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Abstract: We consider a Newton-type method for the solution of semidefinite programs.
This Newton-type method is based on a semismooth reformulation of the semidefinite
program as a nonsmooth system of equations. We establish local quadratic convergence of
this method under a linear independence assumption and a slightly modified nondegener-
acy condition. In contrast to previous investigations, however, the strict complementarity
condition is not needed in our analysis.
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1 Introduction

A semidefinite program is a minimization problem of the form

min
X∈Sn×n

C •X s.t. Ai •X = bi (i = 1, . . . ,m), X � 0, (1)

where C, A1, . . . , Am ∈ Sn×n are symmetric matrices and b ∈ Rm is a given vector (the
notation used here is standard in the semidefinite literature and will be defined at the end
of this section). Hence a semidefinite program is a minimization problem with its variables
being symmetric matrices rather than ordinary vectors.

Using some results from the corresponding duality theory, it is not difficult to see that,
under mild assumptions, the semidefinite program (1) has a solution if and only if the
following optimality conditions∑m

i=1 λiAi + S = C,
Ai •X = bi ∀i = 1, . . . ,m,

X � 0, S � 0, XS = 0
(2)

are solvable. Many of the standard and efficient interior-point methods for the solution
of semidefinite programs are based on this reformulation, see, e.g., [6, 2, 22, 20, 11, 14].
However, to the best of our knowledge, none of these interior-point methods is known to
be locally superlinearly or quadratically convergent if the solution of (2) does not satisfy
the strict complementarity condition.

Another approach is based on a reformulation of the optimality conditions (2) as a
nonsmooth system of equations. This idea leads to a couple of semismooth and smoothing
methods, see [3, 17, 9, 18, 10]. In order to prove local fast convergence for these methods,
however, strict complementarity is also needed among some further assumptions. One
exception is a result in [18], where local quadratic convergence of a nonsmooth Newton
method is established for semidefinite complementarity problems without assuming strict
complementarity, but using a positive definiteness assumption which is never satisfied
when this result gets specialized to semidefinite programs. In the revision of the paper
[18] (see [19]), the authors use an approach similar to ours and specialize their results to
a Newton-type method applied to semidefinite programs, but then they have to assume
strict complementarity in order to prove fast local convergence of their method.

The aim of this paper is now to have a closer look at the local convergence behaviour
of a nonsmooth Newton-type method for the solution of the optimality conditions (2). It
turns out that we can prove local quadratic convergence of this method under a linear
independence condition and a certain nondegeneracy condition which is slightly different
from a standard nondegeneracy condition used within the local analysis of some other
methods for solving semidefinite programs. However, in contrast to these other methods,
we do not need the strict complementarity condition.

The organization of the paper is as follows: In Section 2 we give a formal statement
of our nonsmooth Newton method and present some background material. This Newton-
type method has to solve at each iteration a linearized system. We present a reformulation
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of this system in the more standard matrix-vector form in Section 3. Based on this
reformulation, we present our local convergence analysis in Section 4. Some numerical
results illustrating the quadratic convergence behaviour are given in Section 5. We then
close with some final remarks in Section 6.

A few words regarding the notation: For two matrices A, B ∈ Rn×n, we set

A •B := tr(ABT ),

where tr(C) :=
∑n

i=1 cii denotes the trace of a matrix C ∈ Rn×n. It is easy to see
that • defines a scalar product on the set of matrices Rn×n. We further write Sn×n for
the set of symmetric matrices in Rn×n, while A � 0 and A � 0 indicate that A is a
symmetric positive semidefinite and symmetric positive definite matrix, respectively. If
A � 0, we denote by A1/2 the unique symmetric positive semidefinite square root of A.
Moreover, for any matrix A ∈ Sn×n we set |A| = (A2)1/2. Finally, if E � 0 is a given
symmetric positive definite matrix, the corresponding Lyapunov operator LE is defined
by LE[X] := EX + XE (X ∈ Sn×n). Then it is well-known (see [8]) that the resulting
Lyapunov equation LE[X] = H has a unique solution for each symmetric H ∈ Sn×n, and
we denote this solution by L−1

E [H].

2 Nonsmooth Newton Method

In order to formulate the optimality conditions (2) as a system of equations, let us intro-
duce the function

φ(X, S) := X + S − |X − S| (X, S ∈ Sn×n). (3)

The mapping φ is usually called the minimum function. Note that it is not differentiable
everywhere. Nevertheless, it has a number of interesting properties which we collect in
the following result.

Proposition 2.1 Let φ be defined by (3). Then the following statements hold for any two
matrices X, S ∈ Sn×n:

(a) φ satisfies the equivalence

φ(X, S) = 0⇐⇒ X � 0, S � 0, XS = 0. (4)

(b) If E := |X − S| is nonsingular, then φ is continuously differentiable (in the sense of
Fréchet) with

∇φ(X, S)(U, V ) = U + V − L−1
E

[
(X − S)(U − V ) + (U − V )(X − S)

]
.

(c) The matrix E = |X − S| =
(
(X − S)2

)1/2
is nonsingular (or, equivalently, positive

definite) if and only if the mapping (A, B) 7→ |A−B| is continuously differentiable
at (A, B) = (X, S).
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For a proof of part (a) we refer to [21, 9], part (b) may be found in [3, 9], and part (c)
follows from [17].

Part (a) may be used in order to reformulate the optimality conditions (2) as the
nonsmooth system of equations

Θ(X, λ, S) = 0, (5)

where
Θ : Sn×n × Rm × Sn×n → Sn×n × Rm × Sn×n

is defined by

Θ(X, λ, S) :=

 ∑m
i=1 λiAi + S − C

Ai •X − bi (i = 1, . . . ,m)
φ(X, S)

 .

A nonsmooth Newton method applied to the system (5) is an iterative method of the form

W k+1 := W k + ∆W k ∀k = 0, 1, 2, . . .

where we used the abbreviation

W k :=
(
Xk, λk, Sk

)
,

and where ∆W k is a solution of the linearized equation Hk∆W k = −Θ(W k) with Hk

being an element of the B-subdifferential of Θ in W k, i.e., Hk ∈ ∂BΘ(W k), where

∂BΘ(W ) :=
{
H
∣∣ ∃{W k} ⊂ DΘ : W k → W,∇Θ(W k)→ H

}
and where DΘ denotes the set of points W at which Θ is differentiable, cf. [15]. Note that
this set is always nonempty because Θ is locally Lipschitz. Moreover, we have ∂BΘ(W k) =
{∇Θ(W k)} whenever Θ is continuously differentiable at W k.

We formally state our method in the following algorithm.

Algorithm 2.2
(S.0) Choose W 0 := (X0, λ0, S0) ∈ Sn×n × Rm × Sn×n, ε ≥ 0, and set k := 0.

(S.1) If ‖Θ(W k)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂BΘ(W k) and find a solution ∆W k =
(
∆Xk, ∆λk, ∆Sk

)
of the lin-

earized system Hk∆W = −Θ(W k).

(S.3) Set W k+1 := W k + ∆W k, k ← k + 1, and go to (S.1).

We note that the solution ∆W k =
(
∆Xk, ∆λk, ∆Sk

)
of the linearized equation in (S.2)

automatically produces symmetric matrices ∆Xk and ∆Sk, see [3, 9]. – The main local
convergence result is as follows.

Theorem 2.3 Let W ∗ := (X∗, λ∗, S∗) be a solution of the optimality conditions (2) and
assume that all elements H∗ ∈ ∂BΘ(W ∗) are invertible. Then Algorithm 2.2 is locally
quadratically convergent.
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Proof. According to [17], the minimum function φ is strongly semismooth (see [16, 15]
for the definition and some properties of strongly semismooth mappings). Hence Θ is
strongly semismooth. The local quadratic convergence result therefore follows from a gen-
eral theorem in [15], see also the recent books [4, 5] for more details on this subject. �

In view of Theorem 2.3, the aim of this paper is to find suitable conditions under which
the elements of the B-subdifferential ∂BΘ(W ∗) are invertible. This will be done in Section
4 after some preliminary discussions in the following section.

3 Matrix-Vector-Formulation of Newton System

Throughout this section, we assume that the mapping Θ is continuously differentiable at
a current point (X, λ, S) ∈ Sn×n×Rm×Sn×n. According to Proposition 2.1 (b), (c), this
assumption is satisfied if and only if the matrix X −S is nonsingular. Later, in Section 4,
we will drop this assumption.

Since Θ is continuously differentiable at (X,λ, S), Newton’s method applied to Θ(X, λ, S) =
0 has to solve the linearized equation

∇Θ(X, λ, S)(∆X, ∆λ, ∆S) = −Θ(X, λ, S) (6)

at the current point. For our analysis in Section 4, it will be useful to write this linearized
system in the usual matrix-vector format. We therefore present such a formulation in this
section.

Since Θ is continuously differentiable at (X, λ, S), the minimum function φ is con-
tinuously differentiable at (X,S). In view of Proposition 2.1 (c), this means that the
matrix

E := |X − S| =
(
(X − S)2

)1/2
(7)

is positive definite. Consequently, the corresponding Lyapunov operator LE is invertible.
Defining the residuals

RC := C −
m∑

j=1

λjAj − S,

rb,i := bi − Ai •X (i = 1, . . . ,m),

rb :=
(
rb,1, . . . , rb,m

)T
,

the Newton system (6) can be rewritten as

m∑
j=1

∆λjAj + ∆S = RC , (8)

Ai •∆X = rb,i (i = 1, . . . ,m), (9)

∇φ(X, S)(∆X, ∆S) = −φ(X,S). (10)
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In order to reformulate this system in the usual matrix-vector format, we need to transfrom
matrices into vectors. For a general (not necessarily symmetric) matrix A ∈ Rn×n, this
can be done by using the mapping vec : Rn×n → Rn2

defined by

vec(A) :=
(
a11, a21, . . . , an1, a12, a22, . . . , an2, . . . , ann

)T ∈ Rn2

,

i.e., vec stacks the columns of A into a vector of length n2. For a symmetric matrix, we are
not interested in all entries of A. It suffices to consider the lower triangular part of A, and

the corresponding transformation can be done using the mapping svec : Sn×n → R
n(n+1)

2

defined by

svec(A) :=
(
a11,
√

2a21, . . . ,
√

2an1, a22,
√

2a32, . . . ,
√

2an2, . . . , ann

)T ∈ R
n(n+1)

2 .

The reason for the
√

2 factor in front of all nondiagonal elements is due to the fact that
this is consistent with the inner product, i.e.,

A •B = svec(A)T svec(B) ∀A, B ∈ Sn×n. (11)

Having introduced vec and svec, the next question is how an ordinary matrix product can
be expressed in terms of vec and svec. To this end, let us define the Kronecker product of
two (not necessarily symmetric) matrices G, K ∈ Rn×n by

G⊗K :=
[
gijK

]
∈ Rn2×n2

.

Then it can easily be verified that(
G⊗K

)
vec(H) = vec

(
KHGT

)
(H ∈ Rn×n).

Similarly, we define the symmetric Kronecker product by(
G⊗s K

)
svec(H) :=

1

2
svec

(
KHGT + GHKT

)
(H ∈ Sn×n). (12)

Some properties of the symmetric Kronecker product are summarized in the following
result. The proofs of these properties are elementary. In fact, statements (a), (b) and (c)
can be found in [2, 20], whereas part (d) is just a reformulation of statement (c).

Lemma 3.1 The symmetric Kronecker product ⊗s defined by (12) has the following prop-
erties:

(a) G⊗s K = K ⊗s G.

(b) If G and K are symmetric positive definite, then so is G⊗s K.

(c) If G, K are two commuting symmetric matrices with eigenvalues σ1, . . . , σn and
µ1, . . . , µn, respectively, and if q1, . . . , qn denotes a common set of orthonormal eigen-
vectors, then the n(n + 1)/2 eigenvalues of G⊗s K are given by

1

2

(
σiµj + µiσj

)
(1 ≤ j ≤ i ≤ n)

7



with the corresponding set of orthonormal eigenvectors vij (1 ≤ j ≤ i ≤ n) defined
by

vij :=

{
svec

(
qiq

T
i

)
, if i = j,

1√
2
svec

(
qiq

T
j + qjq

T
i

)
, if j < i.

(d) If G, K are two commuting symmetric matrices with simultaneous spectral decompo-
sitions G = QDGQT and K = QDKQT for some orthogonal matrix Q ∈ Rn×n and
diagonal matrices DG, DK ∈ Rn×n, then G⊗s K = (Q⊗s Q)(DG⊗s DK)(Q⊗s Q)T is
a spectral decomposition of G⊗s K (in particular, Q⊗s Q is an orthogonal matrix).

We now consider the Newton system (6), i.e., we consider the system (8)–(10). The first
two equations (8) and (9) may be reformulated in matrix-vector notation in exactly the
same way as described in [20], resulting in the two equations

AT∆λ + svec(∆S) = svec(RC) (13)

and
A svec(∆X) = rb, (14)

respectively, where

A :=
(
svec(A1), . . . , svec(Am)

)T ∈ Rm×n(n+1)
2 . (15)

Hence it remains to consider the third block (10). Using Proposition 2.1 (b) and the
definition of E from (7), equation (10) can be rewritten as

∆X + ∆S − L−1
E

[
(X − S)(∆X −∆S) + (∆X −∆S)(X − S)

]
= −φ(X, S), (16)

Applying the Lyapunov operator LE to both sides of (16) yields

LE[∆X] + LE[∆S]− (X − S)(∆X −∆S)− (∆X −∆S)(X − S) = −LE

[
φ(X, S)

]
.

Rearranging terms gives

LE−(X−S)[∆X] + LE+(X−S)[∆S] = −LE

[
φ(X, S)

]
.

Using the notation

AE := E − (X − S) and BE := E + (X − S), (17)

this equation may be rewritten as

LAE
[∆X] + LBE

[∆S] = −LE

[
φ(X, S)

]
. (18)

Applying 1
2
svec to both sides then gives

1

2
svec

(
LAE

[∆X]
)

+
1

2
svec

(
LBE

[∆S]
)

= −1

2
svec

(
LE

[
φ(X, S)

])
.
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Using the definition (12) of svec, we have the identity

1

2
svec

(
LA[H]

)
=

1

2
svec

(
AHI + IHA

)
=
(
I ⊗s A

)
svec(H),

for all symmetric matrices A, H ∈ Sn×n. Setting

E := I ⊗s AE and F := I ⊗s BE, (19)

we therefore get

E svec(∆X) + F svec(∆S) = −(I ⊗s E) svec
(
φ(X, S)

)
. (20)

Since E and I are both positive definite, it follows from Lemma 3.1 (b) that the matrix
(I ⊗s E) is also positive definite and therefore, in particular, nonsingular. Hence (20) can
be rewritten as

(I ⊗s E)−1E svec(∆X) + (I ⊗s E)−1F svec(∆S) = − svec
(
φ(X, S)

)
. (21)

Summarizing our discussion, we obtain the following result as a consequence of (13), (14),
and (21).

Theorem 3.2 Let
(
X, λ, S

)
be given such that X − S is nonsingular. Then the triple(

∆X, ∆λ, ∆S
)
∈ Sn×n × Rm × Sn×n satisfies the Newton system (6) if and only if the

vector
(
svec(∆X), ∆λ, svec(∆S)

)
satisfies the linear system of equations 0 AT I

A 0 0
(I ⊗s E)−1E 0 (I ⊗s E)−1F

 svec(∆X)
∆λ

svec(∆S)

 =

 svec(RC)
rb

− svec
(
φ(X, S)

)
 . (22)

Note that the linear system (22) looks very similar to the one obtained for interior-point
methods in [20], however, the reader should be careful because the matrices E and F have
a different meaning here.

4 Local Convergence Analysis

Now let (X∗, λ∗, S∗) be a solution of the optimality conditions (2). In order to motivate
our approach, we first assume that the following conditions hold; in particular, we assume
that strict complementarity holds at this solution.

Assumption 4.1 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2).

(A.1) (Linear independence)
The matrices A1, . . . , Am are linearly independent.
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(A.2) (Nondegeneracy)
The following implication holds for any triple (∆X, ∆λ, ∆S):∑m

i=1 ∆λiAi + ∆S = 0,
Ai •∆X = 0 (i = 1, . . . ,m),
X∗∆S + ∆XS∗ = 0

 =⇒ (∆X, ∆S) = (0, 0).

(A.3) (Strict complementarity)
X∗ + S∗ � 0.

These conditions are quite standard in order to prove local fast convergence of several
methods for the solution of semidefinite programs, see, for example, [2, 11, 3, 9]. We next
give some vector formulations of these conditions.

Lemma 4.2 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2). Then the
following statements hold:

(a) Assumption (A.1) is equivalent to the full rank of the matrix A from (15).

(b) Assumption (A.2) is equivalent to the following implication:

AT∆λ + svec(∆S) = 0,
A svec(∆X) = 0,(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

(c) Assumption (A.2) is equivalent to the following implication:

AT∆λ + svec(∆S) = 0,
A svec(∆X) = 0,
V ∗(I ⊗s DS∗

)
(V ∗)T svec(∆X) + . . .

V ∗(I ⊗s DX∗
)
(V ∗)T svec(∆S) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

Here, X∗ = QDX∗QT and S∗ = QDS∗Q
T denotes the simultaneous spectral decom-

position of the two commuting matrics X∗, S∗, and V ∗ := Q⊗s Q.

Proof. (a) This follows directly from the definition of the matrix A.

(b) By applying the svec operator, we obviously have

m∑
i=1

∆λiAi + ∆S = 0⇐⇒ AT∆λ + svec(∆S) = 0

and
Ai •∆X = 0 (i = 1, . . . ,m)⇐⇒ A svec(∆X) = 0.
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Hence it remains to show the equivalence

X∗∆S + ∆XS∗ = 0⇐⇒
(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0. (23)

To this end, first assume that X∗∆S + ∆XS∗ = 0. By taking the transpose and recalling
that ∆S, ∆X are automatically symmetric, we obtain ∆SX∗ + S∗∆X = 0. Adding these
two equations, applying 1

2
svec to the resulting equation and using (12) gives the right-hand

side formulation in (23). Conversely, assume that(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0

holds. In view of (12), this is equivalent to

X∗∆S + ∆SX∗ + S∗∆X + ∆XS∗ = 0.

Proceeding as in the proof of [12, Lemma 6.2] (in this reference, strict complementarity is
assumed, but it is easy to see that this assumption can be avoided here), it follows that
X∗∆S + ∆XS∗ = 0, so that (23) holds.

(c) This statement follows immediately from part (b) by applying Lemma 3.1 (d). �

Part (b) of Lemma 4.2 will be used in our subsequent nonsingularity result, whereas the
reformulation given in statement (c) is presented here in order to have a better comparison
between the nondegeneracy condition from (A.2) and the one to be introduced later.

We next show how our previous results may be used in order to prove the nonsingularity
of the matrix from Theorem 3.2 at a strictly complementary solution.

Theorem 4.3 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2) satisfying
Assumptions (A.1)–(A.3). Furthermore define the matrices (cf. (17), (19))

E∗ := |X∗ − S∗| ,
E∗ := I ⊗s AE∗ with AE∗ := E∗ − (X∗ − S∗),

F∗ := I ⊗s BE∗ with BE∗ := E∗ + (X∗ − S∗).

Then (I ⊗s E∗)−1 exists, and the matrix 0 AT I
A 0 0

(I ⊗s E∗)−1E∗ 0 (I ⊗s E∗)−1F∗


(cf. (22)) is nonsingular.

Proof. Since (A.3) holds, the matrix E∗ is positive definite. Hence I ⊗s E∗ is also
positive definite by Lemma 3.1 (b). Therefore, the inverse (I ⊗s E∗)−1 exists, and we are
done if we are able to show that the matrix 0 AT I

A 0 0
E∗ 0 F∗


11



is nonsingular. To this end, let
(
svec(∆X), ∆λ, svec(∆S)

)
be a given triple with 0 AT I

A 0 0
E∗ 0 F∗

 svec(∆X)
∆λ

svec(∆S)

 =

 0
0
0

 .

Blockwise this becomes

AT∆λ + svec(∆S) = 0,
A svec(∆X) = 0,

E∗ svec(∆X) + F∗ svec(∆S) = 0.
(24)

Since X∗S∗ = 0, the two matrices X∗, S∗ commute. Hence there is an orthogonal matrix
Q∗ ∈ Rn×n and two diagonal matrices DX∗ , DS∗ � 0 such that

X∗ = Q∗DX∗(Q∗)T and S∗ = Q∗DS∗(Q
∗)T , (25)

cf. [7]. This implies
X∗S∗ = 0⇐⇒ DX∗DS∗ = 0.

We therefore get

E∗ = |X∗ − S∗|
=

(
(X∗ − S∗)2

)1/2

= Q
(
(DX∗ −DS∗)

2
)1/2

QT

= Q
(
DX∗ + DS∗

)
QT

= X∗ + S∗.

This yields

AE∗ = E∗ − (X∗ − S∗) = 2S∗ and BE∗ = E∗ + (X∗ − S∗) = 2X∗.

Consequently, we obtain

E∗ = I ⊗s AE∗ = 2
(
I ⊗s S∗

)
and F∗ = I ⊗s BE∗ = 2

(
I ⊗s X∗).

Hence the last line from (24) may be rewritten as(
I ⊗s X∗) svec(∆S) +

(
I ⊗s S∗

)
svec(∆X) = 0.

Together with the first two lines from (24), it now follows from Assumption (A.2) and
Lemma 4.2 (b) that svec(∆X) = 0 and svec(∆S) = 0. This, in turn, implies AT∆λ = 0
by (24). Since the columns of AT are linearly independent by Lemma 4.2 (a), we finally
get ∆λ = 0. �
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The previous result may also be obtained in a different way from [3, 9], however, the
formulation given here is more convenient for our subsequent generalization.

If (A.3) does not hold at W ∗ = (X∗, λ∗, S∗), then the matrix E∗ is not positive definite
any longer. Hence there is no reason for I ⊗ E∗ to be nonsingular. Nevertheless, it is
possible to generalize the previous discussion. To this end, we recall that any element
H∗ ∈ ∂BΘ(W ∗) may be obtained by taking a sequence W k := (Xk, λk, Sk) converging to
W ∗ such that Θ is differentiable at each W k and such that H∗ = limk→∞∇Θ(W k). In
view of Proposition 2.1 (b), (c), however, Θ is continuously differentiable at W k if and
only if Xk−Sk is nonsingular. But this is precisely the assumption we used in our analysis
of Section 3. Hence, using the corresponding notation (cf. (7), (17), (19))

Ek :=
∣∣Xk − Sk

∣∣ ,
Ek := I ⊗s AEk with AEk := Ek − (Xk − Sk),

Fk := I ⊗s BEk with BEk := Ek + (Xk − Sk)

it follows from Theorem 3.2 that the usual matrix formulation of the Jacobian ∇Θ(W k)
is given by  0 AT I

A 0 0
(I ⊗s Ek)−1Ek 0 (I ⊗s Ek)−1Fk

 . (26)

We have to find the possible limiting elements of a sequence of matrices of this form. We
therefore have to take a closer look at the last block row, i.e., at the limiting behaviour of
the two matrices

(I ⊗s Ek)−1Ek = (I ⊗s Ek)−1(I ⊗s AEk)

and
(I ⊗s Ek)−1Fk = (I ⊗s Ek)−1(I ⊗s BEk).

To this end, let

Xk − Sk = QkΠk(Qk)T with Πk = diag(πk
1 , . . . , π

k
n)

be a spectral decomposition of the symmetric matrix Xk − Sk, and let∣∣Πk
∣∣ = diag

( ∣∣πk
1

∣∣ , . . . , ∣∣πk
n

∣∣ ).
Then it is not difficult to see that

Ek = Qk
∣∣Πk
∣∣ (Qk)T ,

AEk = Qk
( ∣∣Πk

∣∣− Πk)(Qk)T ,

BEk = Qk
( ∣∣Πk

∣∣+ Πk)(Qk)T .

Let qk
i be the ith column of Qk and define the orthogonal matrix V k by

V k :=
(
. . . , vk

ij, . . .
)
1≤j≤i≤n

13



with the columns vk
ij ∈ Rn(n+1)/2 given by

vk
ij :=

{
svec

(
qk
i (qk

i )T
)
, if i = j,

1√
2
svec

(
qk
i (qk

j )T + qk
j (qk

i )T
)
, if j < i,

Then Lemma 3.1 (c) yields

I ⊗s Ek = V k diag

(
. . . ,

1

2

( ∣∣πk
i

∣∣+ ∣∣πk
j

∣∣ ), . . .) (V k)T ,

I ⊗s AEk = V k diag

(
. . . ,

1

2

( ∣∣πk
i

∣∣+ ∣∣πk
j

∣∣− πk
i − πk

j

)
, . . .

)
(V k)T ,

I ⊗s BEk = V k diag

(
. . . ,

1

2

( ∣∣πk
i

∣∣+ ∣∣πk
j

∣∣+ πk
i + πk

j

)
, . . .

)
(V k)T .

Note that all diagonal elements πk
i of Πk are nonzero since Ek was assumed to be nonsin-

gular, so that
∣∣πk

i

∣∣+ ∣∣πk
j

∣∣ 6= 0 for all 1 ≤ j ≤ i ≤ n. We therefore obtain

(I ⊗s Ek)−1(I ⊗s AEk) = V k diag

(
. . . ,

∣∣πk
i

∣∣+ ∣∣πk
j

∣∣− πk
i − πk

j∣∣πk
i

∣∣+ ∣∣πk
j

∣∣ , . . .

)
(V k)T

=: V kΣk
−(V k)T ,

(I ⊗s Ek)−1(I ⊗s BEk) = V k diag

(
. . . ,

∣∣πk
i

∣∣+ ∣∣πk
j

∣∣+ πk
i + πk

j∣∣πk
i

∣∣+ ∣∣πk
j

∣∣ , . . .

)
(V k)T

=: V kΣk
+(V k)T .

Using the above identities we can rewrite the coefficient matrix from (26) as 0 AT I
A 0 0

V kΣk
−(V k)T 0 V kΣk

+(V k)T

 .

Subsequencing if neccessary, we may assume without loss of generality that the orthogonal
(and therefore bounded) matrix sequence {Qk} (and therefore {Πk}) converge with

Q∗ := lim
k→∞

Qk and Π∗ := lim
k→∞

Πk.

Clearly, Q∗ is again an orthogonal matrix such that the identity X∗ − S∗ = Q∗Π∗(Q∗)T

holds, i.e., Q∗, Π∗ correspond to a spectral decomposition of the symmetric matrix X∗−S∗.
We also note that the corresponding subsequence of V k converges to

V ∗ :=
(
. . . , v∗ij, . . .

)
1≤j≤i≤n

, (27)

where

v∗ij :=

{
svec

(
q∗i (q

∗
i )

T
)
, if i = j,

1√
2
svec

(
q∗i (q

∗
j )

T + q∗j (q
∗
i )

T
)
, if j < i,

(28)

14



and q∗i denotes the ith column of Q∗, cf. Lemma 3.1 (c). Furthermore, it is not difficult to
see that all diagonal elements of the matrices Σk

− and Σk
+ belong to the interval [0, 2] and

that Σk
− + Σk

+ = 2I. In particular, we may also assume without loss of generality that

Σk
− → Σ∗− and Σk

+ → Σ∗+

for some diagonal matrices Σ∗−, Σ∗+. Then we have(
I ⊗s Ek

)−1(
I ⊗s AEk

)
→ V ∗Σ∗−(V ∗)T ,(

I ⊗s Ek
)−1(

I ⊗s BEk

)
→ V ∗Σ∗+(V ∗)T .

(29)

In order to see the precise structure of the diagonal matrices Σ∗− and Σ∗+, let us write
Π∗ = diag

(
π∗1, . . . , π

∗
n

)
and define the index sets

α :=
{
i
∣∣ π∗i > 0

}
=
{
i
∣∣λi(X

∗) > 0, λi(S
∗) = 0

}
,

β :=
{
i
∣∣ π∗i = 0

}
=
{
i
∣∣λi(X

∗) = 0, λi(S
∗) = 0

}
,

γ :=
{
i
∣∣ π∗i < 0

}
=
{
i
∣∣λi(X

∗) = 0, λi(S
∗) > 0

}
,

(30)

where λi(X
∗) and λi(S

∗) denote the eigenvalues of X∗ and S∗, respectively. Then an easy
calculation shows that∣∣πk

i

∣∣+ ∣∣πk
j

∣∣− πk
i − πk

j∣∣πk
i

∣∣+ ∣∣πk
j

∣∣ → σ−ij with σ−ij


> 0, if i ∈ γ or j ∈ γ,
∈ [0, 2], if i ∈ β and j ∈ β,
0, otherwise

and, similarly,∣∣πk
i

∣∣+ ∣∣πk
j

∣∣+ πk
i + πk

j∣∣πk
i

∣∣+ ∣∣πk
j

∣∣ → σ+
ij with σ+

ij


> 0, if i ∈ α or j ∈ α,
∈ [0, 2], if i ∈ β and j ∈ β,
0, otherwise.

In particular, we have

σ−ij = 0 if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α),

σ+
ij = 0 if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ).

Further note that the limiting elements are not uniquely defined for all index pairs (i, j) ∈
β × β, but that at least one of the elements σ−ij , σ

+
ij is always positive.

Summarizing this discussion, we get the following result.

Theorem 4.4 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2), let X∗−S∗ =
Q∗Π∗(Q∗)T be a spectral decomposition of X∗−S∗, and let the index sets α, β, γ be defined
as in (30). Then every element from the B-subdifferential ∂BΘ(X∗, λ∗, S∗) can, in matrix-
vector notation, be written as 0 AT I

A 0 0
V ∗Σ∗−(V ∗)T 0 V ∗Σ∗+(V ∗)T


15



with V ∗ being the matrix from (27), (28) and with diagonal matrices

Σ∗− = diag
(
. . . , σ−ij , . . .

)
1≤j≤i≤n

,

Σ∗+ = diag
(
. . . , σ+

ij , . . .
)
1≤j≤i≤n

having the following properties:

Σ∗− � 0, Σ∗+ � 0, Σ∗− + Σ∗+ = 2I,

σ−ij = 0 if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α),

σ+
ij = 0 if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ).

Motivated by these considerations, we next state a slightly modified nondegeneracy con-
dition.

Assumption 4.5 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2), X∗−S∗ =
Q∗Π∗(Q∗)T be a spectral decomposition of X∗ − S∗, α, β, γ the index sets from (30), and
define the corresponding matrix V ∗ as in (27), (28).

(A.4) Given diagonal matrices

Σ− = diag
(
. . . , σ−ij , . . .

)
1≤j≤i≤n

,

Σ+ = diag
(
. . . , σ+

ij , . . .
)
1≤j≤i≤n

such that
Σ− � 0, Σ+ � 0, Σ− + Σ+ � 0,

σ−ij = 0 if (i, j) ∈ (α× α) ∪ (α× β) ∪ (β × α),

σ+
ij = 0 if (i, j) ∈ (β × γ) ∪ (γ × β) ∪ (γ × γ),

the following implication holds for any triple
(
svec(∆X), ∆λ, svec(∆S)

)
:

AT∆λ + svec(∆S) = 0
A svec(∆X) = 0,
V ∗Σ−(V ∗)T svec(∆X) + V ∗Σ+(V ∗)T svec(∆S) = 0

 =⇒
{

svec(∆X) = 0,
svec(∆S) = 0.

In order to see the difference between our Assumption (A.4) and the nondegeneracy con-
dition from Assumption (A.2), we first note that the precise value of the diagonal matrices
Σ− and Σ+ from Assumption (A.4) are unimportant. The only important thing is whether
a diagonal element is zero or positive. Taking this into account and using Lemma 4.2 (c),
it follows that Assumption (A.2) corresponds to the case where Σ− = I ⊗s DS∗ and
Σ+ = I ⊗s DX∗ , where we used the notation from Lemma 4.2. However, if the index set β
is nonempty, it is not difficult to see that the assumption Σ−+Σ+ � 0 does not hold in this
case for all diagonal elements such that (i, j) ∈ β×β. This is the main difference between
our nondegeneracy condition and the one from Assumption (A.2). This difference is also
the main reason why we are able to prove local quadratic convergence without assuming
strict complementarity. This is the main consequence of the following result.
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Theorem 4.6 Let W ∗ = (X∗, λ∗, S∗) be a solution of the optimality conditions (2) satis-
fying (A.1) and (A.4). Then all elements H∗ ∈ ∂BΘ(W ∗) are invertible.

Proof. In view of our construction, each element H∗ ∈ ∂BΘ(W ∗) has, in the usual
matrix representation, the form of a matrix as given in Theorem 4.4. Taking into account
that the two diagonal matrices Σ∗− and Σ∗+ from Theorem 4.4 satisfy the conditions of
Assumption (A.4), we can now follow the technique of proof from Theorem 4.3 in order
to see that this matrix is indeed nonsingular under (A.1) and (A.4). �

As a direct consequence of Theorems 2.3 and 4.6, we obtain the following result.

Theorem 4.7 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2) satisfying
(A.1) and (A.4). Then Algorithm 2.2 is locally quadratically convergent.

The next result also follows from Theorem 4.6 together with a result from [15].

Corollary 4.8 Let (X∗, λ∗, S∗) be a solution of the optimality conditions (2) satisfying
(A.1) and (A.4). Then (X∗, λ∗, S∗) is the unique solution of (2).

5 Illustrative Examples

In this section, we illustrate our theory developed in the previous section by using two
examples. The first example is taken from [1] and contains a semidefinite program with
a unique solution not satisfying strict complementarity, but where our nondegeneracy
condition from Assumption (A.4) holds.

Example 5.1 Let n = 3, m = 3 with b = (1, 0, 0)T and

C =

0 0 0
0 0 0
0 0 1

 , A1 =

1 0 0
0 0 0
0 0 0

 , A2 =

0 0 1
0 1 0
1 0 0

 , A3 =

0 1 0
1 0 0
0 0 1

 .

Then Assumption (A.1) is obviously satisfied. Moreover, the corresponding semidefinite
program has the unique solution

X∗ = diag(1, 0, 0), λ∗ = (0, 0, 0)T , S∗ = diag(0, 0, 1)

which does not satisfy the strict complementarity condition from (A.3). Moreover, it is not
difficult to see that Assumption (A.2) is also violated. We now want to verify, however,
that Assumption (A.4) holds. To this end, let

X∗ − S∗ =

1 0 0
0 0 0
0 0 −1

 = Q∗Π∗(Q∗)T with Q∗ := I ∈ R3×3

17



a spectral decomposition of X∗ − S∗. Then

V ∗ =
(
v∗11, v

∗
21, v

∗
31, v

∗
22, v

∗
32, v

∗
33

)
= I ∈ R6×6.

Let Σ−, Σ+ be two diagonal matrices as described in Assumption (A.4). Noting that the
index sets from (30) are given by α = {1}, β = {2}, γ = {3}, it follows that

Σ− = diag
(
0, 0, σ−31, σ

−
22, σ

−
32, σ

−
33

)
,

Σ+ = diag
(
σ+

11, σ
+
21, σ

+
31, σ

+
22, 0, 0

) (31)

for certain numbers satisfying

σ−31, σ
−
32, σ

−
33 > 0,

σ+
11, σ

+
21, σ

+
31 > 0,

σ−22, σ
+
22 ≥ 0, σ−22 + σ+

22 > 0.
(32)

Now let ∆X, ∆S ∈ Sn×n and ∆λ ∈ Rm satisfy the equations

AT∆λ + svec(∆S) = 0, A svec(∆X) = 0,

V ∗Σ−(V ∗)T svec(∆X) + V ∗Σ+(V ∗)T svec(∆S) = 0,
(33)

where

A =

1 0 0 0 0 0

0 0
√

2 1 0 0

0
√

2 0 0 0 1

 ,

cf. (15). The system of equations (33) is equivalent to

∆λ1 + ∆S11 = 0, ∆λ3 + ∆S21 = 0,

∆λ2 + ∆S31 = 0, ∆λ2 + ∆S22 = 0,

∆S32 = 0, ∆λ3 + ∆S33 = 0,

∆X11 = 0, 2∆X31 + ∆X22 = 0,

2∆X21 + ∆X33 = 0, σ+
11∆S11 = 0,

σ+
21∆S21 = 0, σ−31∆X31 + σ+

31∆S31 = 0,

σ−22∆X22 + σ+
22∆S22 = 0, σ−32∆X32 = 0,

σ−33∆X33 = 0.

Depending on whether σ−22 > 0 or σ+
22 > 0, it is now an easy exercise to verify that these

conditions imply ∆X = 0 and ∆S = 0, so that Assumptions (A.4) holds.

In order to see that we really get fast local convergence, we applied the Newton-type
method from [9] (which, basically, is a globalized version of Algorithm 2.2) to Example
5.1. The corresponding numerical results are given in Table 1. The columns of that table
contain the absolute value of the relative gap between primal and dual objective functions,
the norm of Θ at the current iterate W k = (Xk, λk, Sk) and the distance of W k to the
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k relative gap ‖Θ(W k)‖ ‖W k −W ∗‖
0 0.000000e+00 8.833707e-01 9.106836e-01
1 5.377397e-02 1.779061e-01 1.965437e-01
2 3.438035e-05 5.372091e-03 5.556943e-03
3 3.270881e-08 7.046664e-05 1.814441e-04
4 2.105543e-09 4.864869e-06 1.260400e-05
5 1.043839e-11 2.860393e-07 7.432387e-07

Table 1: Numerical results for Example 5.1

solution W ∗ = (X∗, λ∗, S∗). (Note that the relative gap is zero at the starting point, but
not optimal since feasibility is not satisfied.)

The second example is taken from [11]. Also this example has a unique solution not
satisfying strict complementarity. Here, however, our Assumption (A.4) does not hold.

Example 5.2 Let n = 3, m = 2 with b = (−1, 0)T and

C =

0 0 0
0 0 0
0 0 1

 , A1 =

−1 0 0
0 0 0
0 0 0

 , A2 =

 0 0 0.5
0 −0.5 0

0.5 0 −1

 .

Assumption (A.1) obviously holds for this example. Moreover, the corresponding semidef-
inite program has the unique solution

X∗ = diag(1, 0, 0), λ∗ = (0, 0)T , S∗ = diag(0, 0, 1),

so that strict complementarity is violated. Similar to the previous example, we get V ∗ =
I, α = {1}, β = {2}, γ = {3}. Hence, if Σ−, Σ+ denote two matrices as described in
Assumption (A.4), they satisfy (31), (32). Now let

(
∆X, ∆λ, ∆S

)
any triple such that

(33) holds with

A =

(
−1 0 0 0 0 0

0 0 1/
√

2 −0.5 0 −1

)
.

Componentwise, this may be rewritten as

−∆λ1 + ∆S11 = 0, ∆S21 = 0,

1√
2
∆λ2 +

√
2∆S31 = 0, −1

2
∆λ2 + ∆S22 = 0,

∆S32 = 0, −∆λ2 + ∆S33 = 0,

−∆X11 = 0, ∆X31 −
1

2
∆X22 −∆X33 = 0,

σ+
11∆S11 = 0, σ+

21∆S21 = 0,

σ−31∆X31 + σ+
31∆S31 = 0, σ−22∆X22 + σ+

22∆S22 = 0,

σ−32∆X32 = 0, σ−33∆X33 = 0
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with certain elements σ−ij , σ
+
ij satisfying (32). This is a homogenous linear system with

14 equations in 14 unknowns. Since the two equations ∆S21 = 0 and σ+
21∆S21 = 0 are

linearly dependent, this system has a nontrivial solution. Hence Assumption (A.4) does
not hold in this case.

Despite the fact that Example 5.2 does not satisfy Assumption (A.4), it turns out that
the Newton-type method from [9] applied to this example is still locally fast convergent.
This is illustrated in Table 2. Hence, although Assumption (A.4) is a sufficient condition
for local quadratic convergence, this indicates that it might not be a necessary condition.

k relative gap ‖Θ(W k)‖ ‖W k −W ∗‖
0 0.000000e+00 8.002975e-01 1.327358e+00
1 1.370620e-01 3.130563e-01 6.265862e-01
2 1.772473e-03 7.147265e-03 2.687633e-02
3 2.393343e-05 4.128274e-04 1.526783e-03
4 7.823405e-08 3.397737e-05 1.207830e-04
5 5.080087e-10 2.105440e-06 7.471116e-06

Table 2: Numerical results for Example 5.2

Note that the previous two examples use n = 3 in order to get a semidefinite program
with a unique solution not satisfying strict complementarity. The question is whether it is
possible to illustrate our theory using a smaller dimensional example with n = 2. Accord-
ing to our following result, this is not possible, at least not under the Slater constraint
qualification which states that there is a triple (X̂, λ̂, Ŝ) such that the conditions

m∑
i=1

λ̂iAi + Ŝ = C, Ai • X̂ = bi (i = 1, . . . ,m), X̂ � 0, Ŝ � 0.

are satisfied.

Lemma 5.3 If n = 2 and the Slater constraint qualification holds for (2), then the opti-
mality conditions (2) always have a strictly complementary solution.

Proof. First note that (2) always has a solution under the Slater condition. Therefore
we can take an arbitrary solution (X∗, λ∗, S∗). Assume this solution does not satisfy the
strict complementarity condition. Then it is easy to see that X∗ = 0 or S∗ = 0. Now
let (X̂, λ̂, Ŝ) be a triple satisfying the Slater constraint qualification. If X∗ = 0, it then
follows that (X∗, λ̂, Ŝ) is a strictly complementary solution of (2). On the other hand, if
S∗ = 0, it follows that (X̂, λ∗, S∗) is a solution of (2) satisfying strict complementarity.
Hence, in either case, we can find a strictly complementarity solution. �
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6 Final Remarks

We have shown that strict complementarity is not needed for a Newton-type method to be
locally quadratically convergent when applied to a suitable reformulation of semidefinite
programs. In order to obtain such a result, however, we had to introduce a modified non-
degeneracy condition. This nondegeneracy condition was pointed out to be different from
the one stated in Assumption (A.2), which was taken from Kojima, Shida and Shindoh
[11]. On the other hand, Alizadeh, Haeberly and Overton [2] used another nondegeneracy
condition which is known to be equivalent to the one from [11] if strict complementarity
holds but is different without strict complementarity. Unfortunately, we do not know in
how far the nondegeneracy condition from [2] is related to our Assumption (A.4).
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