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Abstract. We consider a class of generalized Nash equilibrium problems (GNEPs) where
both the objective functions and the constraints are allowed to depend on the decision
variables of the other players. It is well-known that this problem can be reformulated as
a constrained optimization problem via the (regularized) Nikaido-Isoda-function, but this
reformulation is usually nonsmooth. Here we observe that, under suitable conditions, this
reformulation turns out to be the difference of two convex functions. This allows the ap-
plication of the Toland-Singer duality theory in order to obtain a dual formulation which
provides an unconstrained and continuously differentiable optimization reformulation of
the GNEP. Moreover, based on a result from parametric optimization, the gradient of the
unconstrained objective function is shown to be piecewise smooth. Some numerical results
are presented to illustrate the theory.

Key Words: Generalized Nash equilibrium, DC optimization, conjugate function, dual
gap function, nonconvex duality, optimal solution mapping, PC1 function.



1 Introduction

This paper deals with the generalized Nash equilibrium problem (GNEP) where both the
objective functions and, in contrast to the standard Nash equilibrium problem, also the
constraints are allowed to depend on the decision variables of the other players. The precise
definition of the GNEP considered here is given at the beginning of Section 3.

The GNEP has widespread applications and many solution methods exist in the mean-
time which work under different sets of assumptions. The interested reader is referred to
[9] for a survey of applications, theory and algorithms up to the year 2010. There also exist
quite a few newer contributions to this area, but the following discussion concentrates only
on those which are particularly relevant for the approach followed in this paper where we
want to obtain a suitable optimization reformulation of the GNEP.

One possibility to obtain such an optimization problem is to exploit the known equiv-
alence of GNEPs to quasi-variational inequalities (QVIs), see [3, 16], and then to adapt
the existing gap functions for QVIs like those discussed in [6, 13, 14, 19, 36] to the setting
of GNEPs. This has been done, for example, in [2, 27]. However, except for some special
cases, this yields a nondifferentiable optimization reformulation of the GNEP.

Another approach is to use the Nikaido-Isoda function that was originally introduced
in [28] for theoretical purposes. Subsequently, it has also been exploited to derive some
solution methods for certain classes of GNEPs, see [26, 39]. A variant is the regularized
Nikaido-Isoda-function from [15] which might be used to obtain constrained and uncon-
strained optimization reformulations of the GNEP, see [7, 8, 18, 20]. While the optimization
problems turn out to be smooth in the special case of jointly convex GNEPs, they only
yield nondifferentiable reformulations in the player-convex case that will be discussed in
this paper, see Section 3 for precise definitions.

The main motivation for this paper comes from the recent contribution [17] of the
authors, where they extend an idea by Dietrich [5] and obtain a dual gap function for
certain classes of QVIs based on the observation that one of the known regularized gap
functions for QVIs can be viewed as a difference of convex functions, which then allows the
application of the Toland-Singer duality theory [35, 37, 38] in order to get an unconstrained
smooth optimization reformulation of certain QVIs.

The approach we follow here is similar to the one of the preceding paper [17]. The
difference is that we use the regularized Nikaido-Isoda-function here, which seems to be
better suited to GNEPs than any of the QVI-type gap functions. The main observation is
again that also this regularized Nikaido-Isoda-function may be viewed, in a very natural
way, as the difference of two convex functions, hence we can also apply the Toland-Singer
duality theory in this setting in order to obtain a smooth and unconstrained optimization
reformulation of a certain class of GNEPs. While the unconstrained objective function is
usually not twice continuously differentiable, we show that its gradient is at least piece-
wise smooth under fairly mild conditions. This result is a consequence of a more general
statement from parametric optimization which is also provided in this paper.

The organization is as follows: Section 2 first presents some background material from
convex and variational analysis and then gives the above-mentioned smoothness result for
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a class of parametric optimization problems that fits into our framework. Section 3 then
develops our smooth and unconstrained dual optimization reformulation of the GNEP. Sec-
tion 4 applies the smoothness result from parametric optimization to our particular setting
and therefore contains second-order properties of our unconstrained objective function.
Section 5 presents some numerical results to illustrate our theory.

The notation used in this paper is pretty standard. The symbol ‖ ·‖ always denotes the
Euclidean norm. Also, we put R> := {x ∈ R | x > 0}. Moreover, for the support of a vector
x ∈ Rn, we set supp x := {j | xi 6= 0} ⊆ {1, . . . , n}. In addition to that, also given an index
set J ⊆ {1, . . . , n}, we put xJ = (xj)j∈J ∈ R|J |. For a differentiable function F : Rn → Rm,
DF (x) denotes its Jacobian at x ∈ Rn, and for m = 1, ∇F (x) = DF (x)T ∈ Rn is its
gradient. In the latter case, if F is twice differentiable, ∇2F (x) is the Hessian of F at x.
The symbol ∃! means that “there exists exactly one”.

2 Preliminaries

2.1 Tools from Variational Analysis

In this subsection we review certain concepts from variational and convex analysis employed
in the sequel. The notation and terminology is, in large parts, based on [32].

We first restate some definitions for set-valued mappings, see, e.g., [32, Chapter 5].

Definition 2.1 Let Φ : Rn ⇒ Rm be a set-valued mapping. Then, Φ is called

(a) outer semicontinuous (osc) at x̄ ∈ Rn if for all sequences
{
xk
}
⊆ Rn with xk → x̄

and all sequences zk → z̄ with zk ∈ Φ(xk) for all k ∈ N sufficiently large we have
z̄ ∈ Φ(x̄);

(b) outer semicontinuous (osc) on Rn if it is osc at every x ∈ Rn;

(c) graph-convex if its graph gph Φ = {(x, z) ∈ Rn × Rm | z ∈ Φ(x)} is a convex set.

The following properties of an osc and graph-convex set-valued mapping will be used in
our subsequent analysis.

Lemma 2.2 Let Φ : Rn ⇒ Rm be an osc and graph-convex set-valued mapping. Then:

(a) The sets Φ(x) are closed and convex (possibly empty).

(b) For all x1, x2 ∈ Rn with Φ(xi) 6= ∅ for i = 1, 2, and all t ∈ [0, 1], we have

tΦ(x1) + (1− t)Φ(x2) ⊆ Φ
(
tx1 + (1− t)x2

)
,

in particular, the set on the right-hand side is nonempty.

(c) The set gph Φ is closed and convex.
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All statements are well known and easily verified; regarding assertion (b), see [32, p. 155].
We next introduce some important concepts for extended real-valued functions, more

precisely, for functions f : Rn → R∪{+∞}. Handy tools for the analysis of such a function
are its epigraph epi f := {(x, γ) ∈ Rn × R | f(x) ≤ γ} and its domain dom f := {x ∈ Rn |
f(x) < +∞}. Note that we call f proper if dom f 6= ∅.

Definition 2.3 Let f : Rn → R ∪ {+∞} be proper.

(a) f is called lower semicontinuous (lsc) if epi f is closed.

(b) f is called convex if epi f is convex.

(c) f is called strongly convex with modulus c > 0 if f − c
2
‖ · ‖2 is convex.

(d) If f is convex and x̄ ∈ Rn then the (possibly empty) set

∂f(x̄) =
{
s ∈ Rn | f(x̄) + sT (x− x̄) ≤ f(x) ∀x ∈ Rn

}
is called the subdifferential of f at x̄.

(e) The conjugate of f is the function f ∗ : Rn → R ∪ {+∞} defined by

f ∗(y) = sup
x∈Rn

[
xTy − f(x)

]
= sup

x∈dom f

[
xTy − f(x)

]
.

Note that, in view of its definition, an lsc function is often called closed. Further note that,
for a proper and convex function f , the subdifferential ∂f(x̄) is nonempty if x lies in the
(relative) interior of dom f , see [22].

Given X ⊆ Rn, a popular extended real-valued function is the indicator function δX :
Rn → R∪{+∞} defined by δX(x) := 0 for x ∈ X and δX(x) := +∞ for x 6∈ X. It is easily
verified that δX is lsc if and only if X is closed, and convex if and only if X is convex.

The following result summarizes some well-known properties of the conjugate function.

Lemma 2.4 Let f : Rn → R ∪ {+∞} be a proper convex function. Then, the following
statements hold:

(a) The conjugate f ∗ of f is convex and lsc.

(b) The bi-conjugate function f ∗∗ := (f ∗)∗ is convex and lsc.

(c) The inequality f ∗∗(x) ≤ f(x) holds for all x ∈ Rn.

(d) The equality f ∗∗(x) = f(x) holds for all x ∈ Rn if and only if f is a (convex and) lsc
function.

(e) The Fenchel inequality f(x) + f ∗(y) ≥ xTy holds for all x, y ∈ Rn.

(f) The equality f(x̄) + f ∗(ȳ) = x̄T ȳ holds if and only if ȳ ∈ ∂f(x̄).
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All statements can entirely be found in [22, Chapter E]. Another useful observation on the
conjugate function is restated in the following result, cf. [32, Prop. 12.60].

Lemma 2.5 Let f : Rn → R ∪ {+∞} be a proper and lsc convex function. Then, f is
strongly convex with modulus c > 0 if and only if f ∗ is differentiable with ∇f ∗ Lipschitz
continuous with modulus 1

c
.

2.2 A Piecewise Smoothness Result for a Parametric NLP

In this subsection, we analyze smoothness properties of the solution mapping for a class of
strongly convex parametric optimization problems, where the parameter only occurs in the
objective function. The main result in this section might be known, but we could not find an
explicit reference. The difference to the existing literature is that we assume the objective
function to be strongly convex, not just convex, which is, of course, a very restrictive
assumption, but this assumption will be satisfied automatically in our applications. On
the other hand, no Slater condition is required for the constraints.

It will be seen that the solution function of our parametric optimization problem is,
under some standard assumptions, piecewise smooth. The analysis is carried out in the
spirit of the results from [30] in combination with [23]. We commence by introducing the
concept of piecewise smoothness, see [12, 33] for comprehensive accounts on the topic.

Definition 2.6 A continuous function f : D ⊆ Rn → Rm is called piecewise smooth or
PC1 near x̄ ∈ D if there exists an open neighborhood U ⊆ D of x̄ and a finite family
of continuously differentiable functions fi : U → Rm (i = 1, . . . , l) such that f(x) ∈
{f1(x), . . . , fl(x)} for all x ∈ U .

Now, for a parameter v ∈ Rn, consider the optimization problem

min
u∈Rm

φ(u, v) s.t. cj(u) ≤ 0 (j = 1, . . . , p), P (v)

where φ : (u, v) ∈ Rm × Rn 7→ R is strongly convex in u for each fixed v ∈ Rn and
continuous on Rm × Rn, and the functions cj : Rm → R (j = 1, . . . , p) are convex and
continuous. Let

F := {u ∈ Rm | cj(u) ≤ 0 (j = 1, . . . , p)}

denote the feasible set, which is, in particular, closed and convex, and is supposed to be
nonempty. Under the assumptions from above, the next lemma shows that the solution
mapping of the problem P (v) is continuous.

Lemma 2.7 The solution mapping u∗ : Rn → Rm of the problem P (v) given by

u∗(v) = argmin
u∈F

φ(u, v) (1)

is well-defined and continuous.
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Proof. Under the assumptions on φ and cj(j = 1, . . . , p), the objective function is
strongly convex in u and the feasible set F is nonempty, closed, and convex. Hence, the
problem P (v) is uniquely solvable for all v ∈ Rn. Therefore, for each v ∈ Rn, there exists
a unique vector u∗(v) solving (1). Therefore, the solution mapping u∗ is well-defined. The
continuity of the mapping u∗ follows from [23, Corollaries 8.1 and 9.1]. �

Now, for u ∈ F , we define the active set J0(u) := {j | cj(u) = 0}. Due to Lemma 2.7, for
all v ∈ Rn, the sets J(v) := J0(u∗(v)) are well-defined.

For the sequel of this subsection, we assume that all functions defining P (v) are, in
addition to the convexity properties, twice continuously differentiable. As a reminder and
a reference point, all of the demanded properties are summarized below.

Assumption 2.8 The functions φ and cj (j = 1, . . . , p) defining P (v) are assumed to have
the following properties:

(a) The objective φ is strongly convex in the first variable (while fixing the second) and
twice continuously differentiable in both components.

(b) The constraints cj (j = 1, . . . , p) are convex and twice continuously differentiable.

(c) The feasible set F := {u ∈ Rm | cj(u) ≤ 0 (j = 1, . . . , p)} is nonempty.

For v ∈ Rn and a subset J ⊆ J(v), we define HJ(·, v, ·) : Rm × Rp → Rm+p by

HJ(u, v, λ) :=

 ∇uφ(u, v) +
∑

j∈J λj∇cj(u)

cJ(u)
λĴ

 ,

where Ĵ := {1, . . . , p} \ J . Then, the following result is easily proven.

Lemma 2.9 Let Assumption 2.8 hold, let v ∈ Rn, and let J ⊆ J(v) such that the vec-
tors ∇cj(u) (j ∈ J) are linearly independent. Then, the Jacobian D(u,λ)H

J(u, v, λ) is
nonsingular for all λJ ≥ 0.

Proof. After reordering the components of λ accordingly, we get

D(u,λ)H
J(u, v, λ) =

 ∇2
uuφ(u, v) +

∑
j∈J λj∇2cj(u) DcJ(u)T 0

DcJ(u) 0 0
0 0 I|Ĵ |

 .

Since cj (j = 1, . . . , p) is convex and φ is strongly convex in the first variable for each fixed
v ∈ Rn, the matrix ∇2

uuφ(u, v) +
∑

j∈J λj∇2cj(u) is positive definite for all λJ ≥ 0. Hence,
the assertion follows from the linear independence of the vectors ∇cj(u) (j ∈ J). �

We next introduce the constant rank constraint qualification due to [25], which occurs as a
standard assumption in the context of parametric optimization and piecewise smoothness
results, see, e.g., [4, 29, 30].
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Definition 2.10 We say that the constant rank constraint qualification (CRCQ) holds at
ū ∈ F (w.r.t. F) if there exists a neighborhood U of ū such that for every J ⊆ J0(ū) the
set {∇cj(u) | j ∈ J} has constant rank (depending on J) for all u ∈ U .

Note that CRCQ is a local property of the feasible set F in the sense that if CRCQ holds
at ū, it also holds at u for all u ∈ F sufficiently close to ū. — CRCQ allows us to prove the
next main result on the piecewise smoothness of the solution mapping of the program P (v).

Theorem 2.11 Let v̄ ∈ Rn, and suppose that Assumption 2.8 is fulfilled. Then, there
exists a neighborhood V̄ of v̄ such that the function u∗ : Rn → Rm defined in (1) is PC1

on V̄ , provided CRCQ holds at ū := u∗(v̄) ∈ F .

Proof. For v ∈ Rn we define

M(v) := {λ ∈ Rp | (u∗(v), λ) is a KKT point of P (v)}

as the set of KKT multipliers for P (v) at u∗(v). Since CRCQ at ū = u∗(v̄) is inherited to
a whole neighborhood and because u∗ is continuous by Lemma 2.7, there exists a neigh-
borhood V of v̄ such that CRCQ holds at u∗(v) for all v ∈ V . In particular, since CRCQ
yields KKT multipliers at a local minimizer (see [25, Proposition 2.3]), we have M(v) 6= ∅
for all v ∈ V . It hence follows from [21, Lemma 3.2] that the set

B(v) :=
{
J ⊆ J(v) | ∇cj(u∗(v)) (j ∈ J) linearly independent ∧ ∃λ ∈M(v) : supp λ ⊆ J

}
is nonempty for all v ∈ V . Moreover, from [21, Lemma 3.3] it follows that

∀v ∈ V, J ∈ B(v) ∃! λ∗,J(v) ∈M(v) : HJ(u∗(v), v, λ∗,J(v)) = 0. (2)

Note that, necessarily, supp λ∗,J(v) ⊆ J , and that λ∗,J(v) is nonnegative.
Now, let J ∈ B(v̄) and λ̄J := λ∗,J(v̄) such that λ̄J ∈ M(v̄) and HJ(ū, v̄, λ̄J) = 0,

uniquely determined by (2). As J ∈ B(v̄), the vectors ∇cj(ū) (j ∈ J) are linearly indepen-
dent, hence Lemma 2.9 together with λ̄J ≥ 0 implies that D(u,λ)H

J(ū, v̄, λ̄J) is nonsingular.
Thus, the implicit function theorem yields neighborhoods V J of v̄ and NJ of (ū, λ̄J), and
a C1 function (uJ , λJ) : V J → NJ such that

uJ(v̄) = ū, λJ(v̄) = λ̄J , and HJ(uJ(v), v, λJ(v)) = 0 ∀v ∈ V J , (3)

and for all v ∈ V J the vector (uJ(v), λJ(v)) is the unique solution of

H(u, v, λ)
!

= 0, (u, λ) ∈ NJ .

Note that, w.l.o.g., we can assume that V J ⊆ V .
Now, set V̄ :=

⋂
J∈B(v̄) V

J ⊆ V . Since B(v̄) is finite, V̄ is still a neighborhood of v̄.

Moreover, in view of [21, Lemma 3.5 (b)]), we can assume w.l.o.g. that B(v) ⊆ B(v̄) for

6



all v ∈ V̄ . We will now prove that, with a possibly smaller neighborhood of v̄ which we
still denote by V̄ , we have

u∗(v) ∈ {uJ(v) | J ∈ B(v̄)} ∀v ∈ V̄ . (4)

Then, it follows that u∗ : V̄ → Rm is in fact PC1, as {uJ : V̄ → Rm | J ∈ B(v̄)} is a finite
family of C1 functions, and u∗ is continuous by Lemma 2.7. The desired inclusion in (4)
follows immediately if we can show that

∀v ∈ V̄ , ∀J ∈ B(v) : u∗(v) = uJ(v) (5)

since B(v) ⊆ B(v̄) for all v ∈ V̄ . Note that this does not imply that u∗ = uJ holds locally
(which would imply u∗ to be smooth) since the index set J also depends on v.

For these purposes, let v ∈ V̄ (⊆ V ) and J ∈ B(v). Due to (2), there exists a unique
multiplier λ∗,J(v) ∈ M(v) such that HJ(u∗(v), v, λ∗,J(v)) = 0. On the other hand, due to
what was shown above, there exists a neighborhood V J of v̄ and a neighborhood NJ of
(ū, λ̄J) as well as a C1 function (uJ , λJ) : V J → NJ such that (3) holds. Moreover, for all

v ∈ V J , the vector (uJ(v), λJ(v)) is the unique solution of H(u, v, λ)
!

= 0, (u, λ) ∈ NJ .
Hence, in order to prove (5), it suffices to show that

for all v ∈ V̄ sufficiently close to v̄, ∀J ∈ B(v) : (u∗(v), λ∗,J(v)) ∈ NJ .

Suppose this were false: Then, there exists a convergent sequence {vk ∈ V̄ } → v̄ and a
sequence of index sets {Jk ∈ B(vk)} such that (u∗(vk), λ∗,Jk(vk)) /∈ NJk for all k ∈ N. As
B(v̄) is finite and B(vk) ⊆ B(v̄) for all k ∈ N, we can assume w.l.o.g. that Jk = J̄ for all
k ∈ N. From (2) we infer that

0 = ∇uφ(u∗(vk), vk) +
∑
j∈J̄

[λ∗,J̄(vk)]j∇cj(u∗(vk)) ∀k ∈ N. (6)

By continuity of all functions involved, the linear independence of the gradient vectors
∇cj(u∗(vk)) (j ∈ J̄) for all k ∈ N together with the assumed CRCQ condition and the fact
that supp λ∗,J̄(vk) ⊆ J̄ , we infer that {λ∗,J̄(vk)} is convergent, i.e. there exists λ∗,J̄ such
that λ∗,J̄(vk)→ λ∗,J̄ with supp λ∗,J̄ ⊆ J̄ . Hence, passing to the limit in (6) yields

0 = ∇uφ(ū, v̄) +
∑
j∈J̄

[λ∗,J̄ ]j∇cj(ū).

On the other hand, also the vector λ̄J̄ solves the above equation. Due to the linear in-
dependence of the gradients ∇cj(ū) (j ∈ J̄), and the fact that supp λ̄J̄ ∪ supp λ∗,J̄ ⊆ J̄ ,
we get λ∗,J̄ = λ̄J̄ . Therefore, we infer that λ∗,Jk(vk) → λ̄J̄ . In view of u∗(vk) → ū by
continuity, we get that (u∗(vk), λ∗,Jk(vk)) ∈ N J̄ for all k sufficiently large, in contradiction
to what was assumed. Hence, the proof is complete. �
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3 The Smooth Dual Gap Function

The generalized Nash equilibrium problem (GNEP) considered in this paper consists of
N ∈ N players which control the corresponding decision variables xν ∈ Rnν (ν = 1, . . . , N)
so that the vector x = (x1, . . . , xN) ∈ Rn with n = n1 + . . . + nN describes the decision
vector of all players. In order to emphasize the role of player ν’s variable xν within the
vector x, we often write x = (xν , x−ν). Each player ν has a cost function θν : Rn → R
and a strategy space Xν(x

−ν) ⊆ Rν defined by the set-valued mapping Xν : Rn−nν ⇒ Rnν

where both the cost function and the strategy space depend on the other players’ decisions
x−ν . Then, the GNEP consists in finding a vector x̄ = (x̄1, . . . , x̄N) ∈ Ω(x̄) such that, for
each ν ∈ {1, . . . , N}, the vector x̄ν solves

min
xν

θν(x
ν , x̄−ν) s.t. xν ∈ Xν(x̄

−ν) (7)

where

Ω(x) := X1(x−1)× . . .×XN(x−N). (8)

A solution point x̄ of GNEP is also called a generalized Nash equilibrium.
In this section, we consider suitable optimization problems which are reformulations

of the player convex GNEP, where the GNEP is called player convex if the following
assumptions are satisfied.

Assumption 3.1 (a) The cost functions θν, ν = 1, . . . , N , are continuous on Rn.

(b) The cost functions θν(·, x−ν), ν = 1, . . . , N , are convex for each fixed x−ν ∈ Rn−nν .

(c) The strategy spaces Xν(x
−ν), ν = 1, . . . , N , are closed and convex.

Note that Assumption 3.1 (c) is satisfied if, e.g., the strategy spaces Xν are defined by

Xν(x
−ν) := {xν ∈ Rnν | gν(xν , x−ν) ≤ 0} (9)

with functions gν : Rn → Rmν , ν = 1, . . . , N , which are continuous on Rn and convex in
xν for each fixed x−ν ∈ Rn−nν .

First, we consider the so-called Nikaido-Isoda function ([28])

ψ(z, x) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(zν , x−ν)
]

and the optimal value function

V (x) := sup
z∈Ω(x)

ψ(z, x), (10)
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which takes the value −∞ exactly for x /∈ dom Ω, where

dom Ω := {x ∈ Rn| Ω(x) 6= ∅} (11)

is the domain of the set-valued mapping Ω. Note that the supremum in (10) may be a
nonuniquely attained maximum or not attained at all, because ψ is, in general, just concave
in z for each fixed x ∈ Rn. Furthermore, it is easily verified that V is nonnegative for all
x ∈ Ω(x) and that x̄ is a generalized Nash equilibrium of the player convex GNEP if and
only if x̄ ∈ Ω(x̄) and V (x̄) = 0. Let

W := {x ∈ Rn | xν ∈ Xν(x
−ν) ∀ν = 1, . . . , N} (12)

be the fixed point set of the set-valued mapping Ω which is also called the feasible set of
the corresponding GNEP. Since x ∈ Ω(x) if and only if x ∈ W , the player convex GNEP
is equivalent to finding a solution of the constrained minimization problem

min V (x) s.t. x ∈ W

with zero as the optimal value.
In order to guarantee the existence of unique maximal points in (10) on dom Ω, we

replace the function ψ by the regularized Nikaido-Isoda function ([15])

ψα(z, x) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(zν , x−ν)
]
− α

2
‖x− z‖2

where α > 0 denotes a given parameter. In view of Assumption 3.1 (b), the function ψα
is strongly concave in z for each fixed x ∈ Rn. Hence, for all x ∈ dom Ω, there exists a
unique solution zα(x) of the maximization problem

max
z

ψα(z, x) s.t. z ∈ Ω(x).

Therefore, the optimal value function

Vα(x) := sup
z∈Ω(x)

ψα(z, x) =
N∑
ν=1

θν(x
ν , x−ν)− inf

z∈Ω(x)

( N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2

)
(13)

takes the value −∞ exactly for x /∈ dom Ω and is real-valued for all x ∈ dom Ω. Further
properties of Vα are given in the following result, the proof of which can be found in [8].

Lemma 3.2 Under Assumption 3.1, the following statements hold:

(a) x ∈ Ω(x) if and only if x ∈ W ; in particular, we have W ⊆ dom Ω and Vα is
real-valued on W ;

(b) Vα(x) ≥ 0 for all x ∈ W ;
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(c) x̄ is a generalized Nash equilibrium if and only if x̄ ∈ W and Vα(x̄) = 0;

(d) For all x ∈ dom Ω, there exists a unique vector zα(x) such that

zα(x) = argmin
z∈Ω(x)

( N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2

)
; (14)

(e) x̄ is a generalized Nash equilibrium if and only if x̄ = zα(x̄).

It follows from Lemma 3.2 (a)–(c) that the player convex GNEP is equivalent to finding a
solution of the constrained minimization problem

min Vα(x) s.t. x ∈ W

or, alternatively, using the indicator function δW of W , to solving the unconstrained min-
imization problem

min
x∈Rn

[Vα(x) + δW (x)] (15)

with zero optimal value in both reformulations and with the convention η +∞ = +∞ for
all η ∈ R ∪ {±∞} in the unconstrained reformulation. This convention makes sense since
the objective function from (15) should take the function value +∞ on the complement
W c of the set W and, in particular, on (dom Ω)c ⊆ W c. Note that, in general, the optimal
value function Vα + δW is nonconvex and nondifferentiable as the functions V and Vα.

Similar to the approach from [17] for quasi-variational inequalities, it is possible to get
a smooth reformulation of certain GNEPs in case that the optimal value function from
(15) can be rewritten as a difference of two strongly convex and lsc functions. A class of
GNEPs satisfying the next assumption has this property.

Assumption 3.3 (a) The feasible set W of the GNEP (7) defined in (12) is nonempty.

(b) The cost functions θν, ν = 1, . . . , N , are continuous and convex on Rn.

(c) The set-valued mappings Xν, ν = 1, . . . , N , are graph-convex and osc on Rn−nν .

Since these assumptions play a central role within our subsequent analysis, we would
like to add a few comments. Assumption 3.3 (a) is rather natural since otherwise the
corresponding GNEP is not solvable. Assumption 3.3 (c) is satisfied if, e.g., the set-valued
mappings Xν , ν = 1, . . . , N , are defined by (9) with functions gν : Rn → Rmν , ν = 1, . . . , N ,
which are convex in the whole variable x = (xν , x−ν) on Rn. In particular, Assumption 3.3
(c) therefore holds for the class of jointly convex GNEPs, where g1 = g2 = . . . = gN =: g
and g is convex in all variables, cf. [9] for more details. Finally, Assumption 3.3 (b) is
probably the most restrictive condition since it requires all cost functions to be convex
in the entire vector x. However, we will see later that this assumption can be relaxed
considerably, see the discussion following Lemma 3.9. In order to avoid any technical
discussion, it is convenient to assume this condition to formulate and prove the subsequent
results. — Assumption 3.3 (c) yields the following result.
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Lemma 3.4 Let Assumption 3.3 (c) hold. Then, the set-valued mapping Ω : Rn ⇒ Rn

defined by (8) is graph-convex and osc on Rn.

Proof. First, we verify the graph-convexity of Ω. By the definition of Ω in (8) and
Assumption 3.3 (c), it holds that

gph Ω = {(x, z) ∈ Rn × Rn | zν ∈ Xν(x
−ν) ∀ν = 1, . . . , N}

=
N⋂
ν=1

{(x, z) ∈ Rn × Rn | (x−ν , zν) ∈ gphXν} =:
N⋂
ν=1

Cν

with the convex sets gphXν = {(x−ν , zν) ∈ Rn−nν × Rnν | zν ∈ Xν(x
−ν)} for all ν ∈

{1, . . . , N}. Furthermore, the sets Cν , ν = 1, . . . , N , are convex as suitable Cartesian
products of the convex sets gphXν and Rnν ×Rn−nν . Then, the set gph Ω is convex as an
intersection of convex sets. Therefore, the set-valued mapping Ω is graph-convex.

Next, we show that the set-valued mapping Ω is osc on Rn. Let x̄ ∈ Rn be arbitrarily
given. Since the set-valued mappings Xν : Rn−nν ⇒ Rnν , ν = 1, . . . , N , are osc on Rn−nν ,
for all sequences

{
xk,−ν

}
⊆ Rn−nν with xk,−ν → x̄−ν and all sequences zk,ν → z̄ν with

zk,ν ∈ Xν(x
k,−ν) for all k ∈ N sufficiently large we have z̄ν ∈ Xν(x̄

−ν). Then, for all se-
quences

{
xk
}
⊆ Rn with xk → x̄ and zk → z̄ with zk ∈ X1(xk,−1)×. . .×XN(xk,−N) = Ω(xk)

for all k ∈ N sufficiently large we have z̄ ∈ X1(x̄−1)×. . .×XN(x̄−N) = Ω(x̄). Consequently,
Ω is osc at x̄. Since x̄ ∈ Rn was arbitrarily chosen, the set-valued mapping Ω is osc on Rn. �

Lemma 3.5 Let Assumptions 3.3 (a) and (c) hold. Then:

(a) the feasible set W of the GNEP (7) defined in (12) is nonempty, closed, and convex.

(b) the domain dom Ω from (11) of the set-valued mapping Ω is nonempty and convex.

Proof. (a) In view of Assumption 3.3 (a), the set W is nonempty. Furthermore, let
{xk} ⊆ W be an arbitrary convergent sequence with a limit x̄ ∈ Rn. Then xk ∈ Ω(xk) for
all k ∈ N. Since the set-valued mapping Ω : Rn ⇒ Rn is osc by Lemma 3.4, it follows that
x̄ ∈ Ω(x̄). Therefore, x̄ ∈ W so that the set W is closed.

Next, we show that W is convex. To this end, let x1, x2 ∈ W and t ∈ [0, 1] be arbitrarily
given. Then x1 ∈ Ω(x1) and x2 ∈ Ω(x2). By Lemmas 3.4 and 2.2 (b), it follows that Ω is
graph-convex and tx1 + (1 − t)x2 ∈ Ω

(
tx1 + (1 − t)x2

)
, i.e., tx1 + (1 − t)x2 ∈ W . Hence,

the set W is convex.
(b) The set dom Ω is nonempty since dom Ω contains the nonempty set W in view of

Lemma 3.2 (a). The convexity of dom Ω follows immediately from graph-convexity of Ω,
see Lemma 2.2 (b). �

The subsequent example illustrates that even for a graph-convex and osc set-valued map-
ping Ω, its domain dom Ω is not necessarily closed.
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Example 3.6 Consider a GNEP with two players having arbitrary cost functions and each
controlling a single variable which, for simplicity of notation, we call x1 and x2, respectively.
Furthermore, let Ω : R2 ⇒ R2 be given by Ω(x) = X1(x2) × X2(x1) with the set-valued
mappings X1, X2 : R ⇒ R defined by

X1(x2) :=

{{
x1 ∈ R | x1 ≥ 1

x2

}
if x2 > 0,

∅ if x2 ≤ 0,
and X2(x1) := [0,∞[.

These set-valued mappings X1 and X2 are obviously graph-convex. Furthermore, X1 and
X2 are osc on R, since, if xk2 ↓ 0, all sequences {zk1} with zk1 ∈ X1(xk2) are divergent, and
all other cases are unproblematic. In view of Lemma 3.4, the set-valued mapping Ω is also
graph-convex and osc on R2. On the other hand, dom Ω = R× R> is not closed. ♦

In order to get a differentiable reformulation of GNEPs satisfying Assumption 3.3, we
rewrite the unconstrained objective function from (15) as a difference of two strongly
convex and lsc functions and apply the duality theory by Toland [37] and Singer [35] to
this DC minimization problem. Note that a problem is called DC minimization problem if
it consists of the minimization of a difference of two convex functions. For a survey of DC
programming, we refer to [24].

Using the reformulation of the optimal value function Vα in (13), we first get

Vα(x) + δW (x) = %(x)− ϕα(x) (16)

with the functions % : Rn → R ∪ {+∞} and ϕα : Rn → R ∪ {+∞} defined by

%(x) :=
N∑
ν=1

θν(x) + δW (x) and ϕα(x) := inf
z∈Ω(x)

( N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2

)
(17)

where the infimum is uniquely attained at zα(x) defined in (14) for all x ∈ dom Ω, and
takes the value +∞ for all x /∈ dom Ω. The functions % and ϕα are lsc and convex. Lower
semicontinuity and convexity of % is easily verified since θν , ν = 1, . . . , N , is continuous and
convex on Rn by Assumption 3.3 (b) and the set W is closed and convex by Lemma 3.5
(a). For the proof of lower semicontinuity and convexity of ϕα we need the following result,
which was proven in [17, Lemma 3.3].

Lemma 3.7 Let Ω : Rn ⇒ Rn be graph-convex and osc on Rn. Then, the function Φ :
Rn × Rn → R ∪ {+∞}, Φ(z, x) := δΩ(x)(z) is lsc and convex in (z, x).

Using Lemma 3.7, we are now in position to verify lower semicontinuity and convexity of
the function ϕα defined in (17).

Lemma 3.8 Let Assumption 3.3 hold. Then, the function ϕα is proper, lsc, and convex.

12



Proof. In view of (17), we rewrite ϕα as ϕα(x) = infz∈Rn τα(z, x) with

τα : Rn × Rn → R ∪ {+∞}, τα(z, x) :=
N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2 + δΩ(x)(z).

By Assumption 3.3 and Lemma 3.7, each summand of τα is convex and (at least) lsc on
Rn. Hence, the function τα is lsc and convex. Furthermore, the function τα is proper,
since dom τα = dom Ω 6= ∅. Moreover, it holds that argminz∈Rn τα(z, x) = {zα(x)} for all
x ∈ dom Ω is single-valued. Therefore, the assertions follow from [32, Corollary 3.32]. �

Since the functions % and ϕα are lsc and convex, the representation in (16) is a lsc DC
formulation of the unconstrained objective function from (15). For the purpose of a diffe-
rentiable dual reformulation of GNEPs satisfying Assumption 3.3, we add to both functions
% and ϕα the same strongly convex quadratic term. This alteration leads to the following
DC decomposition of the optimal value function from (15):

Vα(x) + δW (x) = fα(x)− hα(x)

with two functions fα, hα : Rn → R ∪ {+∞} defined by

fα(x) :=
α

2
‖x‖2 +

N∑
ν=1

θν(x) + δW (x) =
α

2
‖x‖2 + %(x), (18)

hα(x) :=
α

2
‖x‖2 + inf

z∈Ω(x)

( N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2

)
=
α

2
‖x‖2 + ϕα(x). (19)

In principle, we could have used a different parameter for the quadratic term. Furthermore,
this quadratic term could be replaced by any strongly convex function without really
changing the subsequent theory.

Some elementary properties of the above DC decomposition are summarized in the
following result.

Lemma 3.9 Let Assumption 3.3 hold, and let fα and hα be defined as in (18) and (19),
respectively. Then, the following statements hold:

(a) The function fα is lsc and strongly convex on Rn and has the domain W .

(b) The function hα is lsc and strongly convex on Rn and has the domain dom Ω.

(c) x̄ is a solution of the GNEP if and only if it is a solution of the unconstrained
optimization problem

min
x∈Rn

[fα(x)− hα(x)]

with optimal function value equal to zero.
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Note that the previous result still holds for certain classes of nonconvex cost functions θν ,
i.e. for functions not satisfying Assumption 3.3 (b). This follows directly from the defini-
tions of fα and hα since these functions may become strongly convex even for nonconvex
θν by adding a suitable strongly convex term. For example, for quadratic cost functions
θν , it is possible by adding of the strongly convex quadratic term α

2
‖x‖2 with a sufficiently

large parameter α. This observation will be exploited in our numerical section in order to
compute a suitable parameter α.

Before we apply the duality theory by Toland and Singer to this DC decomposition,
we consider the required conjugate functions of fα and hα in the next two results.

Lemma 3.10 Let Assumption 3.3 hold. Then, the following statements hold for the con-
jugate f ∗α of fα:

(a) f ∗α is given by

f ∗α(y) = xf
∗

α (y)Ty − α

2

∥∥xf∗α (y)
∥∥2 −

N∑
ν=1

θν
(
xf

∗

α (y)
)

where xf
∗
α (y) denotes the unique solution of the maximization problem

max
x

[
xTy − α

2
‖x‖2 −

N∑
ν=1

θν(x)
]

s.t. x ∈ W.

(b) f ∗α has the domain dom f ∗α = Rn.

(c) f ∗α is differentiable with Lipschitz gradient given by ∇f ∗α(y) = xf
∗
α (y).

Proof. Application of Definition 2.3 (e) leads to

f ∗α(y) = sup
x∈W

[
xTy − α

2
‖x‖2 −

N∑
ν=1

θν(x)
]

=: sup
x∈W

Fα(x, y). (20)

The function Fα is continuous on Rn×Rn and strongly concave in x for each fixed y ∈ Rn.
Since the set W is nonempty, closed, and convex by Lemma 3.5 (a), the maximization
problem in (20) has a unique solution xf

∗
α (y) for each fixed y ∈ Rn, so that dom f ∗α = Rn.

This proves statements (a) and (b).
Furthermore, the function Fα is continuously differentiable in the second variable for

each fixed x ∈ Rn, and the mapping y 7→ xf
∗
α (y) is continuous on Rn by [23, Corollaries 8.1

and 9.1]. Due to Danskin’s Theorem (see, e.g., [1, Chapter 4, Theorem 1.7]), the function
f ∗α is continuously differentiable with ∇f ∗α(y) = ∇yFα(x, y)

∣∣
x=xf

∗
α (y)

= xf
∗
α (y). In view of

Lemma 2.5, this gradient ∇f ∗α is even Lipschitz. This completes the proof. �

In a similar way as for the function fα, we consider the conjugate function of hα.
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Lemma 3.11 Let Assumption 3.3 hold. Then, the following statements hold for the con-
jugate h∗α of hα:

(a) h∗α(y) is given by

h∗α(y) = xh
∗

α (y)Ty − α

2

∥∥xh∗α (y)
∥∥2 −

N∑
ν=1

θν
(
zh

∗

α (y)ν , xh
∗

α (y)−ν
)
− α

2

∥∥xh∗α (y)− zh∗α (y)
∥∥2

where
(
xh

∗
α , z

h∗
α

)
(y) is the unique solution of the maximization problem

max
(x,z)

[
xTy − α

2
‖x‖2 −

N∑
ν=1

θν(z
ν , x−ν)− α

2
‖x− z‖2

]
s.t. (x, z) ∈ gph Ω.

(b) h∗α(y) has the domain domh∗α = Rn.

(c) h∗α(y) is differentiable with Lipschitz gradient given by ∇h∗α(y) = xh
∗
α (y).

Proof. Due to Definition 2.3 (e), we obtain

h∗α(y) = sup
x∈Rn

[
xTy − α

2
‖x‖2 − inf

z∈Ω(x)

( N∑
ν=1

θν(z
ν , x−ν) +

α

2
‖x− z‖2

)]
= sup

(x,z)∈gph Ω

[
xTy − α

2
‖x‖2 −

N∑
ν=1

θν(z
ν , x−ν)− α

2
‖x− z‖2

]
=: sup

(x,z)∈gph Ω

Hα(x, z, y). (21)

The function Hα is continuous on Rn × Rn × Rn, strongly concave in (x, z) for each fixed
y ∈ Rn, and continuously differentiable in the third variable for each fixed (x, z) ∈ Rn×Rn.
Since gph Ω is nonempty, closed and convex by Assumption 3.3 (a) and (c), the proof of
all statements of Lemma 3.11 is analogous to the proof of Lemma 3.10. �

The following simple example illustrates the two previous results.

Example 3.12 Consider a GNEP satisfying Assumption 3.3 with N = 2, n1 = n2 = 1,
x1 and x2 the variables controlled by player 1 and 2, respectively, θ1(x) := x2

1, θ2(x) := x2

and the constraints g2
1(x) := x1 − x2 ≤ 0 and g2

2(x) := −x1 − x2 ≤ 0 for the second
player and without constraints for the first player for simplicity. Then, we have W =
{x ∈ R2 | |x1| − x2 ≤ 0}. For α = 2, we get

V2(x) = x2
1 + x2 −min

z1∈R

[
z2

1 + (x1 − z1)2
]
− min

z2∈[|x1|,+∞[

[
z2 + (x2 − z2)2

]
=

{
1
2
x2

1 + 1
4
, if x2 − 1

2
≥ |x1|,

1
2
x2

1 + x2 − |x1| − (x2 − |x1|)2, else.
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Figure 1: Illustrations for Example 3.12

The optimal value function V2 is nondifferentiable at x ∈ R2 with x1 = 0 and x2 <
1
2

(see ’kinks’ in Figure 1a) which, in particular, includes the unique solution x̄ = 0 of the
considered GNEP. This solution can be verified using Lemma 3.2 (e). On the other hand,
for the functions

f2(x) = 2x2
1 + x2

2 + x2 + δW (x)

and

h2(x) =
3

2
x2

1 + x2
2 +

{
x2 − 1

4
, if x2 − 1

2
≥ |x1|,

|x1|+ (x2 − |x1|)2 , else,

we get the following continuously differentiable conjugates; see Figure 1b and 1c:

f ∗2 (y) =


1
8

(y2
1 + 2(y2 − 1)2) , if y2 > 1 + 1

2
|y1|,

1
12

(1− |y1| − y2)2, if 1− |y1| < y2 ≤ 1 + 1
2
|y1|,

0, if y2 ≤ 1− |y1|,

and

h∗2(y) =


1
12

(2y2
1 + 3(y2 − 1)2 + 3) , if y2 > 2 + 2

3
|y1|,

1
32

((2− 2|y1| − y2)2 + 4y2
2) , if 2− 2|y1| < y2 ≤ 2 + 2

3
|y1|,

1
8
y2

2, if y2 ≤ 2− 2|y1|.

The continuous differentiability of both functions can be shown by simple calculations or
follows directly from Lemmas 3.10 and 3.11, respectively. ♦

Finally, we obtain the main result of this section in the next theorem, by applying the
duality theory by Toland and Singer [38, Theorem 2.2]. An essential finding of this duality
theory is the following statement: It holds that

inf
x∈Rn

[f(x)− h(x)] = inf
y∈Rn

[h∗(y)− f ∗(y)]

for all functions f, h : Rn → R ∪ {+∞} with h convex and lower semicontinuous.
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Figure 2: The dual gap function d∗2 from Example 3.14

Theorem 3.13 Let Assumption 3.3 hold, and define the dual gap function d∗α := h∗α − f ∗α
with the functions f ∗α and h∗α given by Lemmas 3.10 and 3.11, respectively. Then:

(a) The function d∗α is continuously differentiable on Rn.

(b) If ȳ is a solution of the unconstrained minimization problem

min d∗α(y), y ∈ Rn, (22)

with d∗α(ȳ) = 0, then x̄ := ∇f ∗α(ȳ) is a solution of the GNEP.

(c) Conversely, if x̄ is a solution of the GNEP and ȳ ∈ ∂hα(x̄), then ȳ is a solution of
(22) with d∗α(ȳ) = 0.

Proof. This result follows directly from the duality theory by Toland [37, 38] and Singer
[35], and the details of the proof are similar to those in [17, Theorem 3.1]. �

Example 3.14 Consider the GNEP with the unique solution x̄ = 0 from Example 3.12.
Since

h2(x) =
3

2
x2

1 + x2
2 +

{
x2 − 1

4
, if x2 − 1

2
≥ |x1|,

x2
1 + x2

2 + (1− 2x2)|x1|, else,

we have ∂h2(0, 0) = {s ∈ R2 | s1 ∈ [−1, 1], s2 = 0}. Due to Theorem 3.13 (c), all vectors
ȳ ∈ ∂h2(0, 0) are solutions of the dual minimization problem (22) with zero as the optimal
value. Simple calculations of global minima of the dual gap function d∗2 = h∗2 − f ∗2 confirm
this assertion; see Figure 2. Furthermore, Theorem 3.13 (b) states that x̄ = ∇f ∗2 (ȳ) = 0 is
a solution of the GNEP. This fact was already mentioned in Example 3.12. ♦

Note that the points ȳ ∈ R2 with ȳ1 = 0 and ȳ2 ≥ 2 are stationary points or local minima
of the dual gap function d∗2 in Example 3.14 which are not solutions of the corresponding
GNEP; see Figure 2. This example, which has fairly nice properties, points to the fact
that it might be difficult to find sufficient conditions for optimality of stationary points.
The following proposition is only a partial result in this direction.
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Figure 3: Illustrations for Example 3.16

Proposition 3.15 Let Assumption 3.3 hold, let d∗α = h∗α − f ∗α be the dual gap function,
and let xf

∗
α (y) and xh

∗
α (y), zh

∗
α (y) denote the vectors defined in Lemmas 3.10 and 3.11,

respectively. Then d∗α(ȳ) = 0 if and only if xf
∗
α (ȳ) = xh

∗
α (ȳ) = zh

∗
α (ȳ).

Proof. The proof is analogous to the proof of [17, Proposition 3.1]. �

Proposition 3.15 states that xf
∗
α (ȳ) = xh

∗
α (ȳ) = zh

∗
α (ȳ) =: x̄ implies d∗α(ȳ) = 0 and, conse-

quently, that x̄ is a solution of the GNEP. Since it is not difficult to see that xf
∗
α (ȳ) = xh

∗
α (ȳ)

holds at any stationary point of d∗α, it remains to provide conditions under which these two
vectors are equal to zh

∗
α (ȳ). However, we leave this question open and, therefore, also the

question in which cases stationary points of the dual gap function d∗α provide solutions of
a GNEP. On the other hand, we know the optimal value of d∗α, so this disadvantage might
not be that strong, since the function value itself tells us whether we are in a solution or
not. Note that, in Example 3.14, we have xf

∗
α (ȳ) = xh

∗
α (ȳ) 6= zh

∗
α (ȳ) for all stationary points

ȳ ∈ R2 with ȳ1 = 0 and ȳ2 ≥ 2 as well as d∗α(ȳ) = 1
4
6= 0. This function value alone shows

us that none of these stationary points provides a solution of the corresponding GNEP.
Theorem 3.13 treats the relation between the solutions of the GNEP and the global

minima of the dual gap function d∗α. More precisely, it shows that every solution of the opti-
mization problem (22) provides a solution of the GNEP, but the converse is not necessarily
true, because statement (c) of Theorem 3.13 assumes (implicitly) that the subdifferential
∂hα(x̄) is nonempty. In fact, this subdifferential could be empty, and the global minimum
of the function d∗α could be non-existent although the corresponding GNEP is solvable.
The next example illustrates this assertion.

Example 3.16 Consider a GNEP satisfying Assumption 3.3 with N = 2, n1 = n2 = 1,
θ1(x) := (x1 − 1)2, θ2(x) := (x2 + 4)2 and a constraint g2

1(x) := x2
1 + x2

2 − 1 ≤ 0 for the
second player and without constraints for the first player for simplicity. Then, we have
W = {x ∈ R2 | x2

1 + x2
2 ≤ 1}. For α = 2, we get

V2(x) = (x1 − 1)2 + (x2 + 4)2 −min
z1∈R

[
(z1 − 1)2 + (x1 − z1)2

]
+
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− min
z2∈

[
−
√

1−x21,
√

1−x21
] [(z2 + 4)2 + (x2 − z2)2

]
=

1

2
(x1 − 1)2 + (x2 + 4)2 +

−


1
2
(x2 + 4)2, if x2

1 + 1
4
(x2 − 4)2 < 1,(

4−
√

1− x2
1

)2
+
(
x2 +

√
1− x2

1

)2
, if 1

2
x2 − 2 ≤ −

√
1− x2

1,(
4 +

√
1− x2

1

)2
+
(
x2 −

√
1− x2

1

)2
, if 1

2
x2 − 2 ≥

√
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1,

∞, if |x1| > 1.

Note that, for all x ∈ W , it holds that 1
2
x2 − 2 ≤ −

√
1− x2

1. The graph of the optimal
value function V2 on the set W is illustrated in Figure 3a. Furthermore, the functions

f2(x) = x2
1 + x2

2 + (x1 − 1)2 + (x2 + 4)2 + δW (x)

and

h2(x) = x2
1 + x2

2 +
1

2
(x1 − 1)2 +

+
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2
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1

)2
+
(
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1− x2

1

)2
, if 1
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√
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)2
+
(
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√
1− x2

1

)2
, if 1

2
x2 − 2 ≥

√
1− x2

1,

∞, if |x1| > 1,

have the following conjugates:

f ∗2 (y) =

{
1
8

(
(y1 + 2)2 + (y2 − 8)2

)
− 17, if (y1 + 2)2 + (y2 − 8)2 < 16,√

(y1 + 2)2 + (y2 − 8)2 − 19, else,

and

h∗2(y) =

{
1
6

(
(y1 + 1)2 + (y2 − 4)2 − 51

)
, if (y1 − 1)2 + 1

4
(y2 − 16)2 < 9,

1
2

√
4(y1 − 1)2 + (y2 − 16)2 − 18 + 1

8
y2

2, else.

Using Lemma 3.2 (e), we obtain that the GNEP has the unique solution (x̄1, x̄2) = (1, 0).
At this point, the function h2, which is illustrated in Figure 3b, has ’infinite slope’, and
∂h2(x̄) = ∅. Therefore, Theorem 3.13 is not applicable to determine a solution of the
corresponding dual problem (22). Furthermore, the function d∗2 = h∗2 − f ∗2 is positive on
R2, and it holds that lim

y1→∞
d∗2(y1, 0) = 0; see Figure 3c. Thus, the dual problem (22) has

the infimum zero, but does not attain its infimum, hence it has no solution. ♦

4 Second-Order Properties of the Dual Gap Function

In this section, we show piecewise smoothness of the gradient mapping ∇d∗α under cer-
tain conditions on the strategy-sets and the cost functions of the GNEP. This piecewise
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smoothness result follows from our parametric optimization result stated in Theorem 2.11.
To this end, we use the following assumptions.

Assumption 4.1 (a) The strategy-space mappings Xν : Rn−nν → Rnν are given by

Xν(x
−ν) :=

{
xν ∈ Rnν | gνi (xν , x−ν) ≤ 0 ∀i = 1, . . . ,mν

}
(ν = 1, . . . , N) (23)

with convex and twice continuously differentiable functions gνi : Rn → R (ν =
1, . . . , N, i = 1, . . . ,mν).

(b) The feasible set W of the GNEP (7) defined in (12) is nonempty.

(c) The cost functions θν, ν = 1, . . . , N , are convex and twice continuously differentiable.

Then, in particular, we get W = {x ∈ Rn | gνi (xν , x−ν) ≤ 0 ∀i = 1, . . . ,mν , ν = 1, . . . , N}
and gph Ω = {(x, z) ∈ Rn × Rn | gνi (zν , x−ν) ≤ 0 ∀i = 1, . . . ,mν , ν = 1, . . . , N}. We start
our analysis by showing that the gradient of the conjugate function f ∗α is piecewise smooth
under the respective CRCQ assumptions.

Lemma 4.2 Let Assumption 4.1 hold, and let ȳ ∈ Rn such that CRCQ holds at x̄ := xf
∗
α (ȳ)

with respect to the feasible set W . Then, there exists a neighborhood V of ȳ such that
∇f ∗α = xf

∗
α is piecewise smooth on V .

Proof. We define φ : Rn × Rn → R by φ(x, y) := α
2
‖x‖2 +

∑N
ν=1 θν(x) − xTy. Then,

φ is in particular strongly convex in x and C2. Moreover, with p :=
∑N

ν=1 mν we define
c : Rn → Rp by c(x) := (gνi (x))(i=1,...,mν , ν=1,...,N). Then, each function cj (j = 1, . . . , p) is
convex and C2 by assumption, and the assertion follows from Theorem 2.11. �

We get a similar result for the gradient of the conjugate function h∗α.

Lemma 4.3 Let Assumption 4.1 hold, and let ȳ ∈ Rn be given such that CRCQ holds at
(x̄, z̄) := (xh

∗
α (ȳ), zh

∗
α (ȳ)) with respect to gph Ω. Then, there exists a neighborhood V of ȳ

such that ∇h∗α = xh
∗
α is piecewise smooth on V .

Proof. The assertion follows from Theorem 2.11 similar to the proof of Lemma 4.2. �

The following theorem is the main result of this section and an immediate consequence of
two foregoing lemmas.

Theorem 4.4 Let the assumptions of Lemmas 4.2 and 4.3 hold at ȳ ∈ Rn. Then, the
function ∇d∗α is PC1 near ȳ.

Proof. The proof follows immediately from Lemma 4.2 and 4.3 together with the fact
that ∇d∗α = ∇h∗α −∇f ∗α. �

Corollary 4.5 Let Assumption 4.1 hold, and let the functions gνi (ν = 1, . . . , N, i =
1, . . . ,mν) from (23) be affine-linear. Then, the function ∇d∗α is PC1 on Rn.
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5 Numerical Results

Theorem 3.13 motivates to tackle a GNEP by solving the corresponding dual unconstrained
minimization problem (22). The objective function of this minimization problem is, how-
ever, relatively expensive to calculate. On the other hand, our previous results show that
each function evaluation automatically also provides the gradient. We therefore use the
spectral gradient (SG) method from [31]. It has the advantage that only first order infor-
mation is required and that, typically, no line search with extra function evaluations are
needed. The method is defined by yk+1 := yk − tk∇d∗α(yk) with

t0 := 1, tk :=
‖qk−1‖2

(qk−1)T rk−1
, qk−1 := yk − yk−1, rk−1 := ∇d∗α(yk)−∇d∗α(yk−1)

if tk satisfies a nonmonotone line search condition from [31]. We terminate the iteration if
either ‖∇d∗α(yk)‖ ≤ 10−6 or d∗α(yk) ≤ 10−6 holds.

For the computation of the conjugate functions of fα and hα from Lemmas 3.10 and 3.11,
respectively, we use the TOMLAB/SNOPT solver with settings Prob.SOL.optPar(9)=
10−8, Prob.SOL.optPar(11)= 10−8 and Prob.SOL.optPar(12)= 10−8, see the TOM-
LAB/SNOPT User’s Guide on the web site http://tomopt.com/tomlab/products/snopt/
for more information about the TOMLAB/SNOPT solver.

The test problems used here are: Examples 3.12 and 3.16 from Section 3, a class of test
examples indicated by a capital T which are GNEP reformulations of a discrete approx-
imation of a transportation problem defined as a generalized quasi-variational inequality
problem in [34], as well as a subset of test problems from the report version [10] of the pa-
per [11], indicated by a capital A. All these test examples satisfy Assumptions 3.3 (a) and
(c), whereas the requirement (b) of this assumption is violated except for Examples 3.12,
3.16, A8, and A11. For our method to work also on the remaining examples, we used the
strategy for the choice of the parameter α outlined after the statement of Lemma 3.9.

More precisely, in our implementation, whenever possible, we first choose, for each
example, the parameter α as the smallest integer such that the minimal eigenvalues λmin,1
and λmin,2 of the Hessians ∇2

x (−Fα) and ∇2
(x,z) (−Hα) with the functions Fα and Hα

defined in (20) and (21), respectively, are larger than 0.5. This choice of α guarantees that
the functions fα and hα have all the desired properties. Such a suitable choice was easily
possible for the two transportation problems T1 and T2 as well as for all test problems from
[10] with quadratic cost functions, whereas the other test problems from that collection
were excluded from our test set. Note that, without this particular choice of α, we usually
get much worse results and often do not even converge to a solution.
The numerical results obtained with the SG method are summarized in Table 1. This
table contains the following data: The name of the example, the number of players N ,
the number of variables n, the value of the chosen parameter α, the eigenvalues λmin,1 and
λmin,2 of the corresponding Hessians ∇2

x (−Fα) and ∇2
(x,z) (−Hα), respectively, the starting

point y0, the number of iterations k, the cumulated number of dual gap function evaluations
#d∗α until termination, the final value of the dual gap function d∗α(yk), and the final value
of the gradient norm ‖∇d∗α(yk)‖.
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Example N n α λmin,1 λmin,2 y0 k #dα d∗α(y
k) ‖∇d∗α(yk)‖

Ex. 3.12 2 2 2 2.00 0.76 (0, . . . , 0) 0 1 0.0000e+00 0.0000e+00
(1, . . . , 1) 5 6 1.0856e-07 1.9022e-04

(10, . . . , 10) 3 4 2.5000e-01 7.9040e-07
Ex. 3.16 2 2 1 3.00 1.38 (0, . . . , 0) 83 141 1.7000e+01 9.9880e-07

(1, . . . , 1) 64 106 1.7000e+01 9.9216e-07
(10, . . . , 10) 64 108 1.7000e+01 9.3826e-07

Ex. A3 3 7 63 13.86 0.83 (0, . . . , 0) 970 1377 7.4902e-08 1.0444e-05
(1, . . . , 1) 1973 2809 4.0346e-07 5.5712e-05

(10, . . . , 10) 1499 2133 4.7735e-07 3.3865e-04
Ex. A5 3 7 14 4.76 0.61 (0, . . . , 0) 20 22 6.7906e-07 1.7271e-04

(1, . . . , 1) 17 18 7.0005e-07 1.1031e-04
(10, . . . , 10) 32 35 3.3339e-07 1.7712e-04

Ex. A7 4 20 117 4.85 0.63 (0, . . . , 0) 15 16 5.0958e-08 2.1327e-05
(1, . . . , 1) 15 16 5.2761e-08 2.1706e-05

(10, . . . , 10) 15 16 6.0704e-08 2.3002e-05
Ex. A8 3 3 2 2.00 0.76 (0, . . . , 0) 11 12 1.4745e-07 1.3367e-04

(1, . . . , 1) 5 6 4.7894e-07 2.8679e-04
(10, . . . , 10) 9 10 1.2500e-01 3.3832e-07

Ex. A11 3 3 1 3.00 1.38 (0, . . . , 0) 4 5 4.9960e-15 3.7652e-08
(1, . . . , 1) 0 1 0.0000e+00 5.6501e-10

(10, . . . , 10) 2 3 1.4334e-11 2.0243e-06
Ex. A12 2 2 2 2.00 1.00 (0, . . . , 0) 2 3 1.8645e-11 2.4924e-06

(1, . . . , 1) 2 3 2.4218e-10 6.9597e-06
(10, . . . , 10) 2 3 3.9645e-10 8.9048e-06

Ex. A13 3 3 2 2.02 0.78 (0, . . . , 0) 13 15 9.9189e-07 2.0379e-04
(1, . . . , 1) 14 16 2.2737e-13 4.6215e-07

(10, . . . , 10) 20 25 -2.2737e-13 5.7849e-07
Ex. A15 3 6 3 3.02 0.60 (0, . . . , 0) 1094 1433 9.9879e-07 1.0102e-05

(1, . . . , 1) 1099 1470 9.1871e-07 1.1981e-04
(10, . . . , 10) 1443 1922 3.3720e-07 3.7221e-04

Ex. A17 2 3 2 1.63 0.79 (0, . . . , 0) 7 8 8.9804e-09 3.8128e-05
(1, . . . , 1) 8 9 0.0000e+00 2.7595e-08

(10, . . . , 10) 8 9 2.2402e-07 1.9045e-04
Ex. A18 2 12 2 2.00 0.76 (0, . . . , 0) 23 25 9.3132e-10 2.6248e-06

(1, . . . , 1) 36 37 2.9153e-07 2.3941e-04
(10, . . . , 10) 27 32 1.4095e-08 4.8729e-05

Ex. T1 2 2400 2 2.76 0.57 (0, . . . , 0) 18 19 3.2072e-07 3.0320e-04
(1, . . . , 1) 20 21 3.0623e-07 1.9514e-04

(10, . . . , 10) 21 22 3.3050e-07 2.2579e-04
Ex. T2 2 4800 2 2.76 0.57 (0, . . . , 0) 19 20 1.7288e-08 5.3392e-05

(1, . . . , 1) 20 21 2.3871e-07 2.5285e-04
(10, . . . , 10) 21 22 6.2399e-07 2.9929e-04

Table 1: Numerical results with the spectral gradient method
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The calculations with the SG method were quite successful for most instances, except
for Example 3.16 with all starting points and Examples 3.12 and A8 with the third starting
point, where the function value is not small enough and the iteration is terminated since
the norm of the gradient gets small, hence we are close to a non-optimal stationary point.
Note that the failure in Example 3.16 was to be expected based on the considerations in
this example! Moreover, there are two cases, namely Example 3.12 with first starting point
and Example A11 with second starting point, where the starting point already provides
a solution of the dual unconstrained minimization problem (22). Furthermore, the bad
convergence speed in Examples A3 and A15 leads to large number of iterations although the
calculations of solutions for all starting points were successful. In all other test examples,
we observed far better convergence properties. The iteration is terminated after a relatively
small number of iterations, in particular, taking into account that the SG method is just
a first-order gradient method.

6 Final Remarks

This paper shows that a class of generalized Nash equilibrium problems can be refor-
mulated, using some results from variational and convex analysis, as an unconstrained
and smooth optimization problem. There are a couple of questions still open for future
research. First, when is a stationary point of our unconstrained optimization problem al-
ready a global minimum and, therefore, a solution of the GNEP? Second, can we develop
a second-order method with fast local convergence by exploiting the fact that the gradient
is still piecewise smooth? Third, what happens for the case where the function evaluations
are done only inexactly? The last point is quite interesting from a practical perspective
since the evaluation of our unconstrained objective function requires the solution of suitable
optimization problems which are strongly convex, but which might be difficult to compute
exactly at least in the non-quadratic case.
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