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Abstract

We consider the well-known augmented Lagrangian method for constrained opti-
mization and compare its classical variant to a modified counterpart which uses
safeguarded multiplier estimates. In particular, we give a brief overview of the
theoretical properties of both methods, focusing on both feasibility and optimality
of limit points. Finally, we give an example which illustrates the advantage of the
modified method and incidentally shows that some of the assumptions used for
convergence of the classical method cannot be relaxed.

1 Introduction

The purpose of this report is to compare two variants of the well-known augmented
Lagrangian method (ALM), also known as the multiplier-penalty method or simply
method of multipliers. Methods of this type essentially come in two flavours. On the one
hand, there is the ”classical” ALM [4, 9, 13, 16] which goes back to [10, 15]. On the other
hand, modified ALMs [1, 2, 6, 7, 8] which seek to alleviate some of the weaknesses of the
classical methods have surfaced in recent years. These methods go back to [1, 5]; note
that a similar method was used in [14] for the analysis of quasi-variational inequalities.

On the following pages, we give an overview of the two methods, and refer to them as
the standard ALM and modified ALM, respectively. We also give convergence theorems
for both methods (some of these are just taken from the literature). The ultimate purpose
of this report is to give a fairly simple example which demonstrates the benefits of the
modified ALM when compared to its classical counterpart.

For a better comparison, we have attempted to put the algorithms into a unified
framework. For our purposes, this is a finite dimensional optimization problem with
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inequality constraints. More precisely, let f : Rn → R, g : Rn → Rm be given functions,
and consider the problem defined by

min f(x) s.t. g(x) ≤ 0. (1)

It is possible to make this framework more general, for instance, by including equality
constraints, additional constraint functions which are not penalized, or even considering
infinite-dimensional problems. Moreover, augmented Lagrangian methods have also been
extended to problem classes which are inherently more complex, such as generalized
Nash equilibrium problems [11] and quasi-variational inequalities [12]. However, for
our comparison of the two ALMs, we have decided to remain within the framework (1)
because it is fairly simple and suffices for a discussion of the algorithmic differences of
the two methods. Moreover, one might argue that optimization problems are both the
historical origin and the key application of augmented Lagrangian methods. Hence, it
makes sense to discuss the applicability and performance of such methods for precisely
this problem class.

It is important to note that convergence theorems and properties of ALMs usually
come in multiple flavours as well. These occur naturally because ALMs generate a
sequence of penalized subproblems, and one has to clarify in which manner these are
solved. The two most prominent choices in this regard are global minimization and
finding stationary points. Here, we focus on the latter for its practical relevance and
because global minimization is infeasible if the underlying problem is non-convex.

This report is organized as follows. In Section 2, we start with some preliminary
definitions. The subsections 2.1 and 2.2 are dedicated to the standard and modified ALMs,
respectively, and we give (or recall) convergence theorems for each of these methods. In
Section 3 and its subsections, we give an example and discuss the results of the standard
and modified ALMs, both from a theoretical and practical point of view. We conclude
with some final remarks in Section 4.

Notation: The gradient of the continuously differentiable objective function f is
denoted by ∇f , whereas the symbol ∇g(x) stands for the transposed Jacobian of the
constraint function g at a given point x. For a mapping of two block variables, say
L(x, λ), we write ∇xL(x, λ) to indicate the derivative with respect to the x-variables
only. Given any vector z, we use the abbreviation z+ for max{0, z}, where the maximum
is taken component-wise. Finally, throughout this note, ‖z‖ denotes the Euclidean norm
of a vector z of appropriate dimension.

2 Preliminaries

Recall that we are dealing with the optimization problem (1). Since we are ultimately
interested in KKT-type conditions, we assume that f , g are continuously differentiable
on Rn. Moreover, for ρ > 0, λ ≥ 0, we define the augmented Lagrangian

Lρ(x, λ) = f(x) +
ρ

2

∥∥∥∥(g(x) +
λ

ρ

)
+

∥∥∥∥2

. (2)
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It is easily seen that, like f and g, the function Lρ is continuously differentiable on Rn.
Its gradient is given by

∇xLρ(x, λ) = ∇f(x) +∇g(x)(λ+ ρg(x))+, (3)

which is in fact the main motivation for the classical Hestenes-Powell multiplier updating
scheme.

For our analysis, we will need certain constraint qualifications. The linear indepen-
dence and Mangasarian-Fromovitz constraint qualifications (LICQ and MFCQ, respec-
tively) are fairly standard and, hence, we do not give their definitions here. Instead,
we focus on two other conditions: the extended MFCQ (EMFCQ) and the constant
positive linear dependence condition (CPLD), whose definitions are given below. Note
that we call a collection of vectors v1, . . . , vk positively linearly dependent if the system
λ1v1 + . . .+ λkvk = 0, λ ≥ 0, has a nontrivial solution. Otherwise, the vectors are called
positively linearly independent.

Definition 2.1. Let x̄ ∈ Rn be a given point. We say that

(a) EMFCQ holds in x̄ if the set of gradients ∇gi(x̄) with gi(x̄) ≥ 0 is positively linearly
independent.

(b) CPLD holds in x̄ if, for every I ⊆ {i | gi(x̄) = 0} such that the vectors ∇gi(x̄)
(i ∈ I) are positively linearly dependent, there is a neighbourhood of x̄ where the
gradients ∇gi(x) (i ∈ I) are linearly dependent.

It is well-known and easy to verify that EMFCQ boils down to MFCQ for feasible points,
and that CPLD is weaker than MFCQ. Moreover, using a standard theorem of the
alternative, EMFCQ is equivalent to the existence of a d ∈ Rn such that

gi(x̄) ≥ 0 =⇒ ∇gi(x̄)Td < 0 (4)

for all i ∈ {1, . . . ,m}.
Note that some subsequent results may hold under weaker assumptions than CPLD

or EMFCQ. For instance, there are certain relaxed versions of CPLD [3] which can be
used in a similar manner as CPLD. However, for the sake of simplicity, we have decided
to remain with the conditions above. Note also that at least one of the aforementioned
relaxations of CPLD is in fact equivalent to CPLD for our setting.

2.1 The Standard Method

Here, we give a fairly straightforward version of the standard ALM. Recall that Lρ is
the augmented Lagrangian from (2) and that the optimization problem has inequality
constraints only.

Algorithm 2.2. (Standard ALM)

(S.0) Let (x0, λ0) ∈ Rn+m, ρ0 > 0, γ > 1, τ ∈ (0, 1), and set k := 0.
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(S.1) If (xk, λk) is a KKT point of the problem: STOP.

(S.2) Compute an approximate solution xk+1 of the problem

min Lρk(x, λk). (5)

(S.3) Set λk+1 :=
(
λk + ρkg(xk+1)

)
+

and

V k+1 =

∥∥∥∥min

{
−g(xk+1),

λk

ρk

}∥∥∥∥ . (6)

If k = 0 or V k+1 ≤ τV k, set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

(S.4) Set k ← k + 1 and go to (S.1).

The test function in (6) arises from an inherent slack variable transformation which
is often used to define the augmented Lagrangian method for inequality constrained
problems. Note also that, for formal reasons, we have given the case k = 0 specific
treatment in Step 3 since (6) only defines V k for k ≥ 1 and V 0 is undefined.

Note that we have left the term ”approximate solution” unspecified in Step 2. As
mentioned in the introduction, multiple choices can be made for the solution process of
the subproblems, e.g. one could look for global minima or stationary points. In this report,
we will only consider the latter case. More precisely, we assume that L′ρk(xk+1, λk)→ 0.
Using (3), it is easy to see that

∇xLρk(xk+1, λk) = ∇f(xk+1) +∇g(xk+1)λk+1. (7)

We now turn to two convergence theorems for the standard ALM. Note that we implicitly
assume that the method generates an infinite sequence (xk). More convergence results
using stronger assumptions can be found in [4, 9].

Theorem 2.3. Let (xk) be generated by Algorithm 2.2, and assume that

xk+1 → x̄ and ∇xLρk(xk+1, λk)→ 0. (8)

If x̄ is feasible and CPLD holds in x̄, then x̄ is a KKT point of the problem.

Proof. The result essentially follows by applying [7, Thm. 3.6]. To this end, we need to
verify that min{−g(xk+1), λk+1} → 0. This is obvious whenever (ρk) stays bounded, cf.
(6). Hence consider the case where ρk → ∞, and recall that g(x̄) ≤ 0. If i is an index
with gi(x̄) < 0, then the multiplier updating scheme implies λk+1

i = 0 for all sufficiently
large k. This completes the proof.

The above theorem does not contain any information about the attainment of feasibility.
Since the augmented Lagrangian method is, at its heart, a penalty method, the achieve-
ment of feasibility is paramount to the success of the algorithm. The following result
contains some information in this direction.
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Theorem 2.4. If (8) holds and x̄ satisfies EMFCQ, then x̄ is feasible and CPLD holds
in x̄. In particular, the requirements of Theorem 2.3 are satisfied.

Proof. Note that, for feasible points, EMFCQ implies CPLD. If (ρk) is bounded, then
V k+1 → 0 and x̄ is feasible. Now, let ρk →∞. We first show that (λk+1) is bounded. If
this is not the case, then, subsequencing if necessary, (7) implies that

∇g(xk+1)
λk+1

‖λk+1‖
→ 0

Denoting by λ̄ a limit point of (λk+1/‖λk+1‖), it follows that ∇g(x̄)λ̄ = 0. Moreover, for
each index i with gi(x̄) < 0, the multiplier updating rule implies λk+1

i = 0 for sufficiently
large k, and hence λ̄i = 0. Now, let d be the vector from (4). Then

0 = dT∇g(x̄)λ̄ =
m∑
i=1

λ̄i∇gi(x̄)Td =
∑

gi(x̄)≥0

λ̄igi(x̄)Td,

which implies λ̄i = 0 for all i with gi(x̄) ≥ 0. Hence, λ̄ = 0, a contradiction. Thus, (λk+1)
is bounded. But

∇f(xk+1) +∇g(xk+1)(λk + ρkg(xk+1))+ → 0

in view of (8). Dividing both sides by ρk and omitting some zero sequences, we obtain
∇g(xk+1)g+(xk+1)→ 0. Using once again the vector d from EMFCQ, it follows that

0 = dT∇g(x̄)g+(x̄) = (∇g(x̄)Td)Tg+(x̄),

which implies g+(x̄) = 0. Hence, x̄ is feasible.

Let us mention explicitly that both of the above theorems require the convergence of the
whole sequence (xk). If x̄ is only a limit point of (xk), the assertions above do not hold,
cf. the example in Section 3.

2.2 The Modified Method

We now turn to a discussion of the modified ALM.

Algorithm 2.5. (Modified ALM)

(S.0) Let (x0, λ0) ∈ Rn+m, ρ0 > 0, umax ≥ 0, γ > 1, τ ∈ (0, 1), and set k := 0.

(S.1) If (xk, λk) is a KKT point of the problem: STOP.

(S.2) Choose uk ∈ [0, umax]m and compute an approximate solution xk+1 of the problem

min Lρk(x, uk). (9)
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(S.3) Set λk+1 :=
(
uk + ρkg(xk+1)

)
+

and

V k+1 =

∥∥∥∥min

{
−g(xk+1),

uk

ρk

}∥∥∥∥ . (10)

If k = 0 or V k+1 ≤ τV k, set ρk+1 := ρk. Otherwise, set ρk+1 := γρk.

(S.4) Set k ← k + 1 and go to (S.1).

As with the standard ALM (Algorithm 2.2), the term ”approximate solution” in Step 2
can refer to either global minima or stationary points. In the following discussion, we
only deal with the latter, cf. the assumptions made in Theorem 2.6. Convergence results
dealing with global minimization can be found, e.g. in [6, 7].

The key difference between Algorithm 2.5 and the standard ALM is the use of the
bounded sequence (uk) in certain places where the standard ALM uses the (possibly
unbounded) sequence of multiplier estimates (λk). Note that, despite the boundedness
of (uk), the corresponding sequence (λk) generated by Algorithm 2.5 might still be
unbounded. We further stress that Algorithm 2.5 allows some freedom in the choice of
the sequence (uk). In the extreme case, we may take uk := 0 for all k, in which case
Algorithm 2.5 essentially boils down to the classical penalty method. A more natural
and numerically often more successful way is to take uk as the projection of λk onto the
box [0, umax]m.

We now give a first convergence theorem for the modified ALM. This result is very
similar to Theorem 2.3 but differs in the sense that only a subsequence of (xk+1) needs
to converge to x̄.

Theorem 2.6. Let (xk) be generated by Algorithm 2.2, and assume that

xk+1 →K x̄ and ∇xLρk(xk+1, uk)→K 0 (11)

on some subset K ⊆ N. Then x̄ is a stationary point of ‖g+(x)‖2 and, if x̄ is feasible
and satisfies CPLD, it is a KKT point of the optimization problem.

Proof. This is just a summary of [7, Thm. 6.2 and 6.3].

Note that, as opposed to Theorem 2.3, the above result includes a feasibility assertion
about the limit point x̄ which does not require any assumptions (apart from the continuous
differentiability of f and g, of course). The main reason why the modified ALM admits
a result of this type is that the sequence uk/ρk always converges to zero if ρk → ∞.
It follows that the minimization of the augmented Lagrangian essentially reduces to
the minimization of ‖g+(x)‖2 if ρ is large enough. This property does not hold for the
standard ALM. In fact, we will see in Section 3 that the latter faces severe problems if
the sequence λk/ρk (for the standard ALM) remains bounded away from zero.

We now give a second result akin to Theorem 2.4.

Theorem 2.7. If ∇‖g+(x̄)‖2 = 0 and EMFCQ holds in x̄, then x̄ is feasible and CPLD
holds in x̄.

6



Proof. Clearly, we only need to show feasibility. Let d ∈ Rn be the vector from EMFCQ.
Using ∇‖g+(x)‖2 = ∇g(x)g+(x), it follows that

0 = dT∇g(x̄)g+(x̄) = (∇g(x̄)Td)Tg+(x̄).

This implies g+(x̄) = 0. Hence, x̄ is feasible.

As mentioned before, the key difference between the assumptions used in the above
theorems and the corresponding results for the standard ALM is the fact that x̄ only
needs to be a limit point of (xk).

At first glance, the theoretical advantage which the modified ALM possesses in
comparison to the standard ALM may not seem significant. However, it should be noted
that the stationarity of x̄ with respect to the infeasibility measure ‖g+(x)‖2 has many
interesting counterparts for other problem classes, e.g. for generalized Nash equilibrium
problems [11] and quasi-variational inequalities [12]. Moreover, the resulting properties
typically lend themselves to a simple problem-specific analysis which often guarantees
the feasibility of x̄ without any additional assumptions. We refer the reader to [12] in
particular for further reading.

3 An Example

This section is the main contribution of this note. It provides an example where both
Algorithms 2.2 and 2.5 generate a sequence of stationary points (in fact, local minimizers)
of the corresponding augmented Lagrangian subproblems in such a way that the sequence
has two stationary points, one of which is infeasible and violates basically any constraint
qualification and can therefore not be expected to be a KKT point of the underyling
optimization problem, whereas the other accumulation point is feasible (though different
for both methods), satisfies essentially all constraint qualifications, and is therefore
necessarily a KKT point of the underlying optimization problem for the modified ALM
in view of Theorem 2.7, whereas it does not correspond to a stationary point for the
standard ALM. Note that, in view of Theorem 2.3, the example has to be constructed
in such a way that it has at least two accumulation points, or one accumulation point
together with another subsequence which is unbounded.

Now, let n = m = 1 and consider the optimization problem given by

min x s.t. 1− x3 ≤ 0. (12)

In other words, we have f(x) = x and g(x) = 1− x3. It is easy to see that x̄ := 1 is the
unique solution of this optimization problem; moreover, an easy calculation shows that
(x̄, λ̄) := (1, 1/3) is the only KKT point. A key point in our following analysis is the fact
that g has a stationary point at x = 0, and that this point is not feasible. Note that this
example is easy in the sense that both the objective function and the feasible set are
convex, though the representation of the convex feasible set is nonconvex.
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3.1 The Standard Method

Let us consider the standard augmented Lagrangian method applied to this problem. The
subsequent analysis is fairly general and only assumes (mainly for the sake of convenience)
that ρ0 > 1/3 and λ0 ≤ 1/3.

It is easily seen that, for all λ ≥ 0 and ρ > 0, the function Lρ(·, λ) is coercive on R.
Moreover, using the formula

L′ρ(x, λ) = f ′(x) + g′(x)
(
λ+ ρg(x)

)
+

for the derivative of Lρ, we obtain L′ρ(0, λ) = 1 and L′ρ(1, λ) = 1 − 3λ. It follows that
Lρ always attains a local minimum in (−∞, 0) and, if λ > 1/3, it attains another local
minimum in (1,+∞). Let (xk)k≥1 be a sequence of such local minimizers such that

• for k odd, xk is the largest local minimizer in (−∞, 0),

• for k even, xk is the smallest local minimizer in (1,+∞).

If k is odd, we have xk < 0 and g(xk) > 1. It follows that

λk =
(
λk−1 + ρk−1g(xk)

)
+
≥ ρk−1. (13)

Since ρk−1 > 1/3, we conclude that xk+1 is well-defined. Another property of the sequence
(xk) is boundedness.

Lemma 3.1. xk ∈ [−1, 2] for all k ≥ 1.

Proof. If k is odd, then xk < 0. Moreover, L′ρk−1
(−1, λk−1) = 1− 3(λk−1 + 2ρk−1)+ < 0,

which implies xk > −1 since xk is supposed to be the largest local minimum in (−∞, 0).
Before showing that xk ≤ 2 for k even, we need some information about the multiplier

sequence (λk). First, if k > 1 is even, then 0 = L′ρk−1
(xk, λk−1) = 1 − 3(xk)2λk, which

implies λk = 1/(3(xk)2) ≤ 1/3. By our assumption on λ0, this assertion also holds for
k = 0. Hence, using ρ0 > 1/3 and xk ≥ −1 for k odd, it follows that

λk =
(
λk−1 + ρk−1g(xk)

)
+
≤ 1

3
+ 2ρk−1 ≤ 3ρk,

again for k odd. We now use this inequality to prove xk ≤ 2 for k even. To this end, let
k > 1 be even, and note that

L′ρk−1
(2, λk−1) = 1− 12(λk−1 − 7ρk−1)+ = 1,

since k − 1 is odd. Hence, the definition of xk as the smallest local minimum in (1,+∞)
implies xk < 2.

The boundedness of (xk) implies that the sequence has at least one limit point in [−1, 0]
and one in [1, 2]. In particular, we have ρk →∞, for otherwise every limit point of (xk)
would have to be feasible.
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On the other hand, (13) implies that λk/ρk ≥ γ−1 for odd k. Define

x̂ =

(
1 +

1

2γ

)1/3

,

which yields g(x̂) = −1/(2γ). It follows that, for all x ∈ [1, x̂] and k even,

L′ρk−1
(x, λk−1) = 1− 3ρk−1x

2

(
g(x) +

λk−1

ρk−1

)
+

≤ 1− 3ρk−1

(
1

γ
− 1

2γ

)
+

= 1− 3

2γ
ρk−1 < 0

for sufficiently large values of ρk−1. Since ρk →∞, we conclude that xk > x̂ for sufficiently
large (even) k. In particular, any accumulation point of (xk) in [1, 2] is strictly greater
than 1. But none of these accumulation points correspond to a KKT point of the
optimization problem (12).

3.2 The Modified Method

We now consider the modified method applied to problem (12). For the sake of conve-
nience, we will again make certain assumptions on the algorithmic parameters. That
is, we assume ρ0 > 1/3 and λ0 ≤ 1/3. Moreover, we define uk as the projection of λk

onto the interval [0, umax], where umax > 1/3, cf. the comments after the statement of
Algorithm 2.5.

These assumptions allow us to compare the algorithm fairly easily to the standard
ALM. In particular, we can choose (xk) as in Section 3.1, and the proof of Lemma 3.1
can be carried over as well.

Lemma 3.2. xk ∈ [−1, 2] for all k ≥ 1.

Proof. The proof is virtually identical to that of Lemma 3.1. Note that uk ≤ λk for all k;
hence, any upper bound for λk automatically translates to one for uk.

As with the standard ALM, it follows that the sequence generated by the modified ALM
has at least two limit points, one in [−1, 0] and one in [1, 2]. Using standard convergence
theorems, e.g. Theorem 2.6 or [7, Thm. 6.2 and 6.3], we know that

• every limit point of (xk) is a stationary point of ‖g+(x)‖2, and

• every feasible limit point of (xk) where g satisfies CPLD is a KKT point.

Clearly, the interval [−1, 0] consists only of infeasible points. However, the point x = 0 is
the only point in this interval which is a stationary point of ‖g+‖2. Hence, the subsequence
of (xk) consisting of odd k must converge to x = 0. On the other hand, the interval [1, 2]
consists entirely of feasible points, and CPLD (in fact, LICQ) holds at every one of these
points. Hence, the subsequence of (xk) consisting of even k converges to x = 1 which is
the solution (and only stationary point) of the optimization problem (12).
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3.3 Numerical Results

Here, we give some numerical results illustrating the practical behaviour of the two
methods. We chose the parameters

x0 = −1, λ0 = 0, ρ0 = 1, τ = 0.1, γ = 2, umax = 104.

The subproblems are solved with the MATLAB R© function fminunc and a tolerance of
10−8. The overall stopping criterion is

|f ′(x) + λg′(x)| ≤ 10−4 and |min{−g(x), λ}| ≤ 10−4.

Table 1 shows the iterates generated by both algorithms.

Standard Method Modified Method
k xk λk ρk xk λk ρk
1 −1.000000 0.000000 20 −1.000000 0.000000 20

2 −0.537207 1.155034 20 −0.537207 1.155034 20

...
...

...
...

...
...

...
18 1.144714 2.543809e− 01 215 1.144714 2.543809e− 01 215

19 −0.003189 3.276826e+ 04 216 −0.003189 3.276826e+ 04 216

20 1.144714 2.549944e− 01 217 1.048473 3.032242e− 01 217

21 −0.001595 1.310723e+ 05 218 −0.001595 1.310723e+ 05 218

22 1.144714 2.543809e− 01 219 1.012557 3.251171e− 01 218

...
...

...
...

...
...

...
41 0.000000 1.374390e+ 11 238 −0.000050 1.342177e+ 08 228

42 2.100000 0.000000 239 1.000012 3.333247e− 01 228

Table 1: Numerical results for the optimization problem (12).

Up to iteration 19, the methods perform identically. This is because the bound
umax = 104 only becomes active when |λk| > umax, which first occurs in iteration 19.
Starting with k = 20, the modified method tends to the point x = 1 (for even k), while
the standard method alternates between 1.144714 and (almost) zero. Moreover, the
penalty parameter becomes substantially larger for the standard ALM, which eventually
causes the subproblem algorithm to terminate unsuccessfully and return the value 2.1,
which is not a solution of the subproblem. Note also that the modified method terminates
successfully at k = 42 whereas the standard method eventually keeps alternating between
the two points 0 and 2.1.

For a better understanding of the different behaviour of the two methods, note that
both methods generate an unbounded multiplier sequence. However, a closer look at the
ratio uk/ρk shows that this sequence converges to zero for the modified ALM (which is
clear since (uk) is bounded), whereas the corresponding sequence λk/ρk (for k odd) from
the standard ALM appears to converge to 1/2. This agrees with our theoretical analysis
in Section 3.1.
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4 Final Remarks

We have compared two variants of the well-known augmented Lagrangian method.
In particular, we have shown that the modified ALM possesses stronger convergence
properties and given an example which demonstrates how the safeguarding of multipliers
can salvage convergence in certain cases. This example together with the increasingly
rich background of the modified ALM (e.g. when applied to other problem classes)
highlight the benefits of the modified method in terms of attaining feasibility, preventing
ill-conditioning, and achieving optimality.

We note that our analysis explicitly only deals with convergence results for KKT
points. Methods of the augmented Lagrangian type are known to enjoy certain properties
with regard to global minimization as well, especially the modified ALM [6, 7]. It might
be interesting to consider how the standard ALM behaves when applied to optimization
problems for which (i) global minimization of the subproblems is feasible and (ii) the
solution of the underlying problem does not satisfy the KKT conditions. However, due
to the practical relevance of KKT conditions when dealing with general (nonlinear and
non-convex) optimization problems, we have decided not to pursue this avenue in this
report.
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