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Abstract. We consider a class of symmetric tridiagonal matrices which may be viewed as
perturbations of Toeplitz matrices. The Toeplitz structure is destroyed since two elements
on each off-diagonal are perturbed. Based on a careful analysis of the corresponding char-
acteristic polynomial, we derive sharp bounds for the extremal eigenvalues of this class of
matrices in terms of the original data of the given matrix. In this way, we also obtain a
lower bound for the smallest singular value of certain matrices. Some numerical results
indicate that our bounds are extremely good.

Key Words: Tridiagonal matrices, symmetric matrices, eigenvalues, singular values, ex-
tremal eigenvalues.



1 Introduction

Consider a tridiagonal matrix of the form

J =



α β
β α γ

γ α
. . .

. . . . . . γ
γ α δ

δ α


∈ Rm×m (1)

with given entries α, β, γ, δ ∈ R. Matrices of this form arise quite frequently in many
contexts, and the eigenvalues of such matrices can often be used to compute eigenvalues of
more complicated matrices which arise, e.g., from the discretization of partial differential
equations.

Our aim is to give sharp bounds for the smallest and largest eigenvalues of such a
matrix. To the best of our knowlegde (and somewhat to our own surprise), there is no
previous treatment of this problem in the literature. There exist many results for more
general matrices like Gershgorin’s, Ostrowski’s or Brauer’s Theorem (see, e.g., [4, 5, 12])
that estimate the area to which the eigenvalues belong to, however, the bounds one obtains
from these results for the particular class of matrices considered here are by far too weak.
The lower bound on the smallest eigenvalue for the matrix J may also be used to obtain a
lower bound for the smallest singular value of a possibly nonsymmetric matrix. This lower
bound seems to be much stronger than existing ones, see, e.g., [7, 8, 10].

To obtain our results, we take a closer look at the class of matrices from (1) and exploit
heavily the particular structure using a careful analysis of the corresponding characteristic
polynomial. To this end, we begin with some preliminary results in Section 2. The main
results are contained in Section 3, where, depending on the relative (absolute) sizes of the
matrix entries α, β, γ, and δ, we give suitable bounds for the two extremal eigenvalues. We
apply our results to the discretization of a partial differential equation in Section 4 where
matrices arise that can be decomposed as a Kronecker product of tridiagonal matrices
of the above kind. This kind of application was, in fact, the original motivation for our
investigations.

Notation: Given an arbitrary matrix A ∈ Rm×m, we denote by As := 1
2

(
A + AT

)
the symmetric part of A. The singular values of A are denoted by σi(A) (i = 1, . . . ,m)
and ordered in such a way that σ1(A) ≤ σ2(A) ≤ . . . ≤ σm(A), in particular, σ1(A) and
σm(A) denote the smallest and the largest singular value of A, respectively. Similarly,
given a symmetric matrix A ∈ Rm×m, the corresponding (real) eigenvalues are denoted by
λi(A) (i = 1, . . . ,m) and ordered in such a way that λ1(A) ≤ λ2(A) ≤ . . . ≤ λm(A) so that
the symbol λ1(A) (λm(A)) always stands for the smallest (largest) eigenvalue of A. We
sometimes also write λmin(A) (λmax(A)) for the smallest (largest) eigenvalue of A. Given
a vector x ∈ Rm, the symbol ‖x‖ denotes the Euclidean norm of x. Finally, the identity
matrix in Rm×m is denoted by Im.
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2 Preliminaries

Let us begin by recalling some known facts about symmetric tridiagonal matrices of the
form

T :=


α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βm

βm αm

 ∈ Rm×m

satisfying (without loss of generality) βk 6= 0 for all k = 2, . . . ,m. Furthermore, let

Tk :=


α1 β2

β2 α2 β3

β3 α3
. . .

. . . . . . βk

βk αk

 ∈ Rk×k

be the leading k × k principal submatrix of T , and let

qk(x) := det
(
Tk − xI

)
∀k = 1, . . . ,m

be the corresponding characteristic polynomial. Then the following recursion holds, cf. [4,
p. 437]:

q0(x) := 1,

q1(x) = α1 − x, (2)

qk+1(x) = (αk+1 − x)qk(x)− β2
k+1qk−1(x) ∀k = 1, 2, . . . ,m− 1.

Furthermore, the next result is also well-known, see [4, Thm. 8.4.1] or [12, Section 5.6].

Theorem 2.1 (Sturm Sequence Property)
Assume that βk 6= 0 for all k = 2, . . . ,m. Then the following statements hold:

(a) The eigenvalues of all principal submatrices Tk are real and simple.

(b) The eigenvalues of Tk−1 strictly separate the eigenvalues of Tk in the sense that

λ1(Tk) < λ1(Tk−1) < λ2(Tk) < . . . < λk−1(Tk) < λk−1(Tk−1) < λk(Tk).

(c) Let w(λ) denote the number of sign changes in the Sturm sequence {q0(λ), q1(λ), . . . , qm(λ)}
(where we use the convention that vanishing entries qk(x) = 0 are removed from this
sequence before counting the sign changes). Then w(λ) equals the number of eigen-
values of the matrix T that are strictly less than λ.
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An immediate consequence of the previous result is the following one which can be used
to develop the well-known bisection method to compute single eigenvalues of symmetric
tridiagonal matrices.

Corollary 2.2 Let a, b ∈ R be given with a < b. Then w(b) − w(a) is the number of
eigenvalues of the symmetric tridiagonal matrix T lying in the interval [a, b).

We next want to give a lower bound for the smallest singular value of a given positive
(semi-) definite (but asymmetric) matrix A in terms of the smallest eigenvalue of the
corresponding symmtric part As. We suspect that this result is known, but were not able
to find an explicit reference.

Lemma 2.3 Let A ∈ Rm×m be positive semidefinite (not necessarily symmetric). Then
σ1(A) ≥ λ1(A

s) ≥ 0.

Proof. For an arbitrary (not necessarily symmetric or positive definite) matrix A, we
have

min
‖x‖=1

xT Ax = min
‖x‖=1

xT Asx = λ1(A
s).

In particular, the assumed positive semidefiniteness of A implies the inequality λ1(A
s) ≥ 0.

In order to verify the first inequality, let us define the matrix B := A− λ1(A
s)I. This

definition implies

BT + B = AT + A− 2λ1(A
s)I = 2 ·

(
As − λ1(A

s)I
)
.

Since λ1(A
s) ≥ 0 is the smallest eigenvalue of As, it follows that 0 is the smallest eigenvalue

of Bs. The symmetry of BT + B therefore gives

min
‖x‖=1

xT
(
BT + B

)
x = 0.

Using the fact that the smallest eigenvalue of the symmetric matrix AT A is given by
(σ1(A))2, cf. [3, Thm. 3.3], and taking into account the definition of the matrix B, we
therefore obtain

(σ1(A))2 = min
‖x‖=1

xT AT Ax

= min
‖x‖=1

[
λ1(A

s)2xT x + λ1(A
s) · xT

(
BT + B

)
x + xT BT Bx

]
= λ1(A

s)2 + min
‖x‖=1

[
λ1(A

s) · xT
(
BT + B

)
x + xT BT Bx

]
≥ λ1(A

s)2 + λ1(A
s) · min

‖x‖=1

[
xT

(
BT + B

)
x
]
+ min

‖x‖=1

[
xT BT Bx

]
= λ1(A

s)2 + min
‖x‖=1

[
xT BT Bx

]
= λ1(A

s)2 + (σ1 (B))2
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≥ λ1(A
s)2.

Taking the square root and using the fact that σ1(A) ≥ 0 and (as already noted) λ1(A
s) ≥ 0,

we obtain the desired statement. �

Applying Gershgorin’s Theorem to λ1(A
s) and using Lemma 2.3 gives the lower bound

σ1(A) ≥ min
i=1,...,n

{
aii −

1

2

m∑
j=1
j 6=i

(
aij + aji

)}
for the smallest singular value of a possibly nonsymmetric matrix A which is precisely the
bound given in [7, Theorem 1].

Assume, for the moment, that A ∈ Rm×m is symmetric positive definite. Then σ1(A) =
λ1(A) = λ1(A

s), so that the inequality from Lemma 2.3 is actually an equality. Now, since
both the singular values and the eigenvalues of A and As, respectively, depend continuously
on the entries of the corresponding matrices, it follows that we still have σ1(A) ≈ λ1(A

s)
for matrices A which are close to being symmetric, hence the estimates from Lemma 2.3
are likely to provide very sharp bounds in this case. Of course, this is not true for highly
asymmetric matrices. However, later, in our applications, we have to deal with matrices
which are close to being symmetric.

We next investigate some properties of the one-dimensional mapping

f : (0,∞) −→ R, y 7→ (α− x)− γ2

y
(3)

that will play an essential role in Section 3. Here α, γ, and x are given, whereas y is the
variable. We are particularly interested in the properties of the corresponding fixed point
iteration yk+1 := f (yk) for k ∈ N. The following result gives all the necessary information.

Lemma 2.4 Let z := α − x. Choose an initial element y1 > 0 and define yk+1 := f (yk)
recursively for k ∈ N. Then the following statements hold:

Case z ≥ 2 |γ|: Here f has a repelling fixed point f1 :=
z−
√

z2−4γ2

2
and an attracting fixed

point f2 :=
z+
√

z2−4γ2

2
which coincide for z = ±2 |γ|.

(a) For y1 ∈ (f1, f2) we have

f1 < y1 < y2 < y3 < . . . < yk < yk+1 < · · · < f2

for all k ∈ N. Furthermore, it holds that limk→∞ yk = f2.

(b) For y1 > f2 we have

f2 < . . . < yk+1 < yk < . . . < y3 < y2 < y1

for all k ∈ N. Furthermore, it holds that limk→∞ yk = f2.
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(c) For y1 = f2 we have yk = f2 for all k ∈ N.

(d) For y1 = f1 we have yk = f1 for all k ∈ N.

(e) For y1 ∈ (0, f1) we have

f1 > y1 > y2 > y3 > . . .

and there exists a smallest k0 ∈ N with yk0 ≤ 0. From that on, the sequence is
no longer well-defined.

Case z < 2 |γ|: Here f has no fixed points. We have y > f (y) for all y > 0, and for every
starting point y1 > 0, we obtain

y1 > y2 > y3 > . . . ,

and there is a smallest k0 ∈ N with yk0 ≤ 0. From that on, the sequence is no longer
well-defined.

f2

f1

idHyL

f HyL

1 2 3 4 5 6

-1

0

1

2

3

4

5

f HyL
idHyL

1 2 3 4 5 6

-1

0

1

2

3

4

5

Figure 1: Illustration of Lemma 2.4, left: case 1, right: case 2

Instead of giving the simple proof, we illustrate this result in Figure 1. The left picture
shows the first case where we have two (possibly identical) fixed points f1 and f2. When
f1 < f2 (so the two fixed points do not coincide), then the derivative f ′ at the first fixed
point is larger than one, hence this fixed point is repelling, whereas the derivative at the
second fixed point is smaller than one, hence this fixed point is attracting. The right
picture, on the other hand, illustrates the second case where y > f (y) holds for all y > 0,
so that no fixed points exist.
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3 Estimates for the Extremal Eigenvalues

Here we investigate the symmetric tridiagonal matrix J from (1) and assume, without loss
of generality, that β ·γ ·δ 6= 0 and that m ≥ 4, since otherwise J is not defined properly. Our
aim in this section is to develop accurate estimates for the smallest and largest eigenvalue
of J . For the special case where β = γ = δ, the matrix J becomes a tridiagonal Toeplitz
matrix whose eigenvalues are known explicitly and given by

λj = α + 2 |γ| cos

(
j

m + 1
π

)
∀j = 1, . . . ,m, (4)

cf. [1, Thm 2.4].

Remark 3.1 Consider, for the moment, once again the special case β = γ = δ and
let us denote the corresponding Toeplitz matrix by T . Then it follows from (4) that
λmin(T ) = α + 2|γ| cos

(
m

m+1
π
)

and λmax(T ) = α + 2|γ| cos
(

1
m+1

π
)
. In particular, for

increasing dimension m →∞, we therefore get λmin(T ) → α−2|γ| and λmax(T ) → α+2|γ|.
For the general case, where β, γ, and δ are not necessarily equal, this still implies that for
any bound of the form λmin(J) ≥ α−K and λmax(J) ≤ α + K for some suitable constant
K > 0, we must have K ≥ 2|λ| if this bound should hold for all (sufficiently large)
dimensions m ∈ N. This observation follows from the previous fact by noting that we
can reorder the entries of J by a symmetric permutation such the first m − 2 principal
submatrices of J are Toeplitz matrices T of different dimensions, hence the claim follows
from the interlacing property from Theorem 2.1 (b).

For the matrix J , which may be viewed as a (small) perturbation of the Toeplitz case, an
analytic representation of the eigenvalues is not known. Our aim is therefore to obtain
suitable lower and upper bounds for the extremal eigenvalues of J . Simple estimates can
be obtained using Gershgorin’s Theorem, see [4, Thm. 7.2.1], which implies that

λmin(J) ≥ α−max
{
2|γ|, |β|+ |γ|, |δ|+ |γ|

}
and

λmax(J) ≤ α + max
{
2|γ|, |β|+ |γ|, |δ|+ |γ|

}
.

These estimates can be improved using suitable scalings of J , but it seems that the corre-
sponding estimates are still worse than those that we develop in our subsequent theory.

To this end, let Jk be the principal k × k submatrix of J , and let

pk(x) := det(Jk − xI) ∀k = 1, 2, . . . ,m

be the corresponding characteristic polynomial. From (2), we obtain that these polynomials
satisfy the following recursion:

p0(x) := 1,

p1(x) = α− x,
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p2 (x) = (α− x) · p1 (x)− β2 · p0 (x) , (5)

pk (x) = (α− x) · pk−1 (x)− γ2 · pk−2 (x) ∀k = 3, . . . ,m− 1,

pm (x) = (α− x) · pm−1 (x)− δ2 · pm−2 (x) .

Here, pm (x) is the characteristic polynomial of J .
In view of Theorem 2.1, the characteristic polynomials pk (x) have real and single roots.

Furthermore, given an arbitrary α ∈ R, the number w(α), denoting the number of sign
changes in the Sturm sequence p0(α), p1(α), . . . , pm(α), is equal to the number of roots of
pm(x) which are smaller than α.

Based on the above recursion and a simple induction argument, we can easily deduce
that the polynomials pk are symmetric in the following sense:

pk(α− y) =

{
pk(α + y), if k is even,
−pk(α + y), if k is odd.

(6)

In particular, for k = m, this implies that α − y is an eigenvalue of J if and only if α + y
is an eigenvalue of J , hence the eigenvalues of J are distributed symmetrically around the
point α. Consequently, α−K is a lower bound for the smallest eigenvalue (for some K > 0)
if and only if α + K is an upper bound for the largest eigenvalue. Hence we only have to
find suitable lower bounds for the smallest eigenvalue of J .

The basic idea to find suitable estimates of K is the following: We will find conditions
(on K and, sometimes, also on the dimension m) which guarantee that all the numbers
pk (α−K) have the same sign which is equivalent to saying that all these numbers are
positive since K > 0 is equivalent to p1 (α−K) > 0. Then it follows from our previous
considerations that w (α−K) = 0, hence all zeros of pm must be greater or equal to α−K.
However, since pm (α−K) > 0, all zeros must actually be greater than α−K.

Instead of studying the Sturm sequence {p1(x), p2(x), . . . , pm(x)} directly, we consider
the quotients

rk (x) :=
pk+1 (x)

pk (x)
∀k = 1, 2, . . . ,m− 1. (7)

Using the recursion of the polynomials pk (x) in (5), we obtain the corresponding recursion

r1(x) =
(α− x)2 − β2

(α− x)
, (8)

rk+1 (x) = (α− x)− γ2 pk (x)

pk−1 (x)
= (α− x)− γ2

rk (x)
for k = 1, 2, . . . ,m− 3, and(9)

rm−1 (x) = (α− x)− δ2

rm−2 (x)
for k = m− 2.

Based on these quotients, we have the following criterion.

Proposition 3.2 Let x < α. Then every member of the Sturm sequence p1 (x) , . . . , pm (x)
is positive if and only if rk (x) is positive for all k = 1, . . . ,m − 2 and rm−2 (x) > h (x)
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holds, where

h (x) :=
δ2

α− x
. (10)

Proof. First suppose that all numbers p1(x), . . . , pm(x) are positive. Then (7) immedi-
ately implies rk(x) > 0 for all k = 1, . . . ,m − 2 (and also for k = m − 1, but this part
is not needed for our assertion). Furthermore, since pm−2(x) > 0, we have the following
equivalences that will also be used in order to verify the converse direction:

pm (x) > 0 ⇐⇒ (α− x) pm−1 (x)− δ2pm−2 (x) > 0
⇐⇒ (α− x) pm−1 (x) > δ2pm−2 (x)

pm−2(x)>0⇐⇒ (α− x)pm−1(x)
pm−2(x)

> δ2

⇐⇒ pm−1(x)
pm−2(x)

> δ2

α−x

⇐⇒ rm−2(x) > h(x).

(11)

Since, in the proof of this direction, we have pm(x) > 0, the above chain of equivalences
therefore gives rm−2(x) > h(x).

Conversely, assume that r1(x), . . . , rm−2(x) are all positive, and that, in addition, we
have rm−2(x) > h(x). Since the recursion (7) implies

pk+1(x) = rk(x)pk(x) ∀k = 1, . . . ,m− 1,

and since we have p1(x) = α − x > 0 by assumption, we immediately obtain pk+1(x) > 0
for all k = 1, . . . ,m − 2. In particular, we therefore have pm−2(x) > 0. The chain of
equivalences (11) then shows that we also have pm(x) > 0. �

Note that, in the statement of Proposition 3.2, we could alternatively require the positivity
of rk(x) only for all k = 1, . . . ,m−3 since rm−2(x) > 0 follows directly from the additional
condition rm−2(x) > h(x) due to the fact that h(x) is positive in view of the assumption
that x < α. We further note that it is indeed enough to consider the positivity of the
Sturm sequence {p1(x), . . . , pm(x)} instead of {p0(x), p1(x), . . . , pm(x)} since p0(x) ≡ 1 is
positive by definition and therefore does not imply additional sign changes.

The interesting part of Proposition 3.2 is the fact that we can characterize the posi-
tivity of all members from the Sturm sequence p1(x), . . . , pm(x) in terms of the quotients
r1(x), . . . , rm−2(x) (together with the function h(x) from (10)). Hence the quotient rm−1(x)
is not needed in this characterization which is important since the recursion for rm−1 is
different from the recursion of all the other quotients rk(x).

This observation is also useful from the following point of view: We will sometimes
consider the dimension m of the given matrix J to be variable, i.e., we consider matrices
of the form J with different dimensions. Now, the polynomials pk and, therefore, also the
quotients rk obviously depend on the dimension of J . However, taking into account the
particular structure of J , it follows immediately that, for two diffent dimensions m and m̃
with m < m̃, the quotients rk(x) (k = 1, 2, . . . ,m− 2) are the same for both matrices.
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r1(x) < f1(x) r1(x) ∈
(
f1(x), f2(x)

)
r1(x) > f2(x)

h(x) < f1(x) ∀m ≤ m0 ∀m ∈ N ∀m ∈ N
h(x) ∈

(
f1(x), f2(x)

)
never ∀m ≥ m0 ∀m ∈ N

h(x) > f2(x) never never ∀m ≤ m0

Table 1: Lower bounds x for λmin(J) depending on the sizes of r1(x) and h(x)

We now take a closer look at the recursion (9). The initial element r1(x) is given by
(8), whereas the recursion itself can be written as

rk+1(x) = f
(
rk(x)

)
∀k = 1, 2, . . . ,m− 3

by using the function f from (3). The (fixed point) properties of the mapping f were
already discussed in Lemma 2.4. In particular, it follows from this result that, in the only
interesting case x ≤ α−2|γ|, there are two fixed points f1 and f2, with f1 being a repelling
fixed point and f2 being an attracting fixed point. Since these fixed points depend on the
given x, we denote them by f1(x) and f2(x) from now on. In view of Proposition 3.2 we
want the sequence r1 (x) , . . . , rm−3 (x) (note that rk(x) plays the role of yk in Lemma 2.4)
to be positive and, in addition, rm−2 (x) > h (x). Obviously, whether these relations hold
depend on how the starting point y1 = r1(x) and the number h(x) > 0 are related to the
fixed points of f .

In fact, using Proposition 3.2 and Lemma 2.4, we have the situation from Table 1 whose
entries will be explained immediately.

This table assumes (implicitly) that x ≤ α − 2|γ| and shows in which situation and
under which conditions the given x provides a lower bound for the smallest eigenvalue of
the matrix J .

More precisely, the table has the following meaning: There are nine cases depending
on whether h(x) is smaller than the fixed point f1(x) or strictly between the two fixed
points f1(x) and f2(x) or larger than f2(x), and whether the quotient r1(x) is smaller than
f1(x), between f1(x) and f2(x) or larger than f2(x). For simplicity of presentation, we
do not consider the (often trivial) cases where h(x) or r1(x) are equal to one of the two
fixed points. Then the entry “never” indicates that the given x does not provide a lower
bound on the smallest eigenvalue of J regardless of the dimension m of J . The entry “for
all m ∈ N” indicates that the given x is a lower bound of the smallest eigenvalue of J for
all dimensions m ∈ N, whereas the entries “∀m ≤ m0” and “∀m ≥ m0” indicate that the
given x provides a lower bound on the smallest eigenvalue of J for all sufficiently small and
all sufficiently large m, respectively.

We still have to explain how these entries were obtained. We do not consider all nine
cases since the argument is often the same, but let us take a closer view at some of these
cases. First, consider the case h(x) < f1(x) and r1(x) < f1(x). Lemma 2.4 then implies that
the sequence rk(x) is monotonically decreasing and eventually becomes negative. Hence,
only the first few elements of this sequence are positive, and the additional requirement
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rm−2(x) > h(x) can therefore also hold only for sufficiently small (possibly no) dimensions
m. In view of Proposition 3.2, it therefore follows that the given x is a lower bound for
the smallest eigenvalue of J only for all sufficiently small m, i.e., for all m ≤ m0 with some
m0 ∈ N. This explains the corresponding entry in the upper left corner of Table 1.

Next, consider the case h(x) < f1(x) and r1(x) ∈
(
f1(x), f2(x)

)
. Then Lemma 2.4

shows that the sequence rk(x) is monotonically increasing and converges to the fixed point
f2(x). In particular, rk(x) is positive for all k, and rk(x) > h(x) holds for all k ∈ N,
especially, this holds for k = m− 2 for any given dimension m ∈ N. Hence it follows from
Proposition 3.2 that the given x provides a lower bound on the smallest eigenvalue of J
for all dimensions m ∈ N which again explains the corresponding entry in this case.

Now consider the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) < f1(x). Then Lemma 2.4

shows, in particular, that all quotients rk(x) stay less than f1(x), so that the condition
rm−2(x) > h(x) never holds in this case regardless of the dimension m ∈ N. Hence
Proposition 3.2 implies that the given x does not provide a lower bound for the smallest
eigenvalue for any dimension m ∈ N.

Finally, consider the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) ∈

(
f1(x), f2(x)

)
. Lemma

2.4 then implies that the sequence r1(x), r2(x), r3(x), . . . is monotonically increasing and
converges to the fixed point f2(x). Hence, all these quotients are positive, and eventually
they are larger than the number h(x). In particular, for sufficiently large dimensions
m ∈ N, we have rm−2(x) > h(x). Hence Proposition 3.2 shows that x is a lower bound for
J ’s smallest eigenvalue for all sufficiently large dimensions m. In addition, the following
note holds for this case (which is of particular interest in our further development).

Remark 3.3 Consider once again the case h(x) ∈
(
f1(x), f2(x)

)
and r1(x) ∈

(
f1(x), f2(x)

)
.

Then it is possible that we already have r1(x) > h(x). Using a similar reasoning as before,
this implies rm−2(x) > h(x) for all dimensions m ∈ N. Consequently, and in addition to
the corresponding entry in Table 1, it follows from Proposition 3.2 that x is a lower bound
for the smallest eigenvalue of J for all dimensions m ∈ N. — We further note that the
condition r1(x) > h(x) is equivalent to x < α−

√
β2 + δ2 (provided that x < α).

All the other entries in the Table 1 follow by a similar reasoning. Now, it is clear how
to proceed. The previous table gives clear statements on how to get lower bounds for the
smallest eigenvalue of J in terms of r1(x) and h(x) compared to the two fixed points f1(x)
and f2(x). Our aim is therefore to re-interpret these conditions in terms of the original
data of the matrix J . The following technical result investigates these data and shows how
r1(x) is related to the fixed points f1(x) and f2(x) depending on the relation between the
data β and γ of the matrix J whose dimension m is fixed in this lemma.

Lemma 3.4 Let x ≤ α− 2 |γ|, f1 (x) and f2 (x) be the fixed points of the function f , and
let r1 (x) be the first quotient from (8). Then the following statements hold:

1. Case |β| >
√

2 |γ|: Then r1 (x) > f1 (x) ⇐⇒ x < α− β2√
β2−γ2

, whereas the inequality

r1 (x) < f2 (x) always holds (i.e. this inequality holds for all x ≤ α− 2|γ|).
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2. Case |β| =
√

2 |γ|: Then f1 (x) < r1 (x) < f2 (x) holds for all x < α− 2 |γ| (whereas
at the boundary point x = α− 2 |γ|, we have r1 (x) = f1 (x) = f2 (x).)

3. Case |γ| < |β| <
√

2 |γ|: Then r1 (x) > f1 (x) always holds (i.e. for all x ≤ α− 2|γ|),
and r1 (x) < f2 (x) ⇐⇒ x < α− β2√

β2−γ2
.

4. Case |β| ≤ |γ|: Then we always have r1 (x) > f2 (x) ≥ f1 (x).

Proof. To simplify the notation, we set z := α − x, so that x ≤ α − 2 |γ| is equivalent
to z ≥ 2 |γ|. We divide the (technical, but completely elementary) proof into three steps:
Part (A) contains some facts that will be used in the subsequent parts. In part (B), we
study how r1 (x) and f1 (x) relate to each other, and in part (C) we study the relation
between r1 (x) and f2 (x).

(A) We start by finding candidates x ≤ α−2 |γ| for which r1 (x) = f1 (x) or r1 (x) = f2 (x)
is possible. We do this simultaneously for both fixed points. To this end, note that

r1 (x) = f1/2 (x) ⇐⇒ z2 − β2

z
=

1

2

(
z ∓

√
z2 − 4γ2

)
z>0⇐⇒ 2z2 − 2β2 = z2 ∓ z

√
z2 − 4γ2

⇐⇒ z2 − 2β2 = ∓z
√

z2 − 4γ2 (12)

=⇒ z4 − 4β2z2 + 4β4 = z2
(
z2 − 4γ2

)
⇐⇒ β4 = z2

(
β2 − γ2

)
.

Hence, for both equations, we have the same necessary condition. It is satisfied for
z1 = − β2√

β2−γ2
and z2 = + β2√

β2−γ2
. Therefore, the possible candidates are x1 = α+ β2√

β2−γ2

and x2 = α− β2√
β2−γ2

. We call them the roots of the above equation. Using (12), it is also

clear that there are no (real) roots if |β| = |γ| or |β| < |γ|.

(B) Here we discuss the relation between r1(x) and the fixed point f1(x) in terms of the
orginal data of the matrix J . To this end, first note that, since α− x ≥ 2|γ| > 0, we have

r1(x) > f1(x) ⇐⇒ (α− x)2 − β2

(α− x)
>

1

2

(
(α− x)−

√
(α− x)2 − 4γ2

)
⇐⇒ 2β2 < (α− x)2 + (α− x)

√
(α− x)2 − 4γ2,

and the last inequality obviously holds for all sufficiently small x. We call this observation
(O1).

At this point, we have to discuss several cases:

1. Let |β| >
√

2 |γ|. In this case, it turns out, by inserting the two candidate points
x1 and x2, that x2 is the only root in the interval (−∞, α − 2|γ|). Together with

11



observation (O1), it therefore follows that r1 (x) > f1 (x) if x < x2, whereas we have
r1 (x) < f1 (x) if x > x2.

2. Let |β| =
√

2 |γ|. Here we can write x1/2 = α±2 |γ|. A simple calculation shows that
both candidates are indeed roots. Since x2 < x1, we obtain from observation (O1)
that r1 (x) > f1 (x) for x < x2 (note that x ≤ α − 2 |γ| = x2 was the prerequisite of
this lemma, so the case x > x2 does not occur), whereas we have r1(x) = f1(x) at
x = x2 since x2 is a root of our equation.

3. Let |γ| < |β| <
√

2 |γ|. Here it is easy to see that x1 is the only root among the
two candidates. Together with observation (O1), we therefore get r1 (x) > f1 (x) for
x < x1. However, in this case, we have x1 > α−2 |γ|. Hence, we obtain r1 (x) > f1 (x)
for all x ≤ α− 2 |γ|.

4. Let |β| ≤ |γ|. In this case, there are no roots in view of part (A). It therefore follows
from observation (O1) that r1 (x) > f1 (x) holds for all x ≤ α− 2|γ|.

(C) Here we discuss the relation between r1(x) and the fixed point f2(x), again in terms of
the orginal data of the matrix J . The considerations are similar to those from part (B). To

this end, we first note that r1 (x) > f2 (x) is equivalent to 2β2 < z2
(
1−

√
1− 4γ2/z2

)
=:

g (z). Using l’Hospital’s rule, we obtain

lim
z→∞

g (z) = lim
z→∞

(
1−

√
1− 4γ2/z2

)
z−2

= lim
z→∞

2γ2√
1− 4γ2/z2

= 2γ2 .

Taking into account that z = α − x, it follows that r1(x) > f2(x) for all x sufficiently
small if |β| < |γ|. Similarly, one can show that r1(x) < f2(x) for all x sufficiently small if
|β| > |γ| (whereas the case |β| = |γ| has to be treated separately). We call these statements
observation (O2).

Like before, we proceed by considering several cases:

1. Let |β| >
√

2 |γ|. Through simple calculation, we get that x1 is the only root.
Observation (O2) therefore implies r1 (x) < f2 (x) for all x < x1. But since x1 >
α− 2 |γ| we even have r1 (x) < f2 (x) for all x ≤ α− 2 |γ|.

2. Let |β| =
√

2 |γ|. Here x1/2 = α ± 2 |γ| are the two roots, but x1 is greater than
α − 2 |γ| and hence irrelevant for our case. Using observation (O2) once again, we
get r1 (x) < f2 (x) for all x < α − 2 |γ| as in the previous case, whereas we have
r1(x) = f2(x) at the boundary point x = x2 = α− 2|γ|.

3. Let |γ| < |β| <
√

2 |γ|. Then x2 is the only root, and observation (O2) gives r1 (x) <
f2 (x) if and only if x < x2.

4. Let |β| = |γ|. We know from part (A) that there are no roots in this case, hence either
r1(x) < f2(x) or r1(x) > f2(x) holds for all x ≤ α − 2|γ|. To decide which of these

12



two inequalities holds, observation (O2) cannot be applied directly. However, direct
calculation shows that 2β2 = 2γ2 < 4γ2 = g (2 |γ|) , so that observation (O2) now
gives r1 (α− 2 |γ|) > f2 (α− 2 |γ|). Hence r1 (x) > f2 (x) holds for all x ≤ α− 2 |γ|.

5. Let |β| < |γ|. According to part (A), there are no roots in this case. Together with
observation (O2), it follows that r1 (x) > f2 (x) holds for all x ≤ α− 2 |γ|.

The statement now follows by summarizing all subcases considered in parts (B) and (C). �

The following result is similar to the previous one (so we skip its proof) and shows how the
number h(x) is related to the two fixed points f1(x) and f2(x) depending on the original
data δ and γ of our matrix J whose dimension m is again assumed to be fixed.

Lemma 3.5 Let x ≤ α− 2 |γ|, f1 (x) and f2 (x) be the fixed points of the function f , and
let h (x) be defined by (10). Then the following statements hold:

1. Case |δ| >
√

2 |γ|: Then h (x) < f2 (x) ⇐⇒ x < α− δ2√
δ2−γ2

, whereas the inequality

h (x) > f1 (x) always holds (i.e. for all x ≤ α− 2|γ|).

2. Case |δ| =
√

2 |γ|: Then f1 (x) < h (x) < f2 (x) for all x < α − 2 |γ| (and h (x) =
f1 (x) = f2 (x) for the boundary point x = α− 2 |γ|).

3. Case |γ| < |δ| <
√

2 |γ|: Then h (x) > f1 (x) ⇐⇒ x < α − δ2√
δ2−γ2

, whereas the

inequality h (x) < f2 (x) always holds (i.e. for all x ≤ α− 2|γ|).

4. Case |δ| ≤ |γ|: Then we always have h (x) < f1 (x) ≤ f2 (x).

Now we are going to combine the previous results in order to get estimates for the extremal
eigenvalues of the matrix J . We stress, however, that it cannot be avoided that these
bounds (in addition to the data of the matrix) sometimes also depend on the dimension
m of this matrix, cf. Table 1 and the discussion to derive the entries of this table.

Unfortunately, we have to distinguish several cases in the presentation of our main
result. In view of Lemmas 3.4 and 3.5, there are actually 16 different cases to consider,
namely those that occur by combining the four possibilities

|β| >
√

2|γ|, |β| =
√

2|γ|, |β| ∈
(
|γ|,

√
2|γ|

)
, and |β| ≤ |γ|

from Lemma 3.4 with the corresponding four possibilities

|δ| >
√

2|γ|, |δ| =
√

2|γ|, |δ| ∈
(
|γ|,

√
2|γ|

)
, and |δ| ≤ |γ|

from Lemma 3.5.
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Theorem 3.6 Define β̄ := β2√
β2−γ2

and δ̄ := δ2√
δ2−γ2

. Then the inequalities

λmin(J) ≥ α−K and λmax(J) ≤ α + K

holds

(a) for all dimensions m ∈ N with K being the constant from the following table:

|δ| >
√

2|γ| |δ| =
√

2|γ| |δ| ∈
(
|γ|,

√
2|γ|

)
|δ| ≤ |γ|

|β| >
√

2|γ|
√

β2 + δ2
√

β2 + δ2 max
{
β̄,

√
β2 + δ2

}
β̄

|β| =
√

2|γ|
√

β2 + δ2 2|γ| 2|γ| 2|γ|
|β| ∈

(
|γ|,

√
2|γ|

)
max

{
δ̄,

√
β2 + δ2

}
2|γ| 2|γ| 2|γ|

|β| ≤ |γ| δ̄ 2|γ| 2|γ| 2|γ|

(b) for all sufficiently large dimensions m ∈ N with the (usually sharper) constant K
from the following table:

|δ| >
√

2|γ| |δ| =
√

2|γ| |δ| ∈
(
|γ|,

√
2|γ|

)
|δ| ≤ |γ|

|β| >
√

2|γ| max{β̄, δ̄} β̄ β̄ β̄

|β| =
√

2|γ| δ̄ 2|γ| 2|γ| 2|γ|
|β| ∈

(
|γ|,

√
2|γ|

)
δ̄ 2|γ| 2|γ| 2|γ|

|β| ≤ |γ| δ̄ 2|γ| 2|γ| 2|γ|

Proof. In view of our previous observation, α−K is a lower bound for λmin(J) if and only
if α + K is an upper bound for λmax(J) for some K > 0. Hence it is enough to verify the
lower bounds for the minimum eigenvalue of J . We further note that, in view of Remark
3.1, we (have to) assume throughout this proof that x ≤ α− 2 |γ| since there cannot be a
lower bound greater than α− 2 |γ| that fits for all (sufficiently large) matrix sizes m.

We begin by stating some elementary inequalities (without proof) that are useful for
the subsequent considerations:

(a) If |β| > |γ|, then β̄ ≥ 2|γ| and β̄ = 2|γ| holds if and only if |β| =
√

2|γ|.

(b) If |δ| > |γ|, then δ̄ ≥ 2|γ| and δ̄ = 2|γ| holds if and only if |δ| =
√

2|γ|.

(c) If |β| ≥
√

2|γ| and |δ| ≥
√

2|γ|, then
√

β2 + δ2 ≥ max{2|γ|, β̄, δ̄}.

(d) If |β| =
√

2|γ| and |δ| ∈
(
|γ|,

√
2|γ|

)
, then δ̄ ≥

√
β2 + δ2.

(e) If |β| ∈
(
|γ|,

√
2|γ|

)
and |δ| =

√
2|γ|, then β̄ ≥

√
β2 + δ2.
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We now verify statements (a) and (b) simultaneously. In principle, we have to consider
each of the possible 16 cases separately. However, it will be enough to consider only one
of these cases (in fact, one of the more interesting ones), since the remaining cases can be
treated in essentially the same way by referring to the corresponding cases from Lemmas
3.4 and 3.5 as well as to the corresponding entries of Table 1.

The case that we consider in more detail is the one where |β| >
√

2|γ| and |δ| >
√

2|γ|
holds. Then Lemma 3.4 shows that r1(x) < f2(x) holds for all x ≤ α − 2|γ|, whereas
r1(x) > f1(x) is equivalent to x < α − β̄. Moreover, Lemma 3.5 shows that h(x) > f1(x)
holds for all x ≤ α− 2|γ|, whereas we have h(x) < f2(x) if and only if x < α− δ̄. Table 1
therefore shows that, for all x < min{α− β̄, α− δ̄} and all x ≤ α− 2|γ|, this x provides a
lower bound for λmin(J) provided that the dimension m is sufficiently large. By continuity,
we therefore get the lower bound

λmin(J) ≥ min{α− 2|γ|, α− β̄, α− δ̄} = α−max{2|γ|, β̄, δ̄}

for all m ∈ N sufficiently large. Using observations (a) and (b), this lower bound reduces
to

λmin(J) ≥ α−max{β̄, δ̄}.

This is precisely the lower bound given for the case considered here in statement (b).
However, in this particular case, we can also apply Remark 3.3 and obtain a lower

bound for λmin(J) for all dimensions m ∈ N if, in addition, x is chosen in such a way that
r1(x) > h(x). Since this condition is equivalent to x < α−

√
β2 + δ2 according to Remark

3.3, it follows, together with our previous considerations, that the lower bound

λmin(J) ≥ α−max
{
2|γ|, β̄, δ̄,

√
β2 + δ2

}
holds for all dimensions m ∈ N. In view of observation (c), this lower bound boils down to

λmin(J) ≥ α−
√

β2 + δ2

and therefore justifies the corresponding bound given in statement (a). �

We close this section with some remarks about the previous result.

Remark 3.7 (a) Except for the trivial case |β|, |δ| ≤ |γ|, our bounds on the extremal
eigenvalues of the matrix J are better than those that come from Gershgorin’s Theorem.

(b) The case |β| = |δ| =
√

2|γ| gives α − 2|γ| and α + 2|γ| as lower and upper bounds
for λmin(J) and λmax(J), respectively. However, in this case these bounds are exact, i.e.
λmin(J) = α−2|γ| and λmax(J) = α−2|γ|. This follows from the recursion (5) which, in this
case, gives for p0(x) = 1, p1(x) = 2|γ|, p2(x) = 2|γ|2, pk(x) = 2|γ|k for all k = 3, . . . ,m− 1
and pm(x) = 0 for x := α− 2|γ|.
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(c) Consider a matrix of the form

A =



α β̄

β̂ α γ̄3

γ̂3 α
. . .

. . . . . . γ̄m−1

γ̂m−1 α δ̄

δ̂ α


.

Define β, γ ∈ R in such a way that β̂ × β̄ = β2 and δ̂ × δ̄ = δ2. Suppose that there is
an element γ ∈ R with γ̂i × γ̄i = γ2 for all i = 3, . . . ,m − 1. Then the characteristic
polynomials of all principal submatrices of A coincide with the polynomials pk(x) from (5).
Consequently, all the previous considerations for the matrix J also hold for the nonsym-
metric matrix A. In particular, the same bounds for the extremal eigenvalues are valid for
A.

(d) Statement (b) of Theorem 3.6 holds only for all sufficiently large dimensions m, say,
for all m ≥ m0. Here, the smallest dimension m0 can be computed in the following way:
We are in the situation where r1(x) > f1(x) and h(x) < f2(x) for x = α − K, K the
bound given in the tables of Theorem 3.6. Then the sequence r1(x), r2(x), r3(x), . . . is
monotonically increasing and converges to f2(x). So there exists a smallest integer s such
that rs(x) > h(x). Then m0 = s + 2 is the required dimension since rs(x) determines
the behaviour of ps+2(x). Hence we need to compute r1(x) and h(x) as well as (if still
necessary) the other quotients rk(x) for k ≥ 2 via the corresponding recursion (9) until,
for the first time, rs(x) is greater than h(x).

(e) Theorem 3.6 (b) shows that λmin(J) ≥ α − K holds for all dimensions m ≥ m0 with
the constant K given in the corresponding table and a sufficiently large dimension m0 ∈ N
that can be computed via the previous remark. However, in some cases it might be enough
to satisfy a weaker bound of the form λmin(J) ≥ α − K̃ for some K̃ ≥ K. This bound is
certainly satisfied for all dimensions m ≥ m0, but it might already be satisfied for smaller
dimensions, say, for all m ≥ m̃0 with some m̃0 ≤ m0. The practical computation of m̃0

can be done as in (d) with x = α−K replaced by x = α− K̃.

4 Application

In this section we want to discuss an example which demonstrates the usefulness of the
previous results. To this end, let us consider the linear homogeneous partial differential
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equation (PDE) of second order

θ · ∂c (t, x, y)

∂t
− βl · q ·

∂2c (t, x, y)

∂x2
− βt · q ·

∂2c (t, x, y)

∂y2
+ q · ∂c (t, x, y)

∂x
= 0

on [0, T ]×Ω, where [0, T ] for some T > 0 denotes the time interval and Ω = [0, ωx]×[0, ωy] ⊆
R2 for some constants ωx, ωy denotes the spatial domain. In addition, we assume that we
have boundary conditions described by a Dirichlet condition on the left border and by
Neumann conditions on the other boundaries of the domain. This PDE describes, for
example, the convection and diffusion of a chemical species in the ground water, where c
is the concentration of this species. The scalar constants θ, q, βl, βt > 0 are used to specify
some further properties of the given problem. For some background material regarding
this particular application, we refer the interested reader to [9, 2].

Since we have a rectangular domain, the simplest discretization is by finite differences.
To this end, we denote by h the step size in the spatial directions x and y, and by τ
the step size for the discretization in time. Then we have n = ωx

h
unknown points in

each grid row (for x = 0 the values are known by the Dirichlet boundary condition) and
m + 1 unknown points in each grid column, with m := ωy

h
. With ci,j := c (tl, i · h, j · h)

and cold
i,j := c (tl−1, i · h, j · h) we denote the concentrations of the species at the discretized

point (ih, jh) in the current time step tl = l · τ and the previous time step, respectively.
To obtain a suitable finite difference approximation of the original PDE, we use forward

differences for the first term ∂c(t,x,y)
∂t

(which is the only part that includes a derivate with
respect to time), resulting in the first-order Euler approximation

ci,j − cold
i,j

τ

in every grid point (xi, yi) := (ih, jh). On the other hand, for the second-order derivative

−βlq
∂2c(t,x,y)

∂x2 we use the standard central difference approximation. We also apply a second-

order central difference approximation to the first-order derivative q ∂c(t,x,y)
∂x

. The resulting
approximation in each grid row j = 0, . . . ,m for the inner grid points i = 2, . . . , n− 1 is(

−βlq

h2
− q

2h

)
ci−1,j +

2βlq

h2
ci,j +

(
−βlq

h2
+

q

2h

)
ci+1,j,

while for i = 1 the value of c0,j is known from the Dirichlet boundary condition, so we
obtain the approximation

2βlq

h2
c1,j +

(
−βlq

h2
+

q

2h

)
c2,j,

whereas for i = n we get, taking into account the Neumann boundary condition on the
right side of the domain, the discretization(

−2
βlq

h2

)
cn−1,j +

2βlq

h2
cn,j = 0 .
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To write these expressions in matrix notation, we define the vectors

cj := (c1,j, c2,j, . . . , cn,j)
T ∀j = 1, . . . ,m− 1

and the n× n matrix

Lx := ax ·Mx with Mx :=



2 −1 + b
−1− b 2 −1 + b

−1− b
. . . . . .
. . . 2 −1 + b

−1− b 2 −1 + b
−2 2


and

ax := ax (h) :=
βl · q
h2

and b := b (h) :=
h

2βl

.

Now the resulting equations for each grid row j = 0, . . . ,m read

Lx · cj .

Similarly, applying the standard central difference approximation to the second-order

derivative −βtq
∂2c(t,x,y)

∂y2 , we obtain in each grid column i = 1, . . . , n for the inner points

j = 1, . . . ,m − 1 (each boundary point in y direction has a Neumann condition) the dis-
cretized equation

−βtq

h2
ci,j−1 +

2βtq

h2
ci,j −

βtq

h2
ci,j+1 ,

whereas on the lower bound j = 0 and the upper bound j = m, we have

2βtq

h2
ci,0 −

2βtq

h2
ci,1 and − 2βtq

h2
ci,m−1 +

2βtq

h2
ci,m,

respectively. Like before we define for every grid column i = 1, . . . , n the vectors

ci := (ci,0, ci,1, . . . , ci,m)T

and the (m + 1)× (m + 1) matrix

Ly := ay ·My with My :=


2 −2
−1 2 −1

. . . . . . . . .

−1 2 −1
−2 2

 , ay := ay (h) :=
βt · q
h2

.
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Using this notation, we can write these expressions in every grid column i = 1, . . . , n in
matrix-vector form as

Ly · ci .

We now want to write all these n · (m + 1) equations in one linear system. To this end,
we order our unknowns ci,j in time step l lexicographically into one big vector by stacking
together the grid rows cj into

ch = (c1,0, c2,0, . . . , cn,0, c1,1, . . . , cn,1, . . . c1,m−1, c2,m−1, . . . , cn,m−1)
T .

We do the same for the previous time step and call the resulting vector cold
h , whose entries

are no longer unknowns in the current time step tl. We now formulate the matrix of the full
linear system with the help of Lx and Ly. Writing lyi,j for the elements of Ly and defining
the n(m + 1)× n(m + 1) matrix

Lh =


Lx + ly1,1In ly1,2In

ly2,1In Lx + ly2,2In ly2,3In

ly3,2In Lx + ly3,3In
. . .

. . . . . . lym,m+1In

lym+1,mIn Lx + ly(m+1),(m+1)In

 ,

the resulting linear system in one time step becomes(
θIn(m+1) + τLh

)
· ch = θ · cold

h . (13)

In order to solve this sparse linear system efficiently by an iterative solver, we study the
properties of the system matrix

(
θIn(m+1) + τLh

)
. In particular, we are interested in the

smallest singular value to know whether the matrix is nonsingular and to compute the
condition number. Moreover, we would like to show that this matrix is positive definite
(although nonsymmetric), because this guarantees that, e.g., the restarted GMRES solver
used in our numerical test is known to converge in this case, cf. [11].

To this end we shortly review the notions of the Kronecker product and the Kronecker
sum together with some basic properties. The following results can be found in [6, Section
4.2 and 4.4]. Let A = (ai,j) be a real k× k matrix and let B = (bi,j) be a real l× l matrix.
Then the Kronecker product is defined as the kl × kl matrix

A⊗B =


a1,1B a1,2B · · · a1,kB
a2,1B a2,2B · · · a2,kB

...
...

ak,1B ak,2B · · · ak,kB

 .

Given another l × l matrix C, it holds that

A⊗B + A⊗ C = A⊗ (B + C) .
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Similarly, we also have
(A + B)⊗ C = A⊗ C + B × C

for all matrices A, B, C of appropriate dimension. For any real scalar r, we obviously have

r · (A⊗B) = (rA)⊗B = A⊗ (rB) .

In addition, it is known that (
A⊗B

)T
= AT ⊗BT

holds for all suitable matrices A, B. Finally, the Kronecker sum of A ∈ Rk×k and B ∈ Rl×l

is defined as the kl × kl matrix
Il ⊗ A + B ⊗ Ik .

The eigenvalues µi,j of the Kronecker sum are given by λi(A) + λj(B) for all i = 1, . . . , k
and all j = 1, . . . , l.

Now let us go back to our example. Using the notion of the Kronecker sum, the matrix
Lh can be written as Lh = Im+1 ⊗ Lx + Ly ⊗ In, so that the matrix of the linear system
(13) becomes

L (τ, h) := θI(m+1)n + τ (Im+1 ⊗ Lx + Ly ⊗ In) .

We want to compute a lower bound for the smallest singular value of this matrix. To this
end, we first give a lower bound for the smallest eigenvalue of the corresponding symmetric
part which is given by

Ls (τ, h) = θI(m+1)n + τ
(
Im+1 ⊗ Ls

x + Ls
y ⊗ In

)
.

The previous considerations show that the smallest eigenvalue of this symmetric part is
given by

λ1 (Ls (τ, h)) = θ + τλ1 (Ls
x) + τλ1

(
Ls

y

)
. (14)

Hence we obtain a lower bound for the smallest eigenvalue λ1 (Ls (τ, h)) by calculating
lower bounds for λ1 (Ls

x) and λ1

(
Ls

y

)
. Since both matrices Ls

x and Ls
y have the structure of

the matrix J from (1), we can apply the theory from the previous section. Note, however,
that these bounds depend on our step size h. We will show that, for suitable choices of
these step sizes, the matrix Ls(τ, h) has only positive eigenvalues. This implies that the
(nonsymmetric) system matrix L(τ, h) itself is positive definite (recall that a nonsymmetric
matrix A is positive definite if and only if its symmetric part As is positive definite).
Furthermore, Lemma 2.3 then also gives a lower bound for the smallest singular value of
L(τ, h).

Before we proceed, we note that it would alternatively be possible to consider the
nonsymmetric matrix L(τ, h) directly since Remark 3.7 (c) can be applied in our particular
application. The subsequent analysis, however, deals with the symmetric part Ls(τ, h) and
calculates a lower bound for the smallest eigenvalue using the representation from (14).
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Let us first consider the matrix Ls
x = ax (h) ·M s

x. We now give a lower bound for the
smallest eigenvalue of the n× n matrix

M s
x =



2 −1
−1 2 −1

−1
. . . . . .
. . . 2 −1

−1 2 −1.5 + 0.5 · b
−1.5 + 0.5 · b 2


.

We adapt the results from the previous section and get the following corollary.

Corollary 4.1 If b ∈
[
3− 2

√
2, 3 + 2

√
2
]

then λ1 (M s
x) ≥ 0 holds for all n ≥ 4.

If b < 3 − 2
√

2 or b > 3 + 2
√

2 then λ1 (M s
x) ≥ 2 − d2

√
d2−1

holds for all n ≥ 4, where
d = −1.5 + 0.5b is the perturbed entry of M s

x.

Proof. We first consider the case b ∈
[
3− 2

√
2, 3 + 2

√
2
]

which is equivalent with

|−1.5 + 0.5b| ≤
√

2. With Theorem 3.6 (a) applied in the case “|β| ≤ |γ| and |δ| ≤
√

2|γ|”,
we get the first estimate. The case b < 3 − 2

√
2 or b > 3 + 2

√
2 is equivalent to

|−1.5 + 0.5b| >
√

2. Using Theorem 3.6 (a) once again, but applied in the case “|β| ≤ |γ|
and |δ| >

√
2|γ|”, we obtain 2 − d2

√
d2−1

as a lower bound. The restriction regarding the
dimension is simply due to the fact that all considerations in the previous section implicitly
assumed that the matrices are at least 4× 4-dimensional. �

Note that 2 − d2
√

d2−1
in the previous Corollary is always negative in the case where it is

applied. Hence the corresponding matrix M s
x is not necessarily positive definite in this

case.
Similarly, we now study the (m + 1)× (m + 1) matrix Ls

y = ay (h) ·M s
y . We therefore

give a lower bound for the smallest eigenvalue of

M s
y =


2 −1.5

−1.5 2
. . .

−1
. . . −1
. . . 2 −1.5

−1.5 2

 .

To achieve the most accurate bounds, we distinguish different matrix sizes.

Corollary 4.2 If m ≥ 65 then λ1

(
M s

y

)
≥ −0.0125.

If m ≥ 26 then λ1

(
M s

y

)
≥ −0.015.

If m ≥ 16 then λ1

(
M s

y

)
≥ −0.02.

If m ≥ 12 then λ1

(
M s

y

)
≥ −0.025.
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Proof. Theorem 3.6 (b) applied in the case “|β| >
√

2|γ| and |δ| >
√

2|γ|” shows that
λ1

(
M s

y

)
≥ 2 − 2.25√

1.25
≈ −0.01246 holds for all sufficiently large m. Replacing this lower

bound by the less restrictive numbers −0.0125,−0.015,−0.02 and −0.025, respectively, we
obtain the desired statements in a way described in Remark 3.7 (e). �

Using (14), we therefore obtain

λmin (Ls (τ, h)) = θ + τax (h) λmin (M s
x) + τay (h) λmin

(
M s

y

)
= θ + τ

βl · q
h2

λmin (M s
x) + τ

βt · q
h2

λmin

(
M s

y

)
.

From Lemma 2.3 we know that σmin (L (τ, h)) ≥ λmin (Ls (τ, h)) if Ls (τ, h) is positive
definite, which is equivalent to λmin (Ls (τ, h)) > 0. Recall that b = b (h) = h

2βl
and

therefore b (h) > 0 for all h > 0. Taking into account the two different cases considered in
Corollary 4.1, we obtain the lower bound

λmin (Ls (τ, h)) ≥ θ + τ
βt · q
h2

λmin

(
M s

y

)
for h ∈

[(
1.5−

√
2
)

4βl,
(
1.5 +

√
2
)

4βl

]
,

whereas we have

λmin (Ls (τ, h)) ≥ θ + τ
βt · q
h2

λmin

(
M s

y

)
+ τ

βl · q
h2

·
(

2− d2

√
d2 − 1

)
for h 6∈

[(
1.5 −

√
2
)
4βl,

(
1.5 +

√
2
)
4βl

]
, where d = −1.5 + 0.5b. The possibly negative

eigenvalues λmin (M s
x) and λmin

(
M s

y

)
get amplified by the numbers βl·q

h2 > 0 and βt·q
h2 > 0,

respectively. These factors increase for h → 0. Suppose a time step size τ > 0 is given.
Then we need to calculate a minimal step size h0 such that

θ + τ
βl · q
h2

0

λmin (M s
x) + τ

βt · q
h2

0

· λmin

(
M s

y

)
> 0

holds and therefore our matrix L (τ, h) is positive definite and nonsingular. Then we can
solve our linear system with all step sizes h ≥ h0. Here it is important to have an accurate
lower bound for λmin (M s

x) and λmin

(
M s

y

)
so that we can use step sizes h as small as

possible.

Example 4.3 We set ωx = 10 and ωy = 6 and therefore use the domain Ω = [0, 10]× [0, 6].
We further use the scalars τ = 0.1, βl = 0.3, βt = 0.03, q = 0.18 and θ = 0.3. Depending
on the choice of h, we now get different matrix sizes and eigenvalues. In the following table
we compare the lower bound of λmin (Ls(τ, h)) according to our theory (column ’λmin lower
bound’) with the exact eigenvalue calculated from the corresponding system matrix with
the MATLAB function eigs (column ’λmin exact’).
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h n m size λmin exact λmin lower bound

0.5 20 12 260 0.300412963667855 0.2999550000
0.2 50 30 1550 0.300213215599023 0.2997975000
0.1 100 60 6100 0.299416896200867 0.2991835345
0.05 200 120 24200 0.289617314238473 0.2896089457
0.02 500 300 150500 0.170625390123707 0.1705729827
0.01 1000 600 600600 −0.324076096559832 −0.3242857259

We see that the lower bounds obtained from our theory are very sharp. In fact, a rounding
process after the first three digits gives identical values for all different matrix sizes.

From Lemma 2.3 we know that our estimate for λmin (Ls(τ, h)) is also a lower bound
for σmin (L(τ, h)) as long as Ls(τ, h) is positive semidefinite, i.e., for all step sizes except
h = 0.01. However, it is clear from Lemma 2.3 that this lower bound will be much
less accurate, especially when the matrix L(τ, h) is far away from being symmetric (this
will be the case for smaller values of h). Nevertheless, we will give a comparison of our
lower bound for σmin with prior results in this area. To this end, let us define the values
rk(A) :=

∑n
j=1,j 6=k |akj| and cl(A) :=

∑n
i=1,i6=l |ail| for an arbitrary matrix A = [aij] ∈ Rn×n.

Then, Johnson [7, Theorem 3] showed that

σmin(A) ≥ min
i=1,...,n

{
|aii| −

ri(A) + ci(A)

2

}
. (15)

whereas Johnson and Szulc [8, Theorem 2] proved the lower bound

σmin(A) ≥ min
i=1,...,n


√
|aii|2 +

(
rk(A)− ck(A)

2

)2

− rk(A) + ck(A)

2

 . (16)

Reference [8] actually gives some further formulas which, however, all coincide for our
particular matrix L(τ, h). Another interesting lower bound was given by Qi [10, Theorem
3]:

σmin(A) ≥ max
{
0, min{l1, . . . , ln}

}
with

li := min

{√
a2

ii − aiiri(A) +
ci(A)2

4
− ci(A)

2
,

√
a2

ii − aiici(A) +
ri(A)2

4
− ri(A)

2

}
.

(17)

In the following table, we compare these estimates with our estimate for L(τ, h) for different
step sizes h.

h σ1 exact σ1 l.b. (15) (16) (17)

0.5 0.30046 0.29996 0.29712 0.29713 0.29689
0.2 0.30031 0.29980 0.24825 0.25049 0.22481
0.1 0.30005 0.29918 0.048 0.06919 0.00000
0.05 0.29978 0.28960 −0.798 −0.68005 0.08769
0.02 0.30006 0.17057 −6.9 −6.04810 0.20315
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The column entitled “σ1 l.b.” is our lower bound. We see that the estimates from (15)–(17)
all become zero or negative at a certain stage (and, hence, are useless as a lower bound for
the smallest singular value). Furthermore, our lower bound is (much) better in almost all
situations.
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