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Abstract. Mathematical programs with equilibrium constraints (MPECs) are nonlinear
programs which do not satisfy any of the common constraint qualifications. In order to
obtain first order optimality conditions, constraint qualifications tailored to MPECs have
been developed and researched in the past. This has been done by falling back on technical
proofs or results from nonsmooth analysis. In this paper, we use a completely dirfferent
approach and show how the standard Fritz John conditions may be used in order to obtain
the most important optimality conditions for MPECs. In this way, we obtain relatively
short and elementary proofs for some known results in the MPEC field.
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1 Introduction

Consider the constrained optimization problem

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0.
(1)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp, G : Rn → Rl, and H : Rn →
Rl are continuously differentiable functions. Due to the complementarity term in the
constraints, programs of this type are sometimes referred to as mathematical programs
with complementarity constraints. More commonly, however, they are called mathematical
programs with equilibrium constraints. This also yields the more pronouncable acronym
MPEC, by which we will refer to the program (1) in the following. For more detail the
reader is referred to, for example, the two monographs [7, 14].

It is well-known (see, e.g., [2, 21]) and easily verified that the MPEC (1) does not satisfy
most of the common constraint qualification known from standard nonlinear programming
at any feasible point. (One exception to this is the Guignard constraint qualification, see
[4] for details.) Consequently, the usual Karush-Kuhn-Tucker conditions associated with
the program (1) can, in general, not be viewed as first order optimality conditions for (1).

It has therefore been the subject of intensive research during the last few years to find
suitable MPEC constraint qualifications under which a local minimizer of the problem
(1) satisfies some first order optimality conditions. In fact, several first order optimality
conditions have been derived under different sets of assumptions. The derivation of these
optimality conditions, however, is usually either lengthy and technical or based on results
from nonsmooth analysis.

For example, some authors reformulate the MPEC (1) as a nonsmooth program by
rewriting the complementarity constraints as a nonsmooth equation. Results from non-
smooth analysis are then applied to this reformulated problem, see, e.g., [3, 16]. Other
authors derive optimality conditions for (1) by using an exact penalty function for (1) and
applying optimality conditions to this exact penalty function, which, however, is again
nonsmooth in general, see, e.g., [7, 8, 22, 17]. Also, the tangent cone approach has been
used by, e.g., [7, 15, 4]. Other approaches (like the implicit programming technique) are
possible if one assumes that the MPEC (1) has a specific structure, see [11, 14, 19, 20, 22],
for example.

In this paper, we present a straightforward and elementary approach to the most stan-
dard first order optimality conditions for (1). The basic idea is quite simple: Since the
MPEC (1) does not satisfy any of the usual constraint qualifications known for constrained
optimization problems, we apply the Fritz John conditions which hold without any regu-
larity assumptions. However, the Fritz John conditions themselves provide relatively weak
optimality conditions. Moreover, a direct application of the Fritz John conditions to the
MPEC (1) does not lead to any meaningful results, so further thought is required in order
to obtain suitable first order conditions.
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Using this Fritz John approach, we reobtain existing results from the literature (see,
in particular, [16], and to a certain extent [15]) by using a completely different technique.
We feel that our derivation is much more elementary than existing approaches because our
proofs are relatively short and we only need the standard Fritz John conditions for smooth
optimization problems as prerequisites. As a by-product, we also obtain a new optimality
condition under a Mangasarian-Fromovitz-type condition.

In Section 2 we review some existing constraint qualifications together with some sta-
tionarity concepts related to the MPEC (1), while Section 3 deals with our Fritz John
approach.

The notation used in this paper is rather standard: Rn denotes the n-dimensional
Euclidean space. For x ∈ Rn and y ∈ Rm, we simply write (x, y) for the (n+m)-dimensional
column vector (xT , yT )T . Given x ∈ Rn and a subset δ ⊆ {1, . . . , n}, we denote by xδ the
subvector in R|δ| consisting of all components xi with i ∈ δ. Finally, inequalities x ≥ 0
with x ∈ Rn are defined componentwise.

2 Constraint Qualifications and Stationarity Concepts

We now commence by recalling some constraint qualifications for the MPEC (1) as well as
some first order optimality conditions.

Before we begin, we need to introduce some notation. Given a feasible vector z∗ of the
MPEC (1), we define the following sets of indices:

α := α(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) > 0}, (2a)

β := β(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) = 0}, (2b)

γ := γ(z∗) := {i | Gi(z
∗) > 0, Hi(z

∗) = 0}. (2c)

The set β is known as the degenerate set. If it is empty, the vector z∗ is said to fulfill strict
complementarity. As we shall see, it will become convenient to split β into its partitions,
which are defined as follows:

P(β) := {(β1, β2) | β1 ∪ β2 = β, β1 ∩ β2 = ∅}. (3)

To define altered constraint qualifications, we introduce the following program, dependent
on z∗, and called the tightened nonlinear program TNLP := TNLP(z∗):

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

Gα∪β(z) = 0, Gγ(z) ≥ 0,
Hα(z) ≥ 0, Hγ∪β(z) = 0.

(4)

The above nonlinear program is called tightened since the feasible region is a subset of the
feasible region of the MPEC (1). This implies that if z∗ is a local minimizer of the MPEC
(1), then it is also a local minimizer of the corresponding tightened nonlinear program
TNLP(z∗).
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We will need the Karush-Kuhn-Tucker (KKT) conditions of the nonlinear program (4)
throughout the remainder of this paper. We therefore write them down for a vector z and
Lagrange multiplier λ = (λg, λh, λG, λH) ∈ Rm+p+2l:

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

h(z) = 0, g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0,

Gα∪β(z) = 0, Gγ(z) ≥ 0, λG
γ ≥ 0, (λG

γ )T Gγ(z) = 0,

Hγ∪β(z) = 0, Hα(z) ≥ 0, λH
α ≥ 0, (λH

α )T Hα(z) = 0.

(5)

The vector (z, λ) is said to be a KKT point of the tightened nonlinear program (4) if the
conditions (5) hold.

The TNLP (4) can now be used to define suitable MPEC variants of the standard
linear independence, Mangasarian-Fromovitz- and strict Mangasarian-Fromovitz constraint
qualifications (LICQ, MFCQ, and SMFCQ for short).

Definition 2.1 The MPEC (1) is said to satisfy the MPEC-LICQ (MPEC-MFCQ, MPEC-
SMFCQ) in a feasible vector z∗ if the corresponding TNLP(z∗) satisfies the LICQ (MFCQ,
SMFCQ) in that vector z∗.

Since we will need them in Section 3, we shall explicitly write down the constraint qualifi-
cations from Definition 2.1. The MPEC-LICQ expands to the condition that the gradient
vectors

∇gi(z
∗) ∀i ∈ Ig := {i | gi(z

∗) = 0},
∇hi(z

∗) ∀i = 1, . . . , p,
∇Gi(z

∗) ∀i ∈ α ∪ β,
∇Hi(z

∗) ∀i ∈ γ ∪ β

(6)

must be linearly independent. The MPEC-LICQ can also be defined using the so-called re-
laxed nonlinear program, which we shall not elaborate upon here. The resulting definition,
however, is the same, see, e.g., [15].

Similarly, the MPEC-MFCQ expands to the following set of conditions: The gradient
vectors

∇hi(z
∗) ∀i = 1, . . . , p,

∇Gi(z
∗) ∀i ∈ α ∪ β,

∇Hi(z
∗) ∀i ∈ γ ∪ β

(7a)

are linearly independent, and there exists a vector d ∈ Rn such that

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β,

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β,

∇gi(z
∗)T d < 0 ∀i ∈ Ig.

(7b)
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At this point, it is important to note that under MPEC-MFCQ, a local minimizer z∗ of
the MPEC (1) implies the existence of a Lagrange multiplier λ∗ such that (z∗, λ∗) satisfies
the KKT conditions (5) (see, e.g., [10]). Therefore, if we assume that MPEC-MFCQ holds
for a local minimizer z∗ of the MPEC (1), we can use any Lagrange multiplier λ∗ (which
we now know exists) to define the MPEC-SMFCQ, i.e., taking (z∗, λ∗), we require the
following to hold: The gradient vectors

∇hi(z
∗) ∀i = 1, . . . , p,

∇Gi(z
∗) ∀i ∈ α ∪ β,

∇Hi(z
∗) ∀i ∈ γ ∪ β,

∇gi(z
∗) ∀i ∈ Jg := {i ∈ Ig | (λg

i )
∗ > 0}

(8a)

are linearly independent, and there exists a vector d ∈ Rn such that

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β,

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β,

∇gi(z
∗)T d = 0 ∀i ∈ Jg,

∇gi(z
∗)T d < 0 ∀i ∈ Kg := {i ∈ Ig | (λg

i )
∗ = 0}.

(8b)

Note that the above assumption that MPEC-MFCQ holds in order to define MPEC-
SMFCQ is no restriction since MPEC-SMFCQ implies MPEC-MFCQ.

As mentioned earlier, classic KKT conditions are not appropriate in the context of
MPECs. We therefore introduce two stationarity conditions used in [15, 16].

A feasible point z of the MPEC (1) is called weakly stationary [16] if there exists a
Lagrange multiplier λ = (λg, λh, λG, λH) such that the following conditions hold:

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

λG
α free, λG

β free, λG
γ = 0,

λH
γ free, λH

β free, λH
α = 0,

g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0.

(9)

A feasible point z of the MPEC (1) is called strongly stationary [16] or primal-dual station-
ary [15] if there exists a Lagrange multiplier λ = (λg, λh, λG, λH) such that the following
conditions hold:

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

λG
α free, λG

β ≥ 0, λG
γ = 0,

λH
γ free, λH

β ≥ 0, λH
α = 0,

g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0.

(10)
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Note that the difference between the two stationarity conditions is the sign-restriction im-
posed on λG

β and λH
β in the case of strong stationarity. It is easily verified that strong

stationarity coincides with the KKT conditions of the MPEC (1) (see, e.g., [4]). Further-
more, in the nondegenerate case, i.e. if β = ∅, strong stationarity is identical to weak
stationarity.

Other stationary conditions are derived and examined elsewhere, among which are
C-stationarity [16] (see (18)) and M-stationarity [12, 13]. Both lie between the weak
and strong stationarity conditions (9) and (10), respectively. Hence they all coincide in
the nondegenerate case, whereas, in general, differences occur in the properties of the
multipliers λG

β and λH
β .

3 Fritz John Approach to Optimality Conditions

Before we are able to present the main results of this paper, we need to define another
nonlinear program derived from the MPEC (1). The notation we use here is borrowed
from [15].

Given a partition (β1, β2) ∈ P(β), let NLP∗(β1, β2) denote the following nonlinear
program:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

Gα∪β1(z) = 0, Hα∪β1(z) ≥ 0,
Gγ∪β2(z) ≥ 0, Hγ∪β2(z) = 0.

(11)

Note that the program NLP∗(β1, β2) depends on the vector z∗.
Note that a local minimizer z∗ of the MPEC (1) is a local minimizer of the NLP∗(β1, β2)

since z∗ is feasible for the latter program and its feasible region is a subset of the feasible
region of the MPEC (1).

As they are needed in the following, we shall write down the KKT conditions for a
feasible point z with Lagrange multiplier λ of the NLP∗(β1, β2):

0 = ∇f(z) +
m∑

i=1

λg
i∇gi(z) +

p∑
i=1

λh
i∇hi(z)−

l∑
i=1

[
λG

i ∇Gi(z) + λH
i Hi(z)

]
,

h(z) = 0, g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0,

Gα∪β1(z) = 0, Gγ∪β2(z) ≥ 0, λG
γ∪β2

≥ 0, (λG
γ∪β2

)T Gγ∪β2(z) = 0,

Hγ∪β2(z) = 0, Hα∪β1(z) ≥ 0, λH
α∪β1

≥ 0, (λH
α∪β1

)T Hα∪β1(z) = 0.

(12)

We are now able to state the first main result of this paper.

Theorem 3.1 Let z∗ ∈ Rn be a local minimizer of the MPEC (1). If MPEC-LICQ holds in
z∗, then there exists a unique Lagrange multiplier λ∗ such that (z∗, λ∗) is strongly stationary.
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Proof. We shall consider two programs (the reason for this will become clear as the proof
unfolds): The NLP∗(β1, β2) and its (in a sense) complementary program NLP∗(β2, β1)
(note the inverted positions of β1 and β2). The vector z∗ is a local minimum of these
two programs since in both cases it is feasible and the feasible region of the corresponding
program is a subset of the feasible region of the original MPEC (1).

Now let us first consider the nonlinear program NLP∗(β1, β2). Well-known results (see,
e.g., [1, Proposition 3.3.5]) yield the existence of a nonzero vector (r, µ) = (r, µg, µh, µG, µH) ∈
R1+m+p+2l, such that (r, z∗, µ) is a Fritz John point of the NLP∗(β1, β2), i.e., the following
conditions hold:

0 = r∇f(z∗) +
m∑

i=1

µg
i∇gi(z

∗) +

p∑
i=1

µh
i∇hi(z

∗)−
l∑

i=1

[
µG

i ∇Gi(z
∗) + µH

i ∇Hi(z
∗)

]
,

r ≥ 0,
h(z∗) = 0, g(z∗) ≤ 0, µg ≥ 0, (µg)T g(z∗) = 0,

Gα∪β1(z
∗) = 0, Gγ∪β2(z

∗) ≥ 0, µG
γ∪β2

≥ 0, (µG
γ∪β2

)T Gγ∪β2(z
∗) = 0,

Hγ∪β2(z
∗) = 0, Hα∪β1(z

∗) ≥ 0, µH
α∪β1

≥ 0, (µH
α∪β1

)T Hα∪β1(z
∗) = 0.

(13)

It follows from the latter two lines of (13) and by the definition of the sets α and γ ((2a)
and (2c)) that µG

γ = 0 and µH
α = 0. Furthermore, we know that µg

i = 0 for all i /∈ Ig,
where Ig is defined as in (6).

We want to show that r > 0. To do this, we assume that r = 0 and examine the first
line of (13), taking into account the special structure of µ:

0 =
∑
i∈Ig

µg
i∇gi(z

∗) +

p∑
i=1

µh
i∇hi(z

∗)−
∑

i∈α∪β

µG
i ∇Gi(z

∗)−
∑

i∈γ∪β

µH
i ∇Hi(z

∗). (14)

Since by MPEC-LICQ, all terms in the sum (14) are linearly independent, it follows that
µ = 0, which is a contradiction to the assumption that (r, µ) 6= (0, 0). We therefore have
r > 0 and can, without loss of generality, set r = 1.

Hence, we have the existence of a Lagrange multiplier λ̃ (with certain properties, in-
herited from µ) which satisfies the KKT conditions (12) of the NLP∗(β1, β2):

0 = ∇f(z∗) +
m∑

i=1

λ̃g
i∇gi(z

∗) +

p∑
i=1

λ̃h
i∇hi(z

∗)−
l∑

i=1

[
λ̃G

i ∇Gi(z
∗) + λ̃H

i Hi(z
∗)

]
,

h(z∗) = 0, g(z∗) ≤ 0, λ̃g ≥ 0, (λ̃g)T g(z∗) = 0,

Gα∪β1(z
∗) = 0, Gγ∪β2(z

∗) ≥ 0, λ̃G
β2
≥ 0, λ̃G

γ = 0, (λ̃G
β2

)T Gβ2(z
∗) = 0,

Hγ∪β2(z
∗) = 0, Hα∪β1(z

∗) ≥ 0, λ̃H
β1
≥ 0, λ̃H

α = 0, (λ̃H
β1

)T Hβ1(z
∗) = 0.

(15)

Similarly, taking the complementary NLP∗(β2, β1), we can show the existence of a Lagrange
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multiplier λ̂ which satisfies the KKT conditions for the program NLP∗(β2, β1):

0 = ∇f(z∗) +
m∑

i=1

λ̂g
i∇gi(z

∗) +

p∑
i=1

λ̂h
i∇hi(z

∗)−
l∑

i=1

[
λ̂G

i ∇Gi(z
∗) + λ̂H

i Hi(z
∗)

]
,

h(z∗) = 0, g(z∗) ≤ 0, λ̂g ≥ 0, (λ̂g)T g(z∗) = 0,

Gα∪β2(z
∗) = 0, Gγ∪β1(z

∗) ≥ 0, λ̂G
β1
≥ 0, λ̂G

γ = 0, (λ̂G
β1

)T Gβ1(z
∗) = 0,

Hγ∪β1(z
∗) = 0, Hα∪β2(z

∗) ≥ 0, λ̂H
β2
≥ 0, λ̂H

α = 0, (λ̂H
β2

)T Hβ2(z
∗) = 0.

(16)

We now equate the first equations of (15) and (16), taking into account the special structure
of λ̃ and λ̂ inherited from the multiplier µ:

0 =
m∑

i=1

(λ̂g
i − λ̃g

i )∇gi(z
∗) +

p∑
i=1

(λ̂h
i − λ̃h

i )∇hi(z
∗)

−
l∑

i=1

[
(λ̂G

i − λ̃G
i )∇Gi(z

∗) + (λ̂H
i − λ̃H

i )∇Hi(z
∗)

]
=

∑
i∈Ig

(λ̂g
i − λ̃g

i )∇gi(z
∗) +

p∑
i=1

(λ̂h
i − λ̃h

i )∇hi(z
∗)

−
∑

i∈α∪β

(λ̂G
i − λ̃G

i )∇Gi(z
∗)−

∑
i∈γ∪β

(λ̂H
i − λ̃H

i )∇Hi(z
∗).

Again using the linear independence of all terms involved, we have λ̃ = λ̂. By setting
λ∗ := λ̃ = λ̂, we see that λ∗ has the combined characteristics of the Lagrange multipliers
in both (15) and (16), in particular

(λG
β )∗ ≥ 0, (λG

γ )∗ = 0,

(λH
β )∗ ≥ 0, (λH

α )∗ = 0,

satisfying the conditions for strong stationarity.
Uniqueness of the Lagrange multiplier follows immediately from (10). This concludes

the proof. �

Theorem 3.1 is essentially one direction of [15, Theorem 3] and is also a direct consequence
of [16, Theorem 2, (2)], which was proved using different techniques.

Although the above theorem is sufficient for most practical purposes (see [18] for a
discussion), it is of interest whether the same result (or perhaps a weaker one) still holds if
the MPEC-LICQ is relaxed. To this end, we examine the MPEC-MFCQ and the MPEC-
SMFCQ in the following two theorems.
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Theorem 3.2 Let z∗ ∈ Rn be a local minimizer of the MPEC (1). If MPEC-MFCQ holds
in z∗ then there exists a Lagrange multiplier λ∗ such that (z∗, λ∗) satisfies the following
stationarity conditions:

0 = ∇f(z∗) +
m∑

i=1

(λg
i )

∗∇gi(z
∗) +

p∑
i=1

(λh
i )

∗∇hi(z
∗)−

l∑
i=1

[
(λG

i )∗∇Gi(z
∗) + (λH

i )∗Hi(z
∗)

]
,

(λG
α )∗ free,

(λH
γ )∗ free,

(λG
i )∗ ≥ 0 ∨ (λH

i )∗ ≥ 0 ∀i ∈ β
(λG

γ )∗ = 0,

(λH
α )∗ = 0,

g(z∗) ≤ 0, (λg)∗ ≥ 0, g(z∗)T (λg)∗ = 0.

(17)

In particular, (z∗, λ∗) is weakly stationary.

Proof. Up to and including the sum (14), this proof is identical to the proof of Theorem
3.1. Using MPEC-MFCQ and Motzkin’s theorem of the alternative (cf. [9, Theorem 2.4.2]),
we obtain µ = 0 from (14). Since this is a contradiction to the existence of a nonzero vector
(r, µ) we have shown, without loss of generality, the existence of a Lagrange multiplier λ̃
satisfying (15). In particular, we are able to conclude that

λ̃G
β2
≥ 0, λ̃H

β1
≥ 0.

Setting λ∗ := λ̃ proves the result. �

Note that the proof of Theorem 3.2 holds for an arbitrary partition (β1, β2) of the index
set β. Hence we can choose, a priori, such a partition and obtain corresponding Lagrange
multipliers (λG)∗ and (λH)∗ such that (λG

i )∗ ≥ 0 for all i ∈ β1 and (λH
i )∗ ≥ 0 for all i ∈ β2.

Motivated by Theorem 3.2, we call a weakly stationary point z∗ of the MPEC (1)
A-stationary if there exists a corresponding Lagrange multiplier λ∗ such that

(λG
i )∗ ≥ 0 or (λH

i )∗ ≥ 0 ∀i ∈ β,

i.e., z∗ is A-stationary if and only if (17) holds for some multiplier λ∗. Here, the letter
‘A’ may stand for ‘alternative’ since, for each i ∈ β, we have the alternative that either
(λG

i )∗ ≥ 0 or (λH
i )∗ ≥ 0 (or both) hold. However, the letter ‘A’ may also be interpreted

as an abbreviation for ‘Abadie’ since, as is discussed in [5], an Abadie-type constraint
qualification also implies A-stationarity.

By the above remark that a partition (β1, β2) may be chosen a priori, the following
corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3 Let z∗ ∈ Rn be a local minimizer of the MPEC (1). If MPEC-MFCQ holds
in z∗ then for every partition (β1, β2) ∈ P(β) there exists a Lagrange multiplier λ∗ such
that (z∗, λ∗) is A-stationary.
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The first order condition in Corollary 3.3 is called a primal-dual first-order condition in [7]
and this particular one can be found in Theorem 3.3.6 of the same reference.

A slightly different theorem under MPEC-MFCQ is stated in [16], where the existence
of Lagrange multipliers (λG)∗ and (λH)∗ satisfying

(λG
i )∗(λH

i )∗ ≥ 0 ∀i ∈ β (18)

is shown. A weakly stationary point satisfying this condition is called Clarke- or simply
C-stationary in [16].

Note that either theorem merely show the existence of Lagrange multipliers with certain
characteristics, but not the exclusion of other Lagrange multipliers. In fact, as the following
example (taken from [16]) demonstrates, the respective conditions are not, in general,
satisfied by the same set of Lagrange multipliers:

min f(z) := z1 + z2 − z3

s.t. g(z) :=

(
−4z1 + z3

−4z2 + z3

)
≤ 0,

G(z) := z1 ≥ 0,
H(z) := z2 ≥ 0,
G(z)T H(z) = z1z2 = 0.

The origin is the unique solution of this program, and it satisfies the MPEC-MFCQ. It is
easily verified that the corresponding Lagrange multipliers λG := (λG

1 )∗ and λH := (λH
1 )∗

are subject to the following restrictions:

λH ∈ [−3; 1],

λG = −λH − 2.

The Lagrange multipliers satisfying A-stationarity (17) are {(λG, λH) | λH ∈ [−3;−2] ∪
[0; 1], λG = −λH − 2}, while the conditions (18) for C-stationarity are satisfied by the
multipliers {(λG, λH) | λH ∈ [−2; 0], λG = −λH − 2}. Only for (λG, λH) = (0,−2) and
(λG, λH) = (−2, 0) are both conditions (17) and (18) satisfied simultaneously.

The following result can also be found in [16], where it is derived using different tech-
niques.

Theorem 3.4 Let z∗ ∈ Rn be a local minimizer of the MPEC (1). If MPEC-SMFCQ
holds in z∗ then there exists a unique Lagrange multiplier λ∗ such that (z∗, λ∗) is strongly
stationary.

Proof. Since MPEC-SMFCQ implies MPEC-MFCQ, the proof of Theorem 3.2 yields the
existence of a Lagrange multiplier λ̃ which satisfies the KKT conditions (15). By the
same arguments we have the existence of a Lagrange multiplier λ̂ which satisfies the KKT
conditions (16).

It is easily verified (taking into account that Gβ(z∗) = 0 and Hβ(z∗) = 0 by definition

of the index set β) that both Lagrange multipliers λ̃ and λ̂ also satisfy the KKT conditions
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(5) of the TNLP (4). Since SMFCQ holds for the TNLP (4), the Lagrange multiplier is
unique (cf. [6]) and hence λ̃ = λ̂. By the same arguments as in the proof of Theorem 3.1,
we set λ∗ := λ̃ = λ̂, which satisfies the combined characteristics of (15) and (16). This
implies strong stationarity.

Since a Lagrange multiplier satisfying (10) also satisfies the KKT conditions (5) of the
TNLP (4), and SMFCQ holds for this TNLP, the Lagrange multiplier is unique (cf., again,
[6]). This concludes the proof. �

4 Conclusion

We have examined some of the more important constraint qualifitcations for MPECs
(MPEC-LICQ, MPEC-SMFCQ, and MPEC-MFCQ) and have proven known first order
conditions using an elementary approach. We were able to show that strong stationar-
ity holds under both MPEC-LICQ and MPEC-SMFCQ using our technique. The same
technique yielded a new stationarity concept, A-stationarity, under MPEC-MFCQ.
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