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Abstract. We consider optimization problems with a disjunctive structure of the feasible
set. Using Guignard-type constraint qualifications for these optimization problems and
exploiting some results for the limiting normal cone by Mordukhovich, we derive different
optimality conditions. Furthermore, we specialize these results to mathematical programs
with equilibrium constraints. In particular, we show that a new constraint qualification,
weaker than any other constraint qualification used in the literature, is enough in order
to show that a local minimum results in a so-called M-stationary point. Additional as-
sumptions are also discussed which guarantee that such an M-stationary point is in fact a
strongly stationary point.

Key Words. disjunctive programs, mathematical programs with equilibrium constraints,
M-stationarity, strong stationarity, Guignard constraint qualification.



1 Introduction

In the past decade applied mathematicians have been paying increasing interest to opti-
mization problems where, among the constraints, so-called equilibrium constraints occur.
This equilibrium is described mostly by a (lower-level) optimization problem, a variational
inequality or a complementarity problem. Following [10], all these problems are currently
termed mathematical programs with equilibrium constraints, or MPECs. Most of them can
be written down in form of (smooth) nonlinear programs which, however, do not satisfy
most of the standard constraint qualifications (CQs). This has lead to several weakened
stationarity notions that have been introduced in connection with optimality conditions
and numerical approaches.

Among these new stationarity notions an important role is played by a concept as-
sociated with the generalized differential calculus of Mordukhovich, cf. [26, 13, 24, 14].
Following [19], we will call it M-stationarity. The advantage of this concept consists, above
all, in the fact that it requires only very weak constraint qualifications, cf. [4, 25]. Simul-
taneously, starting with [10], another, stronger, stationarity notion has been investigated
([23, 15]), referred to by the moniker strong stationarity in [19]. Strong stationarity is the
natural candidate for a stationarity concept for MPECs, because it is equivalent to the
standard KKT conditions if the MPEC can be expressed as a standard nonlinear program.
As mentioned above, however, this stationarity concept is too restrictive in the context of
MPECs.

In this paper we will investigate the above mentioned stationarity notions by means of a
general disjunctive program which embeds most MPECs considered in the literature so far.
In particular, we will show that local minimizers are M-stationary under an appropriate
variant of the Guignard CQ [7], known to be the weakest CQ used in classical nonlinear
programming. Moreover, we will derive a new condition which, together with this variant
of Guignard CQ, ensures the strong stationarity of local minimizers.

Finally, these results will then be translated to the language of MPECs where the
constraints are described by a complementarity problem. In particular, we will show that
M- and strong stationarity indeed amount to the well-known conditions common in the
literature of these programs. Additionally, a new constraint qualification is introduced to
such MPECs by transferring the variant of Guignard CQ for our disjunctive programs to
an MPEC setting. This yields the weakest result known to date, M-stationarity as a first
order condition under this very weak CQ.

The organization of the paper is as follows. Section 2 is devoted to some preliminary
results including important definitions and some initial observations. The main results
for the disjunctive program are collected in Section 3. Finally, in Section 4, we apply the
results of Section 3 to a standard MPEC, where the equilibrium is modelled by a nonlinear
complementarity problem. We then close with some final remarks in Section 5.

Our notation is standard. The n-dimensional Euclidean space is denoted by Rn, its
nonnegative and nonpositive orthant by Rn

+ and Rn
−, respectively. If unclear from context,

the size of a zero vector is denoted by an appropriate subscript: 0n is the zero vector in Rn.
Given a vector x ∈ Rn, its components are denoted by xi. Furthermore, given an index

3



set ω ⊆ {1, . . . , n}, we denote by xω ∈ R|ω| the vector consisting of those components
xi corresponding to the indices in ω. The same terminology applies to functions. Given
a function F : Rn → Rm, we denote its Jacobian by ∇F (z) ∈ Rm×n. If m = 1, the
gradient ∇F (z) ∈ Rn is considered a column vector. We call a set valued function a
multifunction. Given such a multifunction Φ : Rp ⇒ Rq, its graph is defined by gph Φ :=
{(u, v) ∈ Rp+q | v ∈ Φ(u)}. Finally, given an arbitrary set K ⊆ Rn, it’s polar is defined by
K◦ := {v ∈ Rn | vT w ≤ 0∀w ∈ K}.

2 Preliminaries

For the reader’s convenience we start with the definitions of several basic notions in vari-
ational analysis which will be extensively used throughout the paper.

Let A ⊆ Rn be an arbitrary closed set and u ∈ A. The nonempty cone

TA(u) := lim sup
τ↘0

A− u

τ

:= {d ∈ Rn | ∃{uk} ⊂ A,∃{τk} ↘ 0 : uk → u,
uk − u

τk

→ d}

is called the contingent (also Bouligand or tangent) cone to A at u. Consider the family
of closed sets Ai, i = 1, . . . , k, and a point u ∈

⋂k
i=1 Ai. Then it follows directly from the

above definition that

TSk
i=1 Ai

(u) =
k⋃

i=1

TAi
(u). (1)

Furthermore, we use the contingent cone to define the Fréchet normal cone

N̂A(u) := (TA(u))◦ (2)

to A at u. Note that the Fréchet normal cone is sometimes referred to as the regular
normal cone. This is most notably the case in [18]. Again, if we consider the family of
closed sets Ai, i = 1, . . . , k, and a point x ∈

⋂k
i=1 Ai, it follows from (1) and the properties

of the polar cone that

N̂Sk
i=1 Ai

(u) =
(
TSk

i=1 Ai
(u)

)◦
=

k⋂
i=1

(TAi
(u))◦ =

k⋂
i=1

N̂Ai
(u) (3)

(see [1, Theorem 3.1.9]).
The cornerstone of the generalized differential calculus of Mordukhovich is the limiting

normal cone, also called the Mordukhovich normal cone, defined by

NA(u) := lim sup
u′

A→u

N̂A(u′)

:= { lim
k→∞

wk | ∃{uk} ⊂ A : lim
k→∞

uk = u, wk ∈ N̂A(uk)}.
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In contrast to the Fréchet normal cone, NA(u) can be nonconvex, but admits a widely
developed calculus, cf. [11, 18]. In this calculus, an important role is played by stability
of multifunctions reflecting the local structure of A. This will become important when we
introduce constraint qualifications further down. Note that if NA(u) = N̂A(u), we say that
the set A is (normally) regular at u.

Consider now the general mathematical program

minimize f(z)
subject to F (z) ∈ Λ,

(4)

where f : Rn → R, F : Rn → Rm are continuously differentiable functions and Λ ⊆ Rm is
a nonempty closed (possibly nonconvex) set. It is clear that the constraint F (z) ∈ Λ can
also incorporate geometric constraints of the form z ∈ Ω, where Ω ⊆ Rn is an arbitrary
closed set.

Utilizing the normal cones introduced above, we are now able to define two stationarity
concepts which will play a central role in this paper.

Definition 2.1 Let ẑ be feasible for the program (4).

(a) We say that ẑ is M-stationary if there exists a KKT vector λ̂ ∈ NΛ(F (ẑ)) such that

0 = ∇f(ẑ) + (∇F (ẑ))T λ̂. (5)

(b) We say that ẑ is strongly stationary if there exists a KKT vector λ̂ ∈ N̂Λ(F (ẑ)) such
that

0 = ∇f(ẑ) + (∇F (ẑ))T λ̂. (6)

Note that M- and strong stationarity may be expressed as

0 ∈ ∇f(ẑ) + (∇F (ẑ))T NΛ(F (ẑ))

and
0 ∈ ∇f(ẑ) + (∇F (ẑ))T N̂Λ(F (ẑ)),

respectively.
The name M-stationarity is motivated by the fact that it involves the Mordukhovich

normal cone. It was coined in the context of MPECs by Scholtes [20]. Similarly, we use
the name strong stationarity in accordance with [19], where it was also used in the context
of MPECs. In the MPEC setting, strong stationarity is sometimes also referred to as
primal-dual stationarity [15].

As already mentioned, M-stationarity is a weaker stationarity concept than strong
stationarity. However, the limiting normal cone (though nonconvex in general) has an
extensive calculus, whereas the fuzzy calculus, developed for the Fréchet normal cone is
not useful for our purposes.

Having introduced stationarity concepts for the program (4), we now turn our attention
to constraint qualifications. To this end, we need the concept of calmness of multifunctions
and the closely related idea of upper Lipschitz continuity.
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Definition 2.2 Let Φ : Rp ⇒ Rq be a multifunction with a closed graph and (u, v) ∈ gph Φ.
We say that Φ is calm at (u, v) provided there exist neighborhoods U of u, V of v, and a
modulus L ≥ 0 such that

Φ(u′) ∩ V ⊂ Φ(u) + L‖u′ − u‖B for all u′ ∈ U . (7)

If (7) holds true with V = Rq, Φ is said to be locally upper Lipschitz continuous at u, cf.
[17].

Note that calmness is sometimes also referred to as pseudo upper Lipschitz continuity
(see, e.g., [26]) and that in [18] both calmness and local upper Lipschitz continuity are
referred to as calmness.

To obtain a constraint qualification for the program (4), we define a multifunction
M : Rm ⇒ Rn associated with the constraint system of (4) in the following fashion:

M(p) := {z ∈ Rn |F (z) + p ∈ Λ} . (8)

We can now use this multifunction to define a constraint qualification under which M-
stationarity is a first order optimality condition. This is made precise in the following
theorem, a proof of which may be found, e.g., in [14, Theorem 2.4].

Theorem 2.3 Let ẑ be a local minimizer of (4). If the multifunction M (see (8)) is calm
at (0, ẑ), ẑ is M-stationary.

Note that if we drop the continuous differentiability of f and F in favor of Lipschitz
continuity near ẑ of these functions, the result of Theorem 2.3 remains true if we state
M-stationarity (5) in terms of the subgradient of f and the coderivative of an appropriate
function, see [26] for details.

A constraint qualification better known in nonlinear programming is the Mangasarian-
Fromovitz constraint qualification (MFCQ). We define a generalization of this CQ.

Definition 2.4 Let ẑ be feasible for the program (4). We say that the generalized Manga-
sarian-Fromovitz constraint qualification (GMFCQ) holds at ẑ if the implication

∇F (ẑ)T λ = 0

λ ∈ NΛ(F (ẑ))

}
=⇒ λ = 0 (9)

holds.

If Λ = Rm
− , the condition (9) reduces to the classical Mangasarian-Fromovitz constraint

qualification, justifying the name GMFCQ.
We now show that M-stationarity is a first order condition under GMFCQ.

Corollary 2.5 Let ẑ be a local minimizer of the program (4) at which GMFCQ holds.
Then ẑ is M-stationary.
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Proof. Due to Theorem 2.3, it suffices to show that GMFCQ implies the calmness of M at
(0, ẑ). From [12, Corollary 4.4], we readily infer that GMFCQ implies the so-called Aubin
property of M around (0, ẑ). Since this property is stronger than the required calmness
(see, e.g., [18, Definition 9.36]), the result follows. �

For more information on the Aubin property, we refer the reader to the book by Rock-
afellar and Wets [18].

Having discussed both calmness and GMFCQ as constraint qualifications, we now in-
troduce generalizations of the Abadie and Guignard constraint qualifications known from
standard nonlinear programming.

Definition 2.6 Let ẑ be feasible for the program (4).

(a) We say that the generalized Abadie constraint qualification (GACQ) holds at ẑ if

TF−1(Λ)(ẑ) = L(ẑ), (10)

where
L(ẑ) := {h ∈ Rn | ∇F (ẑ) h ∈ TΛ(F (ẑ))} (11)

is called the linearized cone at ẑ.

(b) We say that the generalized (or dual) Guignard constraint qualification (GGCQ)
holds at ẑ if

N̂F−1(Λ)(ẑ) = (L(ẑ))◦ . (12)

To justify the names of the above constraint qualifications, we apply them to a standard
nonlinear program that takes the form

minimize f(z)
subject to g(z) ≤ 0, h(z) = 0,

(13)

with continuously differentiable f : Rn → R, g : Rn → Rm, and h : Rn → Rp. To formulate
this program in the fashion of (4), we set

F (z) := (g(z), h(z)) and Λ := Rm
− × 0p.

It is then easily verified that

L(ẑ) = {d ∈ Rn | ∇gi(ẑ)T d ≤ 0, ∀i ∈ Ig,

∇hi(ẑ)T d = 0, ∀i = 1, . . . , p },

where Ig := {i | gi(ẑ) = 0} is the set of active inequality constraints.
Clearly, in this case GACQ and GGCQ reduce to the standard definitions of Abadie

and Guignard CQ, respectively, as they are most commonly stated, see, e.g., [1]. However,
Guignard [7] originally stated her CQ in the primal form. Her definition is equivalent to
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the above dual characterization of Guignard CQ if Λ is convex. In the nonconvex case
the relationship is not as straightforward. Since Guignard CQ is commonly defined using
the dual formulation (see, e.g., [16, 1, 6, 21]), however, we feel justified in calling (12) the
generalized Guignard CQ.

Note that since N̂F−1(Λ)(ẑ) = TF−1(Λ)(ẑ)◦ by definition (see (2)), GACQ at ẑ obviously
implies GGCQ at ẑ. Furthermore, as proved in [9, Proposition 1], calmness of M at (0, ẑ)
implies GACQ at ẑ. Together with the discussion preceding Corollary 2.5, this yields the
following chain of implications:

GMFCQ at ẑ =⇒ calmness of M at (0, ẑ) =⇒ GACQ at ẑ =⇒ GGCQ at ẑ. (14)

In general, none of the implications can be reversed. Specifically, the following example
demonstrates that GGCQ does not, in general, imply GACQ.

Example 2.7 Consider the program

minimize z2
1 + z2

2

subject to

[
z2
1

z2
2

]
∈ Λ := Λ1 ∪ Λ2,

with Λ1 := R+ × {0} and Λ2 := {0} × R+. Obviously, the origin is the unique minimizer.
It is then easily verified that the contingent cone takes the form

TF−1(Λ)(0) = {h ∈ R2 | h1h2 = 0},

while the linearized cone takes the form

L(0) = {h ∈ R2 | (0, 0)h ∈ TΛ(0)} = R2.

Obviously, TF−1(Λ)(0) 6= L(0), so GACQ is not satisfied. However, it is easily verified that

TF−1(Λ)(0)
◦ = {0} = L(0)◦,

demonstrating that GGCQ does hold.

An important question surrounding GACQ and GGCQ is their connection with op-
timality conditions. It is known that if Λ is convex, strong stationarity is a first order
optimality condition under GGCQ and hence under GACQ (see the arguments following
Definition 2.6). In the following sections we will investigate how this can be extended to
nonconvex Λ.

Another question is when we might expect strong stationarity to be a first order opti-
mality condition. Since f is continuously differentiable, we have the well-known optimality
condition

0 ∈ ∇f(ẑ) + N̂F−1(Λ)(ẑ), (15)

cf., e.g., [18, Theorem 6.12]. Unfortunately, we only have the inclusion

N̂F−1(Λ)(ẑ) ⊃ (∇F (ẑ))T N̂Λ (F (ẑ)) (16)
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which turns out to be an equality provided GMFCQ is satisfied at ẑ and Λ is (normally)
regular at F (ẑ) (see [18, Theorem 6.14]). However, this condition never holds for equilib-
rium constraints. This question is important, because we need to have equality in (16) in
order to explicitly determine the cone N̂F−1(Λ)(ẑ), and with it to be able to verify whether
strong stationarity holds.

3 The Disjunctive Program

In this section we will investigate GACQ and GGCQ in context with M- and strong sta-
tionarity under the structural assumption that

Λ =
k⋃

i=1

Λi, (17)

where all Λi, i = 1, . . . , k, are convex polyhedra. This assumption is satisfied by a large
class of equilibrium constraints, see Section 4 for an example of this.

The sets Λi are called components and with each z ∈ Λ we associate the index set I(z)
of active components defined by

I(z) := {i ∈ {1, . . . , k} | F (z) ∈ Λi} .

For the remainder of this section, we will confine ourselves to the program

minimize f(z)

subject to F (z) ∈ Λ =
⋃k

i=1 Λi,
(18)

where the constraints are given by (17).
For such a program, we are indeed able to show that M-stationarity is a necessary first

order condition under GGCQ and hence GACQ.

Theorem 3.1 Let ẑ be a local minimizer of the program (18). Then, if GGCQ is satisfied
at ẑ, ẑ is M-stationary.

Proof. As mentioned in the previous section, relation (15) holds true. Thus, due to GGCQ
at ẑ, one has

0 ∈ ∇f(ẑ) + (L(ẑ))◦. (19)

By definition of the polar cone, this means that h = 0 is the (unique) solution of the
program

minimize ∇f(ẑ)T h
subject to ∇F (ẑ) h ∈ TΛ(F (ẑ)).

(20)

By virtue of (1),

TΛ(F (ẑ)) =
⋃

i∈I(ẑ)

TΛi
(F (ẑ)).
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Consider now the multifunction M̃ : Rm ⇒ Rn, defined by

M̃(p) := {h ∈ Rn | ∇F (ẑ) h + p ∈ TΛ(F (ẑ))} .

Clearly, the constraint in (20) can equivalently be written as h ∈ M̃(0). Moreover, since
the contingent cones TΛi

(F (ẑ)), i ∈ I(ẑ), are convex polyhedra,

gph M̃ =
{
(p, h) ∈ Rm × Rn |∇F (ẑ) h + p ∈

⋃
i∈I(ẑ)

TΛi
(F (ẑ))

}
=

⋃
i∈I(ẑ)

{(p, h) ∈ Rm × Rn |∇F (ẑ) h + p ∈ TΛi
(F (ẑ))}

is a union of finitely many convex polyhedra (the second equality is trivially verified). From
[17, Proposition 1] it follows that M̃ is locally upper Lipschitz at 0 and, a fortiori, calm at
(0, ẑ). Thus, by [8, Theorem 4.1] we have

NM̃(0)(0) ⊆ (∇F (ẑ))T NTΛ(F (ẑ))(0). (21)

It remains to invoke [18, Example 6.47] according to which, due to (1), there exists a
neighborhood O of F (ẑ) in Rm such that

Λ ∩ O = [F (ẑ) + TΛ(F (ẑ))] ∩ O.

Consequently, by the definition of the limiting normal cone,

NTΛ(F (ẑ))(0) = NF (ẑ)+TΛ(F (ẑ))(F (ẑ)) = NΛ(F (ẑ)). (22)

Finally, remembering that ĥ = 0 is a minimizer of (20), applying the optimality condition
(15) to the program (20) yields (note that h is the variable)

0
(15)
∈ ∇f(ẑ) + N̂M̃(0)(0)

⊆ ∇f(ẑ) + NM̃(0)(0)

(21)

⊆ ∇f(ẑ) + (∇F (ẑ))T NTΛ(F (ẑ))(0)

(22)
= ∇f(ẑ) + (∇F (ẑ))T NΛ(F (ẑ)).

This is the condition for M-stationarity (5), completing the proof. �

Note that the continuous differentiability of f enters crucially in constructing the program
(20). The statement of Theorem 3.1 cannot be proved using the above technique if we
replace continuously differentiable data with locally Lipschitz data.

We now turn our attention to strong stationarity of ẑ if it is a minimizer of a program
(18). Let us consider the following academic example, taken from [23].
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Example 3.2 Consider the program

minimize −z2

subject to

 z1

z2

z1 − z2

 ∈ Λ1 ∪ Λ2,

with Λ1 = R+ × {0} × {0} and Λ2 = {0} ×R+ × {0}. It is easy to verify that ẑ = 0 is the
unique minimizer of this program and that GMFCQ is satisfied at the origin. Hence, ẑ is
M -stationary and the vector

λ̂ =

 0
1
0

 ∈ NΛ(0) (23)

belongs to the set of KKT vectors. On the other hand,

N̂Λ(0) = N̂Λ1(0) ∩ N̂Λ2(0) =
{
λ ∈ R3 |λ1 ≤ 0, λ2 ≤ 0

}
(see (3)) and we easily verify that there exists no λ̃ = (λ̃1, λ̃2, λ̃3) ∈ N̂Λ(0) such that

0 ∈
[

0
−1

]
+

[
1 0 1
0 1 −1

] λ̃1

λ̃2

λ̃3

 .

This example shows (by virtue of (14)) that none of the CQs mentioned in Section 2
can ensure strong stationarity of local minima in the considered program. We therefore
need an additional condition which we introduce in the following definition.

Definition 3.3 Let ẑ be feasible for the program (18). We say that the intersection prop-
erty holds at ẑ if ⋂

i∈I(ẑ)

(∇F (ẑ))T N̂Λi
(F (ẑ)) = (∇F (ẑ))T

⋂
i∈I(ẑ)

N̂Λi
(F (ẑ)). (I)

In order to use the intersection property to acquire a stronger optimality condition,
we first need the following result, concerning the polar of a polyhedral cone, the proof of
which may be found in [1, Theorem 3.2.2].

Lemma 3.4 Let the cones

K1 := {d ∈ Rn | aT
i d ≥ 0, ∀i = 1, . . . , k,

bT
j d = 0, ∀j = 1, . . . , l}

(24)

and

K2 = {v ∈ Rn | v =
k∑

i=1

αiai +
l∑

j=1

βjbj,

αi ≤ 0, ∀i = 1, . . . , k}

(25)

be given. Then K1 = K◦
2 and K◦

1 = K2.
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We are now able to state a stronger optimality condition than in Theorem 3.1.

Theorem 3.5 Let ẑ be a local minimizer of the program (18). If GGCQ and the intersec-
tion property (I) are satisfied at ẑ, then ẑ is strongly stationary.

Proof. As in the proof of Theorem 3.1 we start with the relation

0 ∈ ∇f(ẑ) + (L(ẑ))◦ (26)

which holds by virtue of the local optimality of ẑ (see (15)) and GGCQ. From (1) we infer
that

(L(ẑ))◦ =
( ⋃

i∈I(ẑ)

{h ∈ Rn |∇F (ẑ) h ∈ TΛi
(F (ẑ))}

)◦
=

⋂
i∈I(ẑ)

(
{h ∈ Rn | ∇F (ẑ) h ∈ TΛi

(F (ẑ))}
)◦

.
(27)

Due to the polyhedrality of TΛi
(F (ẑ)), there exist ai ∈ Rm, i = 1, . . . , q for an appropriate

q, such that
TΛi

(F (ẑ)) = {d ∈ Rm | aT
i d ≥ 0, ∀i = 1, . . . , q}.

Hence we can write

{h ∈ Rn | ∇F (ẑ) h ∈ TΛi
(F (ẑ))}

= {h ∈ Rn | aT
i (∇F (ẑ)h) ≥ 0, ∀i = 1, . . . , q}

= {h ∈ Rn | (∇F (ẑ)T ai)
T h ≥ 0, ∀i = 1, . . . , q}.

We now apply Lemma 3.4 to obtain the polar of this set:(
{h ∈ Rn | ∇F (ẑ) h ∈ TΛi

(F (ẑ))}
)◦

= {v ∈ Rn | v =

q∑
i=1

αi∇F (ẑ)T ai, α ≤ 0}

= {v ∈ Rn | v = ∇F (ẑ)T

q∑
i=1

αiai, α ≤ 0}

= ∇F (ẑ)T TΛi
(F (ẑ))◦ = ∇F (ẑ)T N̂Λi

(F (ẑ)),

where the penultimate equality is verified again by applying Lemma 3.4. Substituting this
into (27), we get

(L(ẑ))◦ =
⋂

i∈I(ẑ)

(∇F (ẑ))T N̂Λi
(F (ẑ)) = (∇F (ẑ))T

⋂
i∈I(ẑ)

N̂Λi
(F (ẑ)), (28)

where the last equality is exactly condition (I). Since

N̂Λ(F (ẑ)) =
⋂

i∈I(ẑ)

N̂Λi
(F (ẑ))

(see (3)), we obtain the statement of the theorem by substituting (28) in (26). �
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We easily observe that it is just condition (I) which is missing in Example 3.2. Indeed,

(∇F (ẑ))T N̂Λ1(F (ẑ)) ∩ (∇F (ẑ))T N̂Λ2(F (ẑ)) = R2,

whereas

(∇F (ẑ))T
(
N̂Λ1(F (ẑ)) ∩ N̂Λ2(F (ẑ))

)
=

{[
λ1 + λ3

λ2 − λ3

]∣∣∣∣ λ1, λ2 ≤ 0

}
6= R2, (29)

i.e. the KKT vector λ̂ from (23) violates the constraints in (29).
One readily infers that the surjectivity of∇F (ẑ) insures (I). This is, however, a substan-

tial strengthening even of GMFCQ. In the following section we will discuss two conditions
that imply the intersection property (I) in the context of MPECs.

4 Application to MPECs

In this section we consider a special case of the program (18), mathematical programs with
equilibrium or complementarity constraints (MPECs for short). They take the form

minimize f(z)
subject to g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)T H(z) = 0,
(30)

where f : Rn → R, g : Rn → Rm, h : Rn → Rp, G : Rn → Rl, and H : Rn → Rl are
continuously differentiable.

It is possible to write the program (30) in the form of (18) in several ways. One way
we already discussed in the context of program (13). We will go into this, more obvious,
choice later. First, however, we will introduce a particular reformulation which will render
useful statements when we apply the results from Section 3.

Let us therefore consider a local minimizer ẑ of (30). From the complementarity term
in (30) it is clear that either Gi(ẑ), or Hi(ẑ), or both must be zero. To distinguish among
these cases, we divide the indices of G and H into three sets:

α := α(ẑ) := {i | Gi(ẑ) = 0, Hi(ẑ) > 0}, (31a)

β := β(ẑ) := {i | Gi(ẑ) = 0, Hi(ẑ) = 0}, (31b)

γ := γ(ẑ) := {i | Gi(ẑ) > 0, Hi(ẑ) = 0}. (31c)

The set β is called the degenerate or, a term which has come into use more recently, the
biactive set. Note that the sets (31) may also be defined for arbitrary feasible points of
(30).

Next we define the function F in (18) utilizing these sets:

F (z) :=
(
g(z), h(z), Gα(z), Hα(z), Gβ(z), Hβ(z), Gγ(z), Hγ(z)

)
. (32)
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Finally, we take a pair (β1, β2) from P(β), the set of all partitions of beta (P(β) :=
{(β1, β2) | β1 ∪ β2 = β, β1 ∩ β2 = ∅}). We then proceed to define the sets

Λβ1,β2 := Rm
− × 0p × 0|α| × R|α|

+ ×∆β1,β2 ×∆β2,β1 × R|γ|
+ × 0|γ| (33)

with

(∆µ,ν)j :=

{
0 : j ∈ µ

R+ : j ∈ ν.
(34)

Obviously, the sets Λβ1,β2 are convex polyhedra.
It is now easy to see that (30) is locally equivalent to

min f(z)
s.t. F (z) ∈ Λ

(35)

with
Λ :=

⋃
Λβ1,β2 .

(β1,β2)∈P(β)

(36)

Note that the definition of this program depends on the solution ẑ of the program (30).
Therefore, local equivalence refers to the fact that the feasible regions of the programs
(30) and (35) are equal for a whole neighborhood of the local minimizer ẑ that was used
to define (35). Further note that every component Λβ1,β2 is active at ẑ. Central to the
definition of both GACQ and GGCQ is the linearized cone L(ẑ) (see (11)). To transfer
the conditions for GACQ and GGCQ to the MPEC setting, we investigate this linearized
tangent cone L(ẑ) in the following lemma.

Lemma 4.1 Let ẑ be a local minimizer of the MPEC (30) and consider the locally equiv-
alent program (35). Then the linearized cone may be expressed as follows:

L(ẑ) = {d ∈ Rn |∇gi(ẑ)T d ≤ 0 ∀i ∈ Ig,

∇hi(ẑ)T d = 0 ∀i = 1, . . . , p,

∇Gi(ẑ)T d = 0 ∀i ∈ α,

∇Hi(ẑ)T d = 0 ∀i ∈ γ,

∇Gi(ẑ)T d ≥ 0 ∀i ∈ β,

∇Hi(ẑ)T d ≥ 0 ∀i ∈ β,

(∇Gi(ẑ)T d) · (∇Hi(ẑ)T d) = 0, ∀i ∈ β }.

(37)

Proof. In order to prove this result, we need to determine the contingent cones of the
components Λβ1,β2 at the point F (ẑ) (it is important to note here that the index sets α, β,
and γ depend on the point ẑ at which we evaluate F , and that some components of F (ẑ)
are in the interior of Λβ1,β2):

TΛβ1,β2
(F (ẑ)) = (∆Ig ,Ig

)◦ × 0p × 0|α| × R|α| ×∆β1,β2 ×∆β2,β1 × R|γ| × 0|γ|, (38)
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where Ig := {i | gi(ẑ) = 0} is the set of active inequality constraints and Ig := {1, . . . ,m}\Ig

is its complement. Note that

(∆Ig ,Ig
)◦j =

{
R : j /∈ Ig

R− : j ∈ Ig.

Since each Λβ1,β2 is the Cartesian product of (normally) regular sets, we can apply [18,
Proposition 6.41] in addition to the relation (1) to obtain an explicit representation of
TΛ(F (ẑ)) and with it the representation (37) of the linearized cone L(ẑ). �

In the MPEC literature, the linearized cone L(ẑ) is commonly called the MPEC-
linearized tangent cone and is denoted by T lin

MPEC(ẑ) (see, e.g., [5, 3, 2, 25]). In the following,
we will use this terminology to avoid confusion with the linearized tangent cone T lin(ẑ),
which we acquire if the reformulate the program (30) in the fashion to be described in the
following.

By setting
F (z) :=

(
g(z), h(z), G(z), H(z), G(z)T H(z)

)
and

Λ := Rm
− × 0p × Rl

+ × Rl
+ × 01,

we obviously obtain a trivial equivalent formulation of (30) in the form of (18). It is then
easily verified that the corresponding linearized cone L(ẑ) can be expressed as

T lin(ẑ) = {d ∈ Rn | ∇gi(ẑ)T d ≤ 0 ∀i ∈ Ig,

∇hi(ẑ)T d = 0 ∀i = 1, . . . , p,

∇Gi(ẑ)T d = 0 ∀i ∈ α,

∇Hi(ẑ)T d = 0 ∀i ∈ γ,

∇Gi(ẑ)T d ≥ 0 ∀i ∈ β,

∇Hi(ẑ)T d ≥ 0 ∀i ∈ β }.

(39)

See [5] for more discussion on the linearized tangent cone T lin(ẑ).
We can now use the different formulations of the MPEC (30) with their different lin-

earized cones to define variants of the GACQ and GGCQ constraint qualifications. We
call the condition

TF−1(Λ)(ẑ) = T lin
MPEC(ẑ) (40)

MPEC-ACQ, as has been adapted by the MPEC community, while we call

TF−1(Λ)(ẑ) = T lin(ẑ) (41)

simply Abadie CQ (or ACQ), because it is obviously the classical definition of Abadie CQ.
Similarly, we call the condition

TF−1(Λ)(ẑ)◦ = T lin
MPEC(ẑ)◦ (42)
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MPEC-GCQ, and call
TF−1(Λ)(ẑ)◦ = T lin(ẑ)◦ (43)

Guignard CQ, it also being the classical definition of Guignard CQ.
We will now proceed to apply Theorem 3.1 to an MPEC of the form (30). In or-

der to do this, we exploit the following proposition which we will use to reformulate the
complementarity constraints in (30).

Proposition 4.2 Let the set

C := {(a, b) ∈ R2|β| | a ≥ 0, b ≥ 0, aT b = 0} (44)

be given. Then the Fréchet and limiting normal cones at the origin are given by

N̂C(0) = R2|β|
− , (45)

NC(0) = R2|β|
− ∪ C, (46)

respectively.

Proof. We can map C isomorphically to the Cartesian product

C̃ := C1 × . . .× C|β|

with
Ci := {(ai, bi) ∈ R2 | ai ≥ 0, bi ≥ 0, aibi = 0}

by simply rearranging the components of C in an appropriate fashion.
It follows directly from (2) that

N̂Ci
(0) = R2

−. (47)

Since the sets Ci are obviously closed, we can apply [18, Proposition 6.41] to obtain

N̂C̃(0) = N̂C1(0)× . . .× N̂C|β|(0).

Together with (47), this yields that

N̂C̃(0) = R2|β|
− .

Applying the appropriate inverse mapping to acquire N̂C(0) from N̂C̃(0), we obtain (45).
The proof for the limiting normal cone NC(0) is identical to the method used above,

except that
NCi

(0) = R2
− ∪ Ci,

as can be gleaned from the proof of [13, Lemma 2.2]. Using this, we immediately acquire
(46) employing the same arguments as above. �
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We are now able to state the conditions for M-stationarity for MPECs in a much more
tangible fashion than in the general case (see (5)).

Theorem 4.3 Let ẑ be a local minimizer of the MPEC (30) at which MPEC-GCQ holds.
Then there exist KKT vectors λg, λh, λG, and λH such that

0 = ∇f(ẑ) +
m∑

i=1

λg
i∇gi(ẑ) +

p∑
i=1

λh
i∇hi(ẑ)−

l∑
i=1

[
λG

i ∇Gi(ẑ) + λH
i ∇Hi(ẑ)

]
,

λG
α free,

λH
γ free,

(λG
i > 0 ∧ λH

i > 0) ∨ λG
i λH

i = 0 ∀i ∈ β
λG

γ = 0,

λH
α = 0,

g(ẑ) ≤ 0, λg ≥ 0, g(ẑ)T λg = 0.

(48)

In this case we call ẑ M-stationary.

Proof. We apply Theorem 3.1 to an MPEC using the formulation (35), (36).
All that remains is to show that M-stationarity takes on the form (48). To this end,

we need to determine NΛ(F (ẑ)), see (5). Referring to (33) and (36), it is easy to see that
Λ can be written as

Λ = Rm
− × 0p × 0|α| × R|α|

+ × C × R|γ|
+ × 0|γ| (49)

where C is defined in (44).
Observing that Λ is the Cartesian product of closed sets (see (49)), we can apply [18,

Proposition 6.41] to obtain

NΛ(F (ẑ)) = NRm
−×0p×0|α|×R|α|

+ ×C×R|γ|
+ ×0|γ|

(F (ẑ))

= NRm
−
(g(ẑ))×N0p(h(ẑ))×N0|α|(Gα(ẑ))×NR|α|

+
(Hα(ẑ))×

NC((Gβ(ẑ), Hβ(ẑ)))×NR|γ|
+

(Gγ(ẑ))×N0|γ|(Hγ(ẑ)). (50)

Note that the limiting normal cones to orthants and isolated points are equal to the stan-
dard convex normal cone since these sets are convex (see [18, Theorem 6.9]). Additionally,

we apply Proposition 4.2 to get NC((Gβ(ẑ), Hβ(ẑ))) = NC((0, 0)) = R2|β|
− ∪ C. Substititut-

ing the resulting limiting normal cone NΛ(F (ẑ)) into (5), we obtain the conditions (48) for
M-stationarity. Observe the signs used in the Lagrangian in (48). �

Note that even though results similar to Theorem 4.3 have appeared before (cf. [25, 4])
these results assume that the stronger MPEC-ACQ holds at the local minimizer ẑ. As
demonstrated by Example 2.7, MPEC-GCQ is indeed a weaker assumption than MPEC-
ACQ, making Theorem 4.3 a stronger result. Note that Example 2.7 is an MPEC of type
(35), (36).
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We now turn our focus to strong stationarity. In the previous section, the intersection
property (I) was needed in addition to GGCQ in order for strong stationarity to be a
necessary first order condition. We now state which form (I) assumes in an MPEC setting.

To this end, we first introduce an auxiliary program associated with the MPEC (30) at
an arbitrary feasible point ẑ: Given a partition (β1, β2) ∈ P(β), let NLP∗(β1, β2) denote
the following nonlinear program:

minimize f(z)
subject to g(z) ≤ 0, h(z) = 0,

Gα∪β1(z) = 0, Hα∪β1(z) ≥ 0,
Gγ∪β2(z) ≥ 0, Hγ∪β2(z) = 0.

(51)

Note that the program NLP∗(β1, β2) depends on the vector ẑ.
Furthermore, the linearized tangent cone of the NLP∗(β1, β2) (51) is given by

T lin
NLP∗(β1,β2)(ẑ) = {d ∈ Rn |∇gi(ẑ)T d ≤ 0, ∀i ∈ Ig,

∇hi(ẑ)T d = 0, ∀i = 1, . . . , p,

∇Gi(ẑ)T d = 0, ∀i ∈ α ∪ β1,

∇Hi(ẑ)T d = 0, ∀i ∈ γ ∪ β2,

∇Gi(ẑ)T d ≥ 0, ∀i ∈ β2,

∇Hi(ẑ)T d ≥ 0, ∀i ∈ β1 }.

(52)

It is easily verified that

T lin
MPEC(ẑ) =

⋃
T lin

NLP∗(β1,β2)(ẑ)
(β1,β2)∈P(β)

(53)

(compare (37) with (52)).
We are now able to characterize the intersection property (I) for MPECs.

Lemma 4.4 The intersection property (I) amounts to

T lin
MPEC(ẑ)◦ = T lin(ẑ)◦ (IMPEC)

for programs of type (30).

Proof. First, let us consider the Fréchet normal cone to the set Λβ1,β2 at the point F (ẑ).
This is simply the polar of TΛβ1,β2

(F (ẑ)) (see (38)):

N̂Λβ1,β2
(F (ẑ)) = ∆Ig ,Ig

× Rp × R|α| × 0|α| × (∆β1,β2)
◦ × (∆β2,β1)

◦ × 0|γ| × R|γ|. (54)

We now insert this expression on the left hand side of (I) (note that all (β1, β2) ∈ P(β) are
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active): ⋂
(∇F (ẑ))T N̂Λβ1,β2

(F (ẑ))
(β1,β2)∈P(β)

=
⋂
{
∑
i∈Ig

µg
i∇gi(ẑ) +

p∑
i=1

µh
i∇hi(ẑ) +

∑
i∈α∪β

µG
i ∇Gi(ẑ) +

∑
i∈γ∪β

µH
i ∇Hi(ẑ) |

(β1,β2)∈P(β)
µg
Ig
≥ 0, µG

β2
≤ 0, µH

β1
≤ 0}

=
⋂

T lin
NLP∗(β1,β2)(ẑ)◦

(β1,β2)∈P(β)

= T lin
MPEC(ẑ)◦, (55)

where the penultimate equality is acquired by applying Lemma 3.4 to (52), and the final
equality is verified by taking the polar of (53) and applying [1, Theorem 3.1.9].

We now turn our attention to the right hand side of (I), again inserting (54):

(∇F (ẑ))T
⋂

N̂Λβ1,β2
(F (ẑ))

(β1,β2)∈P(β)

= (∇F (ẑ))T
{
µ | µ ∈

⋂ (
∆Ig ,Ig

× Rp × R|α| × 0|α| ×∆◦
β1,β2

×∆◦
β2,β1

× 0|γ| × R|γ|)}
(β1,β2)∈P(β)

= (∇F (ẑ))T
{
µ | µ ∈ ∆Ig ,Ig

× Rp × R|α| × 0|α| × R|β|
− × R|β|

− × 0|γ| × R|γ|}
= {

∑
i∈Ig

µg
i∇gi(ẑ) +

p∑
i=1

µh
i∇hi(ẑ) +

∑
i∈α∪β

µG
i ∇Gi(ẑ) +

∑
i∈γ∪β

µH
i ∇Hi(ẑ) |

µg
Ig
≥ 0, µG

β ≤ 0, µH
β ≤ 0}

= T lin(ẑ)◦. (56)

Again, the last equality is verified by applying Lemma 3.4 to (39).
Finally, equations (55) and (56) represent the left and right hand sides of (I), respec-

tively, showing that (I) does indeed reduce to (IMPEC) in an MPEC setting. �

We now use this result to apply Theorem 3.5 to an MPEC.

Theorem 4.5 Let ẑ be a local minimizer of the MPEC (30) at which MPEC-GCQ as well
as (IMPEC) holds. Then there exist KKT vectors λg, λh, λG, and λH such that

0 = ∇f(ẑ) +
m∑

i=1

λg
i∇gi(ẑ) +

p∑
i=1

λh
i∇hi(ẑ)−

l∑
i=1

[
λG

i ∇Gi(ẑ) + λH
i ∇Hi(ẑ)

]
,

λG
α free,

λH
γ free,

λG
β ≥ 0,

λH
β ≥ 0,

λG
γ = 0,

λH
α = 0,

g(ẑ) ≤ 0, λg ≥ 0, g(ẑ)T λg = 0.

(57)

In this case we call ẑ strongly stationary.
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Proof. We apply Theorem 3.5 using the formulation (IMPEC) of the intersection property
(I). We then proceed identical to the proof of Theorem 4.3, substituting the Fréchet normal
cone N̂ for the limiting normal cone N where appropriate.

The only difference is that we obtain N̂C((Gβ(ẑ), Hβ(ẑ))) = N̂C(0, 0) = R2|β|
− when we

apply Proposition 4.2.
Substituting the resulting Fréchet normal N̂Λ(F (ẑ)) into (6) yields the conditions (57)

for strong stationarity, completing the proof. �

The result of Theorem 4.5 may be acquired using a different approach, which we will
investigate with the aid of the following lemma, the proof of which follows immediately
from the definition of Guignard CQ, MPEC-GCQ and the intersection property (IMPEC).

Lemma 4.6 Let ẑ be a feasible point of the MPEC (30). Then standard Guignard CQ
holds in ẑ if and only if MPEC-GCQ and (IMPEC) hold in ẑ.

Consider the program (13) and the corresponding set Λ. Clearly, NΛ(u) = N̂Λ(u) for
any u, and so the two cases from Definition 2.1 coincide. We then speak only about the
existence of a KKT vector. It is well-known that in such a case the existence of a KKT
vector is a necessary first order optimality condition under standard Guignard CQ (see,
e.g., [1]). Furthermore, it can be easily shown that the concept of strong stationarity is
equivalent to the existence of a KKT vector for an MPEC if we conside it as a nonlinear
program of the form (13) (see, e.g., [2]).

Together with this result, the statement of Theorem 4.5 follows immediately from
Lemma 4.6.

Conversely, consider the following theorem, originally due to [6].

Theorem 4.7 Let a feasible point ẑ of the MPEC (30) be given. Further suppose that
for every continuously differentiable objective function f which assumes a local minimizer
at ẑ under the constraints of the MPEC (30), there exists a KKT vector λ such that the
conditions (57) for strong stationarity hold. Then Guignard CQ holds at ẑ.

Proof. Recalling that the classical KKT conditions at ẑ of the MPEC (30) are equivalent
ẑ being strongly stationary (see, e.g., [2]), this result immediately follows from [1, Theorem
6.3.2]. �

Together with the preceeding discussion, it follows that Theorem 4.7 and Lemma 4.6
together yield that strong stationarity is, in a sense, equivalent to the assumption pair
MPEC-GCQ and (IMPEC).

This shows (IMPEC) to be the minimum we need to assume in addition to MPEC-GCQ
in order to have strong stationarity be a necessary first order condition. Unfortunately,
(IMPEC) is not easy to verify. We therefore dedicate the remainder of this section to finding
sufficient conditions for (IMPEC).

The spadework for this has been done by Pang and Fukushima [15], albeit with a
slightly different purpose in mind. We will therefore extensively fall back on their results
in the following discussion.

To this end, we must first introduce the concept of nonsingularity, as used in [15, 22].
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Definition 4.8 Given the linear system

Ax ≤ b, Cx = d, (58)

an inequality aix ≤ bi is said to be nonsingular if there exists a feasible solution of the
system (58) which satisfies this inequality strictly. Here ai denotes the i-th row of the
matrix A.

We will now apply nonsingularity to the linearized tangent cone T lin(ẑ) (see (39)). To this
end we introduce two new sets: Let βG denote the subset of β consisting of all indices
i ∈ β such that the inequality ∇Gi(ẑ)T d ≥ 0 is nonsingular in the system defining T lin(ẑ).
Similarly, we denote by βH the nonsingular set pertaining to the inequalities∇Hi(ẑ)T d ≥ 0.
Note that βG and βH depend on ẑ.

Using the sets βG and βH renders the following representation of T lin(ẑ) (cf. (39)):

T lin(ẑ) = {d ∈ Rn | ∇gi(ẑ)T d ≤ 0 ∀i ∈ Ig,

∇hi(ẑ)T d = 0 ∀i = 1, . . . , p,

∇Gi(ẑ)T d = 0 ∀i ∈ α ∪ β\βG,

∇Hi(ẑ)T d = 0 ∀i ∈ γ ∪ β\βH ,

∇Gi(ẑ)T d ≥ 0 ∀i ∈ βG,

∇Hi(ẑ)T d ≥ 0 ∀i ∈ βH }.

(59)

We will now also use the sets βG and βH to define the following assumption (A). Note that
(A) is equivalent to [15, (A2)] by Lemma 1 of the same reference.

(A) Given the feasible point ẑ, there exists a partition (βGH
1 , βGH

2 ) ∈ P(βG ∩ βH) such
that ∑

i∈Ig

λg
i∇gi(ẑ) +

p∑
i=1

λh
i∇hi(ẑ)−

∑
i∈α∪β

λG
i ∇Gi(ẑ)−

∑
i∈γ∪β

λH
i ∇Hi(ẑ) = 0

=⇒

{
λG

i = 0, ∀i ∈ βGH
1

λH
i = 0, ∀i ∈ βGH

2 .

We are now able to prove that assumption (A) implies the intersection property (IMPEC).

Lemma 4.9 If a feasible point ẑ of the MPEC (30) satisfies assumption (A), it also sat-
isfies the intersection property (IMPEC).

Proof. By looking at the representation (39) and (37) of T lin(ẑ) and T lin
MPEC(ẑ) respectively,

it follows immediately that
T lin

MPEC(ẑ) ⊆ T lin(ẑ),
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and hence
T lin(ẑ)◦ ⊆ T lin

MPEC(ẑ)◦.

Therefore, all that remains to be shown is that

T lin
MPEC(ẑ)◦ ⊆ T lin(ẑ)◦. (60)

Also recall that
T lin

MPEC(ẑ)◦ =
⋂

T lin
NLP∗(β1,β2)(ẑ)◦

(β1,β2)∈P(β)

(61)

(see (53)). Now to prove (60), we take an arbitrary v ∈ T lin
MPEC(ẑ)◦. By virtue of (61), we

have
v ∈ T lin

NLP∗(β1,β2)(ẑ)◦ ∀(β1, β2) ∈ P(β). (62)

Consider the specific partition of β given by

β̂1 := βH\βGH
2 , β̂2 := β\β̂1. (63)

Here (βGH
1 , βGH

2 ) ∈ P(βG ∩ βH) is a partition of βG ∩ βH that satisfies assumption (A).
Note that βG\βGH

1 ⊆ β̂2.
Since v ∈ T lin

NLP∗(β̂1,β̂2)
(ẑ)◦ as well as v ∈ T lin

NLP∗(β̂2,β̂1)
(ẑ)◦, we can apply Lemma 3.4

to both of these cones, yielding the existence of vectors u = (ug, uh, uG, uH) and w =
(wg, wh, wG, wH) with

ug
i ≥ 0 ∀i ∈ Ig, wg

i ≥ 0 ∀i ∈ Ig,

uG
i ≥ 0 ∀i ∈ β̂2, wG

i ≥ 0 ∀i ∈ β̂1,

uH
i ≥ 0 ∀i ∈ β̂1, wH

i ≥ 0 ∀i ∈ β̂2

such that

v = −
∑
i∈Ig

ug
i∇gi(ẑ)−

p∑
i=1

uh
i∇hi(ẑ) +

∑
i∈α∪β

uG
i ∇Gi(ẑ) +

∑
i∈γ∪β

uH
i ∇Hi(ẑ)

= −
∑
i∈Ig

wg
i∇gi(ẑ)−

p∑
i=1

wh
i ∇hi(ẑ) +

∑
i∈α∪β

wG
i ∇Gi(ẑ) +

∑
i∈γ∪β

wH
i ∇Hi(ẑ).

(64)

The choice of the sets β̂1 and β̂2 guarantee, in particular, that

uG
i ≥ 0 ∀i ∈ βG\βGH

1 , wG
i ≥ 0 ∀i ∈ βGH

1 ,

uH
i ≥ 0 ∀i ∈ βH\βGH

2 , wH
i ≥ 0 ∀i ∈ βGH

2 .
(65)

Taking the difference of the two representations of v in (64) and applying assumption (A)
yields that

uG
i − wG

i = 0 ∀i ∈ βGH
1 and

uH
i − wH

i = 0 ∀i ∈ βGH
2 .
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Together with (65), this yields that

uG
i ≥ 0 ∀i ∈ βG and uH

i ≥ 0 ∀i ∈ βH .

Finally, applying Lemma 3.4 to the representation (59) of T lin(ẑ) yields that v ∈ T lin(ẑ)◦.
This concludes the proof. �

The purpose of introducing assumption (A) was to offer a more tangible and more easily
verifiable property than the intersection property (IMPEC). Determining the sets βG and
βH requires checking whether an inequality is nonsingular in the sense of Definition 4.8.
To avoid having to do this, we introduce the following concept, stronger than assumption
(A).

Definition 4.10 Let a feasible point ẑ of the MPEC (30) be given. The partial MPEC-
LICQ is said to hold at ẑ if the implication

∑
i∈Ig

λg
i∇gi(ẑ) +

p∑
i=1

λh
i∇hi(ẑ)−

∑
i∈α∪β

λG
i ∇Gi(ẑ)−

∑
i∈γ∪β

λH
i ∇Hi(ẑ) = 0

=⇒

{
λG

β = 0

λH
β = 0

holds.

Note that partial MPEC-LICQ obviously implies assumption (A) since βGH
1 ⊆ β and

βGH
2 ⊆ β. This, together with Lemmas 4.6 and 4.9, and the discussion following Lemma

4.6 gives the following corollary.

Corollary 4.11 Let ẑ be a local minimizer of the MPEC (30) satisfying MPEC-GCQ.
Furthermore, let ẑ satisfy any one of the following conditions

(a) intersection property (IMPEC);

(b) assumption (A);

(c) partial MPEC-LICQ.

Then there exist a KKT vector λ = (λg, λh, λG, λH) satisfying the relations (57), i.e. ẑ is
strongly stationary.

A few notes on Corollary 4.11 are in order. If we replace MPEC-GCQ with the stronger
MPEC-ACQ, statements (b) and (c) have already been shown in [2]. If MPEC-GCQ
is replaced by the still stronger assumption that all the associated nonlinear programs
NLP∗(β1, β2) satisfy the standard Abadie CQ, statement (b) has been shown in [15].
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5 Final Remarks

In this paper, we have introduced new constraint qualifications and new stationarity con-
cepts for a class of difficult optimization problems with disjunctive constraints. In partic-
ular, we have shown that specializations of these concepts result in new conditions for a
local minimizer of an MPEC to be an M-stationary point and, under additional conditions,
to be a strongly stationary point. We believe, however, that our general results can also
be specialized to other optimization problems, and that they would give new insights into
these problems as well. We leave this as a future research topic.
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