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Abstract. A well-known technique for the solution of quasi-variational inequalities (QVIs)
consists in the reformulation of QVIs as a constrained or unconstrained optimization prob-
lem by means of so-called gap functions. In contrast to standard variational inequalities,
however, these gap functions turn out to be nonsmooth in general. Here it is shown that
one can obtain an unconstrained optimization reformulation of a class of QVIs by using a
continuously differentiable dual gap function. This extends an idea from Dietrich (Jour-
nal of Mathematical Analysis and Applications 235, 1999, pp. 380–393). Some numerical
results illustrate the practical behavior of this dual gap function approach.
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1 Introduction

Given a function F : Rn → Rn and a set-valued mapping S : Rn ⇒ Rn such that S(x) is
closed and convex (possibly empty) for any x ∈ Rn, the finite-dimensional quasi-variational
inequality problem (QVI) consists in finding a solution x ∈ S(x) such that

F (x)T (z − x) ≥ 0 ∀z ∈ S(x). (1)

This QVI was originally introduced in a series of papers by Bensoussan et al., see [3, 4, 5],
where the authors consider an infinite-dimensional QVI arising from an application in
impulse control problems. Several other applications from free boundary value problems
can be found in the monograph [2]. Further applications are incorporated in the recent
test problem collection [10] which also contains the corresponding references.

Although there exist plenty of papers dealing with several theoretical issues like the
existence and uniqueness of solutions, numerical methods for the solution of QVIs are only
starting to evolve. Most of the algorithmic papers deal with projection methods or fixed
point iterations, see, e.g., [7, 23, 24, 25, 34, 35]. Essentially, the convergence theory for
these methods considers only the case where the feasible set is given by S(x) = c(x)+K for
a suitable function c : Rn → Rn and a fixed closed and convex set K ⊆ Rn. This class of
problems is sometimes called the “moving set case”. Other globally convergent methods,
where also more general QVIs are treated, include the penalty-multiplier approach by Pang
and Fukushima [26] and the potential-reduction interior-point method from Facchinei et
al. [11]. Locally convergent Newton-type methods are presented by Outrata et al., see
[27, 28, 29].

Here we follow the gap function idea which reformulates the QVI as a constrained or
unconstrained optimization problem, see [1, 9, 14, 15, 16, 38] for more details. However,
these gap functions are typically nonsmooth in the QVI-setting, except for the case where
the feasible set is of the moving-set-type [9] or a suitable generalization of it [16]. In
particular, this statement also holds for the regularized gap function that was originally
introduced by Fukushima [13] in the context of standard variational inequalities. However,
the paper by Dietrich [8] observed that this regularized gap function may be viewed as
a difference of two convex functions and can therefore be used, by means of a suitable
duality theory, to obtain a dual gap function which gives a smooth reformulation for a class
of QVIs that are different from the moving set case. The aim of this paper is therefore to
elaborate further on this approach. In particular, we get rid of the (implicit) assumption
from [8] that the set S(x) is always nonempty since, in many practical instances, this set
is indeed empty for many x. Furthermore, we verify some stronger smoothness properties
and present some numerical results obtained by the dual gap function approach.

The paper is organized as follows: Section 2 restates some definitions and standard
results from convex and variational analysis. The dual gap function and its basic properties
are then derived in Section 3. The piecewiese smoothness of this dual gap function is shown
in Section 4 under a suitable assumption. Some promising numerical results are given in
Section 5. We close with some final remarks in Section 6.
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The notation used in this paper fairly standard. The symbol ‖ · ‖ always denotes the
Euclidean norm. For a set Ω ⊂ Rn and a matrix D ∈ Rm×n, we put D ·Ω := {Dw | w ∈ Ω}.
Furthermore, if Ω is nonempty, closed, and convex, we denote by PΩ(x) the Euclidean
projection of a vector x ∈ Rn onto the set Ω. Also, we put R> := {x ∈ R | x > 0}.

2 Preliminaries

In this section we review certain concepts from variational and convex analysis employed
in the subsequent analysis. The notation and terminology is, in large parts, based on [33].

We first restate some definitions for set-valued mappings, see, e.g., [33, Chapter 5] for
more details.

Definition 2.1 Let Φ : Rn ⇒ Rm be a set-valued mapping. Then Φ is called

(a) outer semicontinuous (osc) at x̄ ∈ Rn if for all sequences
{
xk
}
⊂ Rn with xk → x̄

and all sequences zk → z̄ with zk ∈ Φ(xk) for all k ∈ N sufficiently large we have
z̄ ∈ Φ(x̄);

(b) outer semicontinuous (osc) on Rn if it is osc at every x ∈ Rn;

(c) graph-convex if its graph

gph Φ = {(x, z) ∈ Rn × Rm | z ∈ Φ(x)}

is a convex set.

The following properties of an osc and graph-convex set-valued mapping will be used in
our subsequent analysis.

Lemma 2.2 Let Φ : Rn ⇒ Rm be an osc and graph-convex set-valued mapping. Then the
following statements hold:

(a) The sets Φ(x) are closed and convex (possibly empty).

(b) For all x1, x2 ∈ Rn with Φ(xi) 6= ∅ for i = 1, 2, and all t ∈ [0, 1], we have

tΦ(x1) + (1− t)Φ(x2) ⊂ Φ
(
tx1 + (1− t)x2

)
,

in particular, the set on the right-hand side is nonempty.

(c) The set gph Φ is closed and convex.

All statements are well known and easily verified; regarding assertion (b), we refer the
reader, e.g., to [33, p. 155].
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We next introduce some important concepts for extended real-valued functions, more
precisely, for functions f : Rn → R∪{+∞}. Handy tools for the analysis of such a function
are its epigraph

epi f := {(x, γ) ∈ Rn × R | f(x) ≤ γ}

and its domain
dom f := {x ∈ Rn | f(x) < +∞}.

Note that we call f proper if dom f 6= ∅.

Definition 2.3 Let f : Rn → R ∪ {+∞} be proper.

(a) f is called lower semicontinuous (lsc) if epi f is closed.

(b) f is called convex if epi f is convex.

(c) f is called strongly convex with modulus c > 0 if f − c
2
‖ · ‖2 is convex.

(d) If f is convex and x̄ ∈ Rn then the (possibly empty) set

∂f(x̄) =
{
d ∈ Rn | f(x̄) + dT (x− x̄) ≤ f(x) ∀x ∈ Rn

}
is called the subdifferential of f at x̄.

(e) The conjugate of f is the function f ∗ : Rn → R ∪ {+∞} defined by

f ∗(y) = sup
x∈Rn

[
xTy − f(x)

]
.

Note that for a proper and convex function f , the subdifferential ∂f(x̄) is nonempty if x
lies in the (relative) interior of dom f , see [19, Theorem E 1.4.2].

Given a set X ⊂ Rn, a very prominent extended real-valued function is the indicator
function δX : Rn → R ∪ {+∞} defined by

δX(x) :=

{
0 if x ∈ X,
+∞ if x /∈ X.

It is easily verified that δX is lsc if and only if X is closed, and convex if and only if X is
convex.

The following result summarizes some well-known properties of the conjugate function.

Lemma 2.4 Let f : Rn → R ∪ {+∞} be a proper convex function. Then the following
statements hold:

(a) The conjugate f ∗ of f is convex and lsc.

(b) The bi-conjugate function f ∗∗ := (f ∗)∗ is convex and lsc.

(c) The inequality f ∗∗(x) ≤ f(x) holds for all x ∈ Rn.
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(d) The equality f ∗∗(x) = f(x) holds for all x ∈ Rn if and only if f is a (convex and) lsc
function.

(e) The Fenchel inequality f(x) + f ∗(y) ≥ xTy holds for all x, y ∈ Rn.

(f) The equality f(x̄) + f ∗(ȳ) = x̄T ȳ holds if and only if ȳ ∈ ∂f(x̄).

All statements can entirely be found in [19, Chapter E], cf. [19, Thm. E 1.1.2, Thm. E
1.3.5, Cor. E 1.3.6, Eq. E 1.1.3, Thm. E 1.4.1].

Another useful observation on the conjugate function is restated in the following result
which is a direct application of [33, Prop. 12.60].

Lemma 2.5 Let f : Rn → R ∪ {+∞} be a proper and lsc convex function. Then f is
strongly convex with modulus c > 0 if and only if f ∗ is differentiable with ∇f ∗ locally
Lipschitz with modulus 1

c
.

3 The Smooth Dual Gap Function

Let α > 0 be a given parameter. Then the regularized gap function for QVIs is defined by

gα(x) := − inf
z∈S(x)

[
F (x)T (z − x) +

α

2
‖z − x‖2

]
(2)

and was introduced independently by Dietrich [9] and Taji [38], see also [16] for further
details and [13] for its origin in the context of standard variational inequalities. Let

X := {x ∈ Rn | x ∈ S(x)} (3)

be the fixed point set of the set-valued mapping S which plays an important role in the
context of QVIs and is often called the feasible set of the underlying QVI. Then the following
basic properties of the regularized gap function are observed in [9, 38].

Lemma 3.1 The following statements hold for the regularized gap function:

(a) gα(x) ≥ 0 for all x ∈ X.

(b) gα(x̄) = 0 for some x̄ ∈ X ⇐⇒ x̄ is a solution of the QVI.

Hence the QVI (1) is equivalent to finding a solution of the constrained minimization
problem

min gα(x) s.t. x ∈ X (4)

with zero optimal value. Note, however, that the objective function gα : Rn → R ∪ {−∞}
is, in general, nonconvex and nondifferentiable, and takes the value −∞ exactly for x /∈M ,
where

M := domS := {x ∈ Rn | S(x) 6= ∅} (5)
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denotes the domain of the set-valued map S. Therefore, we can rewrite the constrained
optimization problem (4) as the unconstrained optimization problem

min
x∈Rn

[
gα(x) + δX(x)

]
(6)

with convention η+∞ = +∞ for all η ∈ R∪{±∞}. Note that this convention makes sense
in our case since the objective function from (6) should take the function value +∞ outside
of X, in particular, we would like to have gα(x)+δX(x) = +∞ also for all x 6∈ X∪M = M .

Our next goal is to rewrite the objective function of (6) as a difference of two convex
functions. To this end we have to make some assumptions on the class of QVIs that we
are going to deal with.

Assumption 3.2

(a) The feasible set X of the QVI (1) defined in (3) is nonempty.

(b) The function F : Rn → Rn is given by F (x) = Ax+ b with A ∈ Rn×n and b ∈ Rn.

(c) The set-valued mapping S : Rn ⇒ Rn is graph-convex and osc on Rn.

Assumption 3.2 (a) does not limit the application of our theory since otherwise the QVI
would not have a solution. Assumptions 3.2 (b) and (c), on the other hand, are more
restrictive in the sense that we consider only (affine-)linear QVIs with suitable set-valued
mappings S.

There are a couple of immediate consequences of Assumption 3.2 summarized in the
following result.

Lemma 3.3 Suppose that Assumption 3.2 holds. Then

(a) The set X from (3) is nonempty, closed, and convex.

(b) The set M from (5) is nonempty and convex.

Proof. (a) The set X is nonempty by Assumption 3.2 (a). In order to show that X is
also closed, let {xk} ⊂ X be an arbitrary sequence with xk → x̄ for some x̄ ∈ Rn. Then
xk ∈ S(xk) for all k ∈ N. Since the set-valued mapping S : Rn ⇒ Rn is osc by Assumption
3.2 (c), it follows that x̄ ∈ S(x̄). Hence x̄ ∈ X so that X is a closed set.

We next show that X is also convex. To this end, let x1, x2 ∈ X and t ∈ [0, 1] be
arbitrarily given. Then x1 ∈ S(x1) and x2 ∈ S(x2). Using the assumed graph-convexity of
S together with Lemma 2.2 (b), it follows that tx1 + (1− t)x2 ∈ S

(
tx1 + (1− t)x2

)
. This

means that tx1 + (1− t)x2 ∈ X, i.e., X is a convex set.

(b) By Assumption 3.2 (a), there exists an element x ∈ X which means that x ∈ S(x),
hence x ∈M , so that M is nonempty.

Finally, we come to the convexity of M . Let x1, x2 ∈ M and t ∈ [0, 1] be given. Then
S(x1) 6= ∅ and S(x2) 6= ∅, hence there exist elements z1 ∈ S(x1) and z2 ∈ S(x2). Using As-
sumption 3.2 (c) together with Lemma 2.2 (b), this implies tz1+(1−t)z2 ∈ S

(
tx1+(1−t)x2

)
.
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Consequently, the set on the right-hand side is nonempty, i.e., we have tx1 +(1− t)x2 ∈M .
�

It is worth mentioning that even for an osc and graph-convex set-valued mapping S, its
domain is not necessarily closed, as illustrated by the subsequent example.

Example 3.4 Let S : R ⇒ R be given by

S(x) :=

{
{y ∈ R | y ≥ 1

x
} if x > 0,

∅ if x ≤ 0.

Obviously, S is graph-convex. Also, S is osc, since, if xk ↓ 0, a sequence {zk} with
zk ∈ S(xk) is divergent, and all other cases are unproblematic. On the other hand, M =
domS = R> is not closed.

We next follow an observation by Dietrich [8] and reformulate the unconstrained objective
function from problem (6) explicitly as a difference of two convex functions, i.e., we obtain
a DC minimization problem, see [18] for a survey of DC programming. Having this DC
formulation, it is pretty straightforward to obtain a reformulation as a difference of two
strongly convex functions. Then we may invoke the duality theory by Toland [39] and
Singer [36] in order to derive a smooth dual formulation of the original QVI.

The basic step to get a DC formulation is the following rearrangement of the regularized
gap function:

gα(x) = − inf
z∈S(x)

[
− 1

2α
‖F (x)‖2 +

α

2

(
‖z − x‖2 +

2

α
F (x)T (z − x) +

1

α2
‖F (x)‖2

)]
=

1

2α
‖F (x)‖2 − α

2
inf

z∈S(x)

∥∥∥z − (x− 1

α
F (x)

)∥∥∥2

(7)

=
1

2α
‖F (x)‖2 − Φα(x) (8)

with the function Φα : Rn → R ∪ {+∞} defined by

Φα(x) :=
α

2
inf

z∈S(x)

∥∥∥z − (x− 1

α
F (x)

)∥∥∥2

(9)

=

{
α
2

∥∥PS(x)

(
x− 1

α
F (x)

)
−
(
x− 1

α
F (x)

)∥∥2
if x ∈M,

+∞ if x /∈M,
(10)

where we recall that, in view of Assumption 3.2 (c) and Lemma 2.2 (a), the set S(x) is
nonempty, closed, and convex, hence the projection PS(x)(y) of the point y onto this set is
well-defined for all x ∈M with M being the set from (5).

Our next goal is to prove that Φα is lsc and convex. For these purposes, the following
auxiliary result is pivotal.
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Lemma 3.5 Let S : Rn ⇒ Rn be graph-convex and osc on Rn. Then the function

Ψ : Rn × Rn → R ∪ {+∞}, Ψ(z, x) := δS(x)(z)

is lsc and convex in (z, x).

Proof. First, we show that Ψ is lsc: To this end, let {(zk, xk, γk)} ⊂ epi Ψ such that
(zk, xk, γk) → (z̄, x̄, γ̄). In particular, it holds that γk ≥ 0, hence γ̄ ≥ 0. On the other
hand, we have δS(xk)(z

k) ≤ γk <∞, hence it necessarily follows from the definition of the
indicator function that δS(xk)(z

k) = 0, i.e., zk ∈ S(xk) holds for all k ∈ N. Since S is osc,
we therefore have z̄ ∈ S(x̄) and thus, δS(x̄)(z̄) = 0 ≤ γ̄, hence (z̄, x̄, γ̄) ∈ epi Ψ. It follows
that epi Ψ is closed, i.e., Ψ is lsc.

It remains to prove that Ψ is convex: For these purposes, let (z, x, γ), (z′, x′, γ′) ∈ epi Ψ
and t ∈ (0, 1). Similar to the first part of the proof, it then follows that z ∈ S(x) and
z′ ∈ S(x′). Consequently, we have tz ∈ tS(x) and (1− t)z′ ∈ (1− t)S(x′) and hence, due
to the graph-convexity of S, we get tz + (1 − t)z′ ∈ S(tx + (1 − t)x′), cf. Lemma 2.2 (b).
Hence Ψ(tz + (1− t)z′, tx+ (1− t)x′) = 0 ≤ tγ + (1− t)γ′, and thus, epi Ψ is convex, i.e.,
Ψ is convex. �

Lemma 3.5 enables us to verify that the mapping Φα from (9) is lsc and convex.

Lemma 3.6 Let Assumption 3.2 hold. Then the function Φα is lsc and convex on Rn.

Proof. In view of (9), we may rewrite Φα as

Φα(x) = inf
z∈Rn

f(z, x),

where f : Rn × Rn → R ∪ {+∞} is given by

f(z, x) :=
α

2

∥∥∥∥z − (x− 1

α
F (x)

)∥∥∥∥2

+ δS(x)(z).

The first summand of f is convex as it is the composition of the convex map α
2
‖ · ‖2 and

an affine function, see, e.g., [33, Ex. 2.20]. Moreover, the first summand is, in particular,
continuous. The second summand is lsc and convex due to Lemma 3.5, hence f is lsc and
convex (and proper, since M 6= ∅). Moreover, it holds that

argmin
z

f(z, x) =

{
PS(x)

(
x− 1

α
F (x)

)}
∀x ∈M

is single-valued. Since M 6= ∅, the assertions therefore follow from [33, Cor. 3.32]. �
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Note that Lemma 3.6 exploits the definition (9) of the mapping Φα in order to verify that
it is both lsc and convex. Alternatively, one might try to use the representation (10) to
rewrite Φα in the form

Φα(x) =
α

2

∥∥PS(x)

(
x− 1

α
F (x)

)
−
(
x− 1

α
F (x)

)∥∥2
+ δM(x).

This formulation can indeed be used to show convexity of Φα, but the verification of the
lower semicontinuity is more difficult, especially since M is not necessarily closed, hence
this formulation is, in general, not the sum of two lsc functions.

Moreover, we would like to point out that the proof of Lemma 3.6 exploits, for the first
time, the assumption that F (x) = Ax+ b is an affine mapping, since it uses the fact that
the composition of an outer convex function with an inner linear function remains convex.
Similar situations will also arise in the subsequent analysis, and it is clear that there exist
more general classes of functions F which have this property, but in order to avoid any
technical conditions and to concentrate on the main ideas of our approach, Assumption
3.2 (b) takes F as a linear function.

In view of Lemma 3.6 and Assumption 3.2 (b), the representation (8) gives an ex-
plicit formulation of the regularized gap function as a DC optimization problem. In order
to obtain better smoothness properties in a corresponding dual formulation, we add and
substract a simple strongly convex quadratic term. This gives us the following DC decom-
position of the unconstrained objective function from (6):

gα(x) + δX(x) = fα(x)− hα(x)

with the two functions fα, hα : Rn → R ∪ {+∞} defined by

fα(x) :=
α

2
‖x‖2 +

1

2α
‖F (x)‖2 + δX(x), hα(x) :=

α

2
‖x‖2 + Φα(x). (11)

We summarize the previous discussion in the following result.

Lemma 3.7 Let Assumption 3.2 hold, and let fα, hα be defined as in (11). Then:

(a) The function fα is lsc and convex on Rn as well as strongly convex on its domain
dom fα = X.

(b) The function hα is lsc and convex on Rn as well as strongly convex on its domain
domhα = M .

(c) x̄ is a solution of the QVI if and only if it is a solution of the unconstrained opti-
mization problem

min
x∈Rn

[fα(x)− hα(x)]

with optimal function value equal to zero.
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We next want to apply the duality theory by Toland and Singer. This theory involves the
conjugates of the two functions fα and hα. We therefore give explicit expressions for these
two conjugate functions in the next two results.

Lemma 3.8 Let Assumption 3.2 hold. Define

Qα := α
(
I +

1

α2
ATA

)
, qα :=

1

α
AT b, cα :=

1

2α
bT b, ‖x‖Qα :=

√
xTQαx. (12)

Then the following statements hold for the conjugate f ∗α of fα:

(a) f ∗α is given by

f ∗α(y) =
1

2

∥∥Q−1
α (y − qα)

∥∥2

Qα
− 1

2

∥∥Q−1
α (y − qα)− xf∗α (y)

∥∥2

Qα
− cα (13)

where xf
∗
α (y) denotes the unique solution of the minimization problem

min
1

2

∥∥Q−1
α (y − qα)− x

∥∥2

Qα
s.t. x ∈ X, (14)

i.e., xf
∗
α (y) is the projection of the vector Q−1

α (y − qα) onto the set X with respect to
the Qα-norm.

(b) f ∗α has the domain dom f ∗α = Rn.

(c) f ∗α is differentiable with locally Lipschitz gradient given by ∇f ∗α(y) = xf
∗
α (y).

Proof. Using Definition 2.3 (e) and the notation from (12), we obtain

f ∗α(y) = sup
x∈Rn

[
xTy − α

2
‖x‖2 − 1

2α
‖F (x)‖2 − δX(x)

]
= sup

x∈Rn

[
xTy − α

2
xT
(
I +

1

α2
ATA

)
x− 1

α
bTAx− 1

2α
bT b− δX(x)

]
= sup

x∈Rn

[
xT (y − qα)− 1

2
‖x‖2

Qα − cα − δX(x)
]

= sup
x∈X

[1

2

∥∥Q−1
α (y − qα)

∥∥2

Qα
− cα −

1

2

∥∥Q−1
α (y − qα)− x

∥∥2

Qα

]
=

1

2

∥∥Q−1
α (y − qα)

∥∥2

Qα
− cα −

1

2
inf
x∈X

∥∥Q−1
α (y − qα)− x

∥∥2

Qα
. (15)

Since the set X is nonempty, closed, and convex by Lemma 3.3 (a), and taking into account
that the matrix Qα is positive definite, the minimization problem (14) has a unique solution
xf

∗
α (y) for all y ∈ Rn. By definition, this solution is simply the projection of the vector
Q−1
α (y − qα) onto the set X with respect to the Qα-norm and therefore known to be well-

defined for all y ∈ Rn, so that dom f ∗α = Rn. This proves statements (a) and (b).
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Part (c) can be derived as follows: Using the continuity of the projection operator, it
follows that the mapping y 7→ xf

∗
α (y) is continuous. Therefore, application of Danskin’s

Theorem (see, e.g., [6]) gives that f ∗α is continuously differentiable and directly yields
∇f ∗α(y) = xf

∗
α (y), cf. also the subsequent proof where a similar statement is carried out in

some more detail. The fact that ∇f ∗α is even locally Lipschitz follows directly from Lemma
2.5. �

The following result computes the conjugate function of hα and states some additional
properties in the same spirit as in the previous result for the function fα.

Lemma 3.9 Let Assumption 3.2 hold. Then the following statements hold for the conju-
gate h∗α of hα:

(a) h∗α(y) is given by

h∗α(y) =
1

2α
‖y‖2 − α

2

∥∥xh∗α (y)− 1

α
y
∥∥2 − α

2

∥∥zh∗α (y)−
(
xh

∗

α (y)− 1

α
F (xh

∗

α (y))
)∥∥2

(16)

where
(
xh

∗
α , z

h∗
α

)
(y) is the unique solution of the minimization problem

min
[∥∥x− 1

α
y
∥∥2

+
∥∥z − (x− 1

α
F (x)

)∥∥2
]

s.t. (x, z) ∈ gphS.

(b) h∗α(y) has the domain domh∗α = Rn.

(c) h∗α(y) is differentiable with locally Lipschitz gradient given by ∇h∗α(y) = xh
∗
α (y).

Proof. Using Definition 2.3 (e), we have

h∗α(y) = sup
x∈Rn

[
xTy − α

2
‖x‖2 − Φα(x)

]
= sup

x∈Rn

[ 1

2α
‖y‖2 − α

2

(
‖x‖2 − 2

α
xTy +

1

α2
‖y‖2

)
− Φα(x)

]
=

1

2α
‖y‖2 − inf

x∈Rn
α

2

[∥∥x− 1

α
y
∥∥2

+ inf
z∈S(x)

∥∥z − (x− 1

α
F (x)

)∥∥2
]

(17)

=
1

2α
‖y‖2 − inf

(x,z)∈gphS

α

2

[∥∥x− 1

α
y
∥∥2

+
∥∥z − (x− 1

α
F (x)

)∥∥2
]
. (18)

Recall that, by Assumption 3.2 (a) and (c) and Lemma 2.2 (c), the set gphS is nonempty,
closed, and convex. Furthermore, the mapping

ϕα(x, y, z) :=
∥∥x− 1

α
y
∥∥2

+
∥∥z − (x− 1

α
F (x)

)∥∥2

is strongly convex in (x, z) (uniformly in y) since

∇2
(x,z)(x,z)ϕ(x, y, z) = 2

(
2I + 1

α2A
TA− 1

α
(AT + A) −I + 1

α
AT

−I + 1
α
A I

)
=: Bα

10



is positive definite in (x, z) (uniformly in y) because we have

(
vT wT

)
Bα

(
v
w

)
= 2
[
‖v‖2 +

∥∥w − v +
1

α
Av
∥∥2
]
≥ 0 and

(
vT wT

)
Bα

(
v
w

)
= 0 if and only if (v, w) = 0.

Hence, the infimum in (18) is uniquely attained for all y ∈ Rn. We denote this unique
solution by

(
xh

∗
α , z

h∗
α

)
(y) and obtain (16) and domh∗α = Rn. This proves statements (a)

and (b).
Furthermore, the continuous differentiability of the conjugate convex function h∗α follows

from Lemma 2.5. Alternatively, we may invoke [20, Corollaries 8.1 and 9.1] to see that the
mapping y 7→

(
xh

∗
α , z

h∗
α

)
(y) is continuous, which together with Danskin’s Theorem can be

used to see that h∗α is indeed continuously differentiable, with gradient given by

∇h∗α(y) =
1

α
y − α

2
∇yϕ(x, y, z)

∣∣
(x,z)=(xh∗α ,zh∗α )(y)

=
1

α
y + xh

∗

α (y)− 1

α
y = xh

∗

α (y).

The fact that ∇h∗α is even locally Lipschitz is due to Lemma 2.5. This completes the proof.
�

In order to illustrate the two previous and the subsequent results, we consider a simple
example.

Example 3.10 Consider the QVI with n = 1, F (x) = x, and

S(x) =


[−x+ 2,∞) if x ∈ [0, 1],

[1,∞) if x ∈ (1, 2],

∅ if x /∈ [0, 2].

Note that M = [0, 2] is the domain of S in this example, that X = [1, 2] is the feasible set,
and that all conditions from Assumption 3.2 are satisfied. Let α = 1. Using (8), we may
write the corresponding regularized gap function g1 as

g1(x) =
1

2
x2 − 1

2
inf

z∈S(x)
z2 =


2x− 2 if x ∈ [0, 1],
1
2
(x2 − 1) if x ∈ (1, 2],

−∞ if x /∈ [0, 2].

The graph of the set-valued mapping S and the graph of the function g1 on dom g1 = [0, 2]
are illustrated in Figures 1a and 1b, respectively. We see that the function g1 is zero
only at x = 1, hence this point is the unique solution of the QVI, but g1 has a ’kink’
precisely at this solution point. On the other hand, for the functions f1(x) = x2 + δX(x)

11
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1

2

3

z

(a) gphS

−1 1 2 x

−2

−1

1

2
g1(x)

(b) gph g1 for 0 ≤ x ≤ 2

1 2 3 4 y

1

2

3

4 f ∗1 (y)

(c) gph f∗
1

−2 −1 1 2 y

−2

−1

1

2

3

h∗1(y)

(d) gphh∗
1

Figure 1: Illustrations for Example 3.10

and h1(x) = 1
2
x2 + 1

2
inf

z∈S(x)
z2, we get the following conjugates, see Figures 1c and 1d:

f ∗1 (y) =


y − 1 if y < 2,
1
4
y2 if y ∈ [2, 4],

2y − 4 if y > 4,

and h∗1(y) =



−2 if y < −2,
1
4
y2 + y − 1 if y ∈ [−2, 0],

y − 1 if y ∈ (0, 1),
1
2
(y2 − 1) if y ∈ [1, 2],

2y − 5
2

if y > 2.

Simple calculations show that both functions are continuously differentiable on R with

12



gradients

∇f ∗1 (y) =


1 if y < 2,
1
2
y if y ∈ [2, 4],

2 if y > 4,

and ∇h∗1(y) =



0 if y < −2,
1
2
y + 1 if y ∈ [−2, 0],

1 if y ∈ (0, 1),

y if y ∈ [1, 2],

2 if y > 2.

The same results follow from Lemma 3.8 and 3.9, respectively. ♦

We now apply Toland’s and Singer’s duality theory [40, Theorem 2.2] which states that

inf
x∈Rn

[f(x)− h(x)] = inf
y∈Rn

[h∗(y)− f ∗(y)] (19)

for all functions f, h : Rn → R ∪ {+∞} with h convex and lower semicontinuous. Hence
this duality fits perfectly within our framework and allows us to state the following main
result of this section.

Theorem 3.11 Let Assumption 3.2 hold, and define the dual gap function

d∗α := h∗α − f ∗α

with the functions f ∗α and h∗α given by Lemmas 3.8 and 3.9, respectively. Then the following
statements hold:

(a) The function d∗α is continuously differentiable on Rn.

(b) If ȳ is a solution of the unconstrained minimization problem

min d∗α(y), y ∈ Rn, (20)

with d∗α(ȳ) = 0, then x̄ := ∇f ∗α(ȳ) is a solution of the QVI.

(c) Conversely, if x̄ is a solution of the QVI and ȳ ∈ ∂hα(x̄), then ȳ is a solution of (20)
with d∗α(ȳ) = 0.

Proof. The result is essentially an application of the duality theory by Toland [39, 40]
and Singer [36], but for the sake of completeness, we provide the details here.

(a) This follows immediately from the definition of the function d∗α together with Lemmas
3.8 (c) and 3.9 (c).

(b) Let ȳ be a solution of (20) with d∗α(ȳ) = 0. Then

0 = d∗α(ȳ) = h∗α(ȳ)− f ∗α(ȳ). (21)

13



Moreover, the optimality of ȳ and the convexity and continuous differentiability of f ∗α
leads to

h∗α(y)− f ∗α(y) ≥ h∗α(ȳ)− f ∗α(ȳ) and f ∗α(y)− f ∗α(ȳ) ≥ ∇f ∗α(ȳ)T (y − ȳ)

for all y ∈ Rn. Consequently, we have

h∗α(y)− h∗α(ȳ) ≥ f ∗α(y)− f ∗α(ȳ) ≥ ∇f ∗α(ȳ)T (y − ȳ)

for all y ∈ Rn. This shows that the vector x̄ := ∇f ∗α(ȳ) is an element of the subdifferentials
∂f ∗α(ȳ) and ∂h∗α(ȳ). Since we also have f ∗∗α = fα and h∗∗α = hα by Lemma 2.4 (d) and
Lemma 3.7 (a), (b), we obtain from Lemma 2.4 (f) that

fα(x̄) + f ∗α(ȳ) = x̄T ȳ and hα(x̄) + h∗α(ȳ) = x̄T ȳ. (22)

Subtracting and rearranging these two equations shows

fα(x̄)− hα(x̄) = h∗α(ȳ)− f ∗α(ȳ). (23)

But the right-hand side is equal to zero in view of (21). Hence x̄ is a minimum of the
nonnegative function fα − hα with function value equal to zero. Therefore Lemma 3.7 (c)
implies that x̄ is a solution of the QVI.

(c) The proof of this part is similar to the one of statement (b). Since x̄ is a solution of
the QVI, we have

0 = gα(x̄) = min
x∈Rn

[
fα(x)− hα(x)

]
(24)

in view of Lemma 3.7 (c). Hence

fα(x)− hα(x) ≥ fα(x̄)− hα(x̄) ∀x ∈ Rn

and, using ȳ ∈ ∂hα(x̄),

hα(x)− hα(x̄) ≥ ȳT (x− x̄) ∀x ∈ Rn.

Combining these two inequalities yields

ȳT (x̄− x) ≥ hα(x̄)− hα(x) ≥ fα(x̄)− fα(x)

which shows that the element ȳ from the subdifferential ∂hα(x̄) also belongs to the subdif-
ferential ∂fα(x̄). Using these two subdifferential relations, we obtain from Lemma 2.4 (f)
that (22) holds which, in turn, implies that (23) is also true. But this time, the left-hand
side of (23) is equal to zero. Consequently, the right-hand side is also equal to zero, mean-
ing that ȳ is a solution of the minimization problem (20) with d∗α(ȳ) = 0 because of (19). �

To illustrate the results of Theorem 3.11, we return to Example 3.10.
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Example 3.12 Consider once again the setting from Example 3.10. Calculating the dif-
ference of h∗1 − f ∗1 , we obtain

h∗1(y)− f ∗1 (y) =



−y − 1 if y < −2,
1
4
y2 if y ∈ [−2, 0],

0 if y ∈ (0, 1),
1
2
y2 − y + 1

2
if y ∈ [1, 2],

−1
4
y2 + 2y − 5

2
if y ∈ (2, 4],

3
2

if y > 4.

This function is illustrated in Figure 2. Due to the observations in Example 3.10, the

−3 −2 −1 1 2 3 4 y

1

2 h∗1(y)− f ∗1 (y)

Figure 2: The graph of h∗1 − f ∗1

corresponding QVI has the unique solution x̄ = 1. Furthermore, it holds that ∂h1(1) =
[0, 1] since

h1(x) =
1

2
x2 +

1

2
inf

z∈S(x)
z2 =


x2 − 2x+ 2 if x ∈ [0, 1],
1
2
(x2 + 1) if x ∈ (1, 2],

+∞ if x /∈ [0, 2].

In view of Theorem 3.11 (c), all ȳ ∈ [0, 1] solve the dual problem (20), and this statement
is consistent with the graph of the dual problem shown in Figure 2. Furthermore, given
any solution ȳ ∈ [0, 1] of (20), Theorem 3.11 (b) states that x̄ = ∇f ∗1 (ȳ) is a solution of
the QVI. Since, in our case, we obtain ∇f ∗1 (ȳ) = 1 for all ȳ ∈ [0, 1], it follows that x̄ = 1
solves the QVI. This confirms a corresponding observation given in Example 3.10. ♦

Note that the dual gap function in the previous example has stationary points or local min-
ima which are not solutions of the QVI. Since this example has relatively nice properties,
this indicates that it might be difficult to obtain a result which says that, under suitable
conditions, a stationary point is already a global minimum of the dual gap function. In
fact, we were not able to derive such a result, but we have a partial result in this direction
that is based on the following proposition.

Proposition 3.13 Let Assumption 3.2 hold, let d∗α = h∗α−f ∗α be the dual gap function, and
let xf

∗
α (y) and xh

∗
α (y), zh

∗
α (y) denote the vectors defined in Lemma 3.8 and 3.9, respectively.

Then the following statements are equivalent:
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(a) d∗α(ȳ) = 0.

(b) xf
∗
α (ȳ) = xh

∗
α (ȳ) = zh

∗
α (ȳ).

Proof. We first verify the simple implication (b) =⇒ (a). Hence assume that xf
∗
α (ȳ) =

xh
∗
α (ȳ) = zh

∗
α (ȳ) holds. For simplicity of notation, let us denote this common vector by x̄.

Then, in particular, we have x̄ ∈ X, hence the definition of f ∗α yields

f ∗α(ȳ) = x̄T ȳ − α

2
‖x̄‖2 − 1

2α
‖F (x̄)‖2,

whereas the definition of h∗α implies

h∗α(ȳ) =
1

2α
‖ȳ‖2 − α

2

(∥∥x̄− 1

α
ȳ
∥∥2

+
∥∥ 1

α
F (x̄)

∥∥2
)

= x̄T ȳ − α

2
‖x̄‖2 − 1

2α
‖F (x̄)‖2.

This immediately gives d∗α(ȳ) = h∗α(ȳ)− f ∗α(ȳ) = 0.
Conversely, assume that d∗α(ȳ) = 0 holds. Then, in view of Theorem 3.11, ȳ is a global

minimum of the unconstrained optimization problem (20). Hence we have ∇d∗α(ȳ) = 0.
On the other hand, the definition of d∗α together with Lemmas 3.8 and 3.9 yields

∇d∗α(ȳ) = ∇h∗α(ȳ)−∇f ∗α(ȳ) = xh
∗

α (ȳ)− xf∗α (ȳ).

Hence we obtain
xf

∗

α (ȳ) = xh
∗

α (ȳ). (25)

Furthermore, d∗α(ȳ) = 0 and Theorem 3.11 together imply that x̄ := ∇f ∗α(ȳ) is a solution
of the QVI. Note that (25) and Lemma 3.8 yield

x̄ = xf
∗

α (ȳ) = xh
∗

α (ȳ). (26)

The vector x̄ being a solution of the QVI means that x̄ ∈ X and gα(x̄) = 0, where gα
denotes the regularized gap function, cf. Lemma 3.1. In view of (7), we may rewrite this
regularized gap function as

gα(x̄) =
1

2α
‖F (x̄)‖2 − α

2
inf

z∈S(x̄)

∥∥z − (x̄− 1

α
F (x̄)

)∥∥2

=
1

2α
‖F (x̄)‖2 − α

2

∥∥zα(x̄)−
(
x̄− 1

α
F (x̄)

)
‖2

with the uniquely defined minimum

zα(x̄) := argmin
z∈S(x̄)

∥∥z − (x̄− 1

α
F (x̄)

)∥∥2
.

According to Taji [38], x̄ being a solution of the QVI is equivalent to zα(x̄) = x̄. However,
in view of the representation (17) of the function h∗α(ȳ), it follows that zα(x̄) is identical
to zh

∗
α (ȳ). Consequently, we also have zh

∗
α (ȳ) = x̄. Together with (26), this completes the
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proof. �

Proposition 3.13 shows that xf
∗
α (ȳ) = xh

∗
α (ȳ) = zh

∗
α (ȳ) =: x̄ implies d∗α(ȳ) = 0 and, therefore,

that x̄ is a solution of the QVI. This sufficient condition for a solution is partially satisfied
at any stationary point of the dual gap function since, as noted in the previous proof, we
always have xf

∗
α (ȳ) = xh

∗
α (ȳ) at a stationary point ȳ of d∗α. The missing part is therefore to

verify that these two vectors are also equal to zh
∗
α (ȳ) which seems to be the difficult part

that is not satisfied in Example 3.10 for all y ≥ 4.
Hence we have no complete answer for stationary points of the dual gap function d∗α

to be solutions of a QVI. On the other hand, since we know the optimal value of d∗α, this
disadvantage might not be that strong, since the function value itself tells us whether we
are in a solution or not.

Theorem 3.11 gives, more or less, a one-to-one correspondence between the solutions of
the QVI and the global minima of the dual gap function d∗α. In fact, it shows that every
solution of the optimization problem (20) yields a solution of the QVI, but the converse
is not necessarily true, because statement (c) of Theorem 3.11 assumes (implicitly) that
the subdifferential ∂hα(x̄) is nonempty. As illustrated by the following counterexample,
this subdifferential could be empty, and the infimum in the relation (19) is not necessarily
attained.

Example 3.14 Consider the QVI with n = 1, F (x) = x, and

S(x) =

{[
1−

√
1− (x− 2)2, 1 +

√
1− (x− 2)2

]
if x ∈ [1, 3],

∅ if x /∈ [1, 3],

see Figure 3a. Note that M = [1, 3] is the domain of S in this example, that X = [1, 2] is
the feasible set, and that all conditions from Assumption 3.2 are satisfied. Let α = 1. The
corresponding regularized gap function

g1(x) =
1

2
x2 − 1

2
inf

z∈S(x)
z2 =

1
2
x2 − 1

2

(
1−

√
1− (x− 2)2

)2

if x ∈ [1, 3],

−∞ if x /∈ [1, 3],

is illustrated in Figure 3b. For the functions f1(x) = x2+δX(x) and h1(x) = 1
2
x2+ 1

2
inf

z∈S(x)
z2

(see Figure 3c), we get the following conjugates:

f ∗1 (y) =


y − 1 if y < 2,
1
4
y2 if y ∈ [2, 4],

2y − 4 if y > 4,

and h∗1(y) = 2y +
√

1 + (y − 2)2 − 3.

We see that the function g1 is zero only at x = 1, hence this point is the unique solution of
the QVI. At this point, the slope of h1 is infinite, and ∂h1(1) = ∅. Hence, for this example,
we cannot apply Theorem 3.11 to determine the solutions for the dual problem (20). We
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(d) gph d∗1

Figure 3: Illustrations for Example 3.14

further note that d∗1(y) = h∗1(y) − f ∗1 (y) > 0 holds for all y ∈ R and lim
y→−∞

d∗1(y) = 0,

see Figure 3d. Therefore, zero is the infimum but not the minimum of the unconstrained
minimization problem (20) which does not have a solution. ♦

4 PC1 Property of the Dual Gap-Function

The dual gap function d∗α turned out to be piecewise smooth in all previous examples. The
aim of this section is therefore to show that this observation is true in a rather general
setting. To this end, let us first recall the definition of a PC1-mapping.

Definition 4.1 A continuous function f : D ⊂ Rn → Rm is called PC1 near x̄ ∈ D if there
exists an open neighborhood U ⊂ D of x̄ and a finite family of continuously differentiable
functions fi : U → Rm (i = 1, . . . , l) such that f(x) ∈ {f1(x), . . . , fl(x)} for all x ∈ U .
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Piecewise smooth functions arise naturally in the context of Euclidian projections onto
convex sets. To this end, let us assume that we have a set Ω ⊆ Rn described by

Ω := {x | ci(x) ≤ 0 (i = 1, . . . ,m)}, (27)

with ci : Rn → R (i = 1, . . . ,m) convex and twice continuously differentiable. The
crucial constraint qualification about Ω in order to obtain a PC1 property of the projection
mapping is given in the next definition and goes back to [21].

Definition 4.2 Let ci : Rn → R (i = 1, . . . ,m) be continuously differentiable, and let Ω be
defined by (27). For x̄ ∈ Ω we put I(x̄) := {i | ci(x̄) = 0}. Then we say that the constant
rank constraint qualification (CRCQ) is satisfied at x̄ for Ω if there exists a neighborhood
U of x̄ such that for all K ⊂ I(x̄), the family of gradients {∇ci(x) | i ∈ K} has constant
rank (depending on the set K) for all x ∈ U .

Let Ω be the set from (27). Recall that the unique solution of the strongly convex mini-
mization problem

min
w∈Ω

1

2
‖w − v‖2

is called the Euclidean projection of a given vector v ∈ Rn onto the set Ω, denoted by
PΩ(v). The mapping v 7→ PΩ(v) is then called the projection mapping. It is well-known
that this mapping is piecewise smooth under the CRCQ assumption. More precisely, the
following result holds, see, e.g., [12, Thm. 4.5.2].

Theorem 4.3 Let Ω be the set defined in (27) with twice continuously differentiable and
convex functions ci. Let v̄ ∈ Rn be given such that CRCQ holds at w̄ := PΩ(v̄). Then the
projection mapping PΩ is a PC1 function near v̄.

In order to apply this result to our case, recall that our two conjugate functions f ∗α and
h∗α also involve projections, but not with respect to the Euclidean norm. Instead, we are
dealing with scaled projection problems of the form

min
w∈Ω

1

2
‖Dw − v‖2, (28)

where Ω denotes again the set from (27) and D ∈ Rn×n is a nonsingular matrix. Then
problem (28) is equivalent to the standard (Euclidean) projection problem

min
u∈D·Ω

1

2
‖u− v‖2

in the sense that the optimal values are equal with argminu∈D·Ω
1
2
‖u− v‖2 = PD·Ω(v) and

argminw∈Ω
1
2
‖Dw − v‖2 = D−1PD·Ω(v). We are interested in the smoothness properties of

the mapping v 7→ D−1PD·Ω(v).
To this end, we first state the following result which simply says that CRCQ still holds

if the set is transformed in a simple way. The transformation is precisely the one that will
be used in order to deal with projection-like problems as in (28).
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Lemma 4.4 Let ci : Rn → R (i = 1, . . . ,m) be convex and continuously differentiable,
Ω := {x | ci(x) ≤ 0 (i = 1, . . . ,m)} and v̄ ∈ Rn such that CRCQ holds at w̄ := D−1PD·Ω(v̄)
for Ω. Then CRCQ holds at ū := Dw̄ for D · Ω.

Proof. First, note that, setting c̃i(u) := ci(D
−1u) (i = 1, . . . ,m) for all u ∈ Rn, we have

D · Ω = {u | c̃i(u) ≤ 0 (i = 1, . . . ,m)},

and thus,
I(ū) = {i | c̃i(ū) = 0} = {i | ci(w̄) = 0} = I(w̄).

By assumption, there exists a neighborhood W of w̄ such that for all K ⊂ I(w̄) the family
of gradients {∇ci(w) | i ∈ K} has constant rank for all w ∈ W . Since D is nonsingular,
the set U := D ·W is a neighborhood of ū. Now, let u, u′ ∈ U and K ⊂ I(ū) be given, in
particular, there exist w,w′ ∈ W such that u = Dw and u′ = Dw′. It holds that

{∇c̃i(u) | i ∈ K} = D−1 · {∇ci(w) | i ∈ K}

and
{∇c̃i(u′) | i ∈ K} = D−1 · {∇ci(w′) | i ∈ K},

and due to what was already argued above, both sets have the same rank, which concludes
the proof. �

The previous result allows us to formulate the PC1-property for the solution mapping of
problems in the form (28).

Proposition 4.5 Let the assumptions of Lemma 4.4 hold such that, in addition, ci (i =
1, . . . , l) is twice continuously differentiable. Then there exists a neighborhood V of v̄ such
that v 7→ D−1PD·Ω(v) is PC1 on V .

Proof. From Lemma 4.4 we infer that CRCQ holds at ū := Dw̄ = PD·Ω(v̄) for D · Ω.
Hence, from Theorem 4.3, we conclude that there exists a neighborhood U of ū on which
v 7→ PD·Ω(v) is PC1. Hence, the function v 7→ D−1PD·Ω(v) is PC1 on V := D · U (recall
that V is indeed a neighborhood of v̄ due to the nonsingularity of the matrix D). �

We now want to apply the previous result in order to show that the gradient ∇d∗α of the
function d∗α from Theorem 3.11 is PC1.

For these purposes, we assume throughout that the set-valued mapping S : Rn ⇒ Rn

takes the form
S(x) := {z ∈ Rn | si(z, x) ≤ 0 (i = 1, . . . ,m)}, (29)

where si : Rn × Rn → R (i = 1, . . . ,m) is twice continuously differentiable and convex in
(z, x). Note that Assumption 3.2 (c) automatically holds in this case. Then we have

X = {x ∈ Rn | si(x, x) ≤ 0 (i = 1, . . . ,m)}.

In order to verify the piecewise smoothness of the gradient of the dual gap function d∗α, we
show that both ∇h∗α and ∇f ∗α are piecewise smooth. We begin with the mapping h∗α.
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Lemma 4.6 Let Assumption 3.2 hold, and let ȳ ∈ Rn such that CRCQ holds at (x̄, z̄) :=
D−1
h PDh·gphS(ȳ,−b) for gphS, where

Dh :=

(
αI 0

A− αI αI

)
.

Then ∇h∗α is PC1 near ȳ.

Proof. It holds that, due to Lemma 3.9, for all y ∈ Rn, we have ∇h∗α(y) = xh
∗
α (y), where(

xh
∗
α (y)

zh∗α (y)

)
= argmin

(x,z)∈gphS

{∥∥∥x− 1

α
y
∥∥∥2

+
∥∥∥z − (x− 1

α
F (x)

)∥∥∥2}
= argmin

(x,z)∈gphS

∥∥∥( αI 0
A− αI αI

)(
x

z

)
−
(
y

−b

)∥∥∥2

= D−1
h PDh·gphS(y,−b).

Hence, the assertion follows immediately from Proposition 4.5. �

Similar to the previous result, the next one proves that also the function ∇f ∗α is piecewise
smooth under a suitable CRCQ assumption.

Lemma 4.7 Let Assumption 3.2 hold, and let ȳ ∈ Rn such that CRCQ holds at x̄ :=

D−1
f PDf ·X(D−1

f (ȳ− qα)), where Df := Q
1
2
α denotes the matrix square root of the matrix Qα

from (12). Then ∇f ∗α is PC1 near ȳ.

Proof. Due to Lemma 3.8, for all y ∈ Rn, we have

∇f ∗α(y) = argmin
x∈X

∥∥Q−1
α (y − qα)− x

∥∥2

Qα

= argmin
x∈X

∥∥∥Q− 1
2

α (y − qα)−Q
1
2
αx
∥∥∥2

= D−1
f PDf ·X(D−1

f (y − qα)).

Hence, the assertion follows immediately from Proposition 4.5. �

Summarizing the previous result, we obtain the following main result of this section.

Theorem 4.8 Let Assumption 3.2 hold, and let ȳ ∈ Rn such that the assumptions of
Lemmas 4.6 and 4.7 hold for ȳ. Then the gradient of the dual gap function ∇d∗α is PC1

near ȳ.

Note that the two CRCQ conditions used in Lemmas 4.6 and 4.7 are independent of each
other. A simple, but still important, case where the constant rank assumption holds, is
the linear one. This yields the following consequence.
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Corollary 4.9 Let the functions si in (29) be (affine-)linear. Then the gradient of the
dual gap function ∇d∗α is a PC1 mapping (in fact, it is piecewise (affine-)linear).

Piecewise smooth functions are, in particular, semismooth in the sense of [30, 31], see,
e.g., [12, Prop. 7.4.6]. In principle, this observation therefore allows the application of
second-order Newton-type methods for the minimization of the dual gap function.

5 Numerical Results

In view of Theorem 3.11, a solution ȳ of the the dual unconstrained minimization problem
(20) implies a solution x̄ = ∇f ∗α(ȳ) of the corresponding QVI. In this section, we apply this
theory to a class of examples from the QVILIB test problem collection [10] which satisfy
Assumption 3.2.

For the solution of the unconstrained minimization problem (20), we use two different
first-order methods: the spectral gradient (SG) method from [32] and a conjugate gradient
(CG) method. The SG method is defined by

yk+1 := yk − tk∇d∗α(yk)

with

t0 := 1, tk :=
‖qk−1‖2

(qk−1)T rk−1
, qk−1 := yk − yk−1, rk−1 := ∇d∗α(yk)−∇d∗α(yk−1)

if tk satisfies the nonmonotone line search condition from [32]. In the CG method, we
generate the search direction pk for the iterates yk+1 := yk + tkp

k using the Polak-Ribière
updating scheme where

p0 := −∇d∗α(y0), pk+1 := −∇d∗α(yk+1) + βPRk pk,

βPRk :=

(
∇d∗α(yk+1)−∇d∗α(yk)

)T∇d∗α(yk+1)∥∥∇d∗α(yk)
∥∥2 .

Whenever (pk)T∇d∗α(yk) > 0 holds, this CG algorithm has to be restarted with the nega-
tive gradient. For the examples in Table 2, however, this case never occured. Furthermore,
we compute the step length tk satisfying the strong Wolfe-Powell conditions whose imple-
mentation is based on the suggestion outlined in [22]. The computation of this stepsize
uses, at each iteration k, the initial guess

tk =
−2d∗α(yk)

(pk)T∇d∗α(yk)
.

For both methods, the termination criteria are ‖∇d∗α(yk)‖ ≤ 10−5 or d∗α(yk) ≤ 10−6.
For the computation of the conjugate functions of fα and hα from Lemma 3.8 and 3.9,

respectively, we use the TOMLAB/KNITRO solver with the active set Sequential Linear-
Quadratic Programming (SLQP) optimizer by setting Prob.KNITRO.options.ALG=3 and
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Example n y0 k #dα d∗α ‖∇d∗α‖
Scrim11 2400 (0, . . . , 0) 32 33 1.8044e-08 1.9517e-05
Scrim11 2400 (10, . . . , 10) 36 37 5.4686e-08 6.2638e-05
Scrim12 4800 (0, . . . , 0) 32 33 2.7707e-08 3.3777e-05
Scrim12 4800 (10, . . . , 10) 36 37 9.0629e-08 5.6006e-05
Scrim21 2400 (0, . . . , 0) 32 33 1.9558e-08 1.8173e-05
Scrim21 2400 (10, . . . , 10) 36 37 7.3633e-08 7.2570e-05
Scrim22 4800 (0, . . . , 0) 32 33 1.7462e-08 2.9717e-05
Scrim22 4800 (10, . . . , 10) 36 37 5.6927e-08 6.2776e-05

Table 1: Numerical results with the spectral gradient method

Example n y0 k #dα d∗α ‖∇d∗α‖
Scrim11 2400 (0, . . . , 0) 15 37 3.1869e-07 1.5863e-04
Scrim11 2400 (10, . . . , 10) 20 47 7.6852e-07 3.5654e-04
Scrim12 4800 (0, . . . , 0) 15 37 8.8592e-07 2.4624e-04
Scrim12 4800 (10, . . . , 10) 23 50 9.3831e-07 1.5281e-04
Scrim21 2400 (0, . . . , 0) 15 37 3.2617e-07 1.5942e-04
Scrim21 2400 (10, . . . , 10) 20 47 7.5009e-07 3.5802e-04
Scrim22 4800 (0, . . . , 0) 15 37 8.6840e-07 2.3947e-04
Scrim22 4800 (10, . . . , 10) 23 50 8.8691e-07 1.5345e-04

Table 2: Numerical results with CG method with Polak-Ribière update of β

Prob.KNITRO.options.FEASTOL=10−10, see the TOMLAB/KNITRO User’s Guide on the
web site http://tomopt.com/tomlab/products/knitro/ for more information about the
TOMLAB/KNITRO solver. Our implementation uses the regularization parameter α = 5
for all test runs.

The class of test problems that we use here are named Scrim* in the test problem
library QVILIB from [10]. This class corresponds to a large-scale transportation problem
formulated as QVIs. Tables 1 and 2 contain the following data: The name of the example,
the number of variables n, the starting point y0, the number of iterations k, the cumulated
number of dual gap function evaluations #d∗α needed until convergence, the final value of
the dual gap function d∗α, and the final value of the gradient norm ‖∇d∗α‖.

In view of the large number of variables in each example, the evaluation of the dual gap
function is more expensive than the computations in the outer iterations for both methods.
In Tables 1 and 2, we observe that the total number of dual gap function evaluations in
the SG method is less than in the CG method. Therefore, in spite of higher number of
iterations, the total time until convergence in the SG method is less than in the CG method.
Furthermore, we achieve the higher accuracy of the results with the SG method although
the termination criteria for both methods are the same. In any case, both methods were
able to find a solution for all instances of this class of QVIs, i.e., they never stopped at a
local minimum of d∗α.
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6 Final Remarks

This paper shows that it is possible to reformulate a certain class of QVIs as an uncon-
strained and smooth optimization problem which, therefore, allows the application of some
standard first-order software in order to solve the underlying QVI. In principle, since the
objective function is continuously differentiable with a semismooth gradient (under suit-
able assumptions), the application of second-order methods is also possible. A natural
candidate would be the semismooth Newton method from [30, 31], however, the computa-
tion of the corresponding generalized Jacobians (or Hessians, in our case) might be rather
expensive. We therefore believe that another Newton-type method based on the idea of
the computable generalized Jacobian from [37] (see also [17] for an application within the
framework of generalized Nash equilibrium problems) might be the better choice. The
corresponding details are left as part of our future research.

Acknowledgment. The authors would like to thank Oliver Stein for his comments on an
earlier draft of this paper.
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