
ON NEWTON’S METHOD FOR THE
FERMAT-WEBER LOCATION PROBLEM

Simone Görner and Christian Kanzow

University of Würzburg
Institute of Mathematics
Emil-Fischer-Str. 30
97074 Würzburg
Germany
SimoneGoerner@gmx.de
kanzow@mathematik.uni-wuerzburg.de

December 8, 2015

Abstract

This paper considers the Fermat-Weber location problem. It is shown that, af-
ter a suitable initialization, the standard Newton method can be applied to the
Fermat-Weber problem and is globally and locally quadratically convergent.
A numerical comparison with the popular Weiszfeld algorithm shows that
Newton’s method is significantly more efficient than the Weiszfeld scheme.

Key Words: Fermat-Weber location problem, Weiszfeld method, Newton method,
global convergence, local quadratic convergence

1



1 Introduction

Consider the nonsmooth optimization problem

min
x

f(x) :=
m∑
i=1

ωi‖x− ai‖ (1)

that we call the Fermat-Weber problem, though it comes with many different names
in the literature, see the discussion in [5]. Historically, the Fermat-Weber problem
goes back to the French mathematician Pierre de Fermat for the special case n =
2,m = 3, ωi = 1 (i = 1, 2, 3), whereas the more general formulation (1) is named
after the German economist Alfred Weber. The vectors a1, . . . , am ∈ Rn denote
pairwise disjoint points, sometimes called anchor points, the scalars ωi > 0 are some
positive weights, and ‖ · ‖ stands for the Euclidean vector norm. Throughout this
note, we assume without loss of generality that m ≥ 3.

The Fermat-Weber problem is one of the most famous problems in location the-
ory [4, 11, 14], and it has been the subject of intense research. Here we are interested
in the numerical solution of this problem. A recent survey on some solution meth-
ods can be found in [2], and the interested reader is referred to the extensive list of
references in that paper for more details.

The most prominent method for the solution of (1) is Weiszfeld’s algorithm.
This is a fixed-point iteration based on a suitable fixed-point reformulation of the
optimality condition ∇f(x) = 0. Formally, this gradient does not exist everywhere,
and this is indeed the reason why Weiszfeld’s algorithm may not converge. But these
problems can be fixed in different ways, so one gets convergent variants of Weiszfeld’s
algorithm, see, again, the survey paper [2]. Nevertheless, the pure Weiszfeld method
still seems to be one of the most popular methods for the solution of the Fermat-
Weber problem.

A disadvantage of Weiszfeld’s method and its convergent modifications is the
poor rate of convergence. This slow convergence has to be expected, since this
method may be interpreted as a gradient method, combined with a special choice
of a stepsize [2]. Though f is nonsmooth, this observation allows to use ideas from
accelerated gradient-type methods, originally proposed by Nesterov [13], in order to
improve the speed of convergence. Nevertheless, the corresponding methods are still
gradient-type methods with a (sub-) linear rate of convergence.

To overcome this deficiency, some authors suggest to incorporate Newton-type
steps or to apply modified Newton iterations. In particular, Katz [9] investigates
the local acceleration of Weiszfeld’s method by Newton steps. Jiang et al. [8] switch
between Weiszfeld and Newton iterations based on a certain criterion. Levin and
Ben-Israel [10] use the Newton bracketing method for solving the Fermat-Weber
problem which is based on computing suitable lower and upper bounds; the idea
mainly works for one-dimensional problems, whereas its generalization for higher
dimensions is essentially a gradient-type method. The two related papers [16] by
Overton and [3] by Calamain and Conn present methods with a quadratic rate of
convergence by using an active set strategy and corresponding projected Newton
steps in order to circumvent problems arising from the nondifferentiability of the
objective function.

2



All these methods can use an arbitrary starting point. Here we propose a simple
method which first constructs a suitable starting point in an initialization phase and
then applies the standard Newton method to the solution of (1). It turns out that
the method converges globally and locally quadratically. Many of the corresponding
ingredients that are used in our approach are known from the literature, but it seems
that the overall method has not yet been applied to the Fermat-Weber problem.

In principle, Newton’s method is more expensive than gradient-type methods
like the Weiszfeld algorithm. On the other hand, typical applications of the Fermat-
Weber problem use n = 2 or n = 3, hence the solutions of the Newton equations at
each step of our Newton iteration are very cheap. Indeed, a numerical comparison of
our method with the Weiszfeld algorithm shows that our method is also significantly
faster in terms of CPU-times than Weiszfeld’s algorithm.

The organization is as follows: We first recall some known facts in Section 2.
The algorithm together with a global and local convergence theory are presented in
Section 3. Some numerical results are given in Section 4. We conclude with some
final remarks in Section 5.

Notation: The symbol ‖x‖ always denotes the Euclidean norm of a vector x.
Since the mapping f from (1) is convex, it is directionally differentiable everywhere,
and we denote its (one-sided) directional derivative at a point x ∈ Rn in the direction

d ∈ Rn by f ′(x; d), i.e., f ′(x; d) := limt→0+
f(x+td)−f(x)

t
.

2 Preliminaries

We first recall some standard properties of the Fermat-Weber problem.

Proposition 2.1. The following statements hold:

(a) The function f from (1) is convex (though not differentiable everywhere).

(b) The Fermat-Weber problem (1) always has a solution.

(c) The solution of (1) is unique if the points a1, . . . , am are not collinear (i.e., if
not all of them are on the same line).

Statement (a) is clear, statement (b) uses the continuity of f together with the
obvious fact that the level sets

L(x0) := {x ∈ Rn | f(x) ≤ f(x0)}

are nonempty and compact for any given x0 ∈ Rn. The last statement (c) holds
since one can verify that f is strictly convex under the given assumption.

There is also a simple and constructive criterion for one of the anchor points ai
to be a minimum. The corresponding result is summarized in the following lemma
which will play an important role also for the initialization phase of our Newton
method, see, e.g., [2].

Proposition 2.2. Consider the Fermat-Weber problem (1) and determine an index

p ∈ {1, . . . ,m} such that f(ap) = min
i=1,...,m

f(ai).

3



Then ap is a solution of (1) if and only if∥∥∥∥ m∑
i=1,i 6=p

ωi
ap − ai
‖ap − ai‖

∥∥∥∥ ≤ ωp

holds.

The previous result follows from the fact that a solution of a (possibly nondiffer-
entiable) convex function can be characterized by zero being an element of the
corresponding subdifferential.

Suppose now that ap is not a minimum of f . Then there exists a descent di-
rection of f at ap. One possible descent direction can be computed by solving the
optimization problem

min
d

f ′(ap; d) s.t. ‖d‖ = 1. (2)

Its solution is known analytically and given in the following result, cf. [2].

Proposition 2.3. The vector

dp := −Rp/‖Rp‖ with Rp :=
m∑

i=1,i 6=p

ωi
ap − ai
‖ap − ai‖

is a solution of (2).

Since ap is not a minimum of f , it holds that f ′(ap; dp) < 0. Hence, from the
definition of the (one-sided) directional derivative, it follows that f(ap+tdp) < f(ap)
holds for all t > 0 sufficiently small. A suitable stepsize satisfying this condition can
be computed by simple backtracking. On the other hand, there also exist explicit
formulas for appropriate stepsizes. For example, we have f(ap + tpdp) < f(ap) for
the particular stepsize

tp :=
(
‖Rp‖ − ωp

)
/L(ap) with L(ap) :=

m∑
i=1,i 6=p

ωi

‖ap − ai‖
, (3)

cf. [2, 18] for more details.

3 Algorithm and Convergence

Based on the results recalled in the previous section, we follow a very simple strategy
in order to solve the Fermat-Weber problem: We first determine an anchor point
ap where the minimum min

{
f(a1), . . . , f(am)

}
is attained. Note that the index p

is not necessarily unique. We then check whether ap is already a minimum of f by
using the constructive criterion from Proposition 2.2. If this criterion is satisfied,
we are done. Otherwise we compute a descent direction dp based on Proposition 2.3
and a suitable step size tp > 0 (like the one from (3)) such that f(ap + tpdp) < f(ap)
holds. Then we begin Newton’s method using the starting point x0 := ap + tpdp.

To this end, note that f is twice continuously differentiable on an open set
containing L(x0). Hence, this allows us to apply Newton’s method to the mapping
f with the above starting point x0. The method is globalized using an Armijo line
search, in particular, we therefore have the descent property f(xk+1) ≤ f(xk) so
that all iterates xk belong to L(x0).

4



Algorithm 3.1. (Newton-type Method for Fermat-Weber Problem)

(S.0) Determine p ∈ {1, . . . ,m} such that f(ap) = min
{
f(a1), . . . , f(am)

}
. If ap

satisfies the condition from Proposition 2.2 for a minimum: STOP. Otherwise
compute dp and tp from Proposition 2.3 and (3), respectively, set x0 := ap +
tpdp, k := 0, and choose parameters ε ≥ 0, ρ ∈ (0, 1), σ ∈ (0, 1/2).

(S.1) If ‖∇f(xk)‖ ≤ ε: STOP.

(S.2) Compute the Newton direction dk by solving ∇2f(xk)d = −∇f(xk).

(S.3) Compute a stepsize tk := max{ρ` | ` = 0, 1, 2, . . .
}

such that

f(xk + tkd
k) ≤ f(xk) + σtk∇f(xk)Tdk.

(S.4) Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

Before we start our convergence analysis, let us recall that f is known to be strictly
convex on the level set L(x0), where x0 denotes the starting point from Algo-
rithm 3.1. But this alone does not guarantee global convergence of Newton’s method,
since a couterexample from [7] shows that Newton’s method may not converge for
strictly convex functions even in combination with the stronger Wolfe line search
rule.

On the other hand, Newton’s method combined with the Wolfe line search rule is
known to be globally convergent if the search directions satisfy an angle condition,
see, e.g. [15, Section 3.2] or [17, Theorem 3.2.5]. In fact, it is not the Wolfe line
search rule that makes Newton’s method globally convergent, but the fact that one
uses an efficient line search in the sense defined in [19]. In general, the Armijo rule
used in our Algorithm 3.1 is not efficient, but much simpler to implement than the
Wolfe conditions.

Having these observations in mind, we start the convergence analysis by proving
that the Hessians of f are positive definite on the level set L(x0). Note that this
is a stronger property than the strict convexity of f on this set. In particular, it
guarantees that steps (S.2) and (S.3) in Algorithm 3.1 are well-defined.

Proposition 3.2. For any x ∈ L(x0), the Hessian ∇2f(x) is positive definite.

Proof. First recall that f is twice continuously differentiable on an open set con-
taining the level set L(x0). Since f is convex, this implies that the Hessian matrices
∇2f(x) are positive semidefinite for all x ∈ L(x0). In order to show positive defi-
niteness, take an arbitrary x ∈ L(x0) and note that the pure existence of this vector
automatically implies that the points a1, . . . , am are not collinear. Furthermore, by
an elementary calculation, we get the representation

∇2f(x) =
m∑
i=1

ωi

‖x− ai‖3
(
‖x− ai‖2I − (x− ai)(x− ai)T

)
.

5



Using the Cauchy-Schwartz inequality, this implies

dT∇2f(x)d =
m∑
i=1

ωi

‖x− ai‖3
(
‖x− ai‖2‖d‖2 − (dT (x− ai))2

)
≥

m∑
i=1

ωi

‖x− ai‖3
(
‖x− ai‖2‖d‖2 − ‖d‖2‖x− ai‖2

)
= 0

for all d 6= 0, and equality can hold only if all vectors d and x−ai (i = 1, . . . ,m) are
linearly dependent. But this would imply that the vectors a1, . . . , am are collinear,
and this contradiction completes the proof.

As noted in [12], the globalized Newton method based on the Wolfe conditions may
still not converge to a stationary point even if the Hessian matrices ∇2f(xk) are
positive definite at all iterates xk. In our setting, however, the situation is different:
Since the level set L(x0) is compact and the minimal and maximal eigenvalues of
the matrices ∇2f(x) depend continuously on x ∈ L(x0), we immediately obtain
the following consequence of Proposition 3.2 which essentially states that f is a
uniformly convex function on the compact level set L(x0).

Corollary 3.3. There exist constants β ≥ α > 0 such that

α‖d‖2 ≤ dT∇2f(xk)d ≤ β‖d‖2

for all d ∈ Rn and all x ∈ L(x0).

Note that Algorithm 3.1 uses an Armijo-line search in order to globalize the local
Newton method. In general, the Armijo-rule is not an efficient line search in the
sense of [19]. This is in contrast to many other, but more complicated line search
rules. Our next results states, however, that in our particular context, the Armijo
rule is an efficient line search (without giving an explicit definition of an efficient
line search here).

Lemma 3.4. There exists a constant θ > 0 such that

f(xk + tkd
k) ≤ f(xk)− θ

(
∇f(xk)Tdk

‖dk‖2

)2

∀k ∈ N.

Proof. Recall that dk = −∇2f(xk)−1∇f(xk), hence ∇2f(xk)dk = −∇f(xk) holds
for all k ∈ N. Using Corollary 3.3, this implies

−∇f(xk)Tdk

‖dk‖2
=

(dk)T∇2f(xk)dk

‖dk‖2
≤ β ∀k ∈ N. (4)

Now, for the moment, consider a fixed iteration index k ∈ N. Let ϕk(t) := f(xk +
tdk). Since f is continuous and bounded from below, there exists a smallest t̂k > 0
such that

ϕ′k(t̂k) = σϕ′k(0).

6



Since ∇f is Lipschitz-continuous on L(x0) and xk + tdk ∈ L(x0) for all 0 < t ≤ t̂k,
there exists a constant L > 0 satisfying

σϕ′k(0) = ϕ′k(t̂k) = ϕ′k(0) +
(
ϕ′k(t̂k)− ϕ′k(0)

)
≤ ϕ′k(0) + t̂kL‖dk‖2.

This implies

t̂k ≥ −
(1− σ)ϕ′k(0)

L‖dk‖2
(5)

(recall that ϕ′k(0) = ∇f(xk)Tdk < 0). We now distinguish two cases.

Case 1: tk = 1 in the Armijo rule. Then (4) implies

tk = 1 ≥ − 1

β

∇f(xk)Tdk

‖dk‖2

and, therefore,

f(xk + tkd
k) = ϕk(tk) ≤ ϕk(0) + σtkϕ

′
k(0) ≤ f(xk)− σ

β

(
∇f(xk)Tdk

‖dk‖2

)2

.

Note that the constant σ/β is independent of k.

Case 2: tk < 1 in the Armijo rule. Then tk/ρ violates the Armijo condition. On
the other hand, t̂k and all stepsizes 0 < t ≤ t̂k satisfy the Armijo condition, hence
it follows that

1

ρ
tk > t̂k.

Using (5), this implies

f(xk + tkd
k) = ϕk(tk)

≤ ϕk(0) + σtkϕ
′
k(0)

≤ ϕk(0) + σρt̂kϕ
′
k(0)

≤ f(xk)− σρ(1− σ)

L

(
∇f(xk)Tdk

‖dk‖

)2

,

where also the constant σρ(1− σ)/L is independent of the fixed k.
Therefore, for all k ∈ N, Cases 1 and 2 together imply that the statement holds

with θ := min
{
σ/β, σρ(1− σ)/L

}
.

Recall that, in contrast to the Wolfe conditions, Armijo’s line search rule is usually
not an efficient line search in the sense of [19], at least not under the assumptions
that guarantee the efficiency of the Wolfe conditions. However, our analysis shows
that the Armijo rule is efficient for strongly convex functions on bounded level sets.

Putting the previous results together, we finally obtain the following global and
local convergence result where, implicitly, we assume that Algorithm 3.1 does not
terminate after finitely many iterations in step (S.1).

Theorem 3.5. If Algorithm 3.1 does not terminate in step (S.0), then the sequence
{xk} generated by this method converges to the unique solution of the Fermat-Weber
problem. Furthermore, the local rate of convergence is quadratic.

7



Proof. First note that the Hessian ∇2f is locally Lipschitz on the level set L(x0).
Furthermore, Corollary 3.3 implies

− ∇f(xk)Tdk

‖∇f(xk)‖ ‖dk‖
≥ (dk)T∇2f(xk)dk

‖dk‖2‖∇2f(xk)‖
≥ α

β
> 0

for all k ∈ N, where we assumed that ‖∇2f(xk)‖ ≤ β holds. Hence the search
directions dk satisfy an angle condition, while the stepsizes tk are efficient in view
of Lemma 3.4. Together, using some standard results from [15], for example, this
yields that the entire sequence {xk} converges to the unique minimum x∗ of f . Since
the Hessian of f is positive definite at x∗ by Proposition 3.2, it also follows from
the twice continuous differentiability of f on the level set L(x0) that

(
f(xk + dk)−

f(xk)
)
/(∇f(xk)Tdk → 1/2. Since σ ∈ (0, 1/2), this implies that eventually the full

stepsize is accepted. Hence our method inherits the local convergence properties of
Newton’s method and is therefore locally quadratically convergent.

4 Numerical Results

Here we present some numerical results comparing the Weiszfeld algorithm with
Algorithm 3.1. The Weiszfeld iteration uses the formula

xk+1 := T (xk), where T (x) :=
1∑m

i=1
ωi

‖x−ai‖

m∑
i=1

ωiai
‖x− ai‖

,

and can alternatively be rewritten as a steepest descent method

xk+1 := xk − tk∇f(xk) with stepsize tk :=
1∑m

i=1
ωi

‖xk−ai‖
.

In order to avoid problems with nondifferentiable points, we use the same initial-
ization for Weiszfeld’s method as in step (S.0) of Algorithm 3.1. Recall that this
version of Weiszfeld’s method is well-defined and globally convergent to a solution,
cf. [1, 2].

We compare this method with Algorithm 3.1 using the parameters β = 0.5 and
ρ = 10−4. Since both methods calculate (explicitly or implicitly) the gradient of
f , we use the same termination criterion ‖∇f(xk)‖ ≤ ε for all examples. While
Newton’s method usually has no problems in achieving high accuracy, the Weiszfeld
iteration is not locally fast convergent, and we therefore use the moderate value
ε = 10−5 to stop the iterations.

The actual implementation of Algorithm 3.1 replaces the monotone Armijo rule
from step (S.3) by a nonmonotone version first suggested in [6]. This nonmonotone
Armijo rule does not affect the local rate of convergence. Moreover, since our level
sets L(x0) are compact, it follows from the global convergence theory in [6] that
Theorem 3.5 remains true also for the nonmonotone version of Algorithm 3.1.

In principle, the numerical behaviour of both Weiszfeld’s method for the Fermat-
Weber problem and Newton’s method for (strongly convex) optimization problems
are well-investigated. We therefore concentrate on a comparison of these two meth-
ods with a particular emphasis on the corresponding times that are required by both

8



methods. To this end, we use different values of n and m, and for each pair (n,m),
we generate 100 test problems using MATLAB’s rand command. The entries of all
anchor points ai were taken from the interval [0, 100], and the same is true for all
weigths ωi.

All test runs were done on a Lenovo ThinkPad with an Intel Core i7 processor.
In Table 1, we summarize the numerical results by presenting, for each pair (n,m),
the following information: total elapsed times required by Weiszfeld’s method and
Algorithm 3.1, respectively, based on MATLAB’s tic and toc commands, and the
average number of iterations needed by these two methods. Note that all elapsed
times are computed without the initialization phase from step (S.0), since this ini-
tialization is the same for both methods, so we only present the times for those parts
of the two methods where they are actually different.

In our computations, it happened only a very few times (for small values of
n and m) that an anchor point was already a solution. Furthermore, Newton’s
method solved all test problems, whereas Weiszfeld’s method had one failure for
(n,m) = (3, 2) since the iteration limit kmax = 1000 was reached. Of course, the
number of iterations required by Newton’s method is significantly less than the
corresponding number in Weiszfeld’s algorithm. Nevertheless, it is interesting to
note that, in almost all examples, Algorithm 3.1 only needs two or three iterations.
Furthermore, the nonmonotone Armijo rule allows to take full stepsizes tk = 1 in
essentially all test problems. This means that the nonmonotonicity also helps to
save some time because no additional function evaluations are required in the inner
loop to find a suitable stepsize.

The main observation is certainly the fact that Algorithm 3.1 is between three
and eleven times faster than Weiszfeld’s method. More precisely, in the most impor-
tant case n = 2, our method is around ten times faster. The improvement decreases
when n gets larger since the solution of the corresponding linear systems of equa-
tions is getting more time-consuming, but even for n = 10, the Newton-type method
is about four times faster than Weiszfeld’s method. Furthermore, for fixed n and
increasing m, the efficiency of Newton’s method in relation to the Weiszfeld fixed
point iteration even increases. This has certainly to do with the way we compute
our starting point for both methods in the initialization phase from step (S.0) of Al-
gorithm 3.1: For larger m, it becomes more likely that we start both methods closer
to a solution, which is obviously helpful for Weiszfeld’s method, but especially for
Newton’s method since then we start closer to the local area where this method is
quadratically convergent.

5 Final Remarks

This paper considers the Fermat-Weber location problem and shows that the stan-
dard Newton method can be used efficiently to solve this problem. Since this single-
facility Fermat-Weber problem is also the basis of, for example, suitable methods
for the solution of multi-facility location problems, it is an interesting question how
this method can be adapted within a framework for solving multi-facility location
problems. Moreover, the current method was designed to solve the classical Fermat-
Weber problem based on the Euclidean norm, but the ideas might also apply to the

9



n m = 10 m = 100 m = 103 m = 104

2 total time W. 0.0092 0.0420 0.3606 4.0287
total time N. 0.0011 0.0044 0.0381 0.3630
av. iter. W. 44.87 31.82 27.75 28.44
av. iter. N. 2.96 3.02 2.99 2.68

3 total time W. 0.0085 0.0256 0.2319 2.2478
total time N. 0.0012 0.0043 0.0336 0.2412
av. iter. W. 40.33 18.97 17.93 18.92
av. iter. N. 3.12 2.99 2.65 2.07

4 total time W. 0.0051 0.0258 0.1967 1.8662
total time N. 0.0011 0.0057 0.0319 0.2478
av. iter. W. 23.76 14.98 14.46 15.33
av. iter. N. 3.03 2.96 2.38 2.02

5 total time W. 0.0054 0.0189 0.1711 1.6921
total time N. 0.0012 0.0045 0.0309 0.2579
av. iter. W. 23.68 12.96 12.71 13.38
av. iter. N. 3.05 2.88 2.25 2.01

6 total time W. 0.0047 0.0167 0.1564 1.6972
total time N. 0.0012 0.0042 0.0316 0.2927
av. iter. W. 19.26 11.77 11.26 12.00
av. iter. N. 2.98 2.75 2.22 2.03

7 total time W. 0.0039 0.0178 0.1448 1.4191
total time N. 0.0011 0.0046 0.0297 0.2656
av. iter. W. 18.33 10.88 10.45 11.01
av. iter. N. 3.01 2.52 2.07 2.01

8 total time W. 0.0042 0.0149 0.1366 1.3525
total time N. 0.0012 0.0039 0.0289 0.2614
av. iter. W. 17.50 10.21 9.92 10.70
av. iter. N. 2.99 2.36 2.04 2.01

9 total time W. 0.0035 0.0144 0.1289 1.2539
total time N. 0.0013 0.0037 0.0292 0.2594
av. iter. W. 15.85 9.50 9.17 10.00
av. iter. N. 2.98 2.20 2.02 2.00

10 total time W. 0.0035 0.0133 0.1280 1.2507
total time N. 0.0012 0.0036 0.0299 0.2674
av. iter. W. 15.73 9.16 8.99 9.67
av. iter. N. 2.96 2.21 2.00 2.00

Table 1: Numerical results for Weiszfeld’s method and the Newton-type method
from Algorithm 3.1. Abbreviations: W. = Weiszfeld, N. = Newton, av. iter. =
average number of iterations

case of more general `p-norms.

10



References

[1] A. Beck: Introduction to Nonlinear Optimization. Theory, Algorithms, and
Applications with MATLAB. MOS-SIAM Series on Optimization, Philadelphia,
PA, 2014.

[2] A. Beck and S. Sabach: Weiszfeld’s method: Old and new results. Journal
of Optimization Theory and Applications 164, 2015, pp. 1–40.

[3] P.H. Calamai and A.R. Conn: A projected Newton method for `p norm
location problems. Mathematical Programming 38, 1987, pp. 75–109.

[4] Z. Dreszner (ed.): Facility Location. A Survey of Applications and Methods.
Springer, 1995.

[5] Z. Drezner, K. Klamroth, A. Schöbel, and G.O. Wesolowsky: The
Weber problem. In Z. Dreszner and H.W. Hamacher (eds.): Facility Lo-
cation. Applications and Theory. Springer, 2002, pp. 1–36.

[6] L. Grippo, F. Lampariello, and S. Lucidi: A nonmonotone line search
technique for Newton’s method. SIAM Journal on Numerical Analysis 23, 1986,
pp. 707–716.

[7] F. Jarre and Ph.L. Toint: Simple examples for the failure of Newton’s
method with line search for strictly convex minimization. Mathematical Pro-
gramming, to appear.

[8] J.-l. Jiang, K. Cheng, C.-C. Wang, and L.-p. Wang: Accelerating
the convergence in the single-source and multi-source Weber problems. Applied
Mathematics and Computation 218, 2012, pp. 6814–6824.

[9] I.N. Katz: Local convergence in Fermat’s problem. Mathematical Program-
ming 6, 1974, pp. 89–104.

[10] Y. Levin and A. Ben-Israel: The Newton bracketing method for convex
minimization. Computational Optimization and Applications 21, 2002, pp. 213–
229.

[11] R.F. Love, J.G. Morris and G.O. Wesolowsky: Facilities Location.
Models & Methods. Elsevier Science Publishing Co., 1988.

[12] W.F. Mascarenhas: Newton’s iterates can converge to non-stationary points.
Mathematical Programming 112, 2008, pp. 327–334.

[13] Yu. Nesterov: A method for solving a convex programming problem with rate
of convergence O(1/k2). Soviet Mathematics Doklady 269, 1983, pp. 543–547
(in Russian).

[14] S. Nickel and J. Puerto: Location Theory: A Unified Approach. Springer,
Berlin, Heidelberg, 2005.

11



[15] J. Nocedal and S.J. Wright: Numerical Optimization. Springer Series in
Operations Research and Financial Engineering, Springer, New York, second
edition 2006.

[16] M.L. Overton: A quadratically convergent method for minimizing a sum of
Euclidean norms. Mathematical Programming 27, 1983, pp. 34–63.

[17] W. Sun and Y.-X. Yuan: Optimization Theory and Methods. Nonlinear
Programming. Springer Optimization and its Applications, Springer, 2006.

[18] Y. Vardi and C.H. Zhang: A modified Weiszfeld algorithm for the Fermat-
Weber location problem. Mathematical Programming 90, 2001, pp. 559–566.

[19] W. Warth and J. Werner: Effiziente Schrittweitenfunktionen bei unre-
stringierten Optimierungsaufgaben. Computing 19, 1977, pp. 59–72.

12


