presence of the cardinality
constraint ‖x‖0 ≤ κ. It is usually viewed as a mixed-integer problem since it can be
reformulated in such a way by introducing suitable binary variables, see [6]. Methods
for the solution of cardinality-constrained optimization problems therefore typically
apply or adapt techniques from discrete optimization, see [5, 6, 9, 16, 23, 25, 28]
and references therein for a couple of examples.

Here we focus on a different approach that follows an observation which is very
close to the one made in [10] in the context of the related class of sparse optimization
problems. This observation was slightly afterwards (and independently) also made
by the authors of the accompanying paper [7] for cardinality-constrained problems:
It states that a vector x∗ is a solution (global minimum) of (1) with X as in (2)
if and only if there exists a vector y∗ ∈ Rn such that the pair (x∗, y∗) solves the
continuous optimization problem

min
x,y

f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
eTy ≥ n− κ,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,
xiyi = 0 ∀i = 1, . . . , n,

(3)

where e := (1, . . . , 1)T ∈ Rn denotes the all one vector. Furthermore, every local
minimum of (1), where the feasible set is given by (2), yields a local minimum of
(3), and the converse is also true under suitable conditions, see [7] for more details.

Hence (3) provides a reformulation of the difficult cardinality constrained opti-
mization problem as a minimization problem in continuous variables. This reformu-
lation has been used to obtain suitable methods for the solution of problem (1) in [7]
which are, of course, not able to find a global minimum, but an appropriate station-
ary point in an efficient way, see also the extensive numerical results presented in [10]
for sparse optimization problems. Here we want to exploit the relationship between
the two problems (1) and (3) in order to obtain suitable optimality conditions for
the original cardinality-constrained problem.
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There is, however, still a difficulty since the reformulation (3) typically does not
satisfy the standard constraint qualifications known for nonlinear programs, hence
the usual KKT theory cannot be applied, at least not directly. In addition, the
reformulation (3) looks similar to a mathematical program with complementarity
constraints (MPCC) for which, in the meantime, there exists a rich theory, cf. [13, 19]
for some background material on MPCCs.

However, direct application of most MPCC-tailored constraint qualifications is
not possible in general. Furthermore, and most interestingly, it turns out that
a direct inspection of the problem (3) yields results that are much stronger than
the corresponding ones known for general MPCCs. Observations of this kind have
already been given in [7] and will also arise in this paper, cf. Section 5 for a more
detailed discussion.

The paper is organized in the following way: We first recall some basic defini-
tions and a result on polar cones in Section 2. We then derive suitable constraint
qualifications tailored to the cardinality-constrained problem (1) in Section 3 and
provide sufficient conditions for these constraint qualifications. The main results are
given in Section 4 where we use the previously introduced constraint qualifications
to prove that a strong (KKT-like) stationarity result holds under very mild condi-
tions (much less restrictive than for the corresponding result known for MPCCs). A
detailed comparison of our results for the cardinality-constrained problem with the
corresponding results known for MPCCs is given in Section 5.

Notation: ei denotes the i-th unit vector in Rn. We denote by R+ := [0,∞)
and R− := (−∞, 0] the set of nonnegative and nonpositive numbers, respectively.
We say that a finite set of vectors ai (i ∈ I) and bj (j ∈ J) is positively linearly
independent if there are no nonzero multipliers (λ, µ) with λi ≥ 0 (i ∈ I) such that∑

i∈I

λiai +
∑
j∈J

µjbj = 0;

otherwise these vectors are called positively linearly dependent. Note that, from
the corresponding context, it should usually be clear which coefficients are sign-
constrained and which coefficients are not.

2 Preliminaries

This section presents some preliminary material that will play an essential role in
our subsequent analysis. To this end, we recall the definitions of several constraint
qualifications for standard nonlinear programs and a result which simplifies the
calculation of the cones that play a central role later on.

Let us begin by considering a nonlinear program in the standard form

min
x

f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
(4)

Let X denote the feasible set of this program. Then the (Bouligand) tangent cone
of X at a feasible point x∗ ∈ X is defined by

TX(x∗) :=
{
d ∈ Rn

∣∣ ∃{xk} ⊆ X, ∃{tk} ↓ 0 : xk → x∗ and lim
k→∞

xk − x∗

tk
= d
}
.
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On the other hand, the corresponding linearization cone of X at x∗ ∈ X is given by

LX(x∗) :=
{
d ∈ Rn

∣∣ ∇gi(x∗)Td ≤ 0 (i : gi(x
∗) = 0),∇hj(x∗)Td = 0 (j = 1, . . . , p)

}
.

As part of our subsequent analysis, we will derive suitable expressions for the tangent
and linearization cones corresponding to the specially structured nonlinear program
from (3).

We also recall that, given an arbitrary cone C ⊆ Rn, its dual cone is defined by

C∗ := {v ∈ Rn | vTd ≥ 0 ∀d ∈ C},

whereas
C◦ := −C∗ = {v ∈ Rn | vTd ≤ 0 ∀d ∈ C}

denotes the corresponding polar cone of C. In order to keep our notation as concise
as possible, we will restrict ourselves to the use of the polar cone from now on. Note,
however, that the polar cone is sometimes also denoted by C∗ in the literature, see,
for example, [22].

In the special case of a polyhedral convex cone, there is a simple duality relation
known from convex analysis, see, e.g., [3, Proposition B.16].

Lemma 2.1 Let the cones

C1 := {d ∈ Rn | aTi d ≤ 0 (i = 1, . . . ,m), bTi d = 0 (i = 1, . . . , p)}

and

C2 :=

{
v ∈ Rn

∣∣∣∣ v =
m∑
i=1

λiai +

p∑
i=1

µibi, λi ≥ 0 (i = 1, . . . ,m)

}
be given. Then C1 = C◦2 and C2 = C◦1 .

Based on the previously introduced notions, we are able to restate the definitions of
several constraint qualifications known for standard nonlinear programs.

Definition 2.2 Let x∗ be a feasible point of the nonlinear program (4). Then we
say that x∗ satisfies the

(a) linear independence constraint qualification (LICQ) if the gradient vectors

∇gi(x∗) (i : gi(x
∗) = 0), ∇hi(x∗) (i = 1, . . . , p)

are linearly independent;

(b) Mangasarian-Fromovitz constraint qualification (MFCQ) if the gradient vec-
tors ∇hi(x∗) (i = 1, . . . , p) are linearly independent and, in addition, there ex-
ists a vector d ∈ Rn such that ∇hi(x∗)Td = 0 (i = 1, . . . , p) and ∇gi(x∗)Td <
0 (i : gi(x

∗) = 0) hold;
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(c) constant rank constraint qualification (CRCQ) if for any subsets I1 ⊆ {i :
gi(x

∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2)

are linearly dependent in x = x∗, they remain linearly dependent for all x in
a neighborhood of x∗;

(d) constant linear dependence condition (CPLD) if for any subsets I1 ⊆ {i :
gi(x

∗) = 0} and I2 ⊆ {1, . . . , p} such that the gradient vectors

∇gi(x) (i ∈ I1) and ∇hi(x) (i ∈ I2)

are positive-linear dependent in x = x∗, they are linearly dependent for all x
in a neighborhood of x∗;

(e) Abadie constraint qualification (ACQ) if TX(x∗) = LX(x∗) holds;

(f) Guignard constraint qualification (GCQ) if TX(x∗)◦ = LX(x∗)◦ holds.

Most of these constraint qualifications are well-known from the literature, see, e.g.,
[2, 17]. One exception might be the CPLD condition which was introduced in [21]
and later shown to be a constraint qualification in [1]. The following implications
hold between these conditions:

LICQ

MFCQ

CRCQ

CPLD ACQ GCQ

Almost all of these implications follow directly from the corresponding defini-
tions. The only exception is that CPLD implies ACQ, but this observation can be
derived from [1, 4]. It is clear from the above diagram that LICQ is the strongest
and GCQ is the weakest constraint qualification among those considered here. In
fact, it is possible to show that (in a certain sense), GCQ is the weakest possible
constraint qualification which guarantees that a local minimum of the program (4)
is also a stationary point, see [2] for more details.

3 Abadie- and Guignard-type Constraint Qualifi-

cations

Though being one of the weakest constraint qualifications for optimization problems,
standard ACQ is usually violated at a feasible point of the cardinality-constrained
optimization problem (1), see Example 3.6 for a counterexample. We therefore
introduce a problem-tailored modification of the standard ACQ in this section which
will be satisfied under much weaker assumptions than the usual ACQ condition. In
a similar way, we also develop a variant of the standard GCQ condition. Quite
surprisingly, however, this modified GCQ condition turns out to be equivalent to
the usual GCQ assumption. We call these modified ACQ- and GCQ-conditions
CC-ACQ and CC-GCQ (CC = cardinality constraints).
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3.1 Derivation of Abadie- and Guignard-type Constraint
Qualifications

Let Z be the feasible set of the continuous optimization problem (3), and let
(x∗, y∗) ∈ Z be any feasible point. Then recall that the tangent cone of Z at
(x∗, y∗) is defined by

TZ(x∗, y∗) =
{
d = (dx, dy) | ∃{(xk, yk)} ⊆ Z, ∃{tk} ↓ 0 :

zk := (xk, yk)→ (x∗, y∗) =: z∗ and
zk − z∗

tk
→ d

}
.

Furthermore, let us introduce the following index sets:

Ig(x
∗) := {i ∈ {1, . . . ,m} | gi(x∗) = 0},

I0(x
∗) := {i ∈ {1, . . . , n} | x∗i = 0}

I±0(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗i 6= 0, y∗i = 0},

I00(x
∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i = 0},

I0+(x∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i ∈ (0, 1)},
I01(x

∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i = 1}.

Note that the subscripts are used to indicate the signs of the variables x∗i and y∗i .
The definitions of these index sets immediately show that we have the partitions

{1, . . . , n} = I0(x
∗) ∪ I±0(x∗, y∗)

and
I0(x

∗) = I00(x
∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x∗, y∗).

We further note that the index set I±0(x
∗, y∗) could alternatively be called I±(x∗)

only, since x∗i 6= 0 together with the assumed feasibility of (x∗, y∗) immediately yields
y∗i = 0. However, we prefer to use double indices also for this index set since this
makes it easier to remember the sign distribution of the two components x∗i and y∗i .

Using these index sets, the linearization cone of Z at (x∗, y∗) is given by

LZ(x∗, y∗) =
{
d = (dx, dy) | ∇gi(x∗)Tdx ≤ 0 ∀i ∈ Ig(x∗),

∇hi(x∗)Tdx = 0 ∀i = 1, . . . , p,

eTdy ≥ 0 if eTy∗ = n− κ,
eTi dy ≥ 0 ∀i ∈ I±0(x∗, y∗) ∪ I00(x∗, y∗),
eTi dy ≤ 0 ∀i ∈ I01(x∗, y∗),
x∗i e

T
i dy + y∗i e

T
i dx = 0 ∀i = 1, . . . , n

}
An alternative representation of the linearization cone, that is better suited for our
purposes, is given in the following result whose proof is rather obvious and therefore
omitted.

Lemma 3.1 Let (x∗, y∗) ∈ Z be a feasible point of the program (3). Then the
linearization cone of Z at (x∗, y∗) is given by

LZ(x∗, y∗) =
{
d = (dx, dy) | ∇gi(x∗)Tdx ≤ 0 ∀i ∈ Ig(x∗),
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∇hi(x∗)Tdx = 0 ∀i = 1, . . . , p,

eTdy ≥ 0 if eTy∗ = n− κ,
eTi dy = 0 ∀i ∈ I±0(x∗, y∗),
eTi dy ≥ 0 ∀i ∈ I00(x∗, y∗),
eTi dy ≤ 0 ∀i ∈ I01(x∗, y∗),
eTi dx = 0 ∀i ∈ I01(x∗, y∗),
eTi dx = 0 ∀i ∈ I0+(x∗, y∗)

}
.

In order to derive suitable constraint qualifications which take into account the par-
ticular structure of the nonlinear program (3), we now introduce the CC-linearization
cone (CC = cardinality constraints) by

LCC
Z (x∗, y∗) =

{
d = (dx, dy) | ∇gi(x∗)Tdx ≤ 0 ∀i ∈ Ig(x∗),

∇hi(x∗)Tdx = 0 ∀i = 1, . . . , p,

eTdy ≥ 0 if eTy∗ = n− κ,
eTi dy = 0 ∀i ∈ I±0(x∗, y∗),
eTi dy ≥ 0 ∀i ∈ I00(x∗, y∗),
eTi dy ≤ 0 ∀i ∈ I01(x∗, y∗),
eTi dx = 0 ∀i ∈ I01(x∗, y∗),
eTi dx = 0 ∀i ∈ I0+(x∗, y∗),

(eTi dx)(eTi dy) = 0 ∀i ∈ I00(x∗, y∗)
}
.

Comparing this definition with the representation of the standard linearization cone
from Lemma 3.1, it turns out that the only difference is that we included the last
line into the CC-linearization cone. In particular, we therefore have

LCC
Z (x∗, y∗) ⊆ LZ(x∗, y∗). (5)

While the linearization cone is, by definition, a polyhedral convex cone, simple
examples such as Example 3.6 show that both the tangent cone TZ(x∗, y∗) and the
CC-linearization cone LCC

Z (x∗, y∗) are nonconvex, specifically, they are the union of
finitely many polyhedral convex cones.

This observation can be made precise by introducing certain subsets of the fea-
sible set Z. Recall that (x∗, y∗) ∈ Z still denotes a given (fixed) feasible point of the
program (3). For an arbitrary subset I ⊆ I00(x

∗, y∗), we then define the restricted
feasible sets

ZI :=
{

(x, y) | gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,

eTy ≥ n− κ,
xi = 0, yi ∈ [0, 1] ∀i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗) ∪ I,
yi = 0 ∀i ∈ I±0(x∗, y∗) ∪

(
I00(x

∗, y∗) \ I
)}
,

i.e., we split the bi-active index set I00(x
∗, y∗) into the two sets I and I00(x

∗, y∗) \ I
and require that xi = 0 on the first set and yi = 0 on the second set. In particular,
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we therefore have ZI ⊆ Z for all I ⊆ I00(x
∗, y∗). Furthermore, we have the following

result showing that the tangent cone is indeed the union of finitely many polyhedral
convex cones.

Proposition 3.2 Let (x∗, y∗) ∈ Z be feasible for the program (3). Then the tangent
cone and its polar satisfy the following equations:

(a) TZ(x∗, y∗) =
⋃

I⊆I00(x∗,y∗) TZI
(x∗, y∗).

(b) TZ(x∗, y∗)◦ =
⋂

I⊆I00(x∗,y∗) TZI
(x∗, y∗)◦.

Proof: Statement (a) was given in [7]. Formally, that paper assumes that gi and hi
are (affine-) linear. However, a simple inspection of that proof shows that possibly
nonlinear functions gi and hi do not change anything. Furthermore, part (b) then
follows from (a) and [2, Theorem 3.1.9]. �

A similar representation can be shown for the CC-linearization cone.

Proposition 3.3 Let (x∗, y∗) ∈ Z be feasible for the program (3). Then the CC-
linearization cone and its polar satisfy the following equations:

(a) LCC
Z (x∗, y∗) =

⋃
I⊆I00(x∗,y∗) LZI

(x∗, y∗).

(b) LCC
Z (x∗, y∗)◦ =

⋂
I⊆I00(x∗,y∗) LZI

(x∗, y∗)◦.

Proof: Once again, statement (b) follows immediately from part (a) by applying
[2, Theorem 3.1.9] to the nonempty cones LZI

(x∗, y∗).
In order to verify part (a), we first observe that the linearization cone of the set

ZI (for an arbitrary index set I ⊆ I00(x
∗, y∗)) is given by

LZI
(x∗, y∗) =

{
d = (dx, dy) | ∇gi(x∗)Tdx ≤ 0 ∀i ∈ Ig(x∗),

∇hi(x∗)Tdx = 0 ∀i = 1, . . . , p,

eTdy ≥ 0 if eTy∗ = n− κ,
eTi dx = 0 ∀i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗) ∪ I,
eTi dy ≥ 0 ∀i ∈ I,
eTi dy ≤ 0 ∀i ∈ I01(x∗, y∗),
eTi dy = 0 ∀i ∈ I±0(x∗, y∗) ∪

(
I00(x

∗, y∗) \ I
)}
.

Now take an arbitrary (dx, dy) ∈ LCC
Z (x∗, y∗). Then define the index set I := {i ∈

I00(x
∗, y∗) | eTi dy > 0}. This implies eTi dy = 0 for all i ∈ I00(x∗, y∗) \ I and eTi dx = 0

for all i ∈ I. It therefore follows that (dx, dy) ∈ LZI
(x∗, y∗).

Conversely, suppose that (dx, dy) belongs to one of the sets LZI
(x∗, y∗) for some

I ⊆ I00(x
∗, y∗). Then the above representation of LZI

(x∗, y∗) shows that (eTi dx)(eTi dy) =
0 for all i ∈ I00(x∗, y∗) and eTi dy ≥ 0 holds for all i ∈ I00(x∗, y∗). But this immedi-
ately implies that (dx, dy) ∈ LCC

Z (x∗, y∗). �

As a consequence of the previous results, we now obtain a simple relationship be-
tween the Bouligand tangent cone and the CC-linearization cone.
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Proposition 3.4 The inclusions

TZ(x∗, y∗) ⊆ LCC
Z (x∗, y∗) ⊆ LZ(x∗, y∗)

hold for any feasible point (x∗, y∗) ∈ Z.

Proof: The second inclusion was already noted in (5), so it remains to prove the
first one. To this end, first note that the theory from standard nonlinear programs
shows that the inclusion

TZI
(x∗, y∗) ⊆ LZI

(x∗, y∗)

always holds for an arbitrary index set I ⊆ I00(x
∗, y∗). This implies⋃

I⊆I00(x∗,y∗)

TZI
(x∗, y∗) ⊆

⋃
I⊆I00(x∗,y∗)

LZI
(x∗, y∗).

Together with Propositions 3.2 and 3.3, we therefore obtain

TZ(x∗, y∗) =
⋃

I⊆I00(x∗,y∗)

TZI
(x∗, y∗) ⊆

⋃
I⊆I00(x∗,y∗)

LZI
(x∗, y∗) = LCC

Z (x∗, y∗), (6)

and this completes the proof. �

Recall that the standard Abadie constraint qualification (ACQ) requires TZ(x∗, y∗) =
LZ(x∗, y∗). However, taking into account that the tangent cone is usually nonconvex
as a finite union of polyhedral convex cones, whereas the linearization cone is polyhe-
dral convex by its definition, it follows that the ACQ assumption typically does not
hold in our context. On the other hand, the CC-linearization cone is also nonconvex,
and Proposition 3.4 indeed motivates the following modifications of standard ACQ
and standard GCQ.

Definition 3.5 Let (x∗, y∗) ∈ Z be feasible for the program (3). Then we say that

(a) CC-ACQ holds at (x∗, y∗) if TZ(x∗, y∗) = LCC
Z (x∗, y∗) holds.

(b) CC-GCQ holds at (x∗, y∗) if TZ(x∗, y∗)◦ = LCC
Z (x∗, y∗)◦ holds.

Note that CC-ACQ implies CC-GCQ, whereas the converse is not true in gen-
eral. Moreover, standard ACQ also implies CC-ACQ, whereas the following example
shows that CC-ACQ might hold also in situations where standard ACQ is violated.

Example 3.6 Consider the simplest possible cardinality-constrained problem

min f(x) s.t. ‖x‖0 ≤ 1

with x ∈ R2 and the corresponding relaxed problem

min
x,y

f(x) s.t. y1 + y2 ≥ 1,

0 ≤ yi ≤ 1 ∀i = 1, 2,

xiyi = 0 ∀i = 1, 2.

8



If we choose the feasible point (x∗, y∗) with x∗ = (0, 0)T and y∗ = (0, 1)T and denote
the feasible set of the relaxed problem by Z, we obtain

TZ(x∗, y∗) = {(dx, dy) | (dx)2 = 0, dy = 0}
∪{(dx, dy) | dx = 0, (dy)1 ≥ 0, (dy)2 ≤ 0, (dy)1 + (dy)2 ≥ 0},

LZ(x∗, y∗) = {(dx, dy) | (dx)2 = 0, (dy)1 ≥ 0, (dy)2 ≤ 0, (dy)1 + (dy)2 ≥ 0},

where the tangent cone TZ(x∗, y∗) and the linearization cone LZ(x∗, y∗) can be cal-
culated, e.g., using Proposition 3.2 and Lemma 3.1, respectively. Here, TZ(x∗, y∗)
is nonconvex, more precisely, it is the union of two polyhedral convex cones, and
consequently TZ(x∗, y∗) ( LZ(x∗, y∗). Hence standard ACQ is violated in this ex-
ample. On the other hand, a simple computation shows that the CC-linearization
cone LCC

Z (x∗, y∗) and the tangent cone TZ(x∗, y∗) coincide, hence CC-ACQ holds. ♦

Example 3.6 shows that CC-ACQ is indeed weaker than standard ACQ. In view
of its definition, it is also clear that standard GCQ implies CC-GCQ, and it is
rather tempting to believe that CC-GCQ is also strictly weaker than standard GCQ.
Surprisingly, however, the following result shows that CC-GCQ and standard GCQ
are exactly the same.

Theorem 3.7 Let (x∗, y∗) ∈ Z be feasible for (3). Then CC-GCQ holds in (x∗, y∗)
if and only if GCQ holds there.

Proof: We only have to verify that CC-GCQ implies standard GCQ. Using Propo-
sition 3.4, we obtain

LZ(x∗, y∗)◦ ⊆ LCC
Z (x∗, y∗)◦ ⊆ TZ(x∗, y∗)◦.

Since CC-GCQ is assumed to hold, standard GCQ is therefore satisfied if we can
show that LZ(x∗, y∗)◦ = LCC

Z (x∗, y∗)◦ or, equivalently, that LCC
Z (x∗, y∗)◦ ⊆ LZ(x∗, y∗)◦

holds. To verify this inclusion, let us calculate the corresponding polar cones. Using
the representation of LZ(x∗, y∗) given in Lemma 3.1 and applying Lemma 2.1, we
immediately obtain

LZ(x∗, y∗)◦ = {w = (wx, wy) |

wx =
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I01∪I0+

γiei,

wy = −δe+
∑

i∈I±0∪I00∪I01

νiei,

λi ≥ 0 for all i ∈ Ig(x∗),
δ ≥ 0 if eTy∗ = n− κ and otherwise δ = 0,

νi ≥ 0 for all i ∈ I01(x∗, y∗),
νi ≤ 0 for all i ∈ I00(x∗, y∗)}.

In order to calculate the polar cone of LCC
Z (x∗, y∗), we use the formula from Propo-

sition 3.3. Using the representation of the linearization cones LZI
(x∗, y∗) stated in
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the proof of Proposition 3.3 and applying once again Lemma 2.1, we obtain for all
I ⊆ I00(x

∗, y∗)

LZI
(x∗, y∗)◦ = {w = (wx, wy) |

wx =
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I01∪I0+∪I

γiei,

wy = −δe+
∑

i∈I±0∪I00∪I01

νiei,

λi ≥ 0 for all i ∈ Ig(x∗),
δ ≥ 0 if eTy∗ = n− κ and otherwise δ = 0,

νi ≥ 0 for all i ∈ I01(x∗, y∗),
νi ≤ 0 for all i ∈ I}.

Now, take an arbitrary element w = (wx, wy) ∈ TZ(x∗, y∗)◦. Then w ∈ LZI
(x∗, y∗)◦

for all I ⊆ I00(x
∗, y∗). In particular, taking I = ∅, we obtain suitable scalars

λ̂i, µ̂i, δ̂, γ̂i, ν̂i such that the above representation holds with I = ∅ so that, in par-
ticular, we have

γ̂i = 0 ∀i ∈ I00(x∗, y∗).

On the other hand, taking I = I00(x
∗, y∗), we get possibly different coefficients

λ̃i, µ̃i, δ̃, γ̃i, ν̃i such that the above representation holds with I = I00(x
∗, y∗) which,

in particular, yields
ν̃i ≤ 0 ∀i ∈ I00(x∗, y∗).

Since none of the constraints occuring in ZI depends on both x and y, the par-
tial derivatives with respect to x and y are completely independent of each other.
Therefore, defining λi, µi, η, γi, νi by

λi := λ̂i ∀i ∈ Ig(x∗),
µi := µ̂i ∀i = 1, . . . , p,

γi := γ̂i ∀i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗) ∪ I00(x∗, y∗),

i.e., using the scalars of the first representation for the derivatives with respect to
the x-vector, and

δ := δ̃,

νi := ν̃i ∀i ∈ I00(x∗, y∗) ∪ I01(x∗, y∗) ∪ I±0(x∗, y∗),

i.e., using the coefficients of the second representation for the derivatives with respect
to the y-vector, we altogether obtain

wx =
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I0+∪I01∪I00

γiei,

wy = −δe+
∑

i∈I00∪I01∪I±0

νiei
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with λi ≥ 0 for all i ∈ Ig(x∗), δ ≥ 0 and δ = 0 if we have eTy∗ > n−κ, γi = 0 for all
i ∈ I00(x∗, y∗), νi ≤ 0 for all i ∈ I00(x∗, y∗), and νi ≥ 0 for all i ∈ I01(x∗, y∗). This
shows that w = (wx, wy) ∈ LZ(x∗, y∗)◦, and therefore completes the proof. �

Following the terminology coined in [12], the condition LZ(x∗, y∗)◦ = LCC
Z (x∗, y∗)◦

from the above proof could be called the CC-intersection property.

3.2 Sufficient Conditions for CC-ACQ

This section presents some conditions which imply that CC-ACQ (hence also CC-
GCQ and thus standard GCQ) holds. A first and very simple result is contained in
our next lemma.

Lemma 3.8 Let (x∗, y∗) ∈ Z be feasible for the program (3), and assume that each
of the restricted feasible sets ZI with I ⊆ I00(x

∗, y∗) satisfies the standard ACQ.
Then CC-ACQ (hence also GCQ) holds at (x∗, y∗).

Proof: The statement follows immediately from (6), since the only inclusion in that
formula is now an equation due to the assumed ACQ condition. �

Since linear constraints automatically satisfy the standard ACQ condition, it follows
that CC-ACQ also holds in the case of (affine-) linear functions gi, hi.

Corollary 3.9 Let (x∗, y∗) ∈ Z be feasible for the program (3), and assume that the
functions gi and hi are all (affine-) linear. Then CC-ACQ (hence also GCQ) holds
at (x∗, y∗).

Our next aim is to show that the assertion of Corollary 3.9 also holds for possibly
nonlinear functions gi and hi. To this end, we first recall a number of other tailored
constrained qualifications that were introduced in [7] for cardinality-constrained op-
timization problems. To motivate these definitions, let (x∗, y∗) be a feasible point of
the relaxed program (3), and define the corresponding tightened nonlinear program
TNLP(x∗):

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0, xi = 0 (i ∈ I0(x∗)).

We then say that (x∗, y∗) satisfies a constraint qualification for the relaxed problem
(3) if x∗ satisfies the corresponding standard constraint qualification for TNLP(x∗).
In this way, we obtain the following definitions.

Definition 3.10 Let (x∗, y∗) be feasible for the relaxed problem (3). Then (x∗, y∗)
satisfies

(a) CC-LICQ if the gradients

∇gi(x∗) (i ∈ Ig(x∗)), ∇hi(x∗) (i = 1, . . . , p), ei (i ∈ I0(x∗))

are linearly independent;
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(b) CC-MFCQ if the gradients

∇gi(x∗) (i ∈ Ig(x∗)), and ∇hi(x∗) (i = 1, . . . , p), ei (i ∈ I0(x∗))

are positively linearly independent;

(c) CC-CRCQ if for any subsets I1 ⊆ Ig(x
∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0(x

∗)
such that the gradients

∇gi(x) (i ∈ I1), ∇hi(x) (i ∈ I2), ei (i ∈ I3)

are linearly dependent in x = x∗, they remain linearly dependent in a neigh-
borhood of x∗;

(d) CC-CPLD if for any subsets I1 ⊆ Ig(x
∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0(x

∗)
such that the gradients

∇gi(x) (i ∈ I1), and ∇hi(x) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent in x = x∗, they are linearly dependent in a
neighborhood of x∗.

Note that all these constraint qualifications depend on the vector x∗ only, and not
on the vector pair (x∗, y∗). Hence these conditions may be viewed as constraint
qualifications for the original cardinality constrained optimization problem (1).

We claim that the following implications among all these constraint qualifications
hold:

CC-LICQ

CC-MFCQ

CC-CRCQ

CC-CPLD CC-ACQ CC-GCQ

Note that these implications are the direct counterparts of those known for the
corresponding standard constraint qualifications, cf. Section 2. Most of these im-
plications (therefore) follow directly from the corresponding definitions. The only
nontrivial part is that CC-CPLD implies CC-ACQ. To verify this statement, we
begin with a preliminary result.

Lemma 3.11 Let (x∗, y∗) ∈ Z be feasible for the relaxed program (3), and suppose
that CC-CPLD holds at (x∗, y∗). Then, for any I ⊆ I00(x

∗, y∗), standard CPLD is
satisfied for the restricted feasible set ZI .

Proof: Consider a fixed index set I ⊆ I00(x
∗, y∗). The corresponding feasible

set ZI then has constraints that either depend on x or on y, but never on both.
Consequently, it suffices to verify CPLD for the constraints depending on x and
on y separately. Since all constraints depending on y are linear, they satisfy CRCQ
and thus also CPLD. It therefore suffices to show that the standard CPLD condition
holds for those constraints that depend on x only. We can restrict ourselves to the
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gradient vectors that arise by taking the partial derivatives with respect to the x-
variables only, since the partial derivatives with respect to the y-variables are in this
case all zero. More precisely, this means that we have to show that for all subsets
I1 ⊆ Ig(x

∗), I2 ⊆ {1, . . . , p}, and I3 ⊆ I0+(x∗, y∗) ∪ I01(x∗, y∗) ∪ I such that the
gradient vectors

∇gi(x∗) (i ∈ I1), and ∇hi(x∗) (i ∈ I2), ei (i ∈ I3)

are positively linearly dependent, they are linearly dependent in a whole neighbor-
hood of x∗. However, since I3 may, in particular, be viewed as a subset of I0(x

∗),
this statement follows immediately from the definition of CC-CPLD. �

Similar to the previous result, one can also show that CC-CRCQ implies that a
piecewise CRCQ condition holds, by which we mean that standard CRCQ holds for
all sets ZI , I ⊆ I00(x

∗, y∗). On the other hand, CC-LICQ does not imply piecewise
LICQ. In fact, piecewise LICQ would require that the following gradients (with
respect to x and y) are linearly independent for all subsets I ⊆ I00(x

∗, y∗):(
∇gi(x∗)

0

)
(i ∈ Ig(x∗)),

(
∇hi(x∗)

0

)
(i = 1, . . . , p),

(
0

−e

)
(if eTy∗ = n− κ),(

ei
0

)
(i ∈ I0+ ∪ I01 ∪ I),

(
0

−ei

)
(i ∈ I),

(
0

ei

)
(i ∈ I01),

(
0

ei

)
(i ∈ I±0 ∪ (I00 \ I)).

While CC-LICQ implies that those gradients which have nonzero entries with re-
spect to the x-part are linearly independent, it is clear that the other gradients are
linearly dependent whenever eTy∗ = n − κ holds and the set I0+ := I0+(x∗, y∗) is
empty, a situation that typically holds at a solution of the cardinality-constrained
optimization problem.

In a similar way, it is also possible to see that CC-MFCQ does, in general, not
imply a piecewise MFCQ condition. We skip the corresponding details especially
since this observation will not be used subsequently.

Lemma 3.11 allows us to state the following generalization of Corollary 3.9.

Theorem 3.12 Let (x∗, y∗) ∈ Z be feasible for the program (3), and assume that
CC-CPLD holds. Then CC-ACQ (hence also GCQ) holds at (x∗, y∗).

Proof: Since CC-CPLD holds at (x∗, y∗), it follows from Lemma 3.11 that standard
CPLD holds for each of the feasible sets ZI , I ⊆ I00(x

∗, y∗). But standard CPLD
implies that standard ACQ holds for each of the feasible sets ZI . The statement
therefore follows immediately from Lemma 3.8. �

4 Stationarity Conditions

This section shows that, in every local minimum (x∗, y∗) of the relaxed program (3),
in which a suitable CC-constraint qualification holds, certain KKT-type optimal-
ity conditions are satisfied. We distinguish two optimality conditions here, one is
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called strong stationarity (and is equivalent to the standard KKT conditions), and
the other one is called M-stationarity. We show that strong stationarity provides
a necessary optimality condition under the CC-GCQ assumption. Under certain
assumptions, strong stationarity is also a sufficient condition for a local minimum.
The slightly weaker M-stationarity condition is therefore a necessary optimality con-
dition under the CC-GCQ condition, too. This type of stationary points arises quite
naturally as limit points within the algorithmic framework in [7].

We begin by stating the two stationary concepts that will be used in our anal-
ysis. To shorten the notation, we sometimes abbreviate index sets such as I00 :=
I00(x

∗, y∗) when the reference point (x∗, y∗) is clear from the context.

Definition 4.1 Let (x∗, y∗) be feasible for the relaxed program (3). Then (x∗, y∗) is
called

(a) S-stationary (S = strong) if there exist multipliers λ ∈ Rm, µ ∈ Rp, and γ ∈ Rn

such that the following conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I01∪I0+

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗).

(b) M-stationary (M = Mordukhovich) if there exist multipliers λ ∈ Rm, µ ∈ Rp,
and γ ∈ Rn such that the following conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I01∪I0+∪I00

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗).

The notions of S- and M-stationarity are motivated by a similar terminology used in
the context of mathematical programs with complementarity constraints (MPCCs),
see Section 5 for more details. Note that S-stationarity requires γi = 0 for all indices
i such that y∗i = 0, whereas M-stationarity says that this has to hold only for those
indices i where x∗i 6= 0; since the feasibility of the vector pair (x∗, y∗) then implies
that y∗i = 0, it follows that M-stationarity is a weaker stationarity concept than S-
stationarity since it does not require anything for the multipliers γi for the bi-active
indices, where x∗i = 0 and y∗i = 0. We further note that S-stationarity was noted to
be equivalent to the usual KKT conditions of the relaxed program (3) in [7].

As a consequence of the previous section, we can show that a local minimum
satisfying CC-GCQ is a strongly stationary point of the relaxed program (3).

Theorem 4.2 Let (x∗, y∗) be a local minimum of (3) such that CC-GCQ holds at
(x∗, y∗). Then (x∗, y∗) is an S-stationary point.

Proof: Since CC-GCQ holds at (x∗, y∗) by assumption, it follows from Theorem
3.7 that standard GCQ holds at (x∗, y∗). Under standard GCQ, however, the usual
KKT conditions are necessary optimality conditions at the local minimum (x∗, y∗),
see, e.g., [2]. On the other hand, these KKT conditions are shown to be equivalent

14



to strong stationarity in [7]. Hence the assertion follows. �

Since, by Corollary 3.9, CC-GCQ holds if both gi and hi are linear, we re-obtain the
following result from [7] as a special case of our theory.

Corollary 4.3 Assume that all functions gi and hi are linear, and let (x∗, y∗) be
a local minimum of the corresponding relaxed program (3). Then (x∗, y∗) is an S-
stationary point.

For standard nonlinear programs it is well-known that any KKT point yields a global
minimum provided that we have a convex program. The cardinality-constrained
program is, of course, nonconvex, therefore we cannot expect a result of this kind.
However, under a convexity-type condition, the following result shows that every
strongly stationary point yields a local minimum of the relaxed program (3). This
observation is similar to one in the MPCC-setting, see [27].

Theorem 4.4 Assume that f and each gi are convex and each hi is linear. Let
(x∗, y∗) be an S-stationary point of the relaxed program (3). Then (x∗, y∗) is a local
minimum of this program.

Proof: Let (x, y) be an arbitrary feasible point of the relaxed program (3). We
then obtain

f(x) ≥ f(x∗) +∇f(x∗)T (x− x∗)
= f(x∗)−

∑
i∈Ig(x∗)

λi︸︷︷︸
≥0

∇gi(x∗)T (x− x∗)︸ ︷︷ ︸
≤gi(x)−gi(x∗)=gi(x)≤0

−
p∑

i=1

µi∇hi(x∗)T (x− x∗)︸ ︷︷ ︸
=hi(x)−hi(x∗)=0

−
∑

i∈I01∪I0+

γie
T
i (x− x∗)

≥ f(x∗)−
∑

i∈I01∪I0+

γi(xi − x∗i ).

Since we take the last sum only over all indices i ∈ I01(x∗, y∗)∪I0+(x∗, y∗), it follows
that, in a sufficiently small neighborhood of (x∗, y∗), we still have yi 6= 0 for all
i ∈ I01(x

∗, y∗) ∪ I0+(x∗, y∗), hence the feasibility of the pair (x, y) yields xi = 0.
Consequently, we have f(x) ≥ f(x∗) for all (x, y) in a sufficiently small neighbor-
hood of (x∗, y∗). �

Note that the previous proof shows that the S-stationary point (x∗, y∗) is actually
a global minimum of the relaxed program (3) under the convexity-type assumption
provided that γi = 0 for all indices i such that y∗i 6= 0. Of course, this assumption
is usually not satisfied.

5 Comparison with MPCCs

This section gives a detailed comparison between (a special class of) cardinality-
constrained optimization problems on the one hand and MPCCs on the other hand.
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Despite several similarities, it turns out that both problems have substantially differ-
ent properties. In particular, this justifies to treat cardinality-constrained problems
separately.

A mathematical program with complementarity constraints (MPCC) is an opti-
mization problem of the form

min
x
f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p, (7)

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , q,

see [13, 19] for more information on this problem class.
Consequently, in the case where the inequality constraints g(x) ≤ 0 contain

nonnegativity constraints x ≥ 0, the cardinality-constrained problem (3) is (after a
redefinition of g) of the form

min
x,y

f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,

eTy ≥ n− κ, (8)

yi ≤ 1 ∀i = 1, . . . , n,

xi ≥ 0, yi ≥ 0, xiyi = 0 ∀i = 1, . . . , n,

i.e. it is an MPCC. The situation x ≥ 0 occurs, for example, in portfolio optimiza-
tion, see [6].

In order to compare the results obtained in this paper for cardinality constrained
problems with those known for MPCCs, let us state the corresponding definitions
for MPCCs, see [18, 24, 26] for some discussion and a derivation of these stationarity
concepts.

Definition 5.1 Let x∗ be feasible for (7). Then x∗ is called

(a) W-stationary (W = weakly), if there are multipliers λ ∈ Rm, µ ∈ Rp, γ ∈ Rq

and ν ∈ Rq such that the following conditions hold:

∇f(x∗) +
∑

i:gi(x∗)=0

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
∑

i:Gi(x∗)=0

γi∇Gi(x
∗)−

∑
i:Hi(x∗)=0

νi∇Hi(x
∗) = 0,

λi ≥ 0 ∀i : gi(x
∗) = 0;

(b) C-stationary (C = Clarke), if it is W-stationary and, in addition, it holds that
γiνi ≥ 0 for all i such that Gi(x

∗) = 0 and Hi(x
∗) = 0;

(c) M-stationary (M = Mordukhovich), if it is W-stationary and, in addition, for
all i such that Gi(x

∗) = 0 and Hi(x
∗) = 0, we either have γi, νi ≥ 0 or γiνi = 0;

(d) S-stationary (S = strongly), if it is W-stationary and, in addition, it holds that
γi, νi ≥ 0 for all i such that Gi(x

∗) = 0 and Hi(x
∗) = 0.
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Note that S-stationarity implies M-stationarity, M-stationarity implies C-stationarity,
and C-stationarity implies W-stationarity. Furthermore, there exist examples which
show that each of these implications is strict, i.e. none of these concepts coincides
for general MPCCs.

Now, there are two different ways to look at the cardinality-constrained problem
(8) with nonnegativity constraints on the variables x: One way is to view this as
a special cardinality-constrained problem with the nonnegativity constraints x ≥ 0
as additional inequality constraints, and the other way is to view this problem as
an MPCC, with the nonnegativity constraints being a part of the complementarity
conditions. Taking the first point of view, we write down the S- and M-stationarity
conditions (in the sense of Definition 4.1) in the following result.

Lemma 5.2 Let (x∗, y∗) be feasible for (8). Then (x∗, y∗) is

(a) S-stationary if and only if there exist suitable multipliers such that the following
conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I00∪I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
γi ≤ 0 ∀i ∈ I00(x∗, y∗).

(b) M-stationary if and only if there exist suitable multipliers such that the follow-
ing conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I00∪I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗).

Proof: (a) Applying the S-stationarity conditions from Definition 4.1 to (8) gives

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗)−
∑

i∈I00∪I0+∪I01

λ+i ei +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
λ+i ≥ 0 ∀i ∈ I00(x∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x∗, y∗).

Fusing λ+ and γ to one multiplier yields the desired statement.

(b) Writing down the M-stationarity conditions from Definition 4.1 to (8) yields

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗)−
∑

i∈I00∪I0+∪I01

λ+i ei +

p∑
i=1

µi∇hi(x∗) +
∑

i∈I00∪I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
λ+i ≥ 0 ∀i ∈ I00(x∗, y∗) ∪ I0+(x∗, y∗) ∪ I01(x∗, y∗).

Replacing γi−λ+i by a new γi for each index i ∈ I00(x∗, y∗)∪ I0+(x∗, y∗)∪ I01(x∗, y∗)
gives the desired representation of M-stationarity. �
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Note the close relation between the S- and M-stationarity conditions for the cardinality-
constrained problem from (3) and the corresponding stationarity conditions for the
specially structured problem (8) involving nonnegativity constraints: S-stationarity
differs only in the last sum where now also the bi-active index set I00 is included
(with some sign constraints on the corresponding multipliers). As for M-stationarity,
there is absolutely no difference though the problem itself is different!

Our definition of M- and S-stationarity for cardinality-constrained problems was
motivated by the corresponding concepts for MPCCs, and indeed in the special case
(8), the definitions turn out to be identical.

Lemma 5.3 Let (x∗, y∗) be feasible for (8). Then (x∗, y∗) is S-stationary (M-
stationary) in the sense of Definition 4.1 if and only if it is S-stationary (M-
stationary) in the sense of Definition 5.1.

Proof: (a) We first verify the statement for S-stationary points. Using the same
index sets as before, the S-stationarity conditions from Definition 5.1 read

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
∑

i∈I00∪I0+∪I01

γiei = 0,

−δe+
∑
i∈I01

νiei −
∑

i∈I±0∪I00

νiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
γi ≥ 0, νi ≥ 0 ∀i ∈ I00(x∗, y∗),

δ ≥ 0 if eTy∗ = n− κ, else δ = 0,

νi ≥ 0 ∀i ∈ I01(x∗, y∗).

Since the conditions on δ and ν are can always be satisfied by choosing δ = 0, ν = 0,
the S-stationarity conditions from Definition 5.1 hold if and only if the following
conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
∑

i∈I00∪I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
γi ≥ 0 ∀i ∈ I00(x∗, y∗).

In view of Lemma 5.2 and replacing γi by −γi everywhere, these are precisely the
S-stationarity conditions from Definition 4.1.

(b) We next verify the corresponding statement for M-stationary points. The proof
is completely analogous to the one for S-stationary points, but it is stated here
since it yields an interesting observation that is stated formally in the subsequent
Remark 5.4.

Let us first write down the M-stationarity conditions for problem (8) in the sense
of Definition 5.1:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
∑

i∈I00∪I0+∪I01

γiei = 0,
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−δe+
∑
i∈I01

νiei −
∑

i∈I±0∪I00

νiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗),
γi ≥ 0, νi ≥ 0 or γiνi = 0 ∀i ∈ I00(x∗, y∗),

δ ≥ 0 if eTy∗ = n− κ, else δ = 0,

νi ≥ 0 ∀i ∈ I01(x∗, y∗).

Using once again that the conditions on δ and ν can always be satisfied by choosing
δ = 0, ν = 0, it follows that there exist multipliers satisfying the M-stationarity
conditions from Definition 5.1 if and only if there exist multipliers such that the
following simplified conditions hold:

∇f(x∗) +
∑

i∈Ig(x∗)

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
∑

i∈I00∪I0+∪I01

γiei = 0,

λi ≥ 0 ∀i ∈ Ig(x∗).
(9)

But these are precisely the M-stationarity conditions given in Lemma 5.2 (note that
we can change the sign of the γi without loss of generality). �

A simple inspection of part (b) in the previous proof shows that the M-stationarity
conditions of problem (8) in the sense of Definition 5.1 are satisfied by some multi-
pliers if and only if the C-stationarity conditions hold for this problem, and this, in
turn, is also equivalent to the satisfaction of the W-stationarity conditions. Hence
we have the following observation.

Remark 5.4 The M-, C-, and W-stationarity points in the sense of Definition 5.1
are the same for the particular MPCC (8) that arises from our cardinality-constrained
problem in the case where all variables are assumed to be nonnegative. In view of
Lemma 5.3, this means that, in this particular situation, the M-stationary points in
the sense of Definition 4.1 are also the same as the W- and C-stationary points in
the sense of Definition 5.1.

On the other hand, S- and M-stationarity are different concepts. This is shown by
the following example.

Example 5.5 Consider the cardinality-constrained problem (1), (2) with n = 2, κ =
1, objective function f(x) := x2−x1 and feasible set X := {x | x ≥ 0, x21+(x2−1)2 ≤
1}, see Figure 1. The unique solution of this problem is x∗ := (0, 0). There exist
different corresponding optimal y-parts. For example, taking y∗ := (0, 1), it is easy
to see that (x∗, y∗) is not an S-stationary point; in particular, using Theorem 4.2,
it follows that this problem does not satisfy GCQ, hence CC-GCQ is also violated.
However, (x∗, y∗) is M-stationary, for example, one may take λ = 0, γ1 = 1, γ2 = −1
to see that the conditions from Lemma 5.2 (b) hold.

On the other hand, x∗ together with y∗ := (1, 0) is also optimal, and this pair
turns out to be S-stationary. Indeed, a simple calculation shows that, for example,
the multipliers γ1 := 1, γ2 := −1, and λ := 0 satisfy the S-stationarity conditions
from Lemma 5.2 (a). ♦
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Figure 1: Illustration of Example 5.5

We next investigate the relation between our CC-linearized cone and the MPCC-
linearized cone, which for a point x∗ feasible for the MPCC (7) is defined by

LMPCC
Z (x∗) =

{
d | ∇gi(x∗)Td ≤ 0 if gi(x

∗) = 0,

∇hi(x∗)Td = 0 ∀i = 1, . . . , p,

∇Gi(x
∗)Td = 0 if Gi(x

∗) = 0, Hi(x
∗) > 0,

∇Hi(x
∗)Td = 0 if Gi(x

∗) > 0, Hi(x
∗) = 0,

∇Gi(x
∗)Td ≥ 0 if Gi(x

∗) = 0, Hi(x
∗) = 0,

∇Hi(x
∗)Td ≥ 0 if Gi(x

∗) = 0, Hi(x
∗) = 0,

(∇Gi(x
∗)Td)(∇Hi(x

∗)Td) = 0 if Gi(x
∗) = 0, Hi(x

∗) = 0
}
,

see, e.g., [11, 20].

Lemma 5.6 Let (x∗, y∗) be feasible for (8). Then LMPCC
Z (x∗, y∗) = LCC

Z (x∗, y∗).

Proof: For (x∗, y∗) feasible for (8), the MPCC-linearized cone is of the form

LMPCC
Z (x∗, y∗) =

{
d = (dx, dy) | ∇gi(x∗)Tdx ≤ 0 ∀i ∈ Ig(x∗),

∇hi(x∗)Tdx = 0 ∀i = 1, . . . , p,

eTdy ≥ 0 if eTy∗ = n− κ,
eTi dy ≤ 0 ∀i ∈ I01(x∗, y∗),
eTi dx = 0 ∀i ∈ I0+(x∗, y∗) ∪ I01(x∗, y∗),
eTi dy = 0 ∀i ∈ I±0(x∗, y∗),
eTi dx ≥ 0 ∀i ∈ I00(x∗, y∗),
eTi dy ≥ 0 ∀i ∈ I00(x∗, y∗),
(eTi dx)(eTi dy) = 0 ∀i ∈ I00(x∗, y∗)

}
,

which is exactly the same as the CC-linearized cone LCC
Z (x∗, y∗). �

Consequently, for points (x∗, y∗) feasible for (8), the CC-constraint qualifications
CC-ACQ and CC-GCQ coincide with their MPCC counterparts MPCC-ACQ and
MPCC-GCQ.
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However, even though there are these close connections between cardinality -
constrained problems and MPCCs in case x ≥ 0, the results we have proven in this
paper are quite different from what can be shown for general MPCCs. We summarize
some of the major differences between general MPCCs and cardinality-constrained
optimization problems in the following remark.

Remark 5.7 (a) Standard GCQ holds for MPCCs under the MPCC-LICQ assump-
tion, but already under the MPCC-MFCQ condition it can be violated, see, e.g.,
[24]. The different behavior we observe for cardinality constrained problems is due
to the equality LZ(x∗, y∗)◦ = LCC

Z (x∗, y∗)◦ established in the proof of Theorem 3.7.
This so-called intersection property, which implies CC-GCQ = GCQ, is not satisfied
for general MPCCs.

(b) As a consequence of the previous remark, it follows that S-stationarity is a neces-
sary optimality condition under the fairly strong MPCC-LICQ condition, but neither
under the MPCC-MFCQ nor under any weaker MPCC constraint qualification. Re-
call that this is very much in contrast to the situation for cardinality-constrained
problems.

(c) Even if all functions involved in the MPCC are linear, a local minimum is,
in general, only an M-stationary point. A counterexample from [24] shows that
S-stationarity cannot be obtained without further assumptions.

(d) While W-, C-, M-, and S-stationarity are four different stationarity concepts
that arise in different contexts for general MPCCs, it turns out that these four
stationarity conditions reduce to only two when applied to the particular MPCC
(8) that results from the cardinality-constrained problem in case where this includes
nonnegativity constraints.

(e) For MPCCs, it is known that MPCC-LICQ implies a piecewise LICQ condi-
tion, whereas this is not true in our setting, cf. the corresponding discussion after
Lemma 3.11.

(f) Finally, we would like to stress that the popular MPCC-LICQ condition is likely
to be violated for the problem (8). To this end, let (x∗, y∗) be a solution satisfying
y∗i ∈ {0, 1} for all i = 1, . . . , n and such that the cardinality constraint eTy ≥ n−κ is
active; note that this situation is very likely to hold at a solution. Then the gradient
of the cardinality constraint is obviously linearly dependent from the gradients which
one obtains from the activity of the constraints yi ≥ 0 and yi ≤ 1. Hence MPCC-
LICQ is violated in this situation; for the same reason, also MPCC-MFCQ does not
hold.

6 Final Remarks

In this paper, we exploited the relation between the cardinality-constrained opti-
mization problem and a suitable nonlinear program to define some problem-tailored
constraint qualifications which were then used to prove a KKT-type optimality con-
ditions under fairly mild conditions. Like for standard nonlinear programs, these
results depend on the feasible set, but not directly on the objective function. There
are some recent contributions to MPCCs where optimality conditions are derived
under certain assumptions which involve the particular objective function, and it
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might be an interesting future research topic to see whether one can also obtain
similar results for cardinality-constrained problems, possibly under weaker assump-
tions than in the MPCC-setting by taking into account the particular structure of
our reformulated cardinality-constrained problem.
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