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Abstract

We introduce a projection-type algorithm for solving monotone variational
inequality problems in real Hilbert spaces. We prove that the whole sequence
of iterates converges strongly to a solution of the variational inequality. The
method uses only two projections onto the feasible set in each iteration in
contrast to other strongly convergent algorithms which either require plenty
of projections within a stepsize rule or have to compute projections on pos-
sibly more complicated sets. Some numerical results illustrate the practical
behaviour of our method.

1 Introduction

In this paper, we consider the following variational inequality (for short, VI(A,C)):
find x ∈ C such that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (1)

Let SOL denote the solution set of VI(A,C). It is well-known that x solves the
VI(A,C) if and only if x solves the fixed point equation

x = PC(x− γAx)

or, equivalently, x solves the residual equation

rγ(x) = 0, where rγ(x) := x− PC(x− γAx) (2)

for an arbitrary positive constant γ, see [16] for details. Therefore, the knowledge
of fixed-point algorithms (see, for example, [15, 36]) can be used to solve (1).
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Variational inequality theory is an important tool in studying a wide class of
obstacle, unilateral, and equilibrium problems arising in several branches of pure
and applied sciences in a unified and general framework (see, for example, [2, 3, 16,
23, 24]). This dynamic field is experiencing an explosive growth in both theory and
applications. Several numerical methods have been developed for solving variational
inequalities and related optimization problems, see the monographs [15, 24] and
references therein.

The extragradient method, introduced in 1976 by Korpelevich [25], which is given
by 

x1 ∈ C,
yn = PC(xn − γAxn)
xn+1 = PC(xn − γAyn), n ≥ 1,

(3)

where γ ∈ (0, 1
L

) for a finite-dimensional space, provides an iterative process converg-
ing to a solution of VI(A,C) by only assuming that C ⊆ Rn is nonempty, closed, and
convex, and A : C → Rn is monotone and L-Lipschitz continuous. The extragra-
dient method was further extended to infinite-dimensional spaces by many authors;
see, for instance, [1, 10, 12, 18, 20, 21, 35, 38, 40]. In the setting of Hilbert spaces,
this method is only known to be weakly convergent. Note that the extragradient
method needs two projections onto the set C and two evaluations of A per iteration.

A crucial feature regarding the design of numerical methods related to the ex-
tragradient method is to minimize the number of evaluations of PC per iteration.
So the extragradient method needs to be improved in situations, where a projection
onto C is hard to evaluate and therefore computationally expensive. An attempt
in this direction was initiated by Censor et al. [13], who modified Korpelevich’s
method (3) by replacing the second projection onto the closed and convex subset
C with the one onto a subgradient half-space. Their method, which therefore uses
only one projection onto C, is called the subgradient extragradient method. This
subgradient extragradient method is shown to be weakly convergent to a solution of
the variational inequality VI(A,C). Using only a single projection onto C, Maingé
and Gobinddass [30] (see also Maingé [29]) also obtained weak convergence results
for solving the VI(A,C) in real Hilbert spaces with a monotone and Lipschitz con-
tinuous mapping A, by means of a projected reflected gradient-type method [32]
and inertial terms. In fact, in certain situations it is also possible to get rid of any
projections onto C by replacing this projection by a (finite) sequence of projections
onto suitable halfspaces for which explicit formulas exist, cf. Bello Cruz and Iusem
[6]. Several alternatives to the extragradient method or its modifications have also
been proposed in the literature by several authors, see, for example, [28, 33, 37, 40].

Hence, the situation is very comfortable if one aims to obtain a weakly conver-
gent projection-type method for (monotone) variational inequalities. Unfortunately,
in an infinite-dimensional setting, weak convergence of an iterative scheme is an un-
satisfactory property. Typically, one is looking for an algorithm that generates a
strongly convergent sequence. Unfortunately, strongly convergent projection-type
methods for (monotone) variational inequalities are still rare and usually require
stronger assumptions and a higher computational overhead per iteration as their
weakly convergent counterparts.
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An early attempt is due to Noor [26], where four projections onto C and a cou-
ple of function evaluations are needed per iteration in order to obtain a strongly
convergent iteration sequence. To the best of our knowledge, Censor et al. [12] were
the first to prove strong convergence for monotone and Lipschitz continuous map-
pings A using essentially only one projection onto C. Under the same assumptions,
Kraikaew and Saejung [27] obtained a strong convergence result using a combina-
tion of a Halpern-type iterative scheme and the subgradient extragradient method.
Recently, also Malitsky and Semenov [34] prove strong convergence of a suitable
projection-type method using the method of Haugazeau when A is Lipschitz contin-
uous and monotone. Similar to [12], also [27, 34] require mainly a single projection
onto the feasible set C at each iteration.

All these papers assume A to be Lipschitz continuous, and the Lipschitz constant
is typically assumed to be known and defines, at least implicitly, a suitable stepsize
within the algorithm. Apart from the fact that many operators A are not Lipschitz
continuous, it is usually unrealistic to have a good estimate of such a Lipschitz
constant; moreover, the stepsize defined by this Lipschitz constant is often very
small and deteriorates the convergence rate. In practice, larger stepsizes can often
be used and yield better numerical results.

The only paper which we are currently aware of and which proves strong con-
vergence of a projection-type method for monotone variational inequalities without
assuming A to be Lipschitzian is due to Bello Cruz and Iusem [5]. They include
a stepsize procedure and require two projections per iteration, one onto C and the
second one onto a more complicated set which also changes from iteration to itera-
tion. The latter is undesirable for problems where projections onto C itself can be
computed in a relatively efficient way.

Our aim in this paper is therefore to prove strong convergence of a double pro-
jection method for monotone variational inequality problems in a real Hilbert space
which, at each iteration, needs only two projections onto C itself. It involves a
stepsize rule which might need some evaluations of A in the inner iteration, but no
additional projections, in contrast to some other exsiting stepsize rules like those
from [14, 22, 40].

Note that, in the finite-dimensional case, many of the extragradient-like schemes
actually work for the larger class of pseudomonotone mappings A. The technique of
proof is usually almost identical as the one for monotone problems. In the infinite-
dimensional setting, however, it seems to be much more difficult to generalize ex-
isting methods to pseudomonotone mappings. Two recent contributions in this di-
rection can be found in [11, 41], but the authors require additional and very strong
assumptions regarding the operator A. We comment on this in some more detail at
the end of our convergence analysis.

The paper is organized as follows: We first recall some basic definitions and
results in Section 2. Some discussions about our projection-type method used in
this paper are given in Section 3. The strong convergence of our double projection
algorithm is then investigated in Section 4. Some numerical experiments can be
found in Section 5. We conclude with some final remarks in Section 6.
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2 Preliminaries

This section contains some definitions and basic results that will be used in our
subsequent analysis. The letter H always denotes a real Hilbert space.

We first state the formal definition of some classes of functions that play an
essential role in our analysis.

Definition 2.1. Let X ⊆ H be a nonempty subset. Then a mapping A : X → H is
called

(a) monotone on X if 〈Ax− Ay, x− y〉 ≥ 0 for all x, y ∈ X;

(b) pseudomonotone on X if, for all x, y ∈ X, 〈Ax, y−x〉 ≥ 0⇒ 〈Ay, y−x〉 ≥ 0;

(c) Lipschitz continuous on X if there exists a constant L > 0 such that ‖Ax −
Ay‖ ≤ L‖x− y‖ for all x, y ∈ X.

We next recall some properties of the projection, cf. [4] for more details. To this
end, let C ⊆ H be a nonempty, closed, and convex subset of a real Hilbert space H.
For any point u ∈ H, there exists a unique point PCu ∈ C such that

‖u− PCu‖ ≤ ‖u− y‖ ∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 ∀x, y ∈ H. (4)

Furthermore, PCx is characterized by the properties

PCx ∈ C and 〈x− PCx, PCx− y〉 ≥ 0 ∀y ∈ C. (5)

This characterization implies that

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y − PCx‖2 ∀x ∈ H,∀y ∈ C. (6)

The following elementary lemma will be used in our convergence analysis.

Lemma 2.2. The following statements hold in any real Hilbert space H:

(a) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2 for all x, y ∈ H;

(b) 2〈x− y, x− z〉 = ‖x− y‖2 + ‖x− z‖2 − ‖y − z‖2 for all x, y, z ∈ H.

We next recall some existing results from the literature to facilitate our proof of
strong convergence. The first of these results is taken from [31, Lem. 4.3]. Note that
the sequence {rn} occuring in this result is assumed to be bounded in the original
reference [31], but that the proof goes through under the weaker assumption where
the real sequence {rn} is only bounded from above. For the sake of completeness,
we provide a complete proof of this slightly stronger result, since this variant will
actually be exploited in our main convergence theorem.
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Lemma 2.3. Let {an} be a sequence of non-negative numbers such that

an+1 ≤ (1− γn)an + γnrn, (7)

where {rn} is a sequence of real numbers bounded from above and {γn} ⊂ [0, 1]
satisfies

∑
γn =∞. Then it holds that lim sup

n→∞
an ≤ lim sup

n→∞
rn.

Proof. Since {rn} is bounded from above, there exists M ∈ R such that rn ≤
M, ∀n ≥ 1. Using (7), we get an+1 ≤ (1− γn)an + (1− (1− γn))M . This implies
a2 ≤ (1− γ1)a1 + (1− (1− γ1))M , from which we obtain

a3 ≤ (1− γ2)a2 + (1− (1− γ2))M

≤ (1− γ2)
(

(1− γ1)a1 + (1− (1− γ1))M
)

+ (1− (1− γ2))M

= (1− γ1)(1− γ2)a1 +
(

1− (1− γ1)(1− γ2)
)
M.

Using induction, we get for n ≥ 2,

an ≤
n−1∏
k=1

(1− γk)a1 +
(

1−
n−1∏
k=1

(1− γk)
)
M. (8)

Since
∑
γn = ∞, it follows that

∏
(1 − γn) converges to zero. Hence the sequence

on the right-hand side of (8) converges to M . Hence, taking the limit superior on
both sides of (8), we obtain lim supn→∞ an ≤M . Note that this holds for any upper
bound M of the sequence {rn}. In particular, if we define β := lim supn→∞ rn, we
can find, for any ε > 0, an index N ∈ N such that rn ≤Mε := β + ε. Since ε > 0 is
arbitrary, the statement follows.

The following result is a special case of [19, Lem. 1].

Lemma 2.4. For all 0 6= v ∈ H, ỹ ∈ H, x ∈ D+ and x̄ ∈ D−, we have that
‖x̄− x‖2 ≥ ‖x̄− z‖2 + ‖z − x‖2, where z := PDx is the projection of x onto the set
D := {y ∈ H : 〈v, y − ỹ〉 = 0}, whereas D+ and D− are defined by D+ := {y ∈ H :
〈v, y − ỹ〉 ≥ 0} and D− := {y ∈ H : 〈v, y − ỹ〉 ≤ 0}, respectively.

The following lemma was stated in [20, Prop. 2.11], see also [19, Prop. 4].

Lemma 2.5. Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 → H2 is
uniformly continuous on bounded subsets of H1 and M is a bounded subset of H1.
Then A(M) is bounded.

The following lemma was proved, e.g., in [8, 17] and justifies why we are allowed to
take metric projections onto the solution set of a continuous and monotone varia-
tional inequality.

Lemma 2.6. Suppose A is a continuous monotone operator on a nonempty, closed,
and convex subset C of a real Hilbert space H. Then the set of solutions to the
variational inequality (1) is closed and convex.

5



We finally restate a result which essentially states the equivalence between a primal
and a dual variational inequality for continuous, monotone operators. One direc-
tion follows immediately from the monotonicity, whereas the other direction can be
found, e.g, in [39, Lem. 7.1.7].

Lemma 2.7. Let C be a nonempty, closed, and convex subset of a Hilbert space H.
Let A : C → H be a continuous, monotone mapping and z ∈ C. Then

z ∈ SOL⇐⇒ 〈Ax, x− z〉 ≥ 0 for all x ∈ C.

3 Projection-type Method

In this section, we give a precise statement of our projection-type method and discuss
some of its elementary properties. Its convergence analysis is postponed to the next
section. We first state the assumptions that we will assume to hold through the rest
of this paper.

Assumption 3.1. (a) The feasible set C is a nonempty, closed, and convex subset
of the real Hilbert space H.

(b) A : C → H is a monotone and uniformly continuous on bounded subsets of C.

(c) The solution set SOL of VI(A,C) is nonempty.

Assumption (a) implies that projections onto C are well-defined. Condition (b)
is slightly stronger than continuity of A; the same (or very similar) condition is
also used, e.g., in [20, 6]. Note that this assumption is automatically satisfied for
continuous operators defined on finite-dimensional Hilbert spaces H = Rn. It also
holds for the large class of bounded linear operators A on a general Hilbert space
H.

Since our method depends on the choice of some sequences of parameters, we
next summarize the conditions regarding these sequences. There is some freedom
for the user to choose these parameters, but they have to be chosen with some care
such that the conditions from the following assumption hold.

Assumption 3.2. Suppose the real sequences {αn} and {βn} satisfy the following
conditions:

(a) {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn =∞.

(b) There is a constant b < 1 such that 0 < βn ≤ b for all n ∈ N.

(c) limn→∞ αn/βn = 0.

These conditions are satisfied, e.g., for αn = 1/(n + 1) and βn = 1/
√

2(n+ 1) or
βn = β for all n ∈ N, where β ∈ (0, 1) is a given constant.

We next give a precise statement of our projection-type method. To this end,
we use the abbreviation

r(x) := r1(x) = x− PC(x− Ax)

for the residual from (2) with γ = 1.
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Algorithm 3.3. (Projection-type Method)

(S.0) Choose sequences {αn} and {βn} such that the conditions from Assumption 3.2
hold, and take γ, σ ∈ (0, 1), s > 0. Let x1 ∈ C be a given starting point. Set
n := 1.

(S.1) Set
wn := (1− αn)xn + αnx1.

If r(wn) = 0: STOP.

(S.2) Let yn(η) := (1 − η)wn + ηPC(wn − Awn) for η ∈ R. Compute ηn as the
maximum of the numbers s, sγ, sγ2, . . . such that〈

Ayn(ηn), r(wn)
〉
≥ σ

2
‖r(wn)‖2,

and define yn := yn(ηn).

(S.3) Compute

λn :=
〈Ayn, wn − yn〉
‖Ayn‖2

,

xn+1 := (1− βn)wn + βnPC(wn − λnAyn).

(S.4) Set n← n+ 1, and go to (S.1).

Recall that r(wn) = 0 implies that we are at a solution of the variational inequality.
In our convergence theory, we will implicitly assume that this does not occur after
finitely many iterations, so that Algorithm 3.3 generates an infinite sequence satis-
fying, in particular, r(wn) 6= 0 for all n ∈ N. We will see that this property implies
that Algorithm 3.3 is well-defined. From a practical point of view, this termination
criterion has to be replaced by something like ‖r(wn)‖ ≤ ε for some small ε > 0. In
addition, a suitable implementation might also use an additional termination check
like ‖r(xn+1)‖ ≤ ε in (S.3).

Remark 3.4. (a) Since C is convex, it is easy to see by a simple induction argument
that all iterates xn, yn, wn generated by Algorithm 3.3 belong to C. Consequently,
the operator A needs to be defined on C only, not necessarily on the entire Hilbert
space H.

(b) Algorithm 3.3 requires, at each iteration, only two projections onto the feasible
set C. In particular, no projections onto sets like C ∩Hk for some half-space Hk are
needed. On the other hand, the stepsize rule in (S.2) involves a couple of evaluations
of A, but these are often much less expansive than projections onto C.

(c) The scaling parameter s > 0 within the stepsize rule in (S.2) allows to start with
a trial step η 6= 1 in each outer iteration. This plays some role from a numerical
point of view since there exist both examples where larger stepsizes ηn > 1 can
be accepted (which then, typically, yields faster convergence) and examples where
ηn < 1 might be small (in which case a choice of s < 1 is useful to avoid unnecessarily
many evaluations of A within the inner loop). ♦
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We next want to show that Algorithm 3.3 is well-defined. To this end, we have to
show that the inner loop in the stepsize calculation in (S.2) is always finite, and that
the denominator in the definition of λn is nonzero.

Lemma 3.5. The stepsize procedure in (S.2) of Algorithm 3.3 is well-defined, i.e.
it terminates after finitely many inner loops.

Proof. Consider an arbitrary index n ∈ N and recall that we always assume implic-
itly that r(wn) 6= 0. Assume that the stepsize rule does not terminate finitely at
this iteration n. Then we have〈

A((1− sγm)wn + sγmPC(wn − Awn)), r(wn)
〉
<
σ

2
‖r(wn)‖2, ∀m ≥ 0.

Since A is continuous, we obtain for m→∞ that〈
Awn, wn − PC(wn − Awn)

〉
≤ σ

2
‖wn − PC(wn − Awn)‖2.

Let zn := wn − Awn. Then we get

2
〈
wn − zn, wn − PC(wn − Awn)

〉
≤ σ‖wn − PC(wn − Awn)‖2.

Using Lemma 2.2 (b), we obtain from the previous inequality

‖PC(wn − Awn)− wn‖2 + ‖wn − zn‖2 − ‖PC(wn − Awn)− zn‖2

≤ σ‖PC(wn − Awn)− wn‖2.

Since ‖PC(wn − Awn)− wn‖ = ‖r(wn)‖ > 0 and σ ∈ (0, 1), we obtain

‖PC(wn − Awn)− wn‖2 + ‖wn − zn‖2 − ‖PC(wn − Awn)− zn‖2

< ‖PC(wn − Awn)− wn‖2.

Hence ‖wn − zn‖ < ‖PC(wn − Awn) − zn‖. Since zn = wn − Awn by definition
and wn ∈ C in view of Remark 3.4 (a), this contradicts the definition of a metric
projection.

A direct consequence of the previous result is that the scalar λn in (S.3) of Algo-
rithm 3.3 is also well-defined.

Corollary 3.6. We have 〈Ayn, wn − yn〉 > 0; in particular, Ayn 6= 0 and, therefore
λn is well-defined and positive.

Proof. Consider once again a fixed iteration index n ∈ N, and recall that ‖wn −
PC(wn − Awn)‖ = ‖r(wn)‖ > 0 holds due to our implicit assumption regarding
termination of the algorithm. Since the stepsize rule in (S.2) is well-defined by
Lemma 3.5, the definition of yn yields

〈Ayn, wn − yn〉 = ηn
〈
Ayn, wn − PC(wn − Awn)

〉
≥ σηn

2
‖wn − PC(wn − Awn)‖2 > 0,

so the statements follow.

Observe that, in finding ηn, the operator A is evaluated (possibly) many times, but
no extra projections onto the set C are needed. This is in contrast to a couple of
related algorithms for the solution of monotone variational inequalities where the
calculation of a suitable stepsize requires (possibly) many projections onto C, see,
e.g., [14, 22, 40].
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4 Convergence Analysis

Here we show that Algorithm 3.3 generates a sequence {xn} which converges strongly
to a solution of the underlying variational inequality under Assumptions 3.1 and 3.2.
To this end, we begin with a result that shows that the sequence {xn} generated by
Algorithm 3.3 is bounded under the given assumptions.

Proposition 4.1. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} gen-
erated by Algorithm 3.3 is bounded.

Proof. Let us define, for each n, the three sets

D−n := {x ∈ H : 〈Ayn, x− yn〉 ≤ 0},
Dn := {x ∈ H : 〈Ayn, x− yn〉 = 0}, and

D+
n := {x ∈ H : 〈Ayn, x− yn〉 ≥ 0},

where {yn} denotes the sequence generated by Algorithm 3.3. Recall also from
Corollary 3.6 that Ayn 6= 0 for all n ∈ N.

Let x∗ ∈ SOL be an arbitrary solution whose existence is guaranteed by As-
sumption 3.1 (c). Since A is monotone, we have

〈Ax, x− x∗〉 ≥ 0, ∀x ∈ C.

This implies x∗ ∈ D−n for all n ∈ N since yn ∈ C in view of Remark 3.4 (a).
Furthermore, since we implicitly assume that Algorithm 3.3 does not terminate
after finitely many steps with an exact solution, we have 〈Ayn, wn − yn〉 > 0 in
view of Corollary 3.6. Therefore, wn ∈ D+

n and wn /∈ D−n for all n ∈ N. Let
un := wn − λnAyn. Using the definition of λn, we have

un = wn − λnAyn = wn −
〈Ayn, wn − yn〉
‖Ayn‖2

Ayn = PDn(wn),

cf. [9, p. 130] for the last equation. Hence un is the metric projection of wn onto
the set Dn; in particular, we therefore have un ∈ Dn. Consequently, we obtain from
Lemma 2.4 that

‖wn − x∗‖2 ≥ ‖un − x∗‖2 + ‖un − wn‖2. (9)

Using Lemma 2.2 (b), (5), and setting vn := PC(wn − λnAyn) = PC(un), we obtain

‖vn − x∗‖2 + ‖vn − un‖2 − ‖un − x∗‖2 = 2
〈
vn − un, vn − x∗

〉
≤ 0.

This implies
‖un − x∗‖2 ≥ ‖vn − x∗‖2 + ‖vn − un‖2. (10)

It then follows from (9) and (10) that

‖wn − x∗‖2 ≥ ‖vn − x∗‖2 + ‖vn − un‖2 + ‖un − wn‖2.

Therefore,
‖vn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖vn − un‖2 − ‖un − wn‖2. (11)
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Hence ‖vn − x∗‖ ≤ ‖wn − x∗‖, and this implies

‖vn − wn‖2 = ‖vn − x∗ + x∗ − wn‖2

= ‖vn − x∗‖2 + ‖wn − x∗‖2 + 2〈vn − x∗, x∗ − wn〉
≤ 2‖wn − x∗‖2 + 2〈wn − x∗, x∗ − vn〉
= 2〈wn − x∗, wn − vn〉. (12)

Now, we obtain from Algorithm 3.3 and (12) that

‖xn+1 − x∗‖2 = ‖(wn − x∗)− βn(wn − vn)‖2

= ‖wn − x∗‖2 + β2
n‖wn − vn‖2 − 2βn〈wn − x∗, wn − vn〉

≤ ‖wn − x∗‖2 − βn(1− βn)‖wn − vn‖2. (13)

Since vn − wn = 1
βn

(xn+1 − wn), it follows from (13) that

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − 1

βn
(1− βn)‖xn+1 − wn‖2. (14)

Using Algorithm 3.3 and (13), we inductively obtain

‖xn+1 − x∗‖ ≤ ‖wn − x∗‖
≤ αn‖x1 − x∗‖+ (1− αn)‖xn − x∗‖
≤ max

{
‖xn − x∗‖, ‖x1 − x∗‖

}
...

≤ max
{
‖x1 − x∗‖, ‖x1 − x∗‖

}
= ‖x1 − x∗‖.

This shows that {xn} is bounded.

Note that the previous proof does not need the uniform continuity assumption of
A on bounded subsets of C. Furthermore, it does not require all conditions from
Assumption 3.2. In particular, conditions (a) and (c) of Assumption 3.2 are not used
in order to verify the boundedness of the sequence {xn} generated by Algorithm 3.3.
Also note that the inequality (14) has not been used within the previous proof, but
has been stated there since we will refer to it later.

As a simple consequence of the previous result, we also obtain the boundedness
of several other sequences.

Corollary 4.2. Let Assumptions 3.1 and 3.2 hold. Then the sequences {wn}, {yn},
and {Ayn} are also bounded.

Proof. Since {xn} is bounded by Proposition 4.1, it follows immediately from the
definition in Algorithm 3.3 that the sequence {wn} is also bounded. Using the
fact that A is uniformly continuous on bounded subsets of C by Assumption 3.1
(b), we therefore obtain from Lemma 2.5 that the sequence {Awn} is bounded.
Consequently, {wn −Awn} is bounded, and the nonexpansiveness of the projection
operator then implies that the sequence {PC(wn−Awn)} is bounded. This, in turn,
yields the boundedness of {yn}. Using once more the uniform continuity of A on
bounded subsets of C, we finally obtain the boundedness of the sequence {Ayn}.
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The previous results allow us to verify strong convergence of any sequence {xn}
generated by Algorithm 3.3. Note that, within the proof of this strong convergence
result, we define some additional auxiliary sequences whose boundedness is stated
without an explicit proof, but that the corresponding proofs are more or less identical
to the one given for the sequences from Corollary 4.2.

Theorem 4.3. Let Assumptions 3.1 and 3.2 hold. Then the sequence {xn} generated
by Algorithm 3.3 strongly converges to a solution z ∈ SOL, where z := PSOLx1.

Proof. As in the proof of Proposition 4.1, we use the abbreviations

un := wn − λnAyn and vn := PC(un) = PC(wn − λAyn).

We now divide the proof into four steps.

Step 1: Here we show that there is a subsequence such that limk→∞〈Aynk
, wnk

−
ynk
〉 = 0 holds. To this end, observe that Algorithm 3.3 yields

‖vn − wn‖2 =
∥∥ 1

βn
(xn+1 − wn)

∥∥2
=
αn
βn

(
‖xn+1 − wn‖2

αnβn

)
. (15)

Using Algorithm 3.3 and noting that αn ∈ (0, 1), we have

‖wn − z‖2 = ‖αn(x1 − z) + (1− αn)(xn − z)‖2

= α2
n‖x1 − z‖2 + 2αn(1− αn)〈x1 − z, xn − z〉+ (1− αn)2‖xn − z‖2

≤ α2
n‖x1 − z‖2 − 2αn(1− αn)〈x1 − z, z − xn〉+ (1− αn)‖xn − z‖2.

Exploiting this inequality in (14) (with the general solution x∗ replaced by the
particular solution z), we obtain

‖xn+1 − z‖2 ≤ α2
n‖x1 − z‖2 − 2αn(1− αn)〈x1 − z, z − xn〉

+(1− αn)‖xn − z‖2 − 1

βn
(1− βn)‖xn+1 − wn‖2

= (1− αn)‖xn − z‖2 − αn
(
− αn‖x1 − z‖2 +

2(1− αn)〈x1 − z, z − xn〉+
1

αnβn
(1− βn)‖xn+1 − wn‖2

)
. (16)

Using the abbreviation

Γn := −αn‖x1 − z‖2 + 2(1− αn)〈x1 − z, z − xn〉+
1

αnβn
(1− βn)‖xn+1 −wn‖2 (17)

for the term in parantheses, we can rewrite (16) as

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 − αnΓn. (18)

Since

Γn ≥ −αn‖x1 − z‖2 + 2(1− αn)〈x1 − z, z − xn〉
≥ −αn‖x1 − z‖2 − 2(1− αn) · ‖x1 − z‖ · ‖z − xn‖

11



and the sequence {xn} is bounded by Proposition 4.1, it follows that {Γn} is bounded
from below. Consequently, lim inf

n→∞
Γn is a finite real number, and by Assumption 3.2,

we have from (17) that

lim inf
n→∞

Γn = lim inf
n→∞

(
2〈x1 − z, z − xn〉+

1

αnβn
(1− βn)‖xn+1 − wn‖2

)
.

Exploiting the boundedness of {xn} once more, there exists a subsequence {xnk
} of

{xn} such that

lim inf
n→∞

Γn = lim
k→∞

(
2〈x1 − z, z − xnk

〉+
1

αnk
βnk

(1− βnk
)‖xnk+1 − wnk

‖2
)

(19)

and xnk
⇀ p for some element p ∈ H. Furthermore, since xn ∈ C for all n ∈ N in

view of Remark 3.4 (a) and the closed set C is also weakly sequentially closed, cf.
[4, Thm. 3.32], we have p ∈ C.

Since {xn} is bounded and lim inf
n→∞

Γn is finite, we obtain from (19) that the

subsequence 1
αnk

βnk
(1 − βnk

)‖xnk+1 − wnk
‖2 is bounded. Furthermore, by Assump-

tion 3.2, there exists b ∈ (0, 1) such that βn ≤ b < 1, and this implies that
1

αnβn
(1−βn) ≥ 1

αnβn
(1−b) > 0, so we have that 1

αnk
βnk
‖xnk+1−wnk

‖2 is bounded, too.

Hence we obtain from (15) and
αnk

βnk
→ 0, k → ∞ that ‖vnk

− wnk
‖ → 0, k → ∞.

Using (11) with x∗ replaced by z, we therefore obtain

‖unk
− wnk

‖2 ≤ ‖wnk
− z‖2 − ‖vnk

− z‖2

=
(
‖wnk

− z‖ − ‖vnk
− z‖

)(
‖wnk

− z‖+ ‖vnk
− z‖

)
≤ ‖wnk

− vnk
‖
(
‖wnk

− z‖+ ‖vnk
− z‖

)
≤ ‖wnk

− vnk
‖M

→ 0, k →∞,

for some constant M > 0 whose existence follows from the boundedness of {wn}
and {vn}, cf. Corollary 4.2 and the comments after its proof. Since un ∈ Dn, with
Dn defined as in the proof of Proposition 4.1, we have

0 = 〈Ayn, un − yn〉 = 〈Ayn, un − wn〉+ 〈Ayn, wn − yn〉.

Hence, using the boundedness of {‖Ayn‖} by Corollary 4.2, we get

|〈Aynk
, wnk

− ynk
〉| = |〈Aynk

, wnk
− unk

〉|
≤ ‖Aynk

‖‖wnk
− unk

‖ → 0, k →∞.

We therefore have limk→∞〈Aynk
, wnk

− ynk
〉 = 0.

Step 2: We claim that there exists a subsequence of {wnk
} such that, for all x ∈ C,

it holds that 0 ≤ lim infk∈K〈Awnk
, x−wnk

〉, where K ⊆ N defines the corresponding
subsequence; here, {wnk

} denotes the subsequence already given from Step 1.
To achieve this, let us define snk

:= PC(wnk
−Awnk

) for all k ∈ N. We distinguish
two cases depending on the behaviour of (the bounded) sequence of stepsizes {ηnk

}.

12



Case 1: Suppose that lim infk→∞{ηnk
} = 0. Subsequencing if necessary, we may

assume without loss of generality that limk→∞{ηnk
} = 0. We may therefore assume

that ηnk
< s for all k ∈ N so that the stepsize gets reduced at least once for all

iterations belonging to this subsequence. In other words, this means that the trial
stepsize 1

γ
ηnk

did not satisfy the test from (S.2) of Algorithm 3.3.

We first show that this implies limk→∞ ‖snk
− wnk

‖ = 0. To this end, it is
obviously enough to show that lim supk→∞ ‖snk

− wnk
‖ = 0 holds. Assume the

contrary that lim supk→∞ ‖snk
− wnk

‖ = δ for some (finite) constant δ > 0. Let
ȳk := 1

γ
ηnk

snk
+ (1 − 1

γ
ηnk

)wnk
or, equivalently, ȳk − wnk

= 1
γ
ηnk

(snk
− wnk

). Since

{snk
−wnk

} is bounded in view of the definition of snk
and Corollary 4.2, and since

limk→∞ ηnk
= 0 holds, it follows that

lim
k→∞
‖ȳk − wnk

‖ = 0. (20)

From the stepsize rule and the definition of ȳk, we have

〈Aȳk, wnk
− snk

〉 < σ

2
‖wnk

− snk
‖2, ∀k ∈ N.

Since A is uniformly continuous on bounded subsets of C, σ ∈ (0, 1), and the right-
hand side is bounded from below by a positive constant in view of our assumption,
we obtain from (20) that there exists N ∈ N such that

2〈Awnk
, wnk

− snk
〉 < ‖wnk

− snk
‖2, ∀k ∈ N, k ≥ N.

Therefore,

2〈wnk
− tnk

, wnk
− snk

〉 < ‖wnk
− snk

‖2, ∀k ∈ N, k ≥ N,

where tnk
:= wnk

− Awnk
. Using Lemma 2.2 (b) in the last inequality, we obtain

‖wnk
− snk

‖2 + ‖wnk
− tnk

‖2 − ‖snk
− tnk

‖2 < ‖wnk
− snk

‖2 ∀k ∈ N, k ≥ N.

Hence ‖wnk
− tnk

‖ < ‖snk
− tnk

‖ which is a contradiction to the definition of snk
=

PC(tnk
). Therefore limk→∞ ‖snk

− wnk
‖ = lim supk→∞ ‖snk

− wnk
‖ = 0.

Furthermore, the definition of snk
together with (5) yields

〈wnk
− Awnk

− snk
, x− snk

〉 ≤ 0, ∀x ∈ C,

which implies that

〈wnk
− snk

, x− snk
〉 ≤ 〈Awnk

, x− snk
〉, ∀x ∈ C.

Hence,

〈wnk
− snk

, x− snk
〉+ 〈Awnk

, snk
− wnk

〉 ≤ 〈Awnk
, x− wnk

〉, ∀x ∈ C. (21)

Fix x ∈ C and let k → ∞ in (21). Since limk→∞ ‖snk
− wnk

‖ = 0, we have
0 ≤ lim infk→∞〈Awnk

, x− wnk
〉 for all x ∈ C and therefore the desired statement.

13



Case 2: Suppose that lim infk→∞{ηnk
} > 0. Then there is a constant µ > 0

such that ηnk
≥ µ > 0 holds for all k ∈ N. It follows from the stepsize rule in

Algorithm 3.3 that

〈Aynk
, wnk

− ynk
〉 ≥ σ

2
ηnk
‖wnk

− snk
‖2.

Therefore, Step 1 implies limk→∞ ‖snk
−wnk

‖ = 0. Following the same line of argu-
ments in (21) above, we obtain 0 ≤ lim infk→∞〈Awnk

, x− wnk
〉 for all x ∈ C, hence

the statement from Step 2 also holds in the second case.

Step 3: We show that p ∈ SOL, where p ∈ C denotes the weak limit of the sub-
sequence {xnk

} from Step 1 of this proof. Since A is monotone, we have for an
arbitrary x ∈ C that

〈Ax, x− wnk
〉 ≥ 〈Awnk

, x− wnk
〉, ∀k ∈ N. (22)

Taking the lim inf on both sides of (22), and using Step 2 above, we get

lim inf
k→∞

〈Ax, x− wnk
〉 ≥ lim inf

k→∞
〈Awnk

, x− wnk
〉 ≥ 0

for all x ∈ C. Since ‖wnk
− xnk

‖ ≤ αnk
‖x1 − xnk

‖ → 0 and xnk
⇀ p, it follows that

wnk
⇀ p. We therefore have for all x ∈ C that

〈Ax, x− p〉 = lim
k→∞
〈Ax, x− wnk

〉 = lim inf
k→∞

〈Ax, x− wnk
〉 ≥ 0.

In view of Lemma 2.7, this implies p ∈ SOL.

Step 4: We finally show that limk→∞ xn = z. Using (19), (5), and p ∈ SOL in view
of Step 3, we obtain

lim inf
n→∞

Γn = lim
k→∞

(
2〈x1 − z, z − xnk

〉+
1

αnk
βnk

(1− βnk
)‖xnk+1 − wnk

‖2
)

≥ 2 lim
k→∞
〈x1 − z, z − xnk

〉 = 〈x1 − z, z − p〉 ≥ 0.

On the other hand, applying Lemma 2.3 with rn := −Γn and recalling that this
sequence {rn} is bounded from above, see the proof of Step 1, we obtain from
Assumption 3.2 and (18) that

lim sup
n→∞

‖xn − z‖2 ≤ lim sup
n→∞

(−Γn) = −lim inf
n→∞

Γn.

Consequently, we get lim supn→∞ ‖xn − z‖2 ≤ − lim infn→∞ Γn ≤ 0. Therefore,
limn→∞ ‖xn − z‖ = 0, and this means that {xn} converges strongly to z.

Note that the convergence of the iterates to the projection of the starting point onto
the solution set, as guaranteed by Theorem 4.3, is an interesting property which
is different, for example, from the class of Tikhonov-type regularization approaches
where the corresponding sequence always converges to the same solution. Hence,
by a suitable choice of the starting point, we have the chance to compute differ-
ent solutions, and using many starting points, one might even get an idea of the
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geometric shape of the whole solution set of the underlying variational inequality.
Furthermore, if one has some a priori knowledge regarding the location of a solution
and is therefore interested in computing a particular solution which is as close as
possible to this a priori knowledge, Algorithm 3.3 allows to take this knowledge into
account by a suitable choice of x1.

We next discuss some of the assumptions used in Theorem 4.3.

Remark 4.4. (a) In the case when the operator A is pseudomonotone and uniformly
continuous on bounded subsets of C, we can still obtain a strong convergence result
using our iterative method by assuming additionally that A is (w, s) sequential con-
tinuous on C (i.e., that Amaps weakly convergent sequences into strongly convergent
ones). The (w, s) sequential continuity of a pseudomonotone operator A was also
assumed by Ceng et al. [11] and Yao and Postolache [41] in order to obtain weak and
strong convergence results for variational inequality problems involving a Lipschitz
continuous, pseudomonotone operator A in an infinite dimensional Hilbert space.
In our own case, different from [11, 41], we can obtain the strong convergence result
for a pseudomonotone operator A in an infinite-dimensional Hilbert space without
assuming that our sequence of iterates satisfies 0 ≤ lim infn→∞〈Axn, z−xn〉, ∀z ∈ C.
In this respect, we are also able to improve the results from [11, 41]. However, since
we feel that the (w, s) sequentional continuity of A is a rather strong assumption,
we eventually decided to work with monotone operators only, where this condition
can be avoided completely.

(b) In finite-dimensional spaces, the assumption that A is uniformly continuous on
bounded subsets of C, automatically holds. Moreover, in this case, for pseudomono-
tone operators A, there is also no need to assume the (w, s) sequential continuity
of the operator A, cf. comment (a), only continuity of A is required. On the other
hand, as discussed in the introduction, and taking into account that strong and
weak convergence coincide in finite dimensions, there exist suitable methods whose
computational overhead is less per iteration than for Algorithm 3.3.

(c) It is difficult to construct suitable couterexamples which show analytically that
the conditions from Assumption 3.2 regarding the choice of the two sequences {αn}
and {βn} cannot be relaxed. The crucial conditions are Assumptions 3.2 (b) and
(c), whereas (a) is standard and well-accepted in many fixed-point methods. Re-
garding (c), there is at least a numerical indication that this condition is strict. To
this end, consider an example with H := C := R2, so the variational inequality
reduces to the system of equations Ax = 0. We consider the monotone operator
Ax := max

{
0, (〈a, x〉 − δ)/‖a‖2

2

}
a with the data a := (−2,−1)T , δ := −4. The

corresponding solution set is SOL = {x | 2x1 + x2 ≥ 4}. We use the parameters
γ := 1/4, σ := 1/2, s := 1 as well as the sequences

αn :=
1

n+ 1
, βn :=

{
1

6(n+1)
, for n = 1, 3, 5, 7, . . . ,

log(n+1)
n+1

, for n = 2, 4, 6, 8, . . .

which satisfy lim infn→∞ αn/βn = 0 and lim supn→∞ αn/βn > 0, hence condition
(c) is violated. Applying Algorithm 3.3 to this example using the starting point
x1 := (1, 1)T , the residual ‖r(wn)‖2 after one million iterations is around 0.1481, so
the method does not seem to converge. ♦
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5 Numerical Experiments

We consider a few examples in order to illustrate different properties of Algo-
rithm 3.3. To this end, we begin with a class of optimal control problems.

Let Ω ⊆ Rn be a given domain, and consider the optimal control problem

min J(u) := 1
2
‖y(u)− yd‖2

L2(Ω) + α
2
‖u− ud‖2

L2(Ω)

s.t. u ∈ F := {u ∈ L2(Ω) |u ≤ ψ a.e. in Ω}, (23)

where α > 0 denotes the regularization parameter, y = y(u) ∈ H1
0 (Ω) is the weak

solution of
−∆y = u on Ω

and
yd, ud, ψ ∈ L2(Ω)

are given functions. Here u denotes the control and y the state variable.
To be more specific, let Ω = (0, 1) × (0, 1) ⊆ R2 and let A denote the standard

five-point finite difference approximation to the negative Laplacian with uniform
stepsize h := 1/(N + 1) for some N ∈ N. Then the discretized optimal control
problem becomes

min
u,y

1

2
‖y − yd‖2

2 +
α

2
‖u− ud‖2

2 s.t. Ay = u, ψ − u ≥ 0,

where the discretized functions u, y etc. are denoted by the same letters as their
continuous counterparts. Using u = Ay in order to remove the control variable, we
obtain

min
y

1

2
‖y − yd‖2

2 +
α

2
‖Ay − ud‖2

2 s.t. ψ − Ay ≥ 0.

Setting v := ψ − Ay then gives

min
v

1

2
‖A−1(ψ − v)− yd‖2

2 +
α

2
‖ψ − v − ud‖2

2 s.t. v ≥ 0.

Defining vd := yd − A−1ψ and ψd := ud − ψ, we finally obtain the problem

min
v

f(v) :=
1

2
‖A−1v + vd‖2

2 +
α

2
‖v + ψd‖2

2 s.t. v ≥ 0

which is obviously equivalent to the linear complementarity problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0

with
F (v) := ∇f(v) :=

(
A−1A−1 + αI

)︸ ︷︷ ︸
=:M

v + A−1vd + αψd︸ ︷︷ ︸
=:q

.

In other words, we have the variational inequality VI(F,C) with the nonnegative
orthant C := Rn

+, so that projections onto C are easy to compute.
Note that there is no need to compute the inverse A−1 explicitly. In fact, this

can be avoided by computing a few vectors of the form A−1b for some right-hand
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Figure 1: Behaviour of the residuals ‖r(wn)‖∞ for Examples (24) (Example 1) and
(25) (Example 2)

sides b. This means that we have to solve a linear system of equations with the coef-
ficient matrix A. Fortunately, since A corresponds to the five-point finite difference
approximation of the negative Laplacian, these systems can be solved, e.g., by a fast
sine transform, in only O(N2 log2N) arithmetic operations. Altogether, it follows
that one outer iteration of the double projection method applied to the discretized
optimal control problem is reasonably cheap.

Taking into account these considerations, let us apply our method to an example
from [7] with the following data:

yd(x1, x2) :=
1

6
sin(2πx1) sin(2πx2) exp(2x1), ud ≡ 0, ψ ≡ 0, α := 10−2. (24)

We use the discretization parameter N = 128. Note that the dimension of the
corresponding variational inequality is n = N2. The parameters in Algorithm 3.3
were chosen as γ = 0.5, σ = 10−4, s = 50, and the sequences from Assumption 3.2
were taken as αn := 10−4/n and βn := 0.99 for all n. We terminate the iteration if
‖r(wn)‖∞ ≤ ε. Since projection-type methods typically have nice global convergence
properties and often get close to the solution relatively fast, but have only a poor
local rate of convergence, we use ε := 10−3. Algorithm 3.3 terminates successfully
after 99 iterations. The iteration history is given in Figure 1. The optimal control
and optimal state corresponding to the computed solution are shown in Figure 2.

As a second example, also taken from [7], consider the data

yd(x1, x2) :=

{
200x1x2(x1 − 1

2
)2(1− x2), if 0 < x1 ≤ 1

2
,

200x2(x1 − 1)(x1 − 1
2
)2(1− x2), if 1

2
< x1 ≤ 1,

ud ≡ 0, ψ ≡ 1, α := 10−2. (25)

Here, our method terminates after 40 iterations. The iteration history is also given
in Figure 1, whereas the resulting optimal control and state are depicted in Figure 3.

Finally, we consider an artifical two-dimensional example given by C := R2
+ and

F = (F1, F2) with
Fi(x) := max

{
l,min{x− b, u}

}
(26)
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Figure 2: Optimal control (left) and optimal state (right) for the example from (24)

using lower bounds l := (0, 0)T , upper bounds u := (1, 1)T , and the shift b := (1, 1)T .
It is not difficult to see that this example is monotone (but not strongly monotone)
with the (non-singleton) solution set SOL = [0, 1]2. We apply Algorithm 3.3 with the
same parameters as before (except that s = 1) and illustrate the behaviour of this
method using different starting points from the feasible set C in Figure 4. This figure
clearly shows that the sequences really converge to the particular solution given by
the projection of the starting point x1 onto SOL, as indicated by Theorem 4.3.

6 Final Remarks

This paper presents a strong convergence result for monotone variational inequal-
ity problems in real Hilbert spaces. The method requires, at each iteration, two
projections onto the feasible set of the variational inequality. Part of our future
research concentrates on the development of a suitable method where only a single
projection is needed, so the computational overhead becomes comparable to some
of those methods for which, so far, only weak convergence is known.

References

[1] R.Y. Apostol, A.A. Grynenko, and V.V. Semenov; Iterative algorithms for
monotone bilevel variational inequalities, J. Comp. Appl. Math. 107 (2012),
3-14.

[2] J.-P. Aubin and I. Ekeland; Applied Nonlinear Analysis, Wiley, New York, 1984.

[3] C. Baiocchi and A. Capelo; Variational and Quasivariational Inequalities; Ap-
plications to Free Boundary Problems, Wiley, New York (1984).

18



-2

1

-1.5

-1

1

-0.5

0

0.8
0.5

0.5

0.6

1

0.4

0.2
0 0

-0.04

1

-0.03

-0.02

-0.01

1

0

0.8

0.01

0.5

0.02

0.6

0.03

0.4

0.2
0 0

Figure 3: Optimal control (left) and optimal state (right) for the example from (25)

Figure 4: Iterations for different starting points for the artificial example from (26)

[4] H.H. Bauschke and P.L. Combettes; Convex Analysis and Monotone Operator
Theory in Hilbert Spaces, CMS Books in Mathematics, Springer, New York
(2011).

[5] J.Y. Bello Cruz and A.N. Iusem; A strongly convergent direct method for mono-
tone variational inequalities in Hilbert spaces, Num. Funct. Anal. Optim. 30
(2009), 23-36.

[6] J.Y. Bello Cruz and A.N. Iusem; An explicit algorithm for monotone variational
inequalities, Optim. 61 (2012), 855-871.

[7] M. Bergounioux, M. Haddou, M. Hintermüller, and K. Kunisch:; A comparison
of a Moreau-Yosida based active set strategy and interior point methods for
constrained optimal control problems, SIAM J. Opt. 11 (2001), 495-521.

19



[8] F. Browder; Nonlinear monotone operators and convex sets in Banach spaces,
Bull. Amer. Math. Soc. 71 (1965), 780-785.

[9] A. Cegielski; Iterative Methods for Fixed Point Problems in Hilbert Spaces,
Lecture Notes in Mathematics 2057, Springer, Berlin, 2012.

[10] L.C. Ceng, N. Hadjisavvas, and N.-C. Wong; Strong convergence theorem by
a hybrid extragradient-like approximation method for variational inequalities
and fixed point problems, J. Glob. Optim. 46 (2010), 635-646.

[11] L.C. Ceng, M. Teboulle, and J.C. Yao; Weak convergence of an iterative method
for pseudomonotone variational inequalities and fixed-point problems, J. Op-
tim. Theory Appl. 146 (2010), 19-31.

[12] Y. Censor, A. Gibali, and S. Reich; Strong convergence of subgradient extragra-
dient methods for the variational inequality problem in Hilbert space, Optim.
Methods Softw. 26 (2011), 827-845.

[13] Y. Censor, A. Gibali, and S. Reich; The subgradient extragradient method for
solving variational inequalities in Hilbert space, J. Optim. Theory Appl. 148
(2011), 318-335.

[14] S. Denisov, V. Semenov, and L. Chabak; Convergence of the modified extra-
gradient method for variational inequalities with non-Lipschitz operators, Cy-
bernet. Systems Anal. 51 (2015), 757-765.

[15] F. Facchinei and J.-S. Pang; Finite-Dimensional Variational Inequalities and
Complementarity Problems, Volume II. Springer Series in Operations Research,
Springer, New York, 2003.

[16] R. Glowinski, J.-L. Lions, and R. Trémolières; Numerical Analysis of Varia-
tional Inequalities, North-Holland, Amsterdam (1981).

[17] Ph. Hartman and G. Stampacchia; On some non linear elliptic differential func-
tional equations, Acta Math. 115 (1966), 271-310.

[18] B.-S. He, Z.-H. Yang, and X.-M. Yuan; An approximate proximal-extragradient
type method for monotone variational inequalities, J. Math. Anal. Appl. 300
(2004), 362-374.
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