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Abstract. A mathematical program with vanishing constraints (MPVC) is a constrained opti-
mization problem arising in certain engineering applications. The feasible set has a complicated
structure so that the most familiar constraint qualifications are usually violated. This, in turn, im-
plies that standard penalty functions are typically non-exact for MPVCs. We therefore develop a
new MPVC-tailored penalty function which is shown to be exact under reasonable assumptions.
This new penalty function can then be used to derive (or recover) suitable optimality conditions
for MPVCs.
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1 Introduction
We consider a constrained optimization problem of the form

min f (x)
s.t. Hi(x) ≥ 0 ∀i = 1, . . . , l,

Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l
(1)

that we call a Mathematical Program with Vanishing Constraints, or MPVC for short, where all
functions f ,Hi,Gi : Rn → R are assumed to be continuously differentiable.

More generally, an MPVC is a mathematical program of the form

min f (x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

h j(x) = 0 ∀ j = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l

with some additional functions gi, h j : Rn → R which represent some standard equality and
inequality constraints. In order to keep our notation as simple as possible, we skip these standard
constraints from this program and consider, from the very beginning, the formulation (1) where
only the difficult constraints are kept. Generalizations of our subsequent results to the more
general setting are straightforward.

There have already been published a couple of papers on MPVCs which investigate applica-
tional, theoretical and numerical aspects: In [1], the first in the field of MPVCs, it is shown that
this class of problems can be used as a unified framework for several problems from truss topol-
ogy optimization. The papers [10, 11, 12] are mainly concerned with constraint qualifications
and optimality conditions for MPVCs. Some numerical approaches are investigated in [2] and
[14], where the first one is based on smoothing and regularization ideas and the latter employs
a pure relaxation method. In [14] there is also presented some stability analysis, whereas [2]
provides broad numerical results.

In this paper, however, we are interested in exact penalty results for MPVCs. To this end, we
first recall some basic definitions and preliminary results in Section 2. We then state an exact
penalty result in Section 3 within the framework of a rather general mathematical program. This
result is then specialized to the MPVC-setting in Section 4, where we derive an MPVC-tailored
penalty function and show that this new penalty function is exact under suitable assumptions.
This exact penalty result is then used in Section 5 in order to give an alternative proof for the
existence of suitable multipliers such that certain optimality conditions (called M-stationarity)
hold at a local minimum of the MPVC. Section 6 then considers the exactness of the classical
l1-penalty function for MPVC; however, the conditions which guarantee exactness of the new
penalty function considered in Section 4 are not sufficient for the exactness of the l1-penalty
function. We close with some final remarks in Section 7.

Notation: R denotes the set of real numbers, R+ := [0,+∞) is the set of nonnegative real
numbers, and R− := (−∞, 0] are the nonpositive numbers. In addition to that we put R̄ :=
R ∪ {+∞,−∞}. Given a(n index) set I, we write P(I) for the set of all partitions of I into two
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disjoint subsets of I, i.e. (β1, β2) ∈ P(I) if and only if β1 ∪ β2 = I and β1 ∩ β2 = ∅. For a given set
S ⊆ Rn, we denote its convex hull by conv(S ). Moreover, for a nonempty closed (not necessarily
convex) set S ∈ Rn, the distance function dS : Rn → R is given by

dS (x) := inf
s∈S
‖x − s‖,

where ‖ · ‖ denotes an arbitrary lp-norm in Rn for p ∈ [1,∞]. Given a sequence {xk}k∈N ⊂ R
n and

a (not necessarily continuous) function f : Rn → R, we write xk →
f

x if and only if xk → x and

f (xk) → f (x). We further use the notation Φ : Rn ⇒ Rn for a multifunction or set-valued map,
i.e., Φ(x) is a subset of Rn. Its graph is defined as gphΦ := {(x, y) | y ∈ Φ(x)}. Finally, consider a
mathematical program of the form

min f (x) s.t. x ∈ X (2)

for a given function f : Rn → R and a nonempty and closed feasible set X ⊆ Rn. Any function
of the form

P(x;α) := f (x) + αp(x)

with a (penalty) parameter α > 0 will be called a penalty function of (2) provided that p(x) ≥ 0
for all x ∈ Rn and p(x) = 0 if and only if x ∈ X. We say that this penalty function is exact at
a local minimum x∗ of (2) if there exists a finite penalty parameter ᾱ > 0 such that x∗ is also a
local minimum of the penalty function P(x;α) for all α ≥ ᾱ.

2 Preliminaries
Let X denote the feasible set of (1), and let x∗ ∈ X be an arbitrary feasible point. Then we define
the index sets

I+ :=
{
i
∣∣∣ Hi(x∗) > 0

}
,

I0 :=
{
i
∣∣∣ Hi(x∗) = 0

}
.

(3)

Furthermore, we decompose the index set I+ into the following subsets:

I+0 :=
{
i
∣∣∣ Hi(x∗) > 0,Gi(x∗) = 0

}
,

I+− :=
{
i
∣∣∣ Hi(x∗) > 0,Gi(x∗) < 0

}
.

(4)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣∣∣ Hi(x∗) = 0,Gi(x∗) > 0

}
,

I00 :=
{
i
∣∣∣ Hi(x∗) = 0,Gi(x∗) = 0

}
,

I0− :=
{
i
∣∣∣ Hi(x∗) = 0,Gi(x∗) < 0

}
.

(5)

Note that the first subscript indicates the sign of Hi(x∗), whereas the second subscript stands for
the sign of Gi(x∗).

By means of these index sets, we are now in a position to state the two most prominent
stationarity concepts for MPVCs.
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Definition 2.1 Let x∗ be feasible for (1).

(a) Then x∗ is called M-stationary if there exist multipliers (ηG, ηH) such that

0 = ∇ f (x∗) +
l∑

i=1

ηG
i ∇Gi(x∗) −

l∑
i=1

ηH
i ∇Hi(x∗) (6)

and
ηG

i = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηG
i ≥ 0 (i ∈ I00 ∪ I+0),

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I0−),

ηG
i η

H
i = 0 (i ∈ I00).

(7)

(b) The point x∗ is called strongly stationary if it is M-stationary and, in addition,

ηG
i = 0, ηH

i ≥ 0 (i ∈ I00). (8)

Apparently, strong stationarity implies M-stationarity and both concepts coincide as soon as the
critical index set I00 is empty. Moreover, in [1], strong stationarity was shown to be equivalent to
the standard Karush-Kuhn-Tucker conditions of (1) and hence, strong stationarity is a first order
optimality condition in the presence of standard constraint qualifications, like the Guignard con-
straint qualification (GCQ) or the Mangasarian-Fromovitz constraint qualification (MFCQ), see
[19], for example. In turn, according to [11], M-stationarity even holds under some weaker and
more specific assumptions like the MPVC-GCQ or the MPVC-MFCQ, which occur in Section
4.

The notion of the polar cone of a set is needed to establish several normal cones which will
be employed in particular in Section 3.

Definition 2.2 Let C ⊆ Rn be a nonempty set. Then

C◦ := {v ∈ Rn | vT d ≤ 0 ∀d ∈ C}

is the polar cone of C.

The prominent tangent cone is a standard tool in optimization and variational analysis. For a
closed set ∅ , C ⊆ Rn and x∗ ∈ C, it is defined by

TC(x∗) :=
{
d ∈ Rn

∣∣∣ ∃{xk} ⊆ C, tk ↓ 0 : xk → x∗ and
xk − x∗

tk
→ d

}
.

An important device for our analysis is the so-called limiting normal cone.

Definition 2.3 Let C ⊆ Rn be a nonempty, closed set. Then

(a) the Fréchet normal cone to C at a ∈ C is defined by N̂(a,C) := (TC(a))◦, i.e., the Fréchet
normal cone is the polar of the tangent cone.
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(b) the limiting normal cone to C at a ∈ C is defined by

N(a,C) :=
{

lim
k→∞

wk
∣∣∣ ∃{ak} ⊆ C : ak → a, wk ∈ N̂(ak,C) ∀k ∈ N

}
. (9)

The Fréchet normal cone is sometimes also called the regular normal cone, most notably in
[21], whereas the limiting normal cone comes with a number of different names, including nor-
mal cone, basic normal cone, and Mordukhovich normal cone due to the many contributions of
Mordukhovich in this area, see, in particular, [16, 17] for an extensive treatment and many ap-
plications of this cone. In case of a convex set C, both the Fréchet normal cone and the limiting
normal cone coincide with the standard normal cone from convex analysis, cf. [20].

Closely linked are the notions of the Fréchet and the limiting subdifferential, which may also
be found in [21]. Mind that we write lsc as an abbreviation of lower semicontinuous.

Definition 2.4 Let f : Rn → R̄ be lsc and f (x) finite.

(a) The set

∂F f (x) :=
{
s ∈ Rn

∣∣∣ lim inf
y→x

f (y) − f (x) − sT (y − x)
‖y − x‖

≥ 0
}

is called the Fréchet subdifferential of f at x.

(b) The set
∂ f (x) :=

{
lim
k→∞

sk
∣∣∣ ∃ xk →

f
x, sk ∈ ∂F f (xk)

}
is called the limiting subdifferential of f at x.

3 A Generalized Mathematical Program
In this section, we consider a general mathematical program of the form

min f (x) s.t. F(x) ∈ Λ, (10)

with locally Lipschitz functions f : Rn → R , F : Rn → Rm and a nonempty closed set
Λ ⊆ Rm. This type of problem was already fruitfully employed in the MPEC-field in [7]
(MPEC=mathematical programs with equilibrium constraints).

As soon as one tries to investigate exact penalty results for a class of optimization prob-
lems, the very closely linked concept of calmness of the respective problem, cf. [4, 5, 6], arises
naturally for reasons explained below.

In order to define calmness for our general optimization problem (10), consider the associated
family of perturbed problems

min f (x) s.t. F(x) + p ∈ Λ, Π(p)

for some parameter p ∈ Rm. Note that, obviously, it holds that (10) and Π(0) are the same
problems. The following definition of calmness is due to Burke, see [4, Def. 1.1].
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Definition 3.1 Let x∗ be feasible for Π(0). Then the problem is called calm at x∗ if there exist
constants ᾱ > 0 and ε > 0 such that for all (x, p) ∈ Rn×Rm satisfying x ∈ Bε(x∗) and F(x)+p ∈ Λ,
one has

f (x) + ᾱ‖p‖ ≥ f (x∗).

In this context ᾱ and ε are called the modulus and the radius of calmness for Π(0) at x∗. Note
that the original definition by Clarke, see [6, Def. 6.4.1], also involves that p ∈ Bε(0). Actually,
these definitions coincide as soon as the function F is continuous, as was coined in [4, Prop. 2.1],
which is in particular fulfilled in our setup.

When Clarke established the notion of calmness as a tool for sensitivity analysis of para-
metrized optimization problems, he already was aware of its close connection to the concept of
exact penalization. He showed that calmness is a suffcient condition for exact penalization. The
full relation, however, is due to Burke, see [4, Th. 1.1], and restated in the following result.

Proposition 3.2 Let x∗ be feasible for Π(0). Then Π(0) is calm at x∗ with modulus ᾱ and radius
ε if and only if x∗ is a minimum of

P(x;α) := f (x) + αdΛ(F(x)) (11)

over Bε(x∗) for all α ≥ ᾱ.

Proof. See [4, Th. 1.1]. �

In the course of rising popularity of the calculus of multifunctions and their applications to op-
timization problems, another calmness concept has been established and successfully employed
in the context of mathematical programming. The following definition of calmness of a multi-
function can be found, e.g., in [21].

Definition 3.3 Let Φ : Rp ⇒ Rq be a multifunction with a closed graph and (u, v) ∈ gphΦ. Then
we say that Φ is calm at (u, v) if there exist neighbourhoods U of u, V of v and a modulus L ≥ 0
such that

Φ(u′) ∩ V ⊆ Φ(u) + L‖u − u′‖B ∀u′ ∈ U. (12)

The application to our mathematical programming setup from (10) and Π(p) follows by virtue of
the following multifunction M : Rm ⇒ Rn, often named perturbation map, which is defined by

M(p) := {x ∈ Rn | F(x) + p ∈ Λ}. (13)

By means of the perturbation map, the feasible set of Π(p) is then given by M(p), in particular,
one has F−1(Λ) = M(0).

Part of the gain from the notion of calmness of multifunctions for optimization is revealed by
the following two results. In the first result, we see that calmness of the perturbation map at a
particular point is in fact equivalent to the existence of local error bounds, see [18].
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Proposition 3.4 Let x∗ ∈ M(0) be feasible for (10). Then the following statements are equiva-
lent.

(1) M is calm at (0, x∗).

(2) There exists a neighbourhood U of x∗ and a constant ρ > 0 such that

dF−1(Λ)(x) ≤ ρdΛ(F(x)) ∀x ∈ U. (14)

Proof. See [9, Corollary 1]. �

The second result shows that, roughly speaking, calmness of the perturbation map (Definition
3.3) yields calmness of the unperturbed problem Π(0) (Definition 3.1).

Proposition 3.5 Let x∗ ∈ M(0) be a local minimizer of (10) such that M is calm at (0, x∗). Then
Π(0) is calm at x∗.

Proof. By assumption, M is calm at (0, x∗) and hence, due to Proposition 3.4, there exist
constants ε̃, ρ > 0 such that

dF−1(Λ)(x) ≤ ρdΛ(F(x)) ∀x ∈ Bε̃(x∗).

Now, choose ε̂ ∈ (0, ε̃] such that f attains a minimum over Bε̂(x∗)∩F−1(Λ) at x∗. Then put ε := ε̂
2

and choose x ∈ Bε(x∗) arbitrarily. Moreover, let

x0 ∈ ProjF−1(Λ)(x).

In particular, this implies x0 ∈ Bε̂(x∗). Together, one obtains

f (x∗) ≤ f (x0)
≤ f (x) + L‖x − x0‖

= f (x) + LdF−1(Λ)(x)
≤ f (x) + ρLdΛ(F(x)),

(15)

where L > 0 denotes the local Lipschitz constant of f around x∗. If, now, we put ᾱ := ρL and
mind that, for p ∈ Rm, we have dΛ(F(x)) ≤ ‖p‖ whenever F(x) + p ∈ Λ, we apparently get the
desired calmness of Π(0). �

An immediate consequence is the following corollary.

Corollary 3.6 Let x∗ ∈ M(0) be such that M is calm at (0, x∗). Then the penalty function from
(11) is exact at x∗.
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Proof. The proof follows immediately from Prop. 3.5 and 3.2. �

In the sequel of this section, we will provide sufficient conditions for the calmness of the multi-
function M at (0, x∗) for some x∗ ∈ M(0). Thus, we automatically obtain sufficient conditions for
the function P(x;α) = f (x)+αdΛ(F(x)) to be exact at x∗. From now on we will assume the func-
tions f and F to be continuously differentiable. Then we can define the following generalization
of the Mangasarian-Fromovitz constraint qualification, see [7].

Definition 3.7 Let x∗ be feasible for (10). We say that the generalized Mangasarian-Fromovitz
constraint qualification (GMFCQ) holds at x∗ if the following implication holds:

F′(x∗)Tλ = 0
λ ∈ NΛ(F(x∗))

}
=⇒ λ = 0. (16)

Note that, if Λ = Rm
− , (16) reduces to standard MFCQ.

The notion of GMFCQ leads to the following result.

Proposition 3.8 Let x∗ ∈ M(0) be feasible for (10) such that GMFCQ is satisfied. Then the
perturbation map M is calm at (0, x∗).

Proof. See the proof of [7, Corollary 2.4]. �

The following corollary follows immediately.

Corollary 3.9 Let x∗ ∈ M(0) be feasible for (10) such that GMFCQ is satisfied. Then the penalty
function from (11) is exact at x∗.

4 Deriving an Exact Penalty Function for MPVCs
In order to derive an exact penalty function for the MPVC (1), we are guided by the results from
Section 3, in particular Corollary 3.9. The path that we follow starts with a reformulation of the
MPVC in the fashion of (10). Afterwards we will provide sufficient conditions for the GMFCQ
to hold for the rewritten MPVC, which eventually provides an exact penalty function. Note,
however, that the question whether GMFCQ holds or not, substantially depends on the chosen
representation of the feasible set.

For the sake of reformulating the MPVC, consider the characteristic set

C := {(a, b) ∈ R2 | b ≥ 0, ab ≤ 0}, (17)

and put

ΛVC :=
l

X
i=1

C. (18)

7



Furthermore, define the map F : Rn → R2l by

FVC(x) := (FVC
i (x))i=1,...,l :=

(
Gi(x)
Hi(x)

)
i=1,...,l

. (19)

By means of these definitions, we are able to write the MPVC (1) as the following program

min f (x) s.t. FVC(x) ∈ ΛVC. (20)

The perturbation map for (20) is consequently given by

MVC(p) := {x ∈ Rn | FVC(x) + p ∈ ΛVC}.

In order to find conditions to yield GMFCQ for (20), we need the following auxiliary result,
which is concerned with calculating the limiting normal cone of the characteristic set C from
(17).

Lemma 4.1 Let (a, b) ∈ C. Then it holds that

NC((a, b)) =


{0} × {0} if b > 0, a < 0,
R+ × {0} if b > 0, a = 0,
{0} × R− if b = 0, a < 0,
{0} × R if b = 0, a > 0,

{(u, v) | u ≥ 0, uv = 0} if a = b = 0.

(21)

Proof. See the proof of [11, Lemma 3.2]. �

With the aid of the above Lemma, we are now able to prove a first sufficiency result for GMFCQ
in the MPVC-setup.

Theorem 4.2 Let x∗ ∈ M(0) be feasible for (1) and assume that for all (β1, β2) ∈ P(I00) the
following two conditions are satisfied:

(i) There exists a vector d ∈ Rn such that

∇Gi(x∗)T d > 0 (i ∈ I+0 ∪ β2),
∇Hi(x∗)T d < 0 (i ∈ I0−),
∇Hi(x∗)T d = 0 (i ∈ I0+ ∪ β1).

(22)

(ii) The gradients ∇Hi(x∗) (i ∈ I0+ ∪ β1) are linearly independent.

Then GMFCQ holds for (20).

Proof. Observe first that with (ai, bi)T := (FVC
i (x∗)) = (Gi(x∗),Hi(x∗))T we have

NΛVC (FVC(x∗)) =
l

X
i=1

NC((ai, bi)),
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cf. [21, Proposition 6.41]. By means of Lemma 4.1 it follows that GMFCQ amounts to the
condition

0 =
l∑

i=1

λG
i ∇Gi(x∗) +

l∑
i=1

λH
i ∇Hi(x∗)

λG
i = 0 (i ∈ I+− ∪ I0+ ∪ I0−), λG

i ≥ 0 (i ∈ I+0 ∪ I00),
λH

i = 0 (i ∈ I+), λH
i ≤ 0 (i ∈ I0−),

λG
i λ

H
i = 0 (i ∈ I00),


=⇒ λG = λH = 0.

This is equivalent to

0 =
∑

i∈I+0∪I00

λG
i ∇Gi(x∗) +

∑
i∈I0

λH
i ∇Hi(x∗)

λG
i ≥ 0 (i ∈ I+0 ∪ I00),
λH

i ≤ 0 (i ∈ I0−),
λG

i λ
H
i = 0 (i ∈ I00),


=⇒

λG
i = 0 (i ∈ I+0 ∪ I00),
λH

i = 0 (i ∈ I0).

This, eventually, is equivalent to the following condition: For all partitions (β1, β2) ∈ P(I00), the
implication

0 =
∑

i∈I+0∪β2

λG
i ∇Gi(x∗) +

∑
i∈I0−∪I0+∪β1

λH
i ∇Hi(x∗)

λG
i ≥ 0 (i ∈ I+0 ∪ β2),
λH

i ≤ 0 (i ∈ I0−),

 =⇒
λG

i = 0 (i ∈ I+0 ∪ β2)
λH

i = 0 (i ∈ I0− ∪ I0+ ∪ β1) (23)

holds. Invoking Motzkin’s Theorem of the alternative, cf. [15], for example, we see that the
implication (23) is, in case that I0− ∪ I+0 ∪ β2 , ∅, equivalent to condition (i). In turn, if
I0− ∪ I+0 ∪ β2 = ∅, (23) reduces to the linear independence of the gradients ∇Hi(x∗) (i ∈ I0+ ∪ β1),
which is condition (ii). �

In the MPVC-field, the following variant of the (standard) Mangasarian-Fromovitz and linear
independence constraint qualifications have shown to be a useful tools.

Definition 4.3 Let x∗ be feasible for (1). Then we say that

(a) MPVC-MFCQ is satisfied at x∗ if the gradients

∇Hi(x∗) (i ∈ I0+ ∪ I00) (24)

are linearly independent, and there exists a vector d such that

∇Hi(x∗)T d > 0 ∀i ∈ I0−,
∇Gi(x∗)T d < 0 ∀i ∈ I+0 ∪ I00,
∇Hi(x∗)T d = 0 ∀i ∈ I0+ ∪ I00.

(25)
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(b) MPVC-LICQ is satisfied at x∗ if the gradients

∇Hi(x∗) (i ∈ I0) and ∇Gi(x∗) (i ∈ I00 ∪ I+0)

are linearly independent.

These constraint qualifications were formally introduced in [11].
The following result, which is an immediate consequence of Theorem 4.2, will state that

MPVC-MFCQ is a sufficient condition for calmness of the perturbation map MVC.

Corollary 4.4 Let x∗ be feasible for (1) such that MPVC-MFCQ holds at x∗. Then MVC is calm
at (0, x∗).

Proof. MPVC-MFCQ obviously implies conditions (i) and (ii) from Theorem 4.2 and hence,
GMFCQ holds. Due to Proposition 3.8, GMFCQ implies calmness of MVC at (0, x∗). �

Putting all pieces of information together, we can state a satisfactory exact penalty result for the
MPVC.

Theorem 4.5 Let x∗ be feasible for (1) such that MPVC-MFCQ holds at x∗. Then the function

PVC(x, α) := f (x) + αdΛVC (FVC(x)) (26)

is exact at x∗.

Our goal is now to find an explicit representation for the penalty function from (26). To this end,
the following elementary result is crucial.

Lemma 4.6 Let C be given by (17). Then for (a, b) ∈ C we have

dC(a, b) = max{0,−b,min{a, b}} =


min{a, b}, if a, b ≥ 0,
0, if a ≤ 0, b ≥ 0,
−b, if b ≤ 0.

Note that the previous result holds for an arbitrary lp-norm to induce the distance function.

Corollary 4.7 Let x ∈ Rn. Then we have

dΛVC (FVC(x)) = ‖
(
dC(FVC

i (x))
)

i=1,...,l‖ = ‖
(

max{0,−Hi(x),min{Gi(x),Hi(x)}}
)

i=1,...,l‖.
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5 An Alternative Proof for M-Stationarity
We consider again the penalty function PVC from (26). Under certain assumptions (like MPVC-
MFCQ, cf. Theorem 4.5), this penalty function is exact, hence a local minimum of the MPVC
is also a local minimizer of PVC(·, α) for some α > 0. This implies that 0 ∈ ∂xP(x∗, α), and this
condition can be used in order to derive optimality conditions for the MPVC itself. The question
now is what type of optimality condition we can expect to get from this condition. Since, on the
one hand, MPVC-MFCQ gives exactness of the penalty function PVC, but, on the other hand, is
not enough in order to guarantee that strong stationarity holds at a local minimizer x∗ of MPVC,
it is not possible to derive strong stationarity from the condition 0 ∈ ∂xP(x∗, α). The best we can
expect to get is therefore M-stationarity, and this is precisely the aim of this section.

Hence, suppose that x∗ is a local minimizer of PVC(·, α) for some α > 0, so that 0 ∈ ∂xP(x∗, α).
In view of the definition of PVC in (26) we are, for obvious reasons, particularly interested in the
limiting subdifferential of the distance function dC from Lemma 4.6. To this end, we define
φ : R2 → R by

φ(a, b) := dC(a, b). (27)

Then the limiting subdifferential of φ at points from the set C is given in the below lemma.

Lemma 5.1 Let φ : R2 → R be defined by (27) and let (a, b) ∈ C. Then we have

∂φ(a, b) =



{
(

0
0

)
} if b > 0, a < 0,

conv{
(

0
0

)
,
(

1
0

)
} if b > 0, a = 0,

conv{
(

0
−1

)
,
(

0
1

)
} if b = 0, a > 0,

conv{
(

0
−1

)
,
(

0
0

)
} if b = 0, a < 0,

conv{
(

0
1

)
,
(

0
−1

)
} ∪ conv{

(
0
0

)
,
(

1
0

)
} if a = b = 0.

Proof. Due to the fact that φ(a, b) = dC(a, b) for all (a, b) ∈ R2, where dC can be induced by
any lp-norm in R2, especially by the Euclidean norm, we may invoke [21, Example 8.53], which
yields that

∂φ(a, b) = N((a, b),C) ∩ B ∀(a, b) ∈ C, (28)

where B denotes the closed Euclidean unit ball in R2 around the origin. The representation of the
limiting normal cone from Lemma 4.1 together with (28) eventually gives the desired result. �

The following main result of this section reveals that exactness of the penalty function PVC from
(11) at a local minimizer of the MPVC yields M-stationarity as an optimality condition.

Theorem 5.2 Let x∗ be a local minimizer of the MPVC (1) such that PVC is exact at x∗. Then
M-stationarity holds at x∗.
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Proof. Due to the fact that PVC is exact at the local minimizer x∗ of (1), there exists a penalty
paramter α > 0 such that x∗ is also a local minimizer of PVC(·, α). In particular, we thus have
0 ∈ ∂xPVC(x∗, α). Now, recall that by Corollary 4.7 we have

PVC(x, α) = f (x) + α‖(φ(Gi(x∗),Hi(x∗)))i=1,...,l‖,

for an arbitrary lp-norm ‖ · ‖. Due to the fact that PVC is exact for an arbitrary lp-norm if and
only if it is exact when using the l1-norm, we restrict ourselves to this case, since we may apply
well-known sum rules for the limiting subdifferential then. Thus, consider the case that

PVC(x, α) = f (x) + α
l∑

i=1

φ(Gi(x∗),Hi(x∗)).

Invoking [21, Exercise 10.10] we hence obtain

0 ∈ ∂xPVC(x∗, α) ⊆ {∇ f (x∗)} + α
l∑

i=1

∂(φ(Gi(x∗),Hi(x∗))),

and therefore, due to [3, p. 151], there exist vectors (ρi, νi) ∈ ∂φ(Gi(x∗),Hi(x∗)) for i = 1, . . . , l
such that

0 = ∇ f (x∗) + α
l∑

i=1

(ρi∇Gi(x∗) + νi∇Hi(x∗)). (29)

Now, put
ηG

i := αρi, ηH
i := −ανi ∀i = 1, . . . , l.

Then (29) and Lemma 5.1 imply that (x∗, ηG, ηH) is an M-stationary point of (1). �

Combining the previous result with the sufficiency condition for the exactness of PVC from Sec-
tion 4, we can immediately show that MPVC-MFCQ yields M-stationarity at a local minimizer
of (1), which is already well known, cf. [11].

Corollary 5.3 Let x∗ be a local minimizer of (1) such that MPVC-MFCQ holds. Then x∗ is an
M-stationary point.

Proof. The proof follows immediately from Theorem 4.5 and Theorem 5.2. �

6 Exactness of the l1-Penalty Function for MPVCs
The previous sections contain an MPVC-tailored penalty function that was shown to be exact
under reasonable assumptions. On the other hand, one may view the MPVC as a standard con-
strained optimization problem and then consider the corresponding well-known l1-penalty func-
tion as a natural candidate for an exact penalty function. Recall that this l1-penalty function for

12



(1) is given by

P(x, α) := f (x) + αψ(x) := f (x) + α
l∑

i=1

max{−Hi(x), 0} + α
l∑

i=1

max{Gi(x)Hi(x), 0}. (30)

Using the function
ϕ(a, b) := max{ab, 0} −min{b, 0} (31)

(which was already used in [2] as the basis of an algorithm for the numerical solution of MPVCs),
we can rewrite the l1-penalty function as

P(x, α) = f (x) + α
l∑

i=1

ϕ(Gi(x),Hi(x)). (32)

In the sequel, we are now concerned with finding sufficient conditions for the exactness of the
l1-penalty function P from (30), (32).

It is commonly known that the l1-penalty function of a nonlinear program is exact at a feasible
point provided that MFCQ holds at this point, cf. [8]. In the context of MPVCs, however, this
assumption is not reasonable, since it is too often violated, see [1].

Moreover, opposite to the penalty function from the previous section, MPVC-MFCQ cannot
be a sufficient condition for exactness. This is due to the fact that exactness of the l1-penalty
function yields KKT conditions at a local minimizer, but MPVC-MFCQ does not necessarily
guarantee this. The following example also shows that the l1-penalty function is not exact in a
number of rather standard situations.

Example 6.1 Consider the MPVC

min f (x) := −(x1 + x2)
s.t. H1(x) := x1 + x2 ≥ 0,

G1(x)H1(x) := (x1 + x2)(x1 + x2) ≤ 0.
(33)

Clearly, x∗ := (0, 0) is a local (in fact, global) minimizer and, for instance xk := (1
k ,

1
k ) is a

sequence converging to x∗. However, to each penalty parameter α > 0, we can find an index
kα ∈ N such that

P(xk;α) = −
2
k
+ α

4
k2 < 0 = P(x∗;α) for all k ≥ kα,

i.e., the penalty function P(x;α) is not exact. Note, however, that the perturbation map (13),
associated with (33), satisfies GMFCQ at x∗ in view of Theorem 4.2.

To derive a sufficient condition for the exactness of the l1-penalty function, we employ a new
notion from variational analysis. It is the so-called outer subdifferential introduced in [13].

Definition 6.2 Let f : Rn → R be lsc and f (x) finite. Then the set

∂> f (x) :=
{

lim
k→∞

sk | ∃ xk →
f

x, f (xk) > f (x), sk ∈ ∂ f (xk)
}

is called the outer subdifferential of f at x.
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The concept of the outer subdifferential is closely linked to exact penalization. In order to present
the precise relationship, consider the optimization problem

min f (x) s.t. x ∈ C (34)

for a set C ⊆ Rn and a locally Lipschitz function f : Rn → R. Then the following result holds
true.

Proposition 6.3 Let Ψ : Rn → R+ be a penalty term in the sense that Ψ(x) = 0 if and only if
x ∈ C. Moreover, let x ∈ C such that 0 < ∂>Ψ(x). Then, for all α > 0 sufficiently large, the
function f + αΨ is an exact penalty function for (34) at x.

Proof. The assumption that 0 < ∂>Ψ(x) and the fact that the outer subdifferential is closed,
yields a constant γ̄ > 0 such that

‖s‖ ≥ γ̄ ∀s ∈ ∂>Ψ(x).

This, by [13, Theorem 2.1], yields constants c > 0 (choose for example c := γ−1 for γ ∈ (0, γ̄))
and δ > 0 such that

dC(y) ≤ cΨ(y) ∀y ∈ Bδ(x).

This, invoking [18, Theorem 3], implies that if x is a (local) minimizer of (34), then it is also a
(local) minimizer of f + αΨ for α > 0 sufficiently large. �

Coming back to our MPVC setup, the above result tells us that a sufficient condition for the
exactness of the function P(·, ·) from (30) at a local minimizer x∗ ∈ X is the condition 0 < M for
a set M ⊇ ∂>ψ(x∗). Hence it is of great interest to find some handy upper estimate of ∂>ψ(x∗). To
this end, define the function

ϑ : R2l → R+, ϑ(y) :=
l∑

i=1

ϕ(yi), (35)

where y = (yi)l
i=1 and yi ∈ R

2 for i = 1 . . . , l, and ϕ denotes the function from (31).
Then with the function FVC from (19), we have ψ = ϑ ◦ FVC. Now, what we obviously need

is some kind of chain and sum rule for the outer subdifferential. For these purposes, consider the
following propositions.

Proposition 6.4 Let F : Rn → Rm be continuously differentiable, let ϑ : Rm → R+ be Lipschitz,
and put f := ϑ ◦ F. Moreover, let C ⊆ Rm be closed such that

ϑ(y) = 0⇐⇒ y ∈ C.

Then, for F(x∗) ∈ C, one has

∂> f (x∗) ⊆ F′(x∗)T∂>ϑ(F(x∗)).
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Proof. By the definition of the outer subdifferential and taking into account that f (x∗) = 0,we
have

∂> f (x∗) =
{

lim
k→∞

sk
∣∣∣ ∃xk → x∗, f (xk) > 0, sk ∈ ∂ f (xk)

}
=

{
lim
k→∞

sk
∣∣∣ ∃xk → x∗, F(xk) < C, sk ∈ ∂ f (xk)

}
⊆

{
lim
k→∞

sk
∣∣∣ ∃xk → x∗, F(xk) < C, sk ∈ F′(xk)T∂ϑ(F(xk))

}
,

(36)

where the inclusion is due to [3, p. 151].
Now, we claim that{

lim
k→∞

sk
∣∣∣ ∃xk → x∗, F(xk) < C, sk ∈ F′(xk)T∂ϑ(F(xk))

}
= F′(x∗)T

{
lim
k→∞

ξk
∣∣∣ ∃xk → x∗, F(xk) < C, ξk ∈ ∂ϑ(F(xk))

}
.

(37)

In fact, the inclusion ′ ⊇′ follows immediately from the fact that, for {xk} → x∗, we have F′(xk)→
F′(x∗) due to the continuity of F′. On the other hand, the reverse inclusion is a consequence
of the uniform boundedness of the limiting subdifferential which guarantees that any sequence
{bk} ⊆ ∂ϑ(xk) is bounded for {xk} → x∗.

Now, since ϑ(y) > 0 whenever y < C, we have{
lim
k→∞

ξk
∣∣∣ ∃xk → x∗, F(xk) < C, ξk ∈ ∂ϑ(F(xk))

}
⊆ ∂>ϑ(F(x∗)),

and hence the assertion follows from (36) and (37). �

Proposition 6.5 Consider a Lipschitz function Φ : Rn → R+ and a closed set C ⊆ Rn such that

Φ(v) = 0 ⇐⇒ v ∈ C.

Define the function f : Rnl → R+ by

f (y) :=
l∑

i=1

Φ(yi),

where y = (yi)l
i=1 and yi ∈ R

n. Then for y∗ ∈ Xl
i=1 C it holds that

∂> f (y∗) ⊆
l⋃

j=1

∂Φ(y∗1) × · · · × ∂>Φ(y∗j) × · · · × ∂Φ(y∗l ).

Proof. Mind that we have ∂> f (y∗) ⊆ ∂ f (y∗) = Xl
j=1 ∂Φ(y∗j), where the equality is due to [21,

Proposition 10.5].
Now, take ξ ∈ ∂> f (y∗). By definition, there exist sequences {yk} → y∗ such that f (yk) > 0

and ψk ∈ ∂ f (yk) for all k ∈ N with ξ = limk→∞ ψ
k. Due to the fact that the index set {1, . . . , l} is

finite, there exists an index j ∈ {1, . . . , l} and a subsequence {yk}k∈K such that (without relabelling)
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yk
j < C for all k. This proves the result, since we have ψ j ∈ ∂

>Φ(y∗j) then. �

Due to the previous two results, we can infer that for x∗ ∈ X we have (recall that ψ = ϑ ◦ FVC)

∂>ψ(x∗)

Prop.6.4
⊆ (FVC)′(x∗)T∂>ϑ(FVC(x∗))

Prop.6.5
⊆ (FVC)′(x∗)T

l⋃
j=1

∂ϕ(FVC
1 (x∗)) × · · · × ∂>ϕ(FVC

j (x∗)) × . . . ,×∂ϕ(FVC
l (x∗))

=

l⋃
j=1

{ l∑
i=1

αi∇Gi(x∗) + βi∇Hi(x∗)
∣∣∣ (α j

β j

)
∈ ∂>ϕ(FVC

j (x∗)),
(
αi

βi

)
∈ ∂ϕ(FVC

i (x∗)) (i , j)
}
.

(38)
It is hence of particular interest to know the outer and the limiting subdifferentials of ϕ at points
from the set C. This information is provided by the following two lemmas.

Lemma 6.6 Consider the function ϕ : R2 → R from (31), and the set C ⊆ R2 from (17) and let
(a, b) ∈ C. Then it holds that

∂>ϕ(a, b) =



∅ if b > 0, a < 0,(
b
0

)
if b > 0, a = 0,(

0
a−1

)
if b = 0, a < 0,

{
(

0
a

)
} ∪ {

(
0
−1

)
} if b = 0, a > 0,

{
(

0
0

)
} ∪ {

(
0
−1

)
} if a = b = 0.

(39)

Proof. In view of Definition 6.2, we are interested in the limiting subdifferential of ϕ at points
(a, b) < C. For these purposes, we claim that

∂ϕ(a, b) =



(
b
a

)
if a, b > 0,(

0
−1

)
if a > 0, b < 0,(

b
a−1

)
if a < 0, b < 0,

{
(
ν
−1

)
| ν ∈ [b, 0]} if a = 0, b < 0.

(40)

The first three cases of this formula are easily seen due to the fact that ϕ is smooth in a neigh-
bourhood of (a, b) and thus, one has ∂ϕ(a, b) = {∇ϕ(a, b)}. The case a = 0, b < 0 can be verified
as follows: The function ϕ is regular in the sense of [6, Def. 2.3.4], as was already noted in
[2, Lem. 3.3]. Therefore, the limiting subdifferential of this function coincides with the Clarke
subdifferential, for which the corresponding formulas are also given in [2, Lem. 3.3].

We are now in a position to prove the formula for the outer subdifferential. For these purposes,
consider the five relevant cases separately and recall that ϕ(a, b) > 0 if and only if (a, b) < C.
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(i) b > 0, a < 0: In this case, there exists no sequence (ak, bk) → (a, b) with (ak, bk) < C and
so ∂>ϕ(a, b) = ∅.

(ii) b > 0, a = 0: For a sequence (ak, bk) → (a, b) with (ak, bk) < C one has ak, bk > 0. Hence
it follows that if sk ∈ ∂ϕ(ak, bk), we see from (40) that sk =

(
bk
ak

)
and hence lim

k→∞
sk =

(
b
0

)
.

(iii) b = 0, a < 0: If (ak, bk)→ (a, b) and (ak, bk) < C, there remains the case ak, bk < 0. Hence,
we have sk =

(
bk

ak−1

)
for sk ∈ ∂ϕ(ak, bk). This yields lim

k→∞
sk =

(
0

a−1

)
.

(iv) b = 0, a > 0: Here, if (ak, bk)→ (a, b) and (ak, bk) < C, we have ak, bk > 0 or ak > 0, bk < 0
and hence sk ∈ {

(
bk
ak

)
,
(

0
−1

)
} which implies lim

k→∞
sk ∈ {

(
0
a

)
,
(

0
−1

)
}.

(v) a = b = 0: In this case, for a sequence (ak, bk) → (a, b) there may occur all cases of
(ak, bk) ∈ R2 \C. Hence if sk ∈ ∂ϕ(ak, bk) one has sk ∈ {

(
bk
ak

)
,
(

0
−1

)
,
(

bk
ak−1

)
,
(
νk
−1

)
} for νk ∈ [bk, 0].

Hence one obtains lim
k→∞

sk ∈ {
(

0
−1

)
,
(

0
0

)
}.

Altogether, this completes the proof. �

Lemma 6.7 Consider the function ϕ : R2 → R from (31), the set C ⊆ R2 from (17), and let
(a, b) ∈ C. Then we have

∂ϕ(a, b) =



{
(

0
0

)
} if b > 0, a < 0,

conv{
(

b
0

)
,
(

0
0

)
} if b > 0, a = 0,

conv{
(

0
a

)
,
(

0
−1

)
} if b = 0, a > 0,

conv{
(

0
0

)
,
(

0
a−1

)
} if b = 0, a < 0,

conv{
(

0
0

)
,
(

0
−1

)
} if a = b = 0.

Proof. Similar to the proof of the previous result, we recall an observation from [2] that the
mapping ϕ is regular in the sense of Clarke, hence the limiting subdifferential is identical with
the generalized gradient by Clarke, for which the corresponding representations can be found in
[2]. �

At least, the foregoing results allow us to state some kind of sufficient condition for exactness of
the l1-penalty function.

Corollary 6.8 Let x∗ be feasible for (1) such that I00 = ∅ and MPVC-LICQ holds at x∗. Then the
penalty function from (30) is exact at x∗.

Proof. Due to Proposition 6.3, it suffices to show that, under the above assumptions, we have
0 < ∂>ψ(x∗). For these purposes, suppose that 0 ∈ ∂>ψ(x∗), then by (38) there exists j ∈ {1, . . . , l}
such that

0 =
l∑

i=1

αi∇Gi(x∗) + βi∇Hi(x∗),
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where
(αi, βi)T ∈ ∂ϕ(FVC

i (x∗)) (i , j), (α j, β j)T ∈ ∂>ϕ(FVC
j (x∗)).

Due to the MPVC-LICQ assumption and Lemma 6.7, we obtain (αi, βi) = (0, 0) for all i =
1, . . . , l. In particular, we have (α j, β j) = (0, 0) which contradicts the fact that (α j, β j)T ∈

∂>ϕ(FVC
j (x∗)) as we have j < I00, cf. Lemma 6.6. �

It is currently not known whether the previous result holds without the assumption I00 = ∅. The
current technique of proof does not allow to verify this statement since the outer subdifferential
of ϕ for indices i ∈ I00 contains the zero vector, whereas all other outer subdifferentials are
either empty or consist of nonzero elements, cf. Lemma 6.7. In order to avoid this problem, one
needs a smaller estimate for the outer subdifferential of ψ than the one derived in (38). This,
however, is a nontrivial task, because it requires a more refined analysis of the configuration
of Im(F) and Λ (in the notation of (10)). In any case, we know that MPVC-MFCQ cannot be
a sufficient condition for the l1-penalty function to be exact (see the corresponding discussion
at the beginning of this section), in contrast to the more specialized (MPVC-tailored) penalty
function considered in Section 4.

7 Final Remarks
This paper gives exact penalty results for mathematical programs with vanishing constraints
(MPVCs). In particular, it shows exactness for a new, MPVC-tailored penalty function under
suitable conditions which, on the other hand, do not guarantee exactness of the well-known l1

(or lp with p ∈ [1,∞]) penalty function. In fact, it is currently an open question under which
assumptions the l1-penalty function is exact in the MPVC-context if we do not want to assume
that the bi-active index set I00 is empty at a local minimum.

We believe that our new penalty function can be used not only as a theoretical tool (like the
derivation of optimality conditions, as shown in this paper), but also from a practical point of
view, especially for the globalization of suitable (locally convergent) algorithms.
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