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Abstract. Nondegeneracy assumptions are often needed in order to prove local fast conver-
gence of suitable algorithms as well as in the sensitivity analysis for semidefinite programs.
Here we investigate the precise relation between three nondegeneracy concepts introduced
in the literature. The nondegeneracy conditions considered here are called KSS-, AHO-,
and KN-nondegeneracy since they were first introduced by Kojima, Shida, and Shindoh
[Mathematical Programming, 80 (1998), pp. 129–160], Alizadeh, Haeberly, and Overton
[Mathematical Programming, 77 (1997), pp. 111–128], and Kanzow and Nagel [SIAM Jour-
nal on Optimization, to appear], respectively. While all three conditions are equivalent if
strict complementarity holds at a solution of the semidefinite program, we show that KSS-
nondegeneracy cannot hold without this assumption, whereas the other two nondegeneracy
conditions are still equivalent even without strict complementarity. This result provides con-
siderable new insight into both the AHO- and the KN-nondegeneracy conditions since the
two corresponding definitions are completely different in nature.

Key Words. Semidefinite programs, Nondegeneracy conditions, Strict complementarity,
Uniqueness of solutions.
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1 Introduction

We are interested in the semidefinite program

min C •X s.t. Ai •X = bi (i = 1, . . . ,m), X � 0

for given symmetric matrices Ai, C ∈ Sn and scalars bi ∈ R (i = 1, . . . ,m). Under a Slater-
type constraint qualification, this semidefinite program is equivalent to the following opti-
mality conditions:

m∑
i=1

λiAi + S = C,

Ai •X = bi (i = 1, . . . ,m),
X � 0, S � 0, XS = 0.

(1)

These optimality conditions are the basis of several algorithms for the solution of semidefinite
programs. This includes both the class of interior-point methods (see, e.g., [3, 7, 13, 14, 16,
18, 21, 23]) and the class of smoothing-type methods (see, e.g., [4, 10, 11, 12, 19, 20, 22]). Of
central importance for the local fast convergence of these methods (see, e.g., [3, 4, 6, 10, 12])
and for some sensitivity results for semidefinite programs (see, e.g., [2, 3, 5, 15, 17]) are some
nondegeneracy conditions.

We are currently aware of three different nondegeneracy conditions, namely those intro-
duced by

• Kojima, Shida, and Shindo [13]

• Alizadeh, Haeberly, and Overton [2]

• Kanzow and Nagel [12].

We will refer to these conditions as KSS-, AHO–, and KN-nondegeneracy, respectively. These
nondegeneracy conditions, their implications, and their relation to each other are the subject
of this paper.

To this end, we first state some preliminary results in Section 2. We then give a detailed
investigation of the KSS-nondegeneracy condition in Section 3. In particular, we show that
a KSS-nondegenerate solution of the optimality conditions (1) automatically satisfies strict
complementarity. Moreover, the X- and S-components of a KSS-nondegenerate solution are
unique. Note that we do not assume linear independence of the matrices Ai in order to prove
these results. Hence they may be viewed as generalizations of some corresponding results
given in [12].

We then consider the AHO-nondegeneracy condition in Section 4. We show that a
KSS-nondegenerate solution of the optimality conditions (1) is automatically an AHO-
nondegenerate solution, and that the converse is also true under strict complementarity.
Hence the concepts of KSS-nondegeneracy and AHO-nondegeneracy are equivalent under
strict complementarity. It seems that this result has been noted before (under the additional
assumption that the Ai are linearly independent) by Haeberly since the authors of [13]
give a corresponding note in their paper and refer to a private communication by Haeberly.
However, we are not aware of an explicit reference where this result may be found.
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We then turn to a discussion of the KN-nondegeneracy condition in Section 5. We admit
that the definition of KN-nondegeneracy is not easy to understand, which has to do with the
fact that it originates in a nonsmooth reformulation of the optimality conditions in [12]. In
particular, the definition of KN-nondegeneracy is completely different from the definition of
AHO-nondegeneracy. Nevertheless (and somewhat surprisingly), we show in Section 5 that
these nondegeneracy conditions are equivalent. Hence we get a much simpler geometric view
of the KN-nondegeneracy concept.

The notation used in the manuscript is standard for papers on semidefinite programs.
In particular, we denote by Rn the n-dimensional real vector space, by Rn×n the set of
all real matrices of dimension n × n, and by Sn the subset of all symmetric matrices of
dimension n × n. Moreover, A • B := trace(ABT ) for two (not necessarily symmetric)
matrices A, B ∈ Rn×n is the standard scalar product in Rn×n. This scalar product induces
the Frobenius norm ‖A‖F := (A • A)1/2 = (

∑n
i,j=1 a2

ij)
1/2. The symbol A � 0 means that

A is symmetric positive semidefinite, and A1/2 denotes the symmetric positive semidefinite
square root of a given matrix A � 0.

2 Preliminaries

The aim of this section is twofold: On the one hand, we want to introduce the notation that
will be used throughout this paper. On the other hand, we state some preliminary results
which will facilitate some of the subsequent proofs.

Let (X∗, λ∗, S∗) ∈ Sn × Rm × Sn be a solution of the optimality conditions (1). Then,
in particular, we have X∗S∗ = 0. Hence these two matrices commute. Therefore, they have
a simultaneous spectral decomposition (see, e.g., [8]), i.e., there exists an orthogonal matrix
Q ∈ Rn×n and diagonal matrices DX , DS ∈ Rn×n such that

X∗ = QDXQT and S∗ = QDSQT . (2)

Let λi(X
∗) and λi(S

∗) denote the eigenvalues of X∗ and S∗, respectively. Then

X∗ � 0, S∗ � 0, X∗S∗ = 0

⇐⇒ λi(X
∗) ≥ 0, λi(S

∗) ≥ 0, λi(X
∗)λi(S

∗) = 0 ∀i = 1, . . . ,m.

Hence the three index sets

α :=
{
i
∣∣λi(X

∗) > 0, λi(S
∗) = 0

}
,

β :=
{
i
∣∣λi(X

∗) = 0, λi(S
∗) = 0

}
,

γ :=
{
i
∣∣λi(X

∗) = 0, λi(S
∗) > 0

} (3)

form a partition of the whole set {1, . . . , n}. Note that

p := |α| is the rank of X∗, and q := |γ| is the rank of S∗,

whereas β is the degenerate index set. In particular, the solution (X∗, λ∗, S∗) satisfies strict
complementarity (i.e., X∗ + S∗ � 0) if and only if β = ∅. In this paper, however, we are
mainly interested in the case β 6= ∅.
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Using the three index sets α, β, and γ, we will, without loss of generality, partition the
matrices Q, DX , DS from the simultaneous spectral decomposition (2) in the following way:

Q =
(
Qα Qβ Qγ

)
with Qα ∈ Rn×|α|, Qβ ∈ Rn×|β|, Qγ ∈ Rn×|γ|,

DX =

 DX
α

0
0

 with DX
α := diag

(
λ1(X

∗), . . . , λp(X
∗)
)
∈ Rp×p,

DS =

 0
0

DS
γ

 with DS
γ := diag

(
λn−q+1(S

∗), . . . , λn(S∗)
)
∈ Rq×q.

(4)

Furthermore, given two matrices ∆X, ∆S ∈ Sn, we will frequently use the related matrices

∆̃X := QT ∆XQ and ∆̃S := QT ∆SQ, (5)

where Q denotes the orthogonal matrix from (2). We will partition these symmetric matrices
in the following way:

∆̃X =

 ∆̃Xαα ∆̃Xαβ ∆̃Xαγ

∆̃X
T

αβ ∆̃Xββ ∆̃Xβγ

∆̃X
T

αγ ∆̃X
T

βγ ∆̃Xγγ

 , ∆̃S =

 ∆̃Sαα ∆̃Sαβ ∆̃Sαγ

∆̃S
T

αβ ∆̃Sββ ∆̃Sβγ

∆̃S
T

αγ ∆̃S
T

βγ ∆̃Sγγ

 . (6)

Note that this notation simplifies considerably if β = ∅.
In order to reformulate linear systems involving matrix variables in the usual matrix-

vector format, we need to transfrom matrices into vectors. For a general (not necessarily
symmetric) matrix A ∈ Rn×n, this can be done by using the mapping vec : Rn×n → Rn2

defined by

vec(A) :=
(
a11, a21, . . . , an1, a12, a22, . . . , an2, . . . , ann

)T ∈ Rn2

,

i.e., vec stacks the columns of A into a vector of length n2, see [9]. For a symmetric matrix,
we are not interested in all entries of A. It suffices to consider the lower triangular part of A,

and the corresponding transformation can be done using the mapping svec : Sn → R
n(n+1)

2

defined by

svec(A) :=
(
a11,

√
2a21, . . . ,

√
2an1, a22,

√
2a32, . . . ,

√
2an2, . . . , ann

)T ∈ R
n(n+1)

2 .

The reason for the factor
√

2 in front of the nondiagonal elements is due to the fact that this
is consistent with the inner product, i.e.,

A •B = svec(A)T svec(B) ∀A, B ∈ Sn. (7)

Having introduced vec and svec, the next question is how an ordinary matrix product can
be expressed in terms of vec and svec. To this end, we define the Kronecker product of two
(not necessarily symmetric) matrices G, K ∈ Rn×n by

G⊗K :=
[
gijK

]
=

 g11K · · · g1nK
...

. . .
...

gn1K · · · gnnK

 ∈ Rn2×n2

,
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see [9]. Then it can easily be verified that(
G⊗K

)
vec(H) = vec

(
KHGT

)
(H ∈ Rn×n).

Similarly, we define the symmetric Kronecker product by(
G⊗s K

)
svec(H) :=

1

2
svec

(
KHGT + GHKT

)
(H ∈ Sn). (8)

Some properties of the symmetric Kronecker product are summarized in the following result.
The proofs of these properties are elementary and can be found in [3, 21].

Lemma 2.1 The symmetric Kronecker product ⊗s defined by (8) has the following proper-
ties:

(a) G⊗s K = K ⊗s G.

(b)
(
G⊗s K

)T
= GT ⊗s KT .

(c)
(
G⊗s K

)(
H ⊗s L

)
= 1

2

(
GH ⊗s KL + GL⊗s KH

)
.

(d) Let G and K be two commuting symmetric matrices with eigenvalues λi (i = 1, . . . , n)
and µj (j = 1, . . . , n), respectively, Then the n(n + 1)/2 scalars 1

2

(
λiµj + λjµi

)
(1 ≤

j ≤ i ≤ n) are the eigenvalues of G⊗s K.

We are now in the position to state the following result. A similar statement may be found
in [6, Lemma 2.3], where, however, strict complementarity is assumed. Also [14, Proof of
Lemma 6.2] presents a related result, but again under the additional assumption that strict
complementarity holds. In the form stated here, this result has implicitly been used in [12,
Proof of Lemma 4.2].

Lemma 2.2 Let (X∗, λ∗, S∗) ∈ Sn×Rm×Sn be a solution of the optimality conditions (1).
Then the following two statements are equivalent for any two matrices (∆X, ∆S) ∈ Sn×Sn:

(a) X∗∆S + ∆XS∗ = 0.

(b)
(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0.

Proof. (a) =⇒ (b): First assume that X∗∆S + ∆XS∗ = 0. Taking the transpose gives
∆SX∗ + S∗∆X = 0. Adding these two equations, we obtain

X∗∆S + ∆SX∗ + S∗∆X + ∆XS∗ = 0. (9)

Applying 1
2
svec on both sides and using (8), we obtain statement (b).

(b) =⇒ (a): In view of (8), statement (b) is equivalent to (9). Let us consider the simulta-
neous spectral decomposition (2) of X∗ and S∗. Then (9) may be rewritten as

QDXQT ∆S + ∆SQDXQT + QDSQT ∆X + ∆XQDSQT = 0.

6



Premultiplying this equation by QT , postmultiplying it by Q, and introducing the matrices
∆̃X, ∆̃S from (5), we obtain

DX∆̃S + ∆̃SDX + DS∆̃X + ∆̃XDS = 0. (10)

Now let us use the partitionings from (6) (for ∆̃X, ∆̃S) and (4) (for Q,DX , DS). Then an
easy calculation shows that (10) becomes DX

α ∆̃Sαα + ∆̃SααDX
α DX

α ∆̃Sαβ DX
α ∆̃Sαγ + ∆̃XαγD

S
γ

∆̃S
T

αβDX
α 0 ∆̃XβγD

S
γ

∆̃S
T

αγD
X
α + DS

γ ∆̃X
T

αγ DS
γ ∆̃X

T

βγ DS
γ ∆̃Xγγ + ∆̃XγγD

S
γ

 = 0. (11)

Since DX
α and DS

γ are positive definite, this implies ∆̃Sαβ = 0 and ∆̃Xβγ = 0. Moreover,

DX
α ∆̃Sαα + ∆̃SααDX

α = 0 and DS
γ ∆̃Xγγ + ∆̃XγγD

S
γ = 0 are two homogeneous Lyapunov

equations, so that the positive definiteness of DX
α and DS

γ also imply ∆̃Sαα = 0 and ∆̃Xγγ =

0, see, e.g., [9]. Hence the matrices ∆̃X and ∆̃S simplify to

∆̃X =

 ∆̃Xαα ∆̃Xαβ ∆̃Xαγ

∆̃X
T

αβ ∆̃Xββ 0

∆̃X
T

αγ 0 0

 and ∆̃S =

 0 0 ∆̃Sαγ

0 ∆̃Sββ ∆̃Sβγ

∆̃S
T

αγ ∆̃S
T

βγ ∆̃Sγγ

 .

Exploiting this structure and using (4), (11), a direct computation shows that DX∆̃S +

∆̃XDS = 0. Pre- and postmultiplication with Q and QT , respectively, and recalling the
definitions (2), (5), we directly obtain statement (a). 2

We next introduce the matrix

A :=
(
svec(A1), . . . , svec(Am)

)T ∈ Rm×n(n+1)
2 , (12)

i.e., the rows of A are given by the matrices Ai viewed as long vectors. Using this notation,
we obviously have ∑m

i=1 ∆λiAi + ∆S = 0 ⇐⇒ AT ∆λ + svec(∆S) = 0,
Ai •∆X = 0 ∀i = 1, . . . ,m ⇐⇒ A svec(∆X) = 0

(13)

for any triple (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn. In our subsequent results, we usually prefer
the matrix-vector form of these two equivalent statements.

Let
r := rank(A),

so that the dimension of the space span{A1, . . . , Am} is equal to r. Note that we do not
assume anywhere in this paper that the matrix A has full rank, i.e., we do not assume that
the matrices A1, . . . , Am are linearly independent. Hence, the following result will be quite
useful for our later analysis.
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Lemma 2.3 Let (X∗, λ∗, S∗) ∈ Sn×Rm×Sn be a solution of the optimality conditions (1).
Furthermore, let us define

G := I ⊗s S∗ and H := I ⊗s X∗. (14)

Then the following two statements are equivalent:

(a) There exists a triple (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn satisfying the system

AT ∆λ + svec(∆S) = 0, A svec(∆X) = 0, G svec(∆X) +H svec(∆S) = 0. (15)

(b) For any submatrix Ā of A consisting of r linearly independent rows of A, there exists
a vector ∆λ ∈ Rr such that (∆X, ∆λ, ∆S) satisfies the system

ĀT ∆λ + svec(∆S) = 0, Ā svec(∆X) = 0, G svec(∆X) +H svec(∆S) = 0. (16)

Proof. (a) =⇒ (b): Let (∆X, ∆λ, ∆S) satisfy (15). Furthermore, let Ā be a submatrix of
A consisting of r linearly independent rows. Let J ⊆ {1, . . . ,m} be the corresponding index
set such Ā consists of the rows from A belonging to the index set J . Since the matrices
Ai(i 6∈ J) are linearly dependent from the set {Ai | i ∈ J}, there exists a vector ∆λ ∈ Rr

such that
∑m

i=1 ∆λiAi =
∑

i∈J ∆λiAi. Using the same argument, we see that

Ai •∆X = 0 (i = 1, . . . ,m) ⇐⇒ Ai •∆X = 0 (i ∈ J). (17)

Hence the triple (∆X, ∆λ, ∆S) satisfies (16).

(b) =⇒ (a): Let (∆X, ∆λ, ∆S) satisfy (16), and let J be the index set having the same
meaning as in the first part of the proof. Then define a vector ∆λ ∈ Rm in such a way that
∆λi = 0 for i 6∈ J , whereas ∆λi is equal to the corresponding component of ∆λ for all i ∈ J .
Then we have AT ∆λ + svec(∆S) = ĀT ∆λ + svec(∆S) = 0. Taking into account (17), we
see that (∆X, ∆λ, ∆S) satisfies (15). 2

3 The KSS-Nondegeneracy Condition

We begin with the definition of a nondegeneracy assumption introduced by Kojima, Shida,
and Shindoh [13] and which we therefore call KSS-nondegeneracy in order to distinguish it
from other nondegeneracy conditions to be introduced in subsequent sections.

Definition 3.1 A solution (X∗, λ∗, S∗) of the optimality conditions (1) is called KSS-nonde-
generate if the following implication holds for any triple (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn:

m∑
i=1

∆λiAi + ∆S = 0,

Ai •∆X = 0 (i = 1, . . . ,m),
X∗∆S + ∆XS∗ = 0.

 =⇒
{

∆X = 0,
∆S = 0.
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Recalling the definition of A from (12), using (13) and applying Lemma 2.2, we obtain the
following reformulation of a KSS-nondegenerate solution in the more standard matrix-vector
notation.

Lemma 3.2 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1). Then (X∗, λ∗, S∗)
is KSS-nondegenerate if and only if the following implication holds for any triple (∆X, ∆λ, ∆S) ∈
Sn × Rm × Sn:

AT ∆λ + svec(∆S) = 0,
A svec(∆X) = 0,(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

Another equivalent formulation of the KSS-nondegeneracy condition is given in our next
result. Note that this result is similar to a characterization obtained in [6, 15] (under
the linear independence of the matrices Ai) for an AHO-nondegenerate solution, cf. the
corresponding notes at the end of the next section.

Lemma 3.3 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1). Furthermore, let
r := rank(A) be the rank of the matrix A from (12). Then (X∗, λ∗, S∗) is KSS-nondegenerate
if and only if, for any submatrix Ā consisting of r linearly independent rows of A, the matrix

MĀ :=

 0 ĀT I
Ā 0 0
G 0 H

 (18)

is nonsingular, where G and H are defined in (14).

Proof. First assume that (X∗, λ∗, S∗) is KSS-nondegenerate. Let Ā be an arbitrary
submatrix of A consisting of r linearly independent rows of A. Let (∆X, ∆λ, ∆S) ∈ Sn ×
Rr × Sn be any triple such that 0 ĀT I

Ā 0 0
G 0 H

 svec(∆X)

∆λ
svec(∆S)

 =

 0
0
0

 . (19)

In view of Lemma 2.3, this is equivalent to the existence of (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn

satisfying

AT ∆λ + svec(∆S) = 0,

A svec(∆X) = 0,

G svec(∆X) +H svec(∆S) = 0.

Since (X∗, λ∗, S∗) is KSS-nondegenerate by assumption, we obtain that svec(∆X) = 0 and
svec(∆S) = 0 from Lemma 3.2. This, in turn, implies ∆λ = 0 in view of (19) since the rows
of Ā are linearly independent by construction. Hence the matrix in (19) is nonsingular.
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Conversely, assume that the matrices MĀ are nonsingular for all submatrices Ā with r
linearly independent rows from A. Let (∆X, ∆λ, ∆S) ∈ Sn×Rm×Sn be any triple satisfying

m∑
i=1

∆λiAi + ∆S = 0,

Ai •∆X = 0 ∀i = 1, . . . ,m,

X∗∆S + ∆XS∗ = 0.

In view of (13) and Lemma 2.2, this is equivalent to

AT ∆λ + svec(∆S) = 0,

A svec(∆X) = 0,

G svec(∆X) +H svec(∆S) = 0.

Using Lemma 2.3, this may be rewritten as in (16) for a suitable vector ∆λ ∈ Rr. However,
the system (16) is equivalent to the triple (∆X, ∆λ, ∆S) satisfying 0 ĀT I

Ā 0 0
G 0 H

 svec(∆X)

∆λ
svec(∆S)

 =

 0
0
0

 .

Since the matrix of this homogeneous linear system is precisely the matrix MĀ which is
nonsingular by assumption, we obtain ∆X = 0 and ∆S = 0. This shows that (X∗, λ∗, S∗) is
KSS-nondegenerate. 2

We are now in the position to state our first main result that a KSS-nondegenerate solution
is automatically a strictly complementary solution. Under the additional assumption that
the matrices A1, . . . , Am are linearly independent, this result may be found in [12, Theorem
A.1].

Theorem 3.4 Let (X∗, λ∗, S∗) be a KSS-nondegenerate solution of the optimality conditions
(1). Then X∗ + S∗ � 0, i.e., the solution is strictly complementary.

Proof. Let r := rank(A) and Ā be an arbitrary submatrix of A consisting of r linearly
independent rows of A. In view of Lemma 3.3, the matrix MĀ from (18) is nonsingular.
We now follow the technique of proof of [12, Theorem A.1]: Since X∗ and S∗ commute,
Lemma 2.1 shows that G and H commute, too. Hence there is a simultaneous spectral

decomposition, i.e., there is an orthogonal matrix U ∈ R
n(n+1)

2
×n(n+1)

2 and diagonal matrices

DG,DH ∈ R
n(n+1)

2
×n(n+1)

2 such that

G = UDGUT and H = UDHUT .

We therefore have

MĀ =

 I 0 0
0 I 0
0 0 U

 0 ĀT U
ĀU 0 0
DG 0 DH

 UT 0 0
0 I 0
0 0 UT

 .
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Since MĀ is nonsingular, it follows that 0 ĀT U
ĀU 0 0
DG 0 DH

 (20)

is also nonsingular.
Now suppose that the solution (X∗, λ∗, S∗) is not strictly complementary. Then there

exists a component s ∈ β such that λs(X
∗) = 0 and λs(S

∗) = 0. Since DG and DH are
diagonal matrices with the eigenvalues of H and G on their diagonals, it follows from Lemma
2.1 that

DG =
1

2
diag

(
. . . , λj(S

∗) + λi(S
∗), . . .

)
1≤j≤i≤n

,

DH =
1

2
diag

(
. . . , λj(X

∗) + λi(X
∗), . . .

)
1≤j≤i≤n

.

In particular, taking the pair (j, i) = (s, s), we see that DG and DH have a zero entry in the
same diagonal element. This implies that the matrix from (20) has a zero row, a contradic-
tion to the nonsingularity of this matrix. 2

We next wish to show that the X- and S-components of a KSS-nondegenerate solution
(X∗, λ∗, S∗) are unique, see also Remark 5.7 for a generalization and the relation of this
statement to existing results.

Before stating our next result, however, we first recall some facts about duality for
semidefinite programs. To this end, let (X∗, λ∗, S∗) be a solution of the optimality con-
ditions (1). In particular, we then have X∗ � 0, S∗ � 0, and [1, Lemma 2.9] hence implies
the equivalence

X∗S∗ = 0 ⇐⇒ X∗ • S∗ = 0.

Consequently, we have

0 = X∗ • S∗ = X∗ •
(
C −

m∑
i=1

λ∗i Ai

)
= C •X∗ − bT λ∗,

i.e., there is no duality gap between the primal and dual objective functions. Now let
(X∗∗, λ∗∗, S∗∗) be another solution of the optimality conditions (1). Then we have C •X∗ =
C •X∗∗ and bT λ∗ = bT λ∗∗ by convexity. Using the previous argument, we therefore get

0 = C •X∗∗ − bT λ∗ = X∗∗ • S∗ and 0 = C •X∗ − bT λ∗∗ = X∗ • S∗∗.

Since the matrices X∗, X∗∗, S∗, and S∗∗ are positive semidefinite, this is equivalent to

X∗S∗∗ = 0 and X∗∗S∗ = 0 (21)

This fact will be used in the following result.
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Theorem 3.5 Suppose that (X∗, λ∗, S∗) is a KSS-nondegenerate solution of the optimality
conditions (1). Then the X∗- and S∗-components are unique.

Proof. Let r := rank(A) and let Ā be an arbitrary submatrix of A consisting of r linearly
independent rows. Furthermore, let MĀ be the corresponding matrix from (18).

Now let (X∗∗, λ∗∗, S∗∗) be another solution of the optimality conditions (1). Then define

(∆X, ∆λ, ∆S) :=
(
X∗ −X∗∗, λ∗ − λ∗∗, S∗ − S∗∗

)
,

and let ∆λ ∈ Rr be a vector such that AT ∆λ = ĀT ∆λ (note that such a vector always
exists). Then it is easy to see that we have ĀT ∆λ + svec(∆S) = 0 and Ā svec(∆X) = 0.
Moreover, using (8) and the matrices G and H from (14), we obtain

G svec(∆X) +H svec(∆S) =
(
I ⊗s S∗

)
svec(∆X) +

(
I ⊗s X∗) svec(∆S)

=
1

2
svec

(
S∗∆X + ∆XS∗

)
+

1

2
svec

(
X∗∆S + ∆SX∗) = 0

since X∗S∗ = 0 = S∗X∗ in view of the optimality conditions, and X∗S∗∗ = 0 = S∗X∗∗

because of (21). Hence we have

MĀ

 svec(∆X)

∆λ
svec(∆S)

 = 0.

Lemma 3.3 therefore implies ∆X = 0 and ∆S = 0. Hence the X∗- and S∗-components of
the solution (X∗, λ∗, S∗) are unique. 2

We next state that the converse of Theorems 3.4 and 3.5 is also true, i.e., the uniqueness of the
solution with respect to the X- and S-components together with the strict complementarity
assumption implies that the solution is KSS-nondegenerate.

In order to prove this result, we need to introduce some more notation. To this end, let
(X∗, λ∗, S∗) be a (fixed) solution of the optimality conditions (1), and let (2) be a corre-
sponding simultaneous spectral decomposition. Furthermore, recall that

p = rank(X∗) and q = rank(S∗),

so that p+ q ≤ n in general, whereas we have p+ q = n if and only if strict complementarity
holds. We now define three important subsets (see [2]):

N :=
{
Y ∈ Sn

∣∣Ai • Y = 0 ∀i = 1, . . . ,m
}
,

TX :=

{
Q

(
U V
V T 0

)
QT
∣∣∣U ∈ Sp, V ∈ Rp×(n−p)

}
,

TS :=

{
Q

(
0 V

V T W

)
QT
∣∣∣V ∈ R(n−q)×q, W ∈ Sq

}
.

The corresponding orthogonal subspaces (with respect to the inner product • in Sn) are
given by

N⊥ = span
{
A1, . . . , Am

}
,
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T ⊥
X =

{
Q

(
0 0
0 W

)
QT
∣∣∣W ∈ Sn−p

}
,

T ⊥
S =

{
Q

(
U 0
0 0

)
QT
∣∣∣U ∈ Sn−q

}
.

These subspaces will play an important role in our next section. Some of them, however, are
also used in the following preliminary result.

Lemma 3.6 Let (X∗, λ∗, S∗) be a strictly complementary solution of the optimality condi-
tions (1), and suppose that (∆X, ∆S) ∈ Sn × Sn are given such that

∆X •∆S = 0 and X∗∆S + ∆XS∗ = 0. (22)

Then we have ∆X ∈ T ⊥
S and ∆S ∈ T ⊥

X .

Proof. Using the simultaneous spectral decomposition (2), we may rewrite the second
condition in (22) as QDXQT ∆S + ∆XQDSQT = 0. Pre- and postmultiplying this matrix

with QT and Q, respectively, and using the matrices ∆̃X, ∆̃S from (5), we obtain

DX∆̃S + ∆̃XDS = 0. (23)

Using the partitions from (4), (6), and recalling that β = ∅, we may rewrite (23) as(
0 0
0 0

)
=

(
DX

α 0
0 0

)(
∆̃Sαα ∆̃Sαγ

∆̃S
T

αγ ∆̃Sγγ

)
+

(
∆̃Xαα ∆̃Xαγ

∆̃X
T

αγ ∆̃Xγγ

)(
0 0
0 DS

γ

)

=

(
DX

α ∆̃Sαα DX
α ∆̃Sαγ + ∆̃XαγD

S
γ

0 ∆̃XγγD
S
γ

)
.

Since DX
α , DS

γ are positive definite diagonal matrices, this implies

∆̃Sαα = 0, ∆̃Xγγ = 0, and DX
α ∆̃Sαγ + ∆̃XαγD

S
γ = 0. (24)

We therefore have

∆̃X =

(
∆̃Xαα ∆̃Xαγ

∆̃X
T

αγ 0

)
and ∆̃S =

(
0 ∆̃Sαγ

∆̃S
T

αγ ∆̃Sγγ

)
.

Since ∆X •∆S = 0 implies ∆̃X • ∆̃S = 0, we further obtain

0 = trace
(
∆̃X∆̃S

)
= trace

[(
∆̃Xαα ∆̃Xαγ

∆̃X
T

αγ 0

)(
0 ∆̃Sαγ

∆̃S
T

αγ ∆̃Sγγ

)]
= trace

(
∆̃Xαγ∆̃S

T

αγ

)
+ trace

(
∆̃X

T

αγ∆̃Sαγ

)
.
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Solving the last equation in (24) for ∆̃Xαγ and substituting into the above expression, we
get

0 = trace
(
DX

α ∆̃Sαγ(D
S
γ )−1∆̃S

T

αγ

)
+ trace

(
(DS

γ )−1∆̃S
T

αγD
X
α ∆̃Sαγ

)
= trace

(
(DX

α )1/2∆̃Sαγ(D
S
γ )−1/2(DS

γ )−1/2∆̃S
T

αγ(D
X
α )1/2

)
+ trace

(
(DS

γ )−1/2∆̃S
T

αγ(D
X
α )1/2(DX

α )1/2∆̃Sαγ(D
S
γ )−1/2

)
= trace

([
(DX

α )1/2∆̃Sαγ(D
S
γ )−1/2

][
(DX

α )1/2∆̃Sαγ(D
S
γ )−1/2

]T )
+ trace

([
(DS

γ )−1/2∆̃S
T

αγ(D
X
α )1/2

][
(DS

γ )−1/2∆̃S
T

αγ(D
X
α )1/2

]T )
=

∥∥(DX
α )1/2∆̃Sαγ(D

S
γ )−1/2

∥∥2

F
+
∥∥(DS

γ )−1/2∆̃S
T

αγ(D
X
α )1/2

∥∥2

F
.

Hence we get (DX
α )1/2∆̃Sαγ(D

S
γ )−1/2 = 0 and therefore ∆̃Sαγ = 0. This, in turn, gives

∆̃Xαγ = 0. Consequently, we have

∆̃X =

(
∆̃Xαα 0

0 0

)
and ∆̃S =

(
0 0

0 ∆̃Sγγ

)
.

Using (5), we therefore get

∆X = Q∆̃XQT = Q

(
∆̃Xαα 0

0 0

)
QT ∈ T ⊥

S ,

∆S = Q∆̃SQT = Q

(
0 0

0 ∆̃Sγγ

)
QT ∈ T ⊥

X .

This completes the proof. 2

We are now in the position to prove the converse of Theorems 3.4 and 3.5.

Theorem 3.7 Suppose that (X∗, λ∗, S∗) is a solution of the optimality conditions (1) such
that strict complementarity is satisfied and the X∗- and S∗-components are unique. Then
(X∗, λ∗, S∗) is KSS-nondegenerate.

Proof. Let r := rank(A) and Ā be a submatrix consisting of r linearly independent rows
of A. In view of Lemma 3.3, we have to show that the matrix MĀ from (18) is nonsingular.

Assume this matrix is singular. Then there is a nonzero triple (∆X, ∆λ, ∆S) satisfying 0 ĀT I
Ā 0 0
G 0 H

 svec(∆X)

∆λ
svec(∆S)

 =

 0
0
0

 .

Note that (∆X, ∆λ, ∆S) 6= (0, 0, 0) implies (∆X, ∆S) 6= (0, 0) since the matrix Ā has full
rank.
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Using Lemma 2.3, we see that there exists a vector ∆λ ∈ Rm such that the triple
(∆X, ∆λ, ∆S) satisfies  0 AT I

A 0 0
G 0 H

 svec(∆X)
∆λ

svec(∆S)

 =

 0
0
0

 . (25)

Note that the first two block lines of (25) are equivalent to
∑m

i=1 ∆λiAi + ∆S = 0 and
Ai • ∆X = 0 (i = 1, . . . ,m). This means that ∆X ∈ N and ∆S ∈ N⊥. In particular, we
therefore have

∆X •∆S = 0. (26)

Now it is easy to see that
(
X∗ + ∆X, λ∗ + ∆λ, S∗ + ∆S

)
satisfies

AT (λ∗ + ∆λ) + svec(S∗ + ∆S) = svec(C), A svec(X∗ + ∆X) = b.

Furthermore, from the last line in (25) and Lemma 2.2, we obtain

G svec(∆X) +H svec(∆S) = 0
⇐⇒

(
I ⊗s S∗

)
svec(∆X) +

(
I ⊗s X∗) svec(∆S) = 0

⇐⇒ X∗∆S + ∆XS∗ = 0.
(27)

Using (26) and Lemma 3.6, we therefore get

∆X = Q

(
∆̃Xαα 0

0 0

)
QT and ∆S = Q

(
0 0

0 ∆̃Sγγ

)
QT

for certain matrices ∆̃Xαα ∈ Sp×p and ∆̃Sγγ ∈ Sq×q (recall that p + q = n because of strict
complementarity). This implies

X∗ + ∆X = Q

(
DX

α + ∆̃Xαα 0
0 0

)
QT � 0

for all ∆X sufficiently small satisfying (25), and

S∗ + ∆S = Q

(
0 0

0 DS
γ + ∆̃Sγγ

)
QT � 0

for all ∆S sufficiently small satisfying (25). Moreover, we have

(X∗ + ∆X)(S∗ + ∆S) = Q

(
DX

α + ∆̃Xαα 0
0 0

)
QT Q

(
0 0

0 DS
γ + ∆̃Sγγ

)
QT = 0.

Hence
(
X∗ + ∆X,λ∗ + ∆λ, S∗ + ∆S

)
is also a solution of the optimality conditions (1) for

any sufficiently small
(
∆X, ∆λ, ∆S

)
satisfying (25). Since (∆X, ∆S) 6= 0, this contradicts

our assumption that the X∗- and S∗-components of the solution (X∗, λ∗, S∗) are unique. 2
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4 The AHO-Nondegeneracy Condition

We begin by stating the nondegeneracy condition introduced by Alizadeh, Haeberly and
Overton [2] and which we therefore call AHO-nondegeneracy.

Definition 4.1 A solution (X∗, λ∗, S∗) of the optimality conditions (1) is called AHO-
nondegenerate if N⊥ ∩ T ⊥

X = {0} and N ∩ T ⊥
S = {0}.

Note that our definition of an AHO-nondegenerate solution corresponds to what is called
primal and dual nondegenerate in [2]. Furthermore, recall that the sets N , TX , TS as well as
their orthogonal subspaces were introduced in the previous section.

We first state the following result.

Lemma 4.2 Let (X∗, λ∗, S∗) be a solution of the optimality conditions, and suppose that
∆S ∈ N⊥ ∩ T ⊥

X and ∆X ∈ N ∩ T ⊥
S . Then there exists a ∆λ ∈ Rm such that

m∑
i=1

∆λiAi + ∆S = 0, Ai •∆X = 0 (i = 1, . . . ,m), X∗∆S + ∆XS∗ = 0. (28)

Proof. Since ∆S ∈ N⊥, there exist ∆λi ∈ R such that ∆S = −
∑m

i=1 ∆λiAi. Furthermore,
∆X ∈ N implies Ai •∆X = 0 for all i = 1, . . . ,m. Moreover, it follows from ∆S ∈ T ⊥

X and
∆X ∈ T ⊥

S that

∆S = Q

(
0 0
0 W

)
QT and ∆X = Q

(
U 0
0 0

)
QT

for some symmetric matrices W ∈ Sn−p and U ∈ Sn−q, respectively. Using the spectral
decomposition from (2) and the notation from (4), we therefore get

QT X∗∆SQ + QT ∆XS∗Q =
(
QT X∗Q

)(
QT ∆SQ

)
+
(
QT ∆XQ

)(
QT S∗Q

)
= DX

(
QT ∆SQ

)
+
(
QT ∆XQ

)
DS

=

(
DX

α 0
0 0

)(
0 0
0 W

)
+

(
U 0
0 0

)(
0 0
0 DS

γ

)
= 0.

If we premultiply this equation with Q and postmultiply it with QT , we finally obtain
X∗∆S + ∆XS∗ = 0. 2

Note that we may choose ∆λi = 0 in the previous result for all indices i ∈ {1, . . . ,m}
belonging to linearly dependent rows of the matrix A.

Theorem 4.3 Let (X∗, λ∗, S∗) be a KSS-nondegenerate solution of the optimality conditions
(1). Then (X∗, λ∗, S∗) is also AHO-nondegenerate.

Proof. Let ∆S ∈ N⊥ ∩ T ⊥
X and ∆X ∈ N ∩ T ⊥

S be given. In view of Lemma 4.2, it follows
that there exists ∆λ ∈ Rm such that (28) holds. Since (X∗, λ∗, S∗) is KSS-nondegenerate
by assumption, we obtain ∆X = 0 and ∆S = 0. This shows that N⊥ ∩ T ⊥

X = {0} and
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N ∩ T ⊥
S = {0}, i.e., (X∗, λ∗, S∗) is AHO-nondegenerate. 2

Note that Theorem 4.3 holds without strict complementarity. The converse is not true
in general, as can be seen from an example in [2, page 117] where the authors give an
example of a semidefinite program whose solution satisfies AHO-nondegeneracy but not
strict complementarity. Hence KSS-nondegeneracy cannot hold in view of Theorem 3.4.

However, in our next result we show that the converse of Theorem 4.3 holds if we assume,
in addition, that strict complementarity is satisfied.

Theorem 4.4 Let (X∗, λ∗, S∗) be a strictly complementary and AHO-nondegenerate solu-
tion of the optimality conditions (1). Then (X∗, λ∗, S∗) is also KSS-nondegenerate.

Proof. Let (∆X, ∆λ, ∆S) be any triple satisfying the conditions

m∑
i=1

∆λiAi + ∆S = 0, (29)

Ai •∆X = 0 ∀i = 1, . . . ,m, (30)

X∗∆S + ∆XS∗ = 0. (31)

From (29) and (30), we immediately obtain

∆X ∈ N and ∆S ∈ N⊥. (32)

In particular, this shows that
∆X •∆S = 0. (33)

Using (31), (33), and strict complementarity of the solution, we obtain from Lemma 3.6 that
∆X ∈ T ⊥

S and ∆S ∈ T ⊥
X . Together with (32), we therefore get ∆X = 0 and ∆S = 0 from

AHO-nondegeneracy. Hence (X∗, λ∗, S∗) is a KSS-nondegenerate solution. 2

Using Theorems 3.4, 4.3, and 4.4, we, in particular, obtain the following consequence.

Corollary 4.5 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1). Then (X∗, λ∗, S∗)
is KSS-nondegenerate if and only if it is strictly complementary and AHO-nondegenerate.

In particular, it follows that KSS- and AHO-nondegeneracy are equivalent if the solution
(X∗, λ∗, S∗) of the optimality conditions (1) satisfies strict complementary. According to
Kojima et al. [13], this result has been noted before by Haeberly in a private communication
to the authors of [13].

Furthermore, we note that both Haeberly [6] and Miller [15] are able to characterize
strict complementarity and AHO-nondegeneracy in terms of the nonsingularity of a certain
Jacobian matrix arising within the framework of interior-point methods. In view of Corollary
4.5, this is essentially the statement given in Lemma 3.3 except that both papers [6, 15]
assume, in addition, that the matrices Ai are linearly independent.
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5 The KN-Nondegeneracy Condition

Before we state the definition of nondegeneracy as introduced in [12], we begin with a short
discussion in order to get a better understanding of this nondegeneracy concept which was
used in [12] in order to prove local quadratic convergence of a nonsmooth Newton method
for semidefinite programs without strict complementarity.

Recall from Lemma 3.2 that the KSS-nondegeneracy of a solution (X∗, λ∗, S∗) is equiva-
lent to the implication

AT ∆λ + svec(∆S) = 0,
A svec(∆X) = 0,(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

Using the simultaneous spectral decomposition (2), defining the orthogonal matrix

V∗ := Q⊗s Q

and exploiting standard properties of the symmetric Kronecker product (see Lemma 2.1), it
follows that the KSS-nondegeneracy condition may further be rewritten as

AT ∆λ + svec(∆S) = 0
A svec(∆X) = 0,
V∗(I ⊗s DS)(V∗)T svec(∆X) + V∗(I ⊗s DX)(V∗)T svec(∆S) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

Now define Σ− := I ⊗s DS and Σ+ := I ⊗s DX . Then KSS-nondegeneracy is equivalent to

AT ∆λ + svec(∆S) = 0
A svec(∆X) = 0,
V∗Σ−(V∗)T svec(∆X) + V∗Σ+(V∗)T svec(∆S) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0,

and an easy calculation shows that Σ− and Σ+ are diagonal matrices with nonnegative
diagonal elements σ−ij and σ+

ij , respectively. Moreover, these diagonal entries satisfy the
conditions

σ−ij = 0 if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α),

σ+
ij = 0 if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ)

as well as
σ−ij = 0, σ+

ij = 0 ∀(i, j) ∈ β × β, (34)

whereas all other entries σ−ij , σ
+
ij are positive scalars. Although only the sign (not the precise

value) of the elements of Σ− and Σ+ are important, property (34) causes some singularity
problems (cf. the proof of Theorem 5.5). This is precisely the point we try to overcome using
the KN-nondegeneracy condition.

Definition 5.1 A solution (X∗, λ∗, S∗) of the optimality conditions (1) is called KN-nonde-
generate if, for all diagonal matrices

Σ− = diag
(
. . . , σ−ij , . . .

)
1≤j≤i≤n

, Σ+ = diag
(
. . . , σ+

ij , . . .
)
1≤j≤i≤n

(35)
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satisfying
σ−ij ≥ 0, σ+

ij ≥ 0, σ−ij + σ+
ij > 0 if (i, j) ∈ β × β,

σ−ij = 0 if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α),

σ+
ij = 0 if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ),

σ−ij > 0, σ+
ij > 0 for all other pairs (i, j),

(36)

the following implication holds for any triple
(
∆X, ∆λ, ∆S

)
∈ Sn × Rm × Sn:

AT ∆λ + svec(∆S) = 0
A svec(∆X) = 0,
V∗Σ−(V∗)T svec(∆X) + V∗Σ+(V∗)T svec(∆S) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

The only difference between KSS-nondegeneracy and KN-nondegeneracy is that we now
require that at least one of the two elements σ−ij or σ+

ij is positive for all components (i, j) ∈
β × β, hence the sum of these elements is positive.

In particular, it follows from our previous discussion that the definition of KN-nonde-
generacy coincides with KSS-nondegeneracy if β = ∅. Hence, in this case, it also coincides
with AHO-nondegeneracy due to Corollary 4.5. We formally summarize this observation in
the following result.

Theorem 5.2 Let (X∗, λ∗, S∗) be a strictly complementary solution of the optimality con-
ditions (1). Then (X∗, λ∗, S∗) is KN-nondegenerate if and only if it is KSS-nondegenerate
or, equivalently, AHO-nondegenerate.

While KSS-nondegeneracy automatically implies strict complementarity, we will show in
our subsequent analysis that the concept of KN-nondegeneracy is also useful in the absense
of strict complementarity. To this end, we begin with an equivalent formulation of KN-
nondegeneracy which is similar to Lemma 3.3 for a KSS-nondegenerate solution.

Lemma 5.3 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1). Furthermore, let
r := rank(A) be the rank of the matrix A from (12). Then (X∗, λ∗, S∗) is KN-nondegenerate
if and only if, for any submatrix Ā consisting of r linearly independent rows of A and any
diagonal matrices Σ−, Σ+ satisfying (35), (36), the matrix

MĀ,Σ−,Σ+
:=

 0 ĀT I
Ā 0 0

V∗Σ−V∗T 0 V∗Σ+V∗T

 (37)

is nonsingular.

Proof. First assume that (X∗, λ∗, S∗) is KN-nondegenerate. Let Ā be an arbitrary sub-
matrix consisting of r linearly independent rows, and let Σ−, Σ+ be two diagonal matrices
satisfying (35), (36). Let (∆X, ∆λ, ∆S) ∈ Sn × Rr × Sn be any triple such that 0 ĀT I

Ā 0 0
V∗Σ−V∗T 0 V∗Σ+V∗T

 svec(∆X)

∆λ
svec(∆S)

 =

 0
0
0

 . (38)
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Adding some zero components to ∆λ, we obtain a vector ∆λ such that the triple (∆X, ∆λ, ∆S)
satisfies

AT ∆λ + svec(∆S) = 0, (39)

A svec(∆X) = 0, (40)

V∗Σ−V∗T svec(∆X) + V∗Σ+V∗T svec(∆S) = 0. (41)

Since (X∗, λ∗, S∗) is KN-nondegenerate, we get ∆X = 0 and ∆S = 0. This, in turn, implies
∆λ = 0 in view of (38) and the full rank of the matrix Ā. Hence the matrix in (38) is
nonsingular.

Conversely, assume that the matrices MĀ,Σ−,Σ+
are nonsingular for all submatrices Ā

with r linearly independent rows from A and for all diagonal matrices Σ−, Σ+ satisfying
(35), (36). Let (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn be any triple satisfying (39)–(41). Let
∆λ ∈ Rr be a vector such that AT ∆λ = ĀT ∆λ. Then (39)–(41) may be rewritten as

MĀ,Σ−,Σ+

 svec(∆X)

∆λ
svec(∆S)

 =

 0
0
0

 .

Since MĀ,Σ−,Σ+
is nonsingular, this implies ∆X = 0 and ∆S = 0. Hence (X∗, λ∗, S∗) is

KN-nondegenerate. 2

In view of our introductory remarks to this section, it is not surprising that KN-nondegeneracy
is implied by KSS-nondegeneracy. In the following, we want to prove the stronger result that
AHO-nondegeneracy implies KN-nondegeneracy. To this end, we first state a simple lemma.

Lemma 5.4 Let A, B ∈ Rk×l be (not necessarily square) matrices with elements aij and bij,
respectively. Then the following statements hold:

(a) If aijbij ≤ 0 for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , l}, then trace(ABT ) ≤ 0.

(b) If aij = −σijbij for all i, j with some positive scalars σij, then trace(ABT ) ≤ 0, and
equality holds if and only if B = 0 (which, in turn, is equivalent to A = 0).

Proof. Let C := ABT ∈ Rk×k and write C = (cij). Then we have cij =
∑l

m=1 aimbjm for
all i, j = 1, . . . , k. Therefore, under the assumption of part (a), we obtain

trace(ABT ) = trace(C) =
k∑

i=1

cii =
k∑

i=1

l∑
m=1

aimbim︸ ︷︷ ︸
≤0

≤ 0.

Similarly, under the assumption of part (b), we get

trace(ABT ) =
k∑

i=1

l∑
m=1

aimbim = −
k∑

i=1

l∑
m=1

σim︸︷︷︸
>0

b2
im ≤ 0,
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and equality holds if and only if B = 0. 2

We are now in the position to show that AHO-nondegeneracy implies KN-nondegeneracy.
Note that we do not assume strict complementarity in this result.

Theorem 5.5 Let (X∗, λ∗, S∗) be an AHO-nondegenerate solution of the optimality condi-
tions (1). Then (X∗, λ∗, S∗) is also KN-nondegenerate.

Proof. Let Σ− and Σ+ be two arbitrary diagonal matrices satisfying (35), (36). Fur-
thermore, let (∆X, ∆λ, ∆S) ∈ Sn × Rm × Sn be any triple satisfying (39)–(41). Note that
(39), (40) imply ∆X ∈ N and ∆S ∈ N⊥. In particular, we therefore have ∆X • ∆S = 0.
Furthermore, since V∗ = Q ⊗s Q is nonsingular, (41) is equivalent to Σ−(V∗)T svec(∆X) +
Σ+(V∗)T svec(∆S) = 0. In view of Lemma 2.1 and (8), we have

(V∗)T svec(∆X) =
(
QT ⊗s QT

)
svec(∆X) = svec(QT ∆XQ)

and, similarly, (V∗)T svec(∆S) = svec(QT ∆SQ). Introducing the matrices ∆̃X and ∆̃S as

in (5), we get Σ− svec(∆̃X) + Σ+ svec(∆̃S) = 0. Componentwise, this may be rewritten as

σ−ij∆̃X ij + σ+
ij∆̃Sij = 0 ∀1 ≤ j ≤ i ≤ n. (42)

Taking into account properties (35), (36) of the two diagonal matrices Σ−, Σ+, we obtain

∆̃Sij = 0 ∀(i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α), (43)

∆̃X ij = 0 ∀(i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ). (44)

Furthermore, since σ−ij , σ
+
ij ≥ 0, σ−ij + σ+

ij > 0 for all (i, j) ∈ β × β, it follows from (42) that

∆̃X ij · ∆̃Sij ≤ 0 ∀(i, j) ∈ β × β. (45)

Let us partition the matrices ∆̃X, ∆̃S as in (6). Then we obtain from (43), (44) that

∆̃X =

 ∆̃Xαα ∆̃Xαβ ∆̃Xαγ

∆̃X
T

αβ ∆̃Xββ 0

∆̃X
T

αγ 0 0

 and ∆̃S =

 0 0 ∆̃Sαγ

0 ∆̃Sββ ∆̃Sβγ

∆̃S
T

αγ ∆̃S
T

βγ ∆̃Sγγ

 .

Since ∆X•∆S = 0 and, therefore, ∆̃X•∆̃S = 0, it follows from the previous representations
of ∆̃X and ∆̃S that

0 = ∆̃X • ∆̃S = trace
(
∆̃Xαγ∆̃S

T

αγ

)
+ trace

(
∆̃Xββ∆̃Sββ

)
+ trace

(
∆̃X

T

αγ∆̃Sαγ

)
. (46)

Since

∆̃X ij = −
σ+

ij

σ−ij
∆̃Sij ∀(i, j) ∈ α× γ (47)
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and σ−ij , σ
+
ij > 0 for all (i, j) ∈ α× γ, we obtain from Lemma 5.4, (45), and (47) that

trace
(
∆̃Xαγ∆̃S

T

αγ

)
≤ 0, trace

(
∆̃Xββ∆̃Sββ

)
≤ 0, and trace

(
∆̃X

T

αγ∆̃Sαγ

)
≤ 0.

Consequently, we have trace
(
∆̃Xαγ∆̃S

T

αγ

)
= 0 in view of (46) and therefore ∆̃Xαγ = 0 and

∆̃Sαγ = 0 because of (47) and Lemma 5.4. Hence

∆̃X =

 ∆̃Xαα ∆̃Xαβ 0

∆̃X
T

αβ ∆̃Xββ 0
0 0 0

 and ∆̃S =

 0 0 0

0 ∆̃Sββ ∆̃Sβγ

0 ∆̃S
T

βγ ∆̃Sγγ

 .

Using (5), this implies ∆X = Q∆̃XQT ∈ T ⊥
S and ∆S = Q∆̃SQT ∈ T ⊥

X . Thus we have
∆X ∈ N ∩ T ⊥

S and ∆S ∈ N⊥ ∩ T ⊥
X . Since (X∗, λ∗, S∗) is an AHO-nondegenerate solution

by assumption, it follows that ∆X = 0 and ∆S = 0. This shows that (X∗, λ∗, S∗) is KN-
nondegenerate. 2

Somewhat to the surprise of the authors, it turned out that the reverse of Theorem 5.5 is
also true. We state the resulting equivalence in the following theorem.

Theorem 5.6 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (1). Then (X∗, λ∗, S∗)
is AHO-nondegenerate if and only if it is KN-nondegenerate.

Proof. In view of Theorem 5.5, we only have to show that KN-nondegeneracy implies
AHO-nondegeneracy. Therefore, let (X∗, λ∗, S∗) be a KN-nondegenerate solution of (1). We
proceed by contradiction and assume that (X∗, λ∗, S∗) is not AHO-nondegenerate. Then
there exists a pair (∆X, ∆S) 6= (0, 0) such that ∆X ∈ N ∩ T ⊥

S and ∆S ∈ N⊥ ∩ T ⊥
X . Hence

we have ∆X 6= 0 or ∆S 6= 0.
First consider the case where ∆X 6= 0. Then (∆X, ∆S) := (∆X, 0) is also a nontrivial

pair of matrices with ∆X ∈ N ∩ T ⊥
S and ∆S ∈ N⊥ ∩ T ⊥

X . Let us define

∆̃X := QT ∆XQ = QT ∆XQ and ∆̃S := QT ∆SQ = 0,

and partition ∆̃X as in (6). Since ∆X = ∆X ∈ T ⊥
S , we have

∆̃X =

 ∆̃Xαα ∆̃Xαβ 0

∆̃X
T

αβ ∆̃Xββ 0
0 0 0

 .

We now introduce two diagonal matrices Σ−, Σ+ with elements σ−ij , σ
+
ij (1 ≤ j ≤ i ≤ n),

respectively, being defined by

σ−ij :=


0, if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α) ∪ (β × β),
1, if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ),
1, if (i, j) ∈ (α× γ) ∪ (γ × α),
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σ+
ij :=


1, if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α) ∪ (β × β),
0, if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ),
1, if (i, j) ∈ (α× γ) ∪ (γ × α).

Then Σ−, Σ+ satisfy (36), and it follows immediately that we have

σ−ij∆̃X ij + σ+
ij∆̃Sij = 0 ∀1 ≤ j ≤ i ≤ n

or, equivalently,
Σ− svec(∆̃X) + Σ+ svec(∆̃S) = 0.

As in the proof of Theorem 5.5, it is not difficult to see that this may be rewritten as

(V∗)Σ−(V∗)T svec(∆X) + (V∗)Σ+(V∗)T svec(∆S) = 0. (48)

Since we also have ∆X = ∆X ∈ N and ∆S = 0 ∈ N⊥, there exists a vector ∆λ ∈ Rm such
that

m∑
i=1

∆λiAi + ∆S = 0 and Ai •∆X = 0 ∀i = 1, . . . ,m. (49)

However, (X∗, λ∗, S∗) is KN-nondegenerate, hence we immediately obtain from (48) and (49)
that ∆X = ∆X = 0, contradicting our assumption that ∆X 6= 0.

In a similar way, we can derive a contradiction in the case where ∆S 6= 0 by taking the
nontrivial pair (∆X, ∆S) := (0, ∆S) instead of (∆X, ∆S) := (∆X, 0), and by using suitably
defined matrices Σ−, Σ+. Hence, in either case, we get a contradiction, completing the proof.

2

Theorem 5.6 implies, for example, that the nonsmooth Newton method from [12] for the
solution of semidefinite programs is locally quadratically convergent under the AHO-nonde-
generacy condition.

We close this section with the following remark.

Remark 5.7 Following the discussion in [12], it is possible to show that the X∗- and S∗-
components of a KN-nondegenerate solution (X∗, λ∗, S∗) of the optimality conditions (1) are
unique. In view of our previous results, this implies that the X∗- and S∗-components of a
KSS- or AHO-nondegenerate solution is also unique. In this way, we reobtain the statement
of Theorem 3.5. Moreover, under the additional assumption that the matrices Ai are linearly
independent, we also obtain the uniqueness statements given in [2] for AHO-nondegenerate
solutions.

6 Final Remarks

This paper gives an in-depth treatment of three nondegeneracy concepts related to semidef-
inite programs. It shows that all three concepts are identical under strict complementarity,
whereas one of them cannot hold without this assumption and the other two are still equiva-
lent in the degenerate case. The latter result is somewhat surprising since the more geometric
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definition of the nondegeneracy condition from [2] is completely different from the more al-
gebraic definition of the nondegeneracy concept from [12]. Nevertheless, this equivalence is
quite useful for a better understanding of the nondegeneracy condition from [12]. We also
feel that it should be possible to exploit results from nonsmooth analysis (which is the ba-
sic background where the definition in [12] comes from) in order to obtain some additional
properties and other sufficient conditions for the two nondegeneracy conditions from [2, 12]
to hold. We leave this as an open question for our future research.
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