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Abstract. We consider the generalized Nash equilibrium problem which, in contrast to
the standard Nash equilibrium problem, allows joint constraints of all players involved in
the game. Using a regularized Nikaido-Isoda-function, we then present three optimiza-
tion problems related to the generalized Nash equilibrium problem. The first optimization
problem is a complete reformulation of the generalized Nash game in the sense that the
global minima are precisely the solutions of the game. However, this reformulation is non-
smooth. We then modify this approach and obtain a smooth constrained optimization
problem whose global minima correspond to so-called normalized Nash equilibria. The
third approach uses the difference of two regularized Nikaido-Isoda-functions in order to
get a smooth unconstrained optimization problem whose global minima are, once again,
precisely the normalized Nash equilibria. Conditions for stationary points to be global
minima of the two smooth optimization problems are also given. Some numerical results
illustrate the behaviour of our approaches.

Key Words: Generalized Nash equilibria, normalized Nash equilibria, joint constraints,
regularized Nikaido-Isoda-function, constrained optimization reformulation, unconstrained
optimization reformulation.



1 Introduction

We consider the generalized Nash equilibrium problem, GNEP for short. To this end, we
first recall the definition of the (standard) Nash equilibrium problem, NEP for short.

Let N be the number of players. Each player ν ∈ {1, . . . , N} controls the variables
xν ∈ Rnν . Let x = (x1, . . . , xN)T ∈ Rn be the vector formed by all these decision variables,
where n := n1 + . . . + nN . To emphasize the νth player’s variables within the vector x, we
sometimes write x = (xν , x−ν)T , where x−ν subsumes all the other players’ variables.

Let θν : Rn → R be the νth player’s payoff (or loss) function. We assume that these
payoff functions are at least continuous, and we further assume that the functions θν(x) =
θν(x

ν , x−ν) are convex in the variable xν . In the standard NEP, the variable xν belongs to
a nonempty, closed and convex set Xν ⊆ Rnν , ν = 1, . . . , N . Let

X := X1 × . . .×XN (1)

be the Cartesian product of the strategy sets of each player. Then a vector x∗ ∈ X is
called a Nash equilibrium, or a solution of the NEP, if the block component x∗,ν satisfies

θ(x∗,ν , x∗,−ν) ≤ θ(xν , x∗,−ν) ∀xν ∈ Xν (2)

for all ν = 1, . . . , N .
The GNEP generalizes the situation to some extend since now the strategy sets of player

ν are allowed to depend on the rival players’ strategies, too. More precisely, we assume that
X ⊆ Rn is a nonempty, closed (not necessarily compact) and convex set which represents
the joint constraints of all players ν = 1, . . . , N , so that

Xν(x
−ν) :=

{
xν

∣∣ (xν , x−ν) ∈ X
}

(3)

becomes the strategy set of player ν, ν = 1, . . . , N . Note that our assumptions on X imply
that each set Xν(x

−ν) is also closed and convex. Moreover, if X has the Cartesian product
structure as in (1), then GNEP reduces to a standard NEP. Often, the set X is given by
a set of inequalities like

X =
{
x ∈ Rn

∣∣ g(x) ≤ 0, hν(x
ν) ≤ 0 ∀ν = 1, . . . , N

}
for some functions g : Rn → Rm and hν : Rnν → Rmν with some numbers m, mν ≥ 0. Here
g represents the joint constraints of all players, whereas hν depends only on the decision
variables of player ν. In this situation, we therefore have

Xν(x
−ν) :=

{
xν

∣∣ g(xν , x−ν) ≤ 0, hν(x
ν) ≤ 0

}
for all ν = 1, . . . , N .

In the context of GNEPs, we also need the set

Ω(x) := X1(x
−1)× . . .×XN(x−N). (4)
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Then a vector x∗ ∈ Ω(x∗) is called a generalized Nash equilibrium, or simply a solution of
the GNEP, if x∗,ν satisfies

θ(x∗,ν , x∗,−ν) ≤ θ(xν , x∗,−ν) ∀xν ∈ Xν(x
∗,−ν) (5)

for each ν = 1, . . . , N .
It is well-known that the standard NEP can be reformulated as a variational inequality

problem, VIP for short, see, for example, [8]. In a similar way, it is possible to characterize
the GNEP as a quasi-variational inequality (abbreviated as QVI in the following), see
[5, 18]. However, since there are essentially no efficient methods for solving QVIs, such a
characterization is not that interesting from a practical point of view. On the other hand,
it was noted in [13, 10], for example, that certain solutions of the GNEP (the normalized
Nash equilibria, to be defined later) can be found by solving a suitable standard VIP
associated to the GNEP. A discussion of some local issues related to this formulation is
given in [11]. A globally convergent augmented Lagrangian-type VIP method is presented
in [28].

However, these VIP-based methods require a higher degree of smoothness of the payoff
functions θν than some other approaches that are based on the Nikaido-Isoda-function
(see [27]) that also plays a central role in our paper, see Section 2 for a formal definition.
Relaxation methods using this Nikaido-Isoda-function are investigated in [36, 24] (see also
[3, 25]) for some similar ideas), and a proximal-like method on the basis of the Nikaido-
Isoda-function is presented in [13].

Here we use a regularized version of the Nikaido-Isoda-function in order to get different
optimization problems whose global minima are precisely the (normalized) solutions of the
GNEP. Both, the Nikaido-Isoda-function and its regularized version, are defined formally
in Section 2, where we also obtain a constrained optimization problem that is completely
equivalent to the GNEP. However, the objective function of this optimization problem is
nonsmooth. We then modify this approach in Section 3 and obtain a smooth optimization
problem whose solutions characterize the class of normalized Nash equilibria of the GNEP.
Section 4 then shows how the techniques from Section 3 can be used in order to get
a smooth unconstrained optimization reformulation of the normalized GNEP solutions.
Preliminary numerical results are presented in Section 5, and we close with some final
remarks in Section 6.

The regularized Nikaido-Isoda-function was investigated earlier for standard NEPs in
[17]. Somewhat related to our work are also the two recent papers [26, 38] on equilib-
rium programming. The standard NEP is known to be a special case of this equilibrium
programming problem, see [12]. Formally, this special case is not even mentioned in any
of the two papers [26, 38]. Nevertheless, the results from [26] are closely related to the
material from Section 3, but [26] does not present, for example, conditions for a station-
ary point of the constrained optimization problem to be a global minimum. Furthermore,
the material from [38] may be viewed as the counterpart of our results from Section 4
for equilibrium programming problems. Interestingly, one way to look at the results in
our paper is the fact that also the GNEP may be interpreted as a special instance of an
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equilibrium programming problem. To the best of our knowledge, this observation has not
been made elsewhere, at least not under our general assumptions (θν convex in xν and X
not necessarily compact).

The notation used in this paper is rather standard. Here we only mention that, given a
differentiable function Ψ : Rn×Rn → R, the symbols ∇xΨ(x, y) and ∇yΨ(x, y) denote the
partial derivatives with respect to the x- and y-variables. Finally, we stress that, in our
setting, player ν tries to minimize (not maximize) his payoff function θν . Hence the name
loss function would be better in this context. However, since payoff (or utility) function is
the standard name in game theory, we adopt this terminology throughout this paper.

2 A Nonsmooth Constrained Optimization Reformu-

lation

The aim of this section is to present a (nonsmooth) constrained optimization reformulation
of the GNEP from (5). To this end, we use the notation from the previous section, in
particular, the sets Xν(x

−ν) are given by (3), and Ω(x) denotes the Cartesian product of
these sets, cf. (4).

We begin with a very simple, but important observation regarding the set Ω(x).

Lemma 2.1 We have x ∈ Ω(x) if and only if x ∈ X. In particular, Ω(x) 6= ∅ for all
x ∈ X.

Proof. Using the definitions of the sets Ω(x) and Xν(x
−ν), we immediately obtain

x ∈ Ω(x) ⇐⇒ xν ∈ Xν(x
−ν) ∀ν = 1, . . . , N

⇐⇒ (xν , x−ν) ∈ X ∀ν = 1, . . . , N

⇐⇒ x = (xν , x−ν) ∈ X.

The second part is now obvious. �

Note that, for x 6∈ X, we have either Ω(x) = ∅ or Ω(x) 6= ∅, but then necessarily x 6∈ Ω(x).
Furthermore, given any x ∈ X, simple examples show that, in general, neither Ω(x) is a
subset of X nor X is included in Ω(x).

The main tool in order to obtain our optimization reformulations of the GNEP is the
Nikaido-Isoda-function

Ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
, (6)

cf. [27]. Sometimes also the name Ky-Fan-function can be found in the literature, see
[12, 13]. Using this Nikaido-Isoda-function, we define

V (x) := sup
y∈Ω(x)

Ψ(x, y), x ∈ X, (7)
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where, for the moment, we assume implicitly that the supremum is always attained for
some y ∈ Ω(x). Later, this assumption will not be needed, so we do not state it here
explicitly. Then it is not difficult to see that V (x) is nonnegative for all x ∈ Ω(x), and that
x∗ is a solution of the GNEP if and only if x∗ ∈ Ω(x∗) and V (x∗) = 0, see also the proof of
Theorem 2.2 below. Therefore, finding a solution of the GNEP is equivalent to computing
a global minimum of the optimization problem

min V (x) s.t. x ∈ Ω(x). (8)

Note that this optimization problem has a complicated feasible set since Ω(x) explicitly
depends on x. However, in view of Lemma 2.1, the program (8) is equivalent to the
optimization problem

min V (x) s.t. x ∈ X.

Although the Nikaido-Isoda-function is quite popular (especially for standard Nash games)
in the economic and engineering literature, see, for example, [1, 2, 6, 23, 24], it has some
disadvantages from a mathematical and practical point of view (also for the standard
Nash game): On the one hand, given a vector x, the supremum in (6) may not exist
unless additional assumptions (like the compactness of X) hold, and on the other hand,
this supremum, if it exists, is usually not attained at a single point which, in turn, implies
that the mapping V and, therefore, also the corresponding optimization reformulation (8)
is nondifferentiable in general.

In order to overcome these deficiencies, we use a simple regularization of the Nikaido-
Isoda-function. This idea was used earlier in several contexts, see, for example, Fukushima
[15] (for variational inequalities), Gürkan and Pang [17] (for standard Nash games), and
Mastroeni [26] (for equilibrium programming problems). Here we apply the regularization
idea to GNEPs. To this end, let α > 0 be a fixed parameter and define the regularized
Nikaido-Isoda-function by

Ψα(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
. (9)

Furthermore, for x ∈ X, let

Vα(x) := max
y∈Ω(x)

Ψα(x, y)

= max
y∈Ω(x)

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
(10)

=
N∑

ν=1

{
θν(x

ν , x−ν)− min
yν∈Xν(x−ν)

[
θν(y

ν , x−ν) +
α

2
‖xν − yν‖2

]}
.

be the corresponding value function.
A number of elementary properties of the mapping Vα are summarized in the following

result.
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Theorem 2.2 The regularized function Vα has the following properties:

(a) Vα(x) ≥ 0 for all x ∈ Ω(x).

(b) x∗ is a generalized Nash equilibrium if and only if x∗ ∈ Ω(x∗) and Vα(x∗) = 0.

(c) For every x ∈ X, there exists a unique vector yα(x) =
(
y1

α(x), . . . , yN
α (x)

)
such that

for every ν = 1, . . . , N ,

argminyν∈Xν(x−ν)

[
θν(y

ν , x−ν) +
α

2
‖xν − yν‖2

]
= yν

α(x).

Proof. (a) For all x ∈ Ω(x), we have Vα(x) = maxy∈Ω(x) Ψα(x, y) ≥ Ψα(x, x) = 0.

(b) Suppose that x∗ is a solution of the GNEP. Then x∗ ∈ Ω(x∗) and

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν) ∀xν ∈ Xν(x
∗,−ν)

for all ν = 1, . . . , N . Hence

Ψα(x∗, y) =
N∑

ν=1

[
θν(x

∗,ν , x∗,−ν)− θν(y
ν , x∗,−ν)︸ ︷︷ ︸

≤0 ∀yν∈Xν(x∗,−ν)

−α

2
‖x∗,ν − yν‖2

]
≤ 0

for all y ∈ Ω(x∗). This implies

Vα(x∗) = max
y∈Ω(x∗)

Ψα(x∗, y) ≤ 0.

Together with part (a), we therefore have Vα(x∗) = 0.
Conversely, assume that x∗ ∈ Ω(x∗) and Vα(x∗) = 0. Then Ψα(x∗, y) ≤ 0 holds for

all y ∈ Ω(x∗). Let us fix a particular player ν ∈ {1, . . . , N}, and let xν ∈ Xν(x
∗,ν) and

λ ∈ (0, 1) be arbitrary. Then define a vector y = (y1, . . . , yN) ∈ Rn blockwise as follows:

yµ :=

{
x∗,µ, if µ 6= ν,
λx∗,ν + (1− λ)xν , if µ = ν.

The convexity of the sets Xν(x
∗,−ν) imply that yµ ∈ Xµ(x∗,−µ) for all µ = 1, . . . , N , i.e.,

y ∈ Ω(x∗). For this particular y, we therefore obtain

0 ≥ Ψα(x∗, y)

= θν(x
∗,ν , x∗,−ν)− θν(λx∗,ν + (1− λ)xν , x∗,−ν)− α

2
(1− λ)2‖x∗,ν − xν‖2

≥ (1− λ)θν(x
∗,ν , x∗,−ν)− (1− λ)θν(x

ν , x∗,−ν)− α

2
(1− λ)2‖x∗,ν − xν‖2

from the convexity of θν with respect to xν . Dividing both sides by 1− λ and then letting
λ → 1− shows that θν(x

∗,ν , x∗,−ν) ≤ θν(x
ν , x∗,−ν). Since this holds for all xν ∈ Xν(x

∗,−ν)
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and all ν = 1, . . . , N , it follows that x∗ is a solution of the GNEP.

(c) This statement follows immediately from the fact that the mapping yν 7→ θν(y
ν , x−ν)+

α
2
‖xν − yν‖2 is strongly convex (for any given x), also taking into account that Xν(x

−ν) is
a nonempty, closed and convex set, cf. Lemma 2.1. �

Note that the previous result reduces to Proposition 3 in [17] for the standard Nash equi-
librium problem. Using the first two statements of Theorem 2.2, we see that finding a
solution of the GNEP is equivalent to computing a global minimum of the constrained
optimization problem

min Vα(x) s.t. x ∈ Ω(x), (11)

which, in turn, can be reformulated as

min Vα(x) s.t. x ∈ X

in view of Lemma 2.1. The last statement of Theorem 2.2 shows that the new objective
function overcomes one of the deficiencies of the mapping V (x).

The following result shows that the definition of the mapping Vα can also be used in
order to get a fixed point characterization of the GNEP.

Proposition 2.3 Let yα(x) be the vector defined in Theorem 2.2 (c) as the unique max-
imizer in the definition of the regularized function Vα(x), cf. (10). Then x∗ is a solution
of GNEP if and only if x∗ is a fixed point of the mapping x 7→ yα(x), i.e., if and only if
x∗ = yα(x∗).

Proof. First assume that x∗ is a solution of GNEP. Then we obtain x∗ ∈ Ω(x∗) (and,
therefore, x∗ ∈ X in view of Lemma 2.1) and Vα(x∗) = 0 from Theorem 2.2. In view of
the definition of yα(x∗), this implies

0 = Vα(x∗) = max
y∈Ω(x∗)

Ψα(x∗, y) = Ψα

(
x∗, yα(x∗)

)
.

On the other hand, we also have Ψα(x∗, x∗) = 0. Since x∗ ∈ Ω(x∗) and the maximum
yα(x∗) is uniquely defined by Theorem 2.2, it follows that x∗ = yα(x∗).

Conversely, let x∗ be a fixed point of the mapping yα. Then x∗ = yα(x∗) ∈ Ω(x∗) and

0 = Ψα(x∗, x∗) = Ψα

(
x∗, yα(x∗)

)
= Vα(x∗).

Consequently, the statement follows from Theorem 2.2. �

We next consider a simple example which shows that, in general, the objective function
from (11) is nondifferentiable.
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Example 2.4 Consider the GNEP with N = 2 players and the following optimization
problems:

minx1 θ1(x1, x2) := −x1 minx2 θ2(x1, x2) := 0
s.t. x1 + x2 ≤ 1, s.t. x1 + x2 ≤ 1,

2x1 + 4x2 ≤ 3, 2x1 + 4x2 ≤ 3,
x1, x2 ≥ 0, x1, x2 ≥ 0.

Hence we have X = {(x1, x2)
T |x1 +x2 ≤ 1, 2x1 +4x2 ≤ 3, x1 ≥ 0, x2 ≥ 0}. An elementary

calculation shows that the solution set is given by

S =

{
x∗ = (x∗1, x

∗
2)

∣∣∣ x∗2 ∈
[
0,

3

4

]
, x∗1 =

{
1− x∗2, if x∗2 ∈ [0, 1

2
],

3
2
− 2x∗2, if x∗2 ∈ [1

2
, 3

4
]

}
.

We want to compute Vα(x). To this end, we first note that the regularized Nikaido-Isoda-
function for this game is

Ψα(x, y) = −x1 + y1 −
α

2
(x1 − y1)

2 − α

2
(x2 − y2)

2.

Moreover, for this example, we have

X1(x
−1) =

{
x1

∣∣ x1 ≤ 1− x2, x1 ≤
3

2
− 2x2, x1 ≥ 0

}
=

[
0, min{1− x2,

3

2
− 2x2}

]
and

X2(x
−2) =

{
x2

∣∣ x2 ≤ 1− x1, x2 ≤
3

4
− 1

2
x1, x2 ≥ 0

}
=

[
0, min{1− x1,

3

4
− 1

2
x1}

]
and, therefore

Vα(x) = −x1 − min
y1∈X1(x−1)

[
− y1 +

α

2
(x1 − y1)

2
]
− min

y2∈X2(x−2)

[α

2
(x2 − y2)

2
]
.

Given x = (x1, x2) ∈ R2, the solution of the first minimization problem is given by

y1
α(x) =


0, if 1

α
+ x1 ≤ 0,

1
α

+ x1, if 1
α

+ x1 ∈
[
0, min{1− x2,

3
2
− 2x2}

]
,

min{1− x2,
3
2
− 2x2}, if 1

α
+ x1 ≥ min{1− x2,

3
2
− 2x2},

and the solution of the second problem is

y2
α(x) =


0, if x2 ≤ 0,
x2, if x2 ∈

[
0, min{1− x1,

3
4
− 1

2
x1}

]
,

min{1− x1,
3
4
− 1

2
x1}, if x2 ≥ min{1− x1,

3
4
− 1

2
x1}.

However, since we are only interested in x ∈ X, the above formula simplify to

y1
α(x) =

{
1
α

+ x1, if 1
α

+ x1 ∈
[
0, min{1− x2,

3
2
− 2x2}

]
,

min{1− x2,
3
2
− 2x2}, if 1

α
+ x1 ≥ min{1− x2,

3
2
− 2x2},

= min
{ 1

α
+ x1, 1− x2,

3

2
− 2x2

}
7



and
y2

α(x) = x2,

respectively. Now it is easy to see that the corresponding mapping

Vα(x) = −x1 −
[
− y1

α(x) +
α

2
(x1 − y1

α(x))2
]

is not everywhere differentiable on the feasible set X.

The nondifferentiability of the mapping Vα is a major disadvantage if one wants to apply
suitable optimization methods to the corresponding reformulation (11). In the following
section, we therefore describe a modification of our current approach which results into a
smooth optimization reformulation of the GNEP.

We stress, however, that the situation is much more favourable if we specialize our
results to the standard NEP. Then it can be shown that the mapping Vα is continuously
differentiable provided all payoff functions θν are smooth. This follows from the observation
given in Remark 3.10 below.

3 A Smooth Constrained Optimization Reformula-

tion

In this section, we modify the idea of the previous one and obtain another constrained
optimization reformulation of the GNEP which has significantly different properties than
the reformulation discussed in Section 2. In particular, the reformulation to be given here
is smooth. However, it does not give a complete reformulation of all solutions of the GNEP,
but it provides a characterization of the so-called normalized Nash equilibria.

Definition 3.1 A vector x∗ ∈ X is called a normalized Nash equilibrium of the GNEP,
if supy∈X Ψ(x∗, y) ≤ 0 holds, where Ψ denotes the Nikaido-Isoda-function from (6).

The above definition of a normalized Nash equilibrium corresponds to one given in, e.g.,
[13, 36]. Note that it is slightly different from the original definition of a normalized
equilibrium given in [35], see, however, the corresponding results in [13, 10]. It is not
difficult to see that a normalized Nash equilibrium is always a solution of the GNEP,
whereas the converse is not true in general.

We next state a simple property of the Nikaido-Isoda-function which follows immedi-
ately from the fact that the payoff functions θν(x) = θν(x

ν , x−ν) are convex with respect
to xν .

Lemma 3.2 For any given x ∈ X, the Nikaido-Isoda-function Ψ(x, y) is concave in y ∈ X.

In order to derive a smooth reformulation of the GNEP, our basic tool is, once again, the
regularized Nikaido-Isoda-function Ψα(x, y) from (9). Based on this mapping, we define

V̂α(x) := max
y∈X

Ψα(x, y)
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= max
y∈X

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
(12)

= max
y∈X

[
Ψ(x, y)− α

2
‖x− y‖2

]
.

Note that, due to Lemma 3.2, given an arbitrary x ∈ X, we take the maximum of a
uniformly concave function in y, hence V̂α(x) is well-defined. Comparing the definition of
V̂α with the one of Vα in (10), we see that the only difference is that the maximum is taken
over all y ∈ X instead of all y ∈ Ω(x).

This minor change has a number of important consequences. We first state the coun-
terpart of Theorem 2.2 for the mapping V̂α.

Theorem 3.3 The regularized function V̂α has the following properties:

(a) V̂α(x) ≥ 0 for all x ∈ X.

(b) x∗ is a normalized Nash equilibrium if and only if x∗ ∈ X and V̂α(x∗) = 0.

(c) For every x ∈ X, there exists a unique maximizer ŷα(x) such that

argmaxy∈X

[
Ψ(x, y)− α

2
‖x− y‖2

]
= ŷα(x),

and ŷα(x) is continuous in x.

Proof. (a) For any x ∈ X, we have V̂α(x) = maxy∈X Ψα(x, y) ≥ Ψα(x, x) = 0.

(b) First let x∗ be a normalized Nash equilibrium. Then x∗ ∈ X and supy∈X Ψ(x∗, y) ≤ 0.
Hence Ψ(x∗, y) ≤ 0 for all y ∈ X. Since

Ψα(x∗, y) = Ψ(x∗, y)− α

2
‖x∗ − y‖2 ≤ Ψ(x∗, y) ≤ 0 ∀y ∈ X,

it follows that V̂α(x∗) = maxy∈X Ψα(x∗, y) ≤ 0. Together with statement (a), this implies

V̂α(x∗) = 0.
Conversely, let x∗ ∈ X be such that V̂α(x∗) = 0. Then

Ψα(x∗, y) ≤ 0 ∀y ∈ X. (13)

Assume there is a vector ŷ ∈ X such that Ψ(x∗, ŷ) > 0. Then λx∗ + (1 − λ)ŷ ∈ X for all
λ ∈ (0, 1), and Lemma 3.2 implies

Ψ(x∗, λx∗ + (1− λ)ŷ) ≥ λΨ(x∗, x∗) + (1− λ)Ψ(x∗, ŷ) = (1− λ)Ψ(x∗, ŷ) > 0 ∀λ ∈ (0, 1).

Therefore, we obtain

Ψα(x∗, λx∗ + (1− λ)ŷ) = Ψ(x∗, λx∗ + (1− λ)ŷ)− α

2
‖x∗ − λx∗ − (1− λ)ŷ‖2

9



= Ψ(x∗, λx∗ + (1− λ)ŷ)− α

2
(1− λ)2‖x∗ − ŷ‖2

≥ (1− λ)Ψ(x∗, ŷ)− α

2
(1− λ)2‖x∗ − ŷ‖2

> 0

for all λ ∈ (0, 1) sufficiently close to 1. This, however, is a contradiction to (13).

(c) In view of Lemma 3.2, the mapping y 7→ Ψ(x, y)− α
2
‖x− y‖2 is strongly concave (uni-

formly in x). Hence statement (c) is a consequence of standard sensitivity results, see, for
example, [20, Corollaries 8.1 and 9.1]. �

Theorem 3.3 shows that we can characterize the normalized Nash equilibria of a GNEP as
the global minima of the constrained optimization problem

min V̂α(x) s.t. x ∈ X. (14)

In contrast to the corresponding reformulation in (11), we do not get a reformulation of
all generalized Nash equilibria.

We next state the counterpart of Proposition 2.3. Its proof is omitted here since it is
essentially the same as the one for Proposition 2.3 (using Theorem 3.3 instead of Theorem
2.2).

Proposition 3.4 Let ŷα(x) be the vector defined in Theorem 3.3 (c) as the unique maxi-
mizer in the definition of the regularized function V̂α(x), cf. (12). Then x∗ is a normalized
Nash equilibrium of GNEP if and only if x∗ is a fixed point of the mapping x 7→ ŷα(x).

Our next aim is to show that the regularized function V̂α is continuously differentiable,
provided that the payoff functions θν are continuously differentiable for each player ν =
1, . . . , N . The continuous differentiability of the functions θν will therefore be assumed
implicitly throughout the rest of this section.

Theorem 3.5 The regularized function V̂α is continuously differentiable for every x ∈ X,
and its gradient is given by

∇V̂α(x) =
N∑

ν=1

[
∇θν(x

ν , x−ν)−∇θν(ŷ
ν
α(x), x−ν)

]
+

 ∇x1θ1(ŷ
1
α(x), x−1)
...

∇xN θN(ŷN
α (x), x−N)

−α
(
x−ŷα(x)

)
,

where ŷα(x) denotes the unique maximizer from Theorem 3.3 (c) associated to the given
vector x.

Proof. We first recall that the regularized function V̂α can be represented as in the last
line of (12), and that the mapping

y 7→ Ψα(x, y) = Ψ(x, y)− α

2
‖x− y‖2

10



is strongly concave for any fixed x in view of Lemma 3.2. Hence it follows from Dan-
skin’s Theorem (see, for example, [9]) that V̂α is differentiable with gradient ∇V̂α(x) =
∇xΨα(x, y)

∣∣
y=ŷα(x)

. Using the definition of the mapping Ψα, an elementary calculation

shows that

∇xΨα(x, y) =
N∑

ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν , x−ν)

]
+

 ∇x1θ1(y
1, x−1)

...
∇xN θN(yN , x−N)

− α(x− y),

Inserting y = ŷα(x) then gives the desired formula for the gradient of V̂α. Since all payoff
functions θν are continuously differentiable, and since ŷα(x) is also a continuous mapping
of x in view of Theorem 3.3, we finally get that the gradient ∇V̂α(x) = ∇xΨα(x, y)

∣∣
y=ŷα(x)

is continuous, i.e., the regularized function V̂α is continuously differentiable. �

So far, we know that (14) gives a reformulation of the GNEP as a smooth constrained
optimization problem. In order to get a solution of the GNEP, however, we need to
compute a global minimum of (14). Since most algorithms only find stationary points, the
question arises under which conditions such a stationary point is already a global minimum.
Such a condition is introduced in the following assumption.

Assumption 3.6 For given x ∈ X with x 6= ŷα(x), the inequality

N∑
ν=1

[
∇θν(x

ν , x−ν)−∇θν(ŷ
ν
α(x), x−ν)

]T (
x− ŷα(x)

)
> 0

holds.

We postpone a discussion of this assumption until the end of this section. The following
result first shows that Assumption 3.6 provides a sufficient condition for a stationary point
to be a global minimum and, therefore, a normalized Nash equilibrium.

Theorem 3.7 Let x∗ ∈ X be a stationary point of (14) in the sense that

∇V̂α(x∗)T (x− x∗) ≥ 0 ∀x ∈ X. (15)

If Assumption 3.6 holds at x = x∗, then x∗ is a normalized Nash equilibrium of the GNEP.

Proof. Using (15) and the representation of the gradient ∇Vα(x∗) from Theorem 3.5, we
obtain

0 ≤ ∇V̂α(x∗)T (x− x∗)

=
N∑

ν=1

[
∇θν(x

∗,ν , x∗,−ν)−∇θν(ŷ
ν
α(x∗), x∗,−ν)

]T
(x− x∗)

11



+
N∑

ν=1

∇xνθν(ŷ
ν
α(x∗), x∗,−ν)T (xν − x∗,ν)− α

(
x∗ − ŷα(x∗)

)T
(x− x∗)

=
N∑

ν=1

[
∇θν(x

∗,ν , x∗,−ν)−∇θν(ŷ
ν
α(x∗), x∗,−ν)

]T
(x− x∗)

+
N∑

ν=1

[
∇xνθν(ŷ

ν
α(x∗), x∗,−ν)− α

(
x∗,ν − ŷν

α(x∗)
)]T (

xν − x∗,ν
)

for all x ∈ X. Choosing x = ŷα(x∗), we therefore get

0 ≤
∑N

ν=1

[
∇θν(x

∗,ν , x∗,−ν)−∇θν(ŷ
ν
α(x∗), x∗,−ν)

]T (
ŷα(x∗)− x∗

)
+

∑N
ν=1

[
∇xνθν(ŷ

ν
α(x∗), x∗,−ν)− α(x∗,ν − ŷν

α(x∗))
]T (

ŷν
α(x∗)− x∗,ν

)
.

(16)

Now recall that ŷα(x∗) is the unique solution of the optimization problem

max
N∑

ν=1

[
θν(x

∗,ν , x∗,−ν)− θν(y
ν , x∗,−ν)− α

2
‖x∗,ν − yν‖2

]
s.t. y ∈ X.

Consequently, ŷα(x∗) satisfies the corresponding optimality conditions ∇x1θ1(ŷ
1
α(x∗), x∗,−1)− α(x∗,1 − ŷ1

α(x∗))
...

∇xN θN(ŷN
α (x∗), x∗,−N)− α(x∗,N − ŷN

α (x∗))


T (

z − ŷα(x∗)
)
≥ 0 ∀z ∈ X.

Using z = x∗, we therefore obtain

N∑
ν=1

[
∇xνθν(ŷ

ν
α(x∗), x∗,−ν)− α(x∗,ν − ŷν

α(x∗))
]T (

x∗,ν − ŷν
α(x∗)

)
≥ 0.

Taking this into account, we get

0 ≤
N∑

ν=1

[
∇θν(x

∗,ν , x∗,−ν)−∇θν(ŷ
ν
α(x∗), x∗,−ν)

]T (
ŷα(x∗)− x∗

)
(17)

from (16). Now assume that x∗ 6= ŷα(x∗). Then (17) and Assumption 3.6 together imply
0 < 0. This contradiction shows that x∗ = ŷα(x∗). Hence x∗ is a normalized Nash equilib-
rium of the GNEP because of Proposition 3.4. �

Assumption 3.6 may be viewed as a kind of strict monotonicity or positive definiteness
assumption. To illustrate this point, consider the case where all payoff functions θν are
quadratic, say

θν(x) = (xν)T Aννx
ν +

N∑
µ=1
µ6=ν

(xν)T Aνµx
µ (18)

12



for certain matrices Aνµ ∈ Rnν×nµ with Aνν symmetric (without loss of generality). Ad-
ditional linear terms are also allowed, but they do not change the subsequent discussion.
Now let A ∈ Rn×n be the matrix with (ν, µ)-block component Aνµ, so that A = (Aνµ)N

ν,µ=1.
Then the following result holds.

Proposition 3.8 Assume that the payoff functions θν are given by (18) for ν = 1, . . . , N ,
and suppose that the matrix A = (Aνµ)N

ν,µ=1 is positive definite. Then Assumption 3.6 is
satisfied at an arbitrary point x ∈ Rn.

Proof. Let x ∈ Rn be arbitrarily given. Then

∇xµθν(x
ν , x−ν) = AT

νµx
ν ∀ν 6= µ

and

∇xνθν(x
ν , x−ν) = 2Aννx

ν +
∑
µ=1
µ6=ν

Aνµx
µ = Aννx

ν +
N∑

µ=1

Aνµx
µ.

Consequently, by an elementary calculation, we obtain

N∑
ν=1

[
∇θν(x

ν , x−ν)−∇θν(ŷ
ν
α(x), x−ν

]T (
x− ŷα(x)

)
=

N∑
ν=1

N∑
µ=1

[
∇xµθν(x

ν , x−ν)−∇xµθν(ŷ
ν
α(x), x−ν)

]T (
xµ − ŷµ

α(x)
)

= 2
N∑

ν,µ=1

(
xν − ŷν

α(x)
)T

Aνµ

(
xµ − ŷµ

α(x)
)

= 2
(
x− ŷα(x)

)T
A

(
x− ŷα(x)

)
> 0

whenever x 6= ŷα(x). Hence Assumption 3.6 holds. �

The following note shows that no regularization of the Nikaido-Isoda-function is necessary
if the payoff functions θν have some stronger properties than those mentioned so far.

Remark 3.9 Suppose that the functions θν(x) = θν(x
ν , x−ν) are strongly convex in xν

(for any given x−ν). Then the mapping

V̂ (x) := max
y∈X

Ψ(x, y)

is well-defined and gives a reformulation of the GNEP as a smooth optimization problem

min V̂ (x) s.t. x ∈ X.

13



This means that there is no need to regularize the function Ψ for strongly convex payoff
functions. The proof of the above statement follows by simple inspection of the proofs
given in this section. Also a stationary point result can be derived similar to Theorem
3.7. Note, however, that the unconstrained optimization reformulation to be presented in
Section 4 needs a regularized Nikaido-Isoda-function even in the case of strongly convex
functions θν .

We close this section with a simple note on the application of our results to the standard
NEP.

Remark 3.10 Suppose that the nonempty, closed, and convex set X ⊆ Rn has the Carte-
sian product structure from (1). Then Ω(x) = X for all x, and the GNEP reduces to the
standard NEP. Moreover, it follows that

Vα(x) = max
y∈Ω(x)

Ψα(x, y) = max
y∈X

Ψα(x, y) = V̂α(x)

for all x ∈ X, i.e., the two functions Vα from the previous section and V̂α from the current
section coincide. In particular, the mapping Vα is therefore also continuously differentiable
when applied to a standard NEP.

4 An Unconstrained Optimization Reformulation

We use the regularized Nikaido-Isoda-function in order to obtain an unconstrained opti-
mization reformulation of the GNEP in this section. To this end, let 0 < α < β be two
given parameters, let

Ψα(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
,

Ψβ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− β

2
‖xν − yν‖2

]
be the associated regularized Nikaido-Isoda functions, and let

V̂α(x) := max
y∈X

Ψα(x, y) = Ψα

(
x, ŷα(x)

)
,

V̂β(x) := max
y∈X

Ψβ(x, y) = Ψβ

(
x, ŷβ(x)

)
be the corresponding regularized value functions. Formally, these functions are defined
only for x ∈ X in the previous section. However, it is easy to see that they can be defined
for any x ∈ Rn.

Similar to the way the D-gap function was derived from the regularized gap function
in the context of variational inequalities, see [32, 37], we then define

V̂αβ(x) := V̂α(x)− V̂β(x), x ∈ Rn.

14



In order to show that this difference of two regularized Nikaido-Isoda-functions gives an
unconstrained optimization reformulation of the GNEP, we first state the following result.

Lemma 4.1 The inequality

β − α

2
‖x− ŷβ(x)‖2 ≤ V̂αβ(x) ≤ β − α

2
‖x− ŷα(x)‖2 (19)

holds for all x ∈ Rn.

Proof. By definition, we have for any x ∈ Rn

V̂β(x) = Ψβ

(
x, ŷβ(x)

)
= max

y∈X
Ψβ(x, y)

and, therefore
V̂β(x) ≥ Ψβ

(
x, ŷα(x)

)
.

This implies

V̂αβ(x) = V̂α(x)− V̂β(x)

≤ Ψα

(
x, ŷα(x)

)
−Ψβ

(
x, ŷα(x)

)
=

β − α

2

N∑
ν=1

‖xν − ŷν
α(x)‖2

=
β − α

2
‖x− ŷα(x)‖2

for all x ∈ Rn. This proves the right-hand inequality in (19). The other inequality can be
verified in a similar way. �

Note that, similar to an observation in [21], Lemma 4.1 immediately implies that the level
sets of the function V̂αβ are compact for compact sets X. This observation guarantees

that any sequence {xk} generated by a descent method for V̂αβ will remain bounded and,
therefore, has at least one accumulation point.

As another consequence of Lemma 4.1, we obtain the following result.

Theorem 4.2 The following statements about the function V̂αβ hold:

(a) V̂αβ(x) ≥ 0 for all x ∈ Rn.

(b) x∗ is a normalized Nash equilibrium of the GNEP if and only if x∗ is a global minimum
of V̂αβ with V̂αβ(x∗) = 0.

Proof. (a) Using Proposition 3.4, we have

V̂αβ(x) ≥ β − α

2
‖x− ŷβ(x)‖2 ≥ 0

15



for all x ∈ Rn.

(b) First assume that x∗ is a normalized Nash equilibrium. Then Proposition 3.4 implies
x∗ = ŷα(x∗) and x∗ = ŷβ(x∗). Hence (19) immediately gives V̂αβ(x∗) = 0.

Conversely, let x∗ be such that V̂αβ(x∗) = 0. Then (19) implies x∗ = ŷβ(x∗). Hence x∗

solves the GNEP in view of Proposition 3.4. �

Theorem 4.2 shows that the normalized Nash equilibria of GNEP are precisely the global
minima of the unconstrained optimization problem

min V̂αβ(x), x ∈ Rn. (20)

We next note that this is a smooth problem. To this end, however, we need to assume, for
the remainder of this section, that all payoff functions θν are continuously differentiable.
Then we have the following result.

Theorem 4.3 The function V̂αβ is continuously differentiable for every x ∈ Rn, and its
gradient is given by

∇V̂αβ(x) =
N∑

ν=1

[
∇θν(ŷ

ν
β(x), x−ν)−∇θν(ŷ

ν
α(x), x−ν)

]

+

 ∇x1θ1(ŷ
1
α(x), x−1)−∇x1θ1(ŷ

1
β(x), x−1)

...
∇xN θN(ŷN

α (x), x−N)−∇xN θN(ŷN
β (x), x−N)


−α

(
x− ŷα(x)

)
+ β

(
x− ŷβ(x)

)
.

Proof. First recall that V̂α(x) and V̂β(x) are defined for all x ∈ Rn. Then observe that
the formula for the gradients of these two functions, as given in Theorem 3.5 for x ∈ X,
remain true for all x ∈ Rn. Since we have ∇V̂αβ(x) = ∇V̂α(x) − ∇V̂β(x), the statement
follows from Theorem 3.5. �

We now know that (20) is a smooth unconstrained reformulation of the GNEP. However,
we need to compute the global minimum of V̂αβ. Since standard optimization software is
usually only able to find a stationary point, we next want to give a result saying that such
a stationary point is already a normalized Nash equilibrium under certain conditions. To
this end, we first state the following preliminary result.

Lemma 4.4 The inequality

N∑
ν=1

[
∇xνθν(ŷ

ν
α(x), x−ν)−∇xνθν(ŷ

ν
β(x), x−ν)−α(xν−ŷν

α(x))+β(xν−ŷν
β(x))

]T (
ŷν

β(x)−ŷν
α(x)

)
≥ 0

holds for any x ∈ Rn.
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Proof. As noted in the proof of Theorem 3.7, ŷν
α(x) satisfies the optimality condition

N∑
ν=1

[
∇xνθν(ŷ

ν
α(x), x−ν)− α(xν − ŷν

α(x))
]T (

zν − ŷν
α(x)

)
≥ 0 ∀z ∈ X.

In a similar way, it follows that ŷν
β(x) satisfies

N∑
ν=1

[
∇xνθν(ŷ

ν
β(x), x−ν)− β(xν − ŷν

β(x))
]T (

zν − ŷν
β(x)

)
≥ 0 ∀z ∈ X.

Using z = ŷβ(x) in the first inequality and z = ŷα(x) in the second inequality, we get

N∑
ν=1

[
∇xνθν(ŷ

ν
α(x), x−ν)− α(xν − ŷν

α(x))
]T (

ŷν
β(x)− ŷν

α(x)
)
≥ 0

and
N∑

ν=1

[
∇xνθν(ŷ

ν
β(x), x−ν)− β(xν − ŷν

β(x))
]T (

yν
α(x)− ŷν

β(x)
)
≥ 0,

respectively. Adding these two inequalities gives the desired result. �

In order to state a result that a stationary point is, automatically, a global minimum of
V̂αβ, we need a certain condition which is quite similar to the one stated in Assumption
3.6.

Assumption 4.5 For given x ∈ Rn with ŷα(x) 6= ŷβ(x), the inequality

N∑
ν=1

[
∇θν(ŷ

ν
β(x), x−ν)−∇θν(ŷ

ν
α(x), x−ν)

]T (
ŷβ(x)− ŷα(x)

)
> 0

holds.

It is easy to see from the proof of Proposition 3.8 that, under the assumption of that result,
we also have a sufficient condition for Assumption 4.5 to hold. Using Assumption 4.5, we
are now able to state the following result.

Theorem 4.6 Let x∗ be a stationary point of V̂αβ. If Assumption 4.5 holds at x = x∗,
then x∗ is a normalized Nash equilibrium of the GNEP.

Proof. Since x∗ is a stationary point of V̂αβ, we obtain from Theorem 4.3

0 = ∇V̂αβ(x∗)

=
N∑

ν=1

[
∇θν(ŷ

ν
β(x∗), x∗,−ν)−∇θν(ŷ

ν
α(x∗), x∗,−ν)

]
17



+

 ∇x1θ1(ŷ
1
α(x∗), x∗,−1)−∇x1θ1(ŷ

1
β(x∗), x∗,−1)

...
∇xN θN(ŷN

α (x∗), x∗,−N)−∇xN θN(ŷN
β (x∗), x∗,−N)

 (21)

−α
(
x∗ − ŷα(x∗)

)
+ β

(
x∗ − ŷβ(x∗)

)
.

Multiplication with
(
ŷβ(x∗)− ŷα(x∗)

)T
and using Lemma 4.4, we therefore get

0 =
N∑

ν=1

[
∇θν(ŷ

ν
β(x∗), x∗,−ν)−∇θν(ŷ

ν
α(x∗), x∗,−ν)

]T (
ŷβ(x∗)− ŷα(x∗)

)
+

N∑
ν=1

[
∇xνθν(ŷ

ν
α(x∗), x∗,−ν)−∇xνθν(ŷ

ν
β(x∗), x∗,−ν)

−α(x∗,ν − ŷν
α(x∗)) + β(x∗,ν − ŷν

β(x∗))
]T (

ŷν
β(x∗)− ŷν

α(x∗)
)

≥
N∑

ν=1

[
∇θν(ŷ

ν
β(x∗), x∗,−ν)−∇θν(ŷ

ν
α(x∗), x∗,−ν)

]
(ŷβ(x∗)− ŷα(x∗)).

Assume that ŷβ(x∗) − ŷα(x∗) 6= 0. Then the previous chain of inequalities together with
Assumption 4.5 gives the contradiction 0 > 0. Hence ŷα(x∗) = ŷβ(x∗). But then (21) sim-
plifies to (β − α)(x∗ − ŷα(x∗)) = 0. Since α < β, this implies x∗ = ŷα(x∗). Consequently,
x∗ is a normalized Nash equilibrium in view of Proposition 3.4. �

5 Numerical Illustrations

Here we want to illustrate the performance of our unconstrained optimization reformulation
on some GNEPs taken from the literature. To this end, we use the Barzilai-Borwein
(BB) gradient method [4] (see also [33, 34, 14, 7, 16] for some subsequent modifications
and investigations of this first-order method) for the unconstrained minimization of the
objective function V̂αβ. This method uses the iterative procedure

xk+1 := xk − αk∇V̂αβ(xk), k = 0, 1, 2, . . .

with the stepsize

αk :=
sT y

sT s
,

where
s := xk − xk−1, y := ∇V̂αβ(xk)−∇V̂αβ(xk−1).

Hence the BB method has the advantage of using an explicit formula for the stepsize, so
no extra line search is required which would be very expensive in our case since this would

18



require further evaluations of the mapping V̂αβ. Each function evaluation of V̂αβ, however,
needs the solution of two constrained optimization problems in order to compute ŷα(x)
and ŷβ(x). We therefore believe that the BB method fits perfectly into our setting.

The implementation is done in MATLAB using the function fmincon from the Opti-
mization Toolbox to compute the values ŷα(x) and ŷβ(x). We use the parameters α = 0.02

and β = 0.05 for all test examples, and terminate the iteration if V̂αβ(xk) ≤ ε with
ε := 10−8.

Example 5.1 This test problem is taken from [10, Example 3.8]. There are two players,
each player has one decision variable. The example has infinitely many Nash equilibria,

but only one normalized Nash equilibrium at x∗ :=
(

3
4
, 1

4

)T
. The iteration history of our

method applied to this example with the starting point x0 := (0, 0)T is given in Table 1.

k xk
1 xk

2 V̂αβ(xk) ‖∇V̂αβ(xk)‖
0 0.00000000 0.00000000 0.0093111567 0.0235577850
1 0.00010481 0.00003654 0.0093085421 0.0235544767
2 0.74630253 0.26018955 0.0000017132 0.0003161316
3 0.74978601 0.25017191 0.0000000011 0.0000079447

Table 1: Numerical results for Example 5.1

Example 5.2 This is the duopoly example from [24], so there are two players. Each player

controls one variable. The solution is x∗ :=
(

16
3
, 16

3

)T
. The iteration history of our method,

using the starting point x0 := (2, 0)T from [24], is summarized in Table 2.

k xk
1 xk

2 V̂αβ(xk) ‖∇V̂αβ(xk)‖
0 2.00000000 0.00000000 1.2315865733 0.1366926294
1 2.00198061 0.00316894 1.2301234437 0.1366113010
2 5.32890551 5.32619359 0.0000021945 0.0001825423
3 5.33333413 5.33333003 0.0000000000 0.0000000907

Table 2: Numerical results for Example 5.2

Example 5.3 Here we use the river basin pollution game from [24]. This time there are
three players, and once again each player controls only one variable. Table 3 contains
the iteration history for our unconstrained minimization approach using the starting point
x0 := (0, 0, 0)T from [24].

19



k xk
1 xk

2 xk
3 V̂αβ(xk) ‖∇V̂αβ(xk)‖

0 0.00000000 0.00000000 0.0000000000 7.4511392248 0.6336400961
1 0.04928389 0.04525843 0.0443943119 7.4003515320 0.6313081588
2 13.39298590 12.30468520 12.0524627775 0.5374357435 0.0993373542
3 13.95131677 14.34063963 9.3604015563 0.2743881869 0.0596227368
4 16.45591073 16.66153325 6.3640055287 0.0915913193 0.0310976805
5 19.25548426 15.68602395 4.2473780863 0.0163221419 0.0143759817
6 21.14761847 16.89516211 3.1383210958 0.0094477244 0.0212229515
7 20.33577610 15.10976412 1.9706797290 0.0293617720 0.0415040130
8 21.22675171 15.91622108 2.9990735639 0.0009997184 0.0071599812
9 21.09176520 15.94309622 2.8023980917 0.0000769253 0.0015397590

10 21.09657997 15.99462888 2.7807787818 0.0000190059 0.0007236726
11 21.10779025 16.03326200 2.7539403754 0.0000050857 0.0002581068
12 21.12180189 16.02691746 2.7432959196 0.0000001780 0.0000750139
13 21.12831611 16.02837413 2.7408150983 0.0000000804 0.0000614958
14 21.12884798 16.02676549 2.7327078937 0.0000003541 0.0001442056
15 21.13481718 16.02889292 2.7376402083 0.0000001665 0.0000981303
16 21.13355539 16.02799321 2.7346145670 0.0000002679 0.0000688952
17 21.13582739 16.02805299 2.7330809781 0.0000002084 0.0000578498
18 21.14671036 16.02782075 2.7242447250 0.0000000010 0.0000069063

Table 3: Numerical results for Example 5.3

Example 5.4 This is the electricity market example from [19], also used in [6]. There
are three players (companies) and altogether six variables, the first player controls one
variable (corresponding to one electricity plant), the second player controls two variables
(he owns two electricity plants), and the third player controls the remaining three variables
(electricity plants). Starting at x0 := (0, . . . , 0)T , we get the iteration history given in Table
4 (where only the first three components of the iteration vector xk are shown). The method
terminates at the approximate solution

x13 ≈
(
46.599, 32.133, 14.935, 22.072, 12.439, 12.438

)T
.

Note that the final value of V̂αβ(xk) is slightly negative. This is due to the fact that the
computation of the values ŷα(xk) and ŷβ(xk) are (necessarily) done inexactly.

Example 5.5 Here we consider the internet switching model from [22] in a slightly mod-
ified version that was also analysed in [11]. More precisely, we use the constraints xν ≥ lν
for all players with the lower bounds lν := 0.01 for all ν = 1, . . . , N and the additional
capacity constraint

∑N
ν=1 xν ≤ B for some positive constant B. Note that we use positive

lower bounds here since otherwise the payoff functions of the players used in [22, 11] are
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k xk
1 xk

2 xk
3 V̂αβ(xk) ‖∇V̂αβ(xk)‖

0 0.00000000 0.00000000 0.0000000000 212.9967936440 5.4266419193
1 3.97795020 2.37873182 1.6949517306 182.3524379329 4.9797766535
2 49.04627557 28.53584600 20.2046625231 6.0343418007 1.2218601926
3 42.99451338 23.68477781 14.9208122921 1.5059663257 0.5429641149
4 45.02683837 25.85239314 16.1809149899 0.3868362085 0.0821865582
5 45.12470353 26.26870608 15.9640738490 0.3374590618 0.0761857866
6 46.50488593 31.59216381 13.5591488174 0.0289298316 0.0265612735
7 46.56155685 31.53880993 15.8250292617 0.0084523325 0.0178959824
8 46.83875964 32.38449530 15.0597168570 0.0201040891 0.0727633378
9 45.99036086 31.60132317 14.4448223076 0.1060890498 0.1687710947

10 46.59695610 32.13906308 14.9259196777 0.0001640659 0.0020086656
11 46.59310677 32.12701437 14.9267478916 0.0002346250 0.0034718130
12 46.59407813 32.13732663 14.9337793376 0.0001464873 0.0019340344
13 46.59853223 32.13333385 14.9345457848 -0.0000262409 0.0033345202

Table 4: Numerical results for Example 5.4

not defined everywhere on the feasible set. We take N = 10 and B = 1 for our computa-
tions, together with the starting point x0 = (0.1, . . . , 0.1)T which is close to the solution
at x∗ = (0.09, . . . , 0.09)T . We therefore expect that our method converges after just a few
steps, and this is indeed the case, see Table 5.

k xk
1 xk

2 V̂αβ(xk) ‖∇V̂αβ(xk)‖
0 0.10000000 0.10000000 0.0003822155 0.0247426159
1 0.09996128 0.09996128 0.0003791924 0.0246404400
2 0.09062399 0.09062399 0.0000014200 0.0014458597
3 0.09004195 0.09004193 0.0000000081 0.0000220902

Table 5: Numerical results for Example 5.5

We next give a short comparison of our method with the relaxation method from [36].
This relaxation method computes a sequence {xk} according to the formula

xk+1 := (1− αk)x
k + αky(xk), k = 0, 1, 2, . . . ,

where αk ∈ (0, 1] is a suitable parameter and y(xk) is the same as yα(xk) from Theorem 3.3
with α = 0, i.e., we obtain y(xk) by maximizing the Nikaido-Isoda function without regu-
larization. Theoretically, the relaxation method is well-defined only under some stronger
assumptions that are not necessary for our approaches. However, if these conditions are
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met and the parameter αk satisfies

αk → 0 and
∞∑

k=0

αk = ∞, (22)

the method converges to a normalized Nash equilibrium, see [36] for details. The two
requirements (22) suggest to take αk := 1

k+1
or a related updating. Since numerical results

indicate that the relaxation method converges much better if αk is taken to be a fixed
number during the first few iterations, we use an idea similar to [2] and choose

αk :=

{
0.5, if k ≤ 40,
0.5 1

k−40
, if k > 40.

This choice guarantees that, theoretically, (22) holds, whereas in practice this means that
we take the constant value αk = 0.5 for all four examples.

We terminate the relaxation method as soon as V̂ (xk) ≤ ε with ε := 10−8, where
V̂ (x) := V̂α(x) is the function from (12) with α = 0. Hence the termination criterion for
the relaxation method is similar to the one used before in our method, although they are
not directly comparable.

Table 6 compares the number of iterations required by the relaxation method applied
to Examples 5.1–5.4 with our unconstrained minimization approach.

Method Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5
Relaxation method 20 26 34 40 50
Our method 3 3 18 13 3

Table 6: Number of iterations of relaxation method and our method

To put the results from Table 6 in the right perspective, one should take into account
that the main computational burden of the relaxation method is the solution of one con-
strained optimization problem, whereas our method has to solve two constrained optimiza-
tion problems at each iteration. The remaining overhead of both methods is neglectable.
However, even if we multiply the iteration numbers of our method with the factor two,
we are usually still better (usually much better) than the relaxation method. Moreover,
it is interesting to observe that the relaxation method takes relatively many iterations for
Example 5.5 where the starting point was chosen close to the solution.

6 Final Remarks

We presented some optimization reformulations of the generalized Nash equilibrium prob-
lem such that the global minima of these reformulations correspond to (normalized) Nash
equilibria of the underlying game. Two of these optimization reformulations were smooth
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with a continuously differentiable objective function, and their stationary points were
shown to be global minima under suitable assumptions.

One of our future projects is to establish conditions under which the smooth objective
functions have a (strongly) semismooth gradient in the sense of [30, 31, 29]. The advantage
of such a result would be that it would allow the application of nonsmooth Newton methods
to the corresponding optimization reformulation which then should be locally superlinearly
or quadratically convergent under certain assumptions.

Acknowledgement. The authors would like to thank Masao Fukushima and Diethard
Klatte for some very helpful comments on a preliminary version of this paper.
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