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Abstract. We recapitulate the well known fact that most of the standard constraint qual-
ifications are violated for mathematical programs with equilibrium constraints (MPECs).
We go on to show that the Abadie constraint qualification is only satisfied in fairly restric-
tive circumstances. In order to avoid this problem, we fall back on the Guignard constraint
qualification. We examine its general properties and clarify the position it occupies in the
context of MPECs. We show that strong stationarity is a necessary optimality condition
under Guignard CQ. Also, we present several sufficient conditions for Guignard CQ, show-
ing that it is usually satisfied for MPECs.
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1 Introduction

Consider the constrained optimization problem

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

G(z) ≥ 0, H(z) ≥ 0, G(z)TH(z) = 0,
(1)

where f : R
n → R, g : R

n → R
m, h : R

n → R
p, G : R

n → R
l, and H : R

n → R
l are contin-

uously differentiable functions. Programs of type (1) are known as mathematical programs
with complementarity constraints. Alternatively, (1) is called a mathematical program
with equilibrium constraints, or MPEC for short. Usually an MPEC is an optimization
problem with a variational inequality as a constraint. Under certain circumstances, how-
ever, MPECs can be written in the form (1) (see [12] for an extensive discussion on this).
Since MPEC is a nicer acronym than MPCC, we will stick to calling (1) an MPEC.

Of prime importance to the theory of any class of nonlinear programs are optimality
conditions. In this paper we consider first order conditions as they are derived from Karush-
Kuhn-Tucker (or KKT) points for standard nonlinear programs.

As is well known, such KKT points are necessary optimality conditions only in the pres-
ence of constraint qualifications. Unfortunately, most of the usual constraint qualifications
(called CQs hereafter) from standard nonlinear programming are known to be violated
for MPECs (see, e.g., [2]). Even the Abadie CQ, typically the weakest CQ considered
for standard nonlinear programs, does not hold in general. In fact, some fairly restrictive
assumptions are needed in order to guarantee that the Abadie CQ holds for the MPEC
(1), see Section 2 and the corresponding discussion by Pang and Fukushima [15].

A constraint qualification still weaker than the Abadie CQ is the Guignard CQ, see [8],
and the overview article [16] for a finite dimensional formulation of the Guignard CQ and
how it stands in relation to other classic constraint qualifications. It seems that this CQ
has been widely overlooked in the MPEC literature. In fact, we know of no real application
of the Guignard CQ. We speculate that this is because for standard nonlinear programs,
Abadie CQ is weak enough to be satisfied for most of the interesting cases. Since, as we will
note, Abadie CQ is not weak enough in the context of MPECs, we turn to the Guignard
CQ. In Section 3 we define it and recap some of its properties and alternate definitions
(see, in particular, [1, 20]).

Finally, in Section 4 we show that the Guignard CQ implies some strong first order
optimality conditions for the MPEC (1). We also derive some sufficient conditions for the
Guignard CQ to be satisfied. The material presented in Section 4 is closely related to the
work by Pang and Fukushima [15], where similar statements are derived without, however,
referring to the Guignard CQ. Nevertheless, we wish to stress that our work is heavily
based on their paper [15].

Although we restrict our sojourn into constraint qualifications for MPECs to a few
selected ones, many more constraint qualifications have been proposed, discussed, and
shown to yield certain first order conditions. Generalizations of CQs have been discussed
in [18] and shown to imply various stationarity concepts. In [15, 18] one stationarity
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concept, namely strong stationarity, has been considered in depth. A weaker stationarity
concept, M-stationarity, has been the focus of recent theoretical analysis, most notably in
[13, 14].

We also note that the different stationarity concepts play an important role in the design
of suitable algorithms for the MPEC (1). For a more detailed analysis, the interested reader
is referred to the recent papers [3, 19, 9, 6], for example.

A word on notation; R
n denotes the n-dimensional Euclidean space. For x ∈ R

n and
y ∈ R

m we simply write (x, y) for the (n+m)-dimensional vector (xT , yT )T . Given a vector
x ∈ R

n and a subset δ ⊆ {1, . . . , n}, we denote by xδ the subvector in R
|δ| consisting of

all components xi with i ∈ δ. Inequalities x ≥ 0 for arbitrary vectors x ∈ R
n are defined

componentwise. We will make frequent use of the following index sets. For a given feasible
point z∗ of the MPEC (1), they are defined as follows:

α := α(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) > 0}, (2a)

β := β(z∗) := {i | Gi(z
∗) = 0, Hi(z

∗) = 0}, (2b)

γ := γ(z∗) := {i | Gi(z
∗) > 0, Hi(z

∗) = 0}. (2c)

The set β is called the degenerate set. Furthermore, P(β) denotes the set of all partitions
of β, where a pair (β1, β2) is a partition of β if β1 ∪ β2 = β and β1 ∩ β2 = ∅.

Since cones play a central role in this paper, we wish to clarify what we mean by cone.
A set C is called a cone if λx ∈ C for all x ∈ C and λ ≥ 0. It is in this last point that the
literature is somewhat ambiguous. It is common to define a cone with the strict inequality
for λ. In our definition, however, a nonempty cone always contains 0.

2 Standard Constraint Qualifications

As mentioned in the introduction, it is a well-known fact that most of the familiar constraint
qualifications known for standard nonlinear programs do not hold for MPECs of type (1).
See, e.g., [2, 23] for more details.

Clearly, the constraints of (1) are not affine (neglecting the uninteresting case when
either Gi(·) or Hi(·) is constant for every i = 1, . . . , l). In particular, the MPEC (1) is not
a convex program, rendering the application of Slater CQ useless. Additionally, Slater CQ
can be easily verified never to hold for any feasible point of (1).

We also note that the Mangasarian-Fromovitz constraint qualification (referred to as
MFCQ in the following) is violated for every feasible point of (1), see, e.g., [23]. Since the
linear independence constraint qualification implies MFCQ, it also is never satisfied.

We now turn our attention to the Abadie constraint qualification (referred to as ACQ
in the following). Recall that it is said to hold in a feasible point z∗ if

T (z∗) = T lin(z∗), (3)

where T (z∗) is the tangent cone and T lin(z∗) is the linearized tangent cone of the MPEC
(1) in the point z∗. As a quick reminder, if Z is the feasible region of the MPEC (1), the
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tangent cone T (z∗) is defined as follows:

T (z∗) :=
{
d ∈ R

n
∣
∣ ∃{zk} ⊂ Z,∃tk ↘ 0 : zk → z∗ and

zk − z∗

tk
→ d

}
, (4)

while it is easy to see that the linearized tangent cone T lin(z∗) of (1) can be expressed as

T lin(z∗) = {d ∈ R
n | ∇gi(z

∗)T d ≤ 0 ∀i ∈ Ig := {i | gi(z
∗) = 0},

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α,

∇Hi(z
∗)T d = 0 ∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0 ∀i ∈ β,

∇Hi(z
∗)T d ≥ 0 ∀i ∈ β }.

(5)

Note that the inclusion T (z∗) ⊆ T lin(z∗) always holds and that T (z∗) is closed but not
necessarily convex, while T lin(z∗) is polyhedral and hence both closed and convex.

Before continuing, we need to introduce a program derived from the MPEC (1) for an
arbitrary feasible point z∗: Given a partition (β1, β2) ∈ P(β), let NLP∗(β1, β2) denote the
following nonlinear program:

min f(z)
s.t. g(z) ≤ 0, h(z) = 0,

Gα∪β1
(z) = 0, Hα∪β1

(z) ≥ 0,
Gγ∪β2

(z) ≥ 0, Hγ∪β2
(z) = 0.

(6)

Note that the program NLP∗(β1, β2) depends on the vector z∗.
In the following we will repeatedly need the following assumption (A1). Note that it

coincides with the first part of assumption (A1) found in [15].

(A1) For every partition (β1, β2) ∈ P(β), the Abadie CQ holds for NLP∗(β1, β2) in z∗, i.e.

TNLP∗(β1,β2)(z
∗) = T lin

NLP∗(β1,β2)
(z∗),

where TNLP∗(β1,β2)(z
∗) is the tangent cone of the program NLP∗(β1, β2) and T lin

NLP∗(β1,β2)(z
∗)

is the corresponding linearized tangent cone:

T lin

NLP∗(β1,β2)(z
∗) = {d ∈ R

n | ∇gi(z
∗)T d ≤ 0, ∀i ∈ Ig,

∇hi(z
∗)T d = 0, ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0, ∀i ∈ α ∪ β1,

∇Hi(z
∗)T d = 0, ∀i ∈ γ ∪ β2,

∇Gi(z
∗)T d ≥ 0, ∀i ∈ β2,

∇Hi(z
∗)T d ≥ 0, ∀i ∈ β1 }.

(7)
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Extending Proposition 3 from [15] trivially, it is possible to prove the following character-
ization of Abadie CQ for the MPEC (1).

Proposition 2.1 Let z∗ be a feasible point of the MPEC (1) and assume that (A1) holds.
Then the following statements are equivalent:

(a) the Abadie constraint qualification holds in z∗;

(b) there exists a partition (β̂1, β̂2) ∈ P(β) such that T (z∗) = T
NLP∗(β̂1,β̂2)

(z∗);

(c) there exists a partition (β̂1, β̂2) ∈ P(β) such that TNLP∗(β1,β2)(z
∗) ⊆ T

NLP∗(β̂1,β̂2)(z
∗)

for all (β1, β2) ∈ P(β).

Proof. (a)⇒(b) Since Abadie CQ holds, T (z∗) = T lin(z∗). Hence, T (z∗) is polyhedral
and [15, Proposition 3] may be applied to yield the implication.

(b)⇒(a) Because (A1) holds, we have T (z∗) = T lin

NLP∗(β̂1,β̂2)
(z∗), and hence T (z∗) is

polyhedral. Consequently, T (z∗) is generated by linear constraints and is therefore equal
to its linearization T lin(z∗), i.e. (a) holds.

(b)⇔(c) It is easy to verify that

T (z∗) =
⋃

TNLP∗(β1,β2)(z
∗),

(β1,β2)∈P(β)

(8)

(see also [4, Lemma 3.1] or [15]). The equivalence of (b) and (c) follows immediately from
(8) (note that assumption (A1) is not needed for this equivalence). �

Geometrically, Proposition 2.1 can be interpreted as follows: While T (z∗) is equal to a
finite union of (in the presense of (A1)) polyhedral cones (see (8)), the Abadie CQ holds
if and only if there is at least one “big” tangent cone in the union (8) which contains all
the other tangent cones. It is not difficult to find counterexamples, however, where this is
not satisfied, see, e.g., [5, 18].

3 Guignard Constraint Qualification

We have shown that most of the standard constraint qualifications are violated in every
feasible point of the MPEC (1). Although Abadie CQ has a chance of being satisfied,
Proposition 2.1 demonstrates that this is true only under very restrictive circumstances.

We would therefore be well advised to consider alternate constraint qualifications,
weaker than Abadie CQ. As mentioned in the introduction, one such constraint quali-
fication is the Guignard CQ (referred to as GCQ in the following).

Definition 3.1 The Guignard constraint qualification is said to hold in a feasible point
z∗ of (1) if the equality

T G(z∗) := conv(T (z∗)) = T lin(z∗) (9)

holds.
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As mentioned before, the inclusion T (z∗) ⊆ T lin(z∗) holds. Something similar does in fact
hold for T G(z∗), as stated in the following lemma.

Lemma 3.2 The inclusion

T G(z∗) ⊆ T lin(z∗) (10)

holds.

Proof. Since T (z∗) ⊆ T lin(z∗) holds and T lin(z∗) is both convex and closed, (10) follows
immediately. �

We now want to exhibit a property of the cone T G(z∗). To this end, consider an arbitrary
convex cone C. Then the set C ∩ (−C) is called the lineality space of C. It is easy to verify
that the lineality space of C can also be expressed as {y | C + y = C}. For a more general
and detailed discussion of the lineality space, see [17].

We now recall Lemma 3.1.6 from [1] and Corollary 9.1.3 from [17] in the following
lemma.

Lemma 3.3 Let C1, . . . , Cm be non-empty convex cones in R
n. Then the following hold:

(i)

C1 + · · · + Cm = conv(C1 ∪ · · · ∪ Cm). (11)

(ii) Additionally, let C1, . . . , Cm satisfy the following condition: if di ∈ Ci for i = 1, . . . ,m
and d1 + · · · + dm = 0, then di is in the lineality space of Ci for i = 1, . . . ,m. Then

C1 + · · · + Cm = C1 + · · · + Cm. (12)

We will now use the previous lemma to prove the following result.

Lemma 3.4 Given a feasible point z∗ of (1), let (A1) hold. Then conv(T (z∗)) is closed,
i.e. we have

T G(z∗) = conv(T (z∗)) = conv(T (z∗)).

Proof. Since, by (A1), Abadie CQ holds for all NLP∗(β1, β2) and T (z∗) can be written in
the form (8), the following holds:

T (z∗) =
⋃

T lin

NLP∗(β1,β2)(z
∗).

(β1,β2)∈P(β)

(13)

Next, we want to verify that Lemma 3.3 (ii) can be applied to the T lin

NLP∗(β1,β2)(z
∗). To this

end, we recall that T lin

NLP∗(β1,β2)(z
∗) is polyhedral and hence a closed convex cone. Now let

d(β1,β2) ∈ T lin

NLP∗(β1,β2)
(z∗) for each (β1, β2) ∈ P(β) such that

∑

d(β1,β2)

(β1,β2)∈P(β)

= 0. (14)
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Multiplying (14) by ∇Gi(z
∗)T yields

∑

∇Gi(z
∗)T d(β1,β2)

(β1,β2)∈P(β)

= 0 ∀i = 1, . . . , l. (15)

Since d(β1,β2) ∈ T lin

NLP∗(β1,β2)(z
∗), it holds that ∇Gi(z

∗)T d(β1,β2) ≥ 0 for i = 1, . . . , l. Hence

(15) implies ∇Gi(z
∗)T d(β1,β2) = 0 for i = 1, . . . , l.

Taking d such that d + d(β1,β2) ∈ T lin

NLP∗(β1,β2)(z
∗), consider the following:

∇Gi(z
∗)T d = ∇Gi(z

∗)T d + ∇Gi(z
∗)T d(β1,β2)

︸ ︷︷ ︸

=0

= ∇Gi(z
∗)T (d + d(β1,β2)) ≥ 0, (16)

demonstrating that d ∈ T lin

NLP∗(β1,β2)(z
∗). Similarly, the above can be shown to hold for

∇gi(z
∗), ∇hi(z

∗), and ∇Hi(z
∗). Conversely, we choose an arbitrary d ∈ T lin

NLP∗(β1,β2)
(z∗).

Since d(β1,β2) ∈ T lin

NLP∗(β1,β2)(z
∗) and T lin

NLP∗(β1,β2)
(z∗) is convex, it holds by standard prop-

erties of convex cones that d + d(β1,β2) ∈ T lin

NLP∗(β1,β2)
(z∗). Hence we have proven that

T lin

NLP∗(β1,β2)
(z∗) + d(β1,β2) = T lin

NLP∗(β1,β2)(z
∗).

Since T lin

NLP∗(β1,β2)
(z∗) is convex, Lemma 3.3 (i) and (ii) may be applied.

Now consider the following:

conv(T (z∗))
(13)
= conv

(⋃

T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

)

(11)
=

∑

T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

(12)
=

∑

T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

=
∑

T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

(11)
= conv

(⋃

T lin

NLP∗(β1,β2)(z
∗)

(β1,β2)∈P(β)

)

(13)
= conv(T (z∗)).

This concludes the proof. �

Since the tangent cone T (z∗) is always closed, one might hope that the result of Lemma
3.4 held for the convex hull of arbitrary closed cones. The following example, commu-
nicated to us by Marco López [11], shows, however, that such a statement is not true in
general. Consequently, the statement of Lemma 3.4 is a property of MPECs (under certain
assumptions) and is violated in a more general setting.
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Figure 1: Illustration of cone(S) from Example 3.5.

Example 3.5 Consider the closed, nonconvex cone in R
3 generated by the set

S = {(−1, 0, 0)T} ∪ {x ∈ R
3 | ‖x − (2, 0, 1)T‖ ≤ 1}.

The convex hull of cone(S) (see Figure 1) is

conv(cone(S)) = {x ∈ R
3 | x3 > 0} ∪ {x ∈ R

3 | x2 = x3 = 0},

which is not closed.

We will now give an equivalent formulation of Guignard CQ, since this will facilitate the
proofs of later results. To this end, we must first introduce the concept of the dual cone.
Given an arbitrary cone C, its dual cone C∗ is defined as follows:

C∗ := {v ∈ R
n | vT d ≥ 0 ∀d ∈ C}. (17)

Note that if a vector z∗ has the property of being B-stationary for the MPEC (1), i.e.

∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗),

it is equivalent to stating that ∇f(z∗) is in the dual cone of T (z∗), i.e. ∇f(z∗) ∈ T (z∗)∗.
Cones and their duals have been the subject of extensive research in the past (see, in

particular, [1, 17]). In the following Lemma we collect some useful information about the
dual cone. Note that in the literature, commonly the polar cone is considered, which is
simply the negative of the dual cone.
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Lemma 3.6 Let C and C̃ be arbitrary nonempty cones. Then the following hold:

(i) C∗ is a closed convex cone.

(ii) C ⊆ C̃ implies C̃∗ ⊆ C∗.

(iii) C ⊆ C∗∗.

(iv) If C is convex, then C∗∗ = C.

(v) C∗∗ = conv(C).

Now, after first stating the following lemma, we will use the dual cone to deduce an
equivalent formulation of GCQ in Corollary 3.8. The statements of the following Lemma
and Corollary should both be known, but we were not able to find an explicit reference.
Therefore, we include their short proofs here.

Lemma 3.7 The following equality holds:

T (z∗)∗ = T G(z∗)∗. (18)

Proof. Consider T G(z∗) = conv(T (z∗)) = T (z∗)∗∗, where we used Lemma 3.6 (v) for the
second equality. We dualize this to start off the following string of equations. Roman
numerals indicate which point of Lemma 3.6 was used for that particular equality:

T G(z∗)∗ = T (z∗)∗∗∗
(i),(iv)

= T (z∗)∗
(i)
= T (z∗)∗.

This completes the proof. �

Corollary 3.8 Let z∗ be a feasible point of the MPEC (1). Then GCQ holds in z∗ if and
only if

T (z∗)∗ = T lin(z∗)∗ (19)

holds.

Proof. Dualizing (9) and using Lemma 3.7 yields T (z∗)∗ = T G(z∗)∗ = T lin(z∗)∗, i.e.
GCQ in the form (9) implies (19). To prove the converse implication, the following string
of equalities again uses roman numerals to indicate which point of Lemma 3.6 is used. In
addition, the equality marked with (∗) is acquired by dualizing (19).

T lin(z∗)
(iv)
= T lin(z∗)∗∗

(∗)
= T (z∗)∗∗

(v)
= conv(T (z∗)) = T G(z∗).

For the first equality note that T lin(z∗) is polyhedral and as such closed and convex. �

Sometimes, the formulation of the GCQ given in Corollary 3.8 is used to define GCQ (see,
e.g. [20, 1]). Also, the formulation (19) of GCQ has been used in [7] in order to characterize
the existence of KKT points. As we will see, this formulation of GCQ also facilitates some
of the proofs we present in this paper.
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4 Sufficient Conditions for Guignard CQ

Before we delve into the problem of investigating when GCQ might hold, let us consider
neccessary conditions for optimality under GCQ. The following theorem is a result from
standard nonlinear programming (see [8, 16]).

Theorem 4.1 Let z∗ be a B-stationary point of the MPEC (1). If GCQ holds in z∗, then
there exists a Lagrange multiplier λ∗ such that (z∗, λ∗) is a KKT point of (1).

Now consider a KKT point (z, λ̂) of the MPEC (1) with λ̂ = (λ̂g, λ̂h, λ̂G, λ̂H , λ̂θ). Since
z is, in particular, feasible, we shall neglect conditions which pertain only to feasibility.
Setting θ(z) := G(z)T H(z) yields the following representation of the essential conditions
for a KKT point:

0 = ∇f(z) +
m∑

i=1

λ̂
g
i∇gi(z) +

p
∑

i=1

λ̂h
i ∇hi(z) −

l∑

i=1

[
λ̂G

i ∇Gi(z) + λ̂H
i ∇Hi(z)

]
+ λ̂θ∇θ(z),

G(z) ≥ 0, λ̂G ≥ 0, (λ̂G)T G(z) = 0,

H(z) ≥ 0, λ̂H ≥ 0, (λ̂H)T H(z) = 0,

g(z) ≤ 0, λ̂g ≥ 0, (λ̂g)T g(z) = 0.

(20)

Keeping in mind that

∇θ(z) =
l∑

i=1

[
Gi(z)∇Hi(z) + Hi(z)∇Gi(z)

]
,

we order the sums in the first line of (20) by gradient. Setting λg := λ̂g, λh := λ̂h,
λG

α := λ̂G
α − λ̂θHα(z), λG

γ∪β := λ̂G
γ∪β, λH

α∪β := λ̂H
α∪β, and λH

γ := λ̂H
γ − λ̂θGγ(z) then yields the

following representation of (20):

0 = ∇f(z) +
m∑

i=1

λ
g
i∇gi(z) +

p
∑

i=1

λh
i ∇hi(z) −

l∑

i=1

[
λG

i ∇Gi(z) + λH
i ∇Hi(z)

]
,

λG
α free, λG

β ≥ 0, λG
γ = 0,

λH
γ free, λH

β ≥ 0, λH
α = 0,

g(z) ≤ 0, λg ≥ 0, (λg)T g(z) = 0.

(21)

Note that we exploit the complementarity terms in (20) and the nature of the sets α and
γ to get λG

γ = 0 and λH
α = 0.

Based on the representation (21), a point (z, λ) with λ = (λg, λh, λG, λH) is called
strongly stationary [18] or primal-dual stationary [15] if z is feasible for the MPEC (1) and
(z, λ) satisfies the conditions (21).
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In the context of MPECs, it is common to refer to the concept of strong stationarity
and the representation (21) that goes with it, rather than to a KKT point.

The above arguments are collected in the following theorem.

Theorem 4.2 Let z∗ be a B-stationary point of the MPEC (1). If GCQ holds in z∗, then
there exists a Lagrange multiplier λ∗ such that (z∗, λ∗) is strongly stationary (see (21)).

We will now investigate the Guignard CQ’s position in relation to other CQs which have
been examined in the context of MPECs. To this end, let us first introduce a CQ which
has been discussed extensivly in the past (see, e.g., [18, 5]).

Definition 4.3 Let z∗ be feasible for the MPEC (1). Then the MPEC-LICQ is said to
hold if the gradient vectors

∇gi(z
∗) ∀i ∈ Ig := {i | gi(z

∗) = 0},
∇hi(z

∗) ∀i = 1, . . . , p,
∇Gi(z

∗) ∀i ∈ α ∪ β,

∇Hi(z
∗) ∀i ∈ γ ∪ β

(22)

are linearly independent.

We will now use Corollary 3.8 to show that MPEC-LICQ implies GCQ. Before we do so,
however, we state the following lemma, which will facilitate the proof of Theorem 4.5.

Lemma 4.4 Let the cones

K1 := {d ∈ R
n | aT

i d ≥ 0, ∀i = 1, . . . , k,

bT
j d = 0, ∀j = 1, . . . , l}

(23)

and

K2 = {v ∈ R
n | v =

k∑

i=1

αiai +
l∑

j=1

βjbj

αi ≥ 0, ∀i = 1, . . . , k},

(24)

be given. Then K1 = K∗
2 and K∗

1 = K2.

Proof. See Theorem 3.2.2 in [1]. �

We now use Lemma 4.4 to prove the following theorem.

Theorem 4.5 If a feasible point z∗ of the MPEC (1) satisfies MPEC-LICQ, it also satisfies
GCQ.
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Proof. We will show that MPEC-LICQ implies the equivalent definition of GCQ intro-
duced in Corollary 3.8. It is well-known that T (z∗) ⊆ T lin(z∗). Dualizing this yields
T lin(z∗)∗ ⊆ T (z∗)∗. Hence it suffices to show that

T (z∗)∗ ⊆ T lin(z∗)∗ (25)

holds. As mentioned in the proof of Proposition 2.1 (see (8)), it holds that

T (z∗) =
⋃

TNLP∗(β1,β2)(z
∗).

(β1,β2)∈P(β)

Dualizing this yields

T (z∗)∗ =
⋂

TNLP∗(β1,β2)(z
∗)∗

(β1,β2)∈P(β)

(26)

(see [1, Theorem 3.1.9]).
Since MPEC-LICQ holds for the MPEC (1), standard LICQ and hence ACQ holds for

each NLP∗(β1, β2), i.e. we have

TNLP∗(β1,β2)(z
∗) = T lin

NLP∗(β1,β2)
(z∗) (27)

for every (β1, β2) ∈ P(β). Thus, we can apply Lemma 4.4 to the representation (7) of
T lin

NLP∗(β1,β2)
(z∗), yielding the dual of TNLP∗(β1,β2)(z

∗) as follows:

TNLP∗(β1,β2)(z
∗)∗ = T lin

NLP∗(β1,β2)(z
∗)

∗

= {v ∈ R
n | v = −

∑

i∈Ig

u
g
i∇gi(z

∗) −

p
∑

i=1

uh
i ∇hi(z

∗)

+
∑

i∈α∪β

uG
i ∇Gi(z

∗) +
∑

i∈γ∪β

uH
i ∇Hi(z

∗),

u
g
Ig

≥ 0, uG
β2

≥ 0, uH
β1

≥ 0}.

(28)

Taking v ∈ T (z∗)∗ arbitrarily, (26) yields that

v ∈ TNLP∗(β1,β2)(z
∗)∗ and v ∈ TNLP∗(β2,β1)(z

∗)∗

for an arbitrary partition (β1, β2) ∈ P(β) and its “complement” (β2, β1) ∈ P(β).
Since all gradient vectors in (28) are linearly independent (MPEC-LICQ holds), u

g
Ig

,

uh, uG
α∪β, and uH

γ∪β are uniquely defined. Hence it follows from the fact that v is in both
TNLP∗(β1,β2)(z

∗)∗ and TNLP∗(β2,β1)(z
∗)∗ that uG

β ≥ 0 and uH
β ≥ 0. Therefore,

v ∈ {v ∈ R
n | v = −

∑

i∈Ig

u
g
i∇gi(z

∗) −

p
∑

i=1

uh
i ∇hi(z

∗)

+
∑

i∈α∪β

uG
i ∇Gi(z

∗) +
∑

i∈γ∪β

uH
i ∇Hi(z

∗),

u
g
Ig

≥ 0, uG
β ≥ 0, uH

β ≥ 0}

= T lin(z∗)∗,

12



which proves (25). (The above representation of T lin(z∗)∗ can be gleaned by applying
Lemma 4.4 to the representation (5) of T lin(z∗).) �

We have now shown MPEC-LICQ to imply GCQ, and also strong stationarity to be a
necessary optimality condition under GCQ (Theorems 4.5 and 4.2 respectively). This is
(except for uniqueness of the Lagrange multiplier, which follows trivially from MPEC-
LICQ) the statement of [5, Theorem 3.4].

Remark. It is well known (see, e.g., [18, 5]) that strong stationarity is a necessary first
order condition under MPEC-SMFCQ (the MPEC variant of the strict Mangasarian-
Fromovitz constraint qualification, see, e.g., [10] for the standard SMFCQ).

In the face of Theorem 4.2 and the fact that MPEC-SMFCQ implies uniqueness of the
Lagrange multiplier, it stands to reason that MPEC-SMFCQ should imply GCQ. Note
that MPEC-SMFCQ is weaker than MPEC-LICQ, so this question is of some interest.

This can in fact be deduced by the following string of reasoning: Since strong sta-
tionarity is a necessary first order condition under MPEC-SMFCQ, also a KKT point
(20) is necessary under MPEC-SMFCQ (the reasoning following Theorem 4.1 shows that
a strongly stationary point (21) is equivalent to a KKT point (20) of the MPEC (1)).
A result by Gould and Tolle (see the Theorem in Section 3 of [7] or [1, Theorem 6.3.2])
states that the existence of such a KKT point (for an arbitrary objective function f , but
MPEC-SMFCQ is stated independent of the objective function) implies GCQ.

We note, however, that we were not able to find a more direct and elementary proof of
the fact that MPEC-SMFCQ implies GCQ.

Borrowing heavily from [15, Theorem 1], we will now show GCQ to hold under relatively
weak, though not very tangible, assumptions. In the following we will introduce these
assumptions, after which we will be able to prove our variant of [15, Theorem 1].

In [4] we introduced the MPEC-linearized tangent cone,

T lin

MPEC(z∗) := {d ∈ R
n | ∇gi(z

∗)T d ≤ 0 ∀i ∈ Ig,

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α,

∇Hi(z
∗)T d = 0 ∀i ∈ γ,

∇Gi(z
∗)T d ≥ 0 ∀i ∈ β,

∇Hi(z
∗)T d ≥ 0 ∀i ∈ β,

(∇Gi(z
∗)T d) · (∇Hi(z

∗)T d) = 0, ∀i ∈ β }.

(29)

Note that T lin

MPEC(z∗) is different from the standard linearized tangent cone T lin(z∗) and
that we always have T (z∗) ⊆ T lin

MPEC(z∗) (see Lemma 3.2 in [4]). Hence, the definition of
the MPEC-Abadie constraint qualification

T (z∗) = T lin

MPEC(z∗) (30)

13



(referred to as MPEC-ACQ in the following) makes sense. In [4] we were able to prove
A-stationarity (weaker than strong stationarity) to be a necessary optimality condition
under MPEC-ACQ. It is important to note that T lin

MPEC(z∗) can be expressed as follows:

T lin

MPEC(z∗) =
⋃

T lin

NLP∗(β1,β2)(z
∗).

(β1,β2)∈P(β)

(31)

See the treatise [4] for a more detailed discussion of MPEC-ACQ.
For the second assumption of Theorem 4.7, we must first introduce the concept of

nonsingularity, as used in [15, 21].

Definition 4.6 Given the linear system

Ax ≤ b, Cx = d, (32)

an inequality aix ≤ bi is said to be nonsingular if there exists a feasible solution of the
system (32) which satisfies this inequality strictly. Here ai denotes the i-th row of the
matrix A.

We will now apply nonsingularity to the linearized tangent cone T lin(z∗) in the point z∗ (see
(5)). To this end we introduce two new sets: Let βG denote the subset of β consisting of all
indices i ∈ β such that the inequality ∇Gi(z

∗)T d ≥ 0 is nonsingular in the system defining
T lin(z∗). Similarly, we denote by βH the nonsingular set pertaining to the inequalities
∇Hi(z

∗)T d ≥ 0. Note that βG and βH depend on z∗.
Using the sets βG and βH renders the following representation of T lin(z∗) (cf. (5)):

T lin(z∗) = {d ∈ R
n | ∇gi(z

∗)T d ≤ 0 ∀i ∈ Ig,

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p,

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β\βG,

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β\βH ,

∇Gi(z
∗)T d ≥ 0 ∀i ∈ βG,

∇Hi(z
∗)T d ≥ 0 ∀i ∈ βH }.

(33)

We will now also use the sets βG and βH to define the following assumption (A2). Note
that (A2) is equivalent to [15, (A2)] by Lemma 1 of the same reference.

(A2) Given the feasible point z∗, there exists a partition (βGH
1 , βGH

2 ) ∈ P(βG ∩ βH) such
that

(A2a) for each i0 ∈ βGH
1 there exists a vector d such that

∇Gi0(z
∗)T d > 0,

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β\{i0},

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β,

∇gi(z
∗)T d = 0 ∀i ∈ Ig,

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p;

(34)
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(A2b) for each i0 ∈ βGH
2 there exists a vector d such that

∇Hi0(z
∗)T d > 0,

∇Hi(z
∗)T d = 0 ∀i ∈ γ ∪ β\{i0},

∇Gi(z
∗)T d = 0 ∀i ∈ α ∪ β,

∇gi(z
∗)T d = 0 ∀i ∈ Ig,

∇hi(z
∗)T d = 0 ∀i = 1, . . . , p.

(35)

We have finally collected enough information to state and prove the following theorem.

Theorem 4.7 If a feasible point z∗ of the MPEC (1) satisfies both MPEC-ACQ and as-
sumption (A2), it also satisfies GCQ.

Proof. As in the proof to Theorem 4.5, it suffices to show that the inclusion

T (z∗)∗ ⊆ T lin(z∗)∗ (36)

holds (see (25)). Since MPEC-ACQ holds, we have

T (z∗) = T lin

MPEC(z∗) =
⋃

T lin

NLP∗(β1,β2)
(z∗),

(β1,β2)∈P(β)

(37)

see (30) and (31). Similar to (26), we dualize (37) using [1, Theorem 3.1.9], yielding

T (z∗)∗ = T lin

MPEC(z∗)∗ =
⋂

T lin

NLP∗(β1,β2)(z
∗)

∗
.

(β1,β2)∈P(β)

(38)

Now to prove (36), we take an arbitrary v ∈ T (z∗)∗. By virtue of (38), we have

v ∈ T lin

NLP∗(β1,β2)
(z∗)

∗
∀(β1, β2) ∈ P(β). (39)

Consider the specific partition of β given by

β̂1 := βH\βGH
2 , β̂2 := β\β̂1, (40)

Here (βGH
1 , βGH

2 ) ∈ P(βG ∩ βH) is a partition of βG ∩ βH that satisfies assumption (A2).
Note that βG\βGH

1 ⊆ β̂2.
Since v ∈ T lin

NLP∗(β̂1,β̂2)
(z∗)

∗
, we can apply Lemma 4.4, yielding the existence of a vector

u = (ug, uh, uG, uH) with

u
g
i ≥ 0 ∀i ∈ Ig,

uG
i ≥ 0 ∀i ∈ β̂2,

uH
i ≥ 0 ∀i ∈ β̂1

15



such that

v = −
∑

i∈Ig

u
g
i∇gi(z

∗) −

p
∑

i=1

uh
i ∇hi(z

∗) +
∑

i∈α∪β

uG
i ∇Gi(z

∗) +
∑

i∈γ∪β

uH
i ∇Hi(z

∗). (41)

The choice of the sets β̂1 and β̂2 guarantee, in particular, that

uG
i ≥ 0 ∀i ∈ βG\βGH

1 and uH
i ≥ 0 ∀i ∈ βH\βGH

2 .

Due to the representation (33) of T lin(z∗) and using Lemma 4.4 to represent T lin(z∗)∗ it
therefore suffices to show that

uG
i ≥ 0 ∀i ∈ βGH

1 and uH
i ≥ 0 ∀i ∈ βGH

2 . (42)

Since the proof is similar for uG
i and uH

i , we will only demonstrate the former. Let therefore
uG

i0
< 0 for some index i0 ∈ βGH

1 . Corresponding to this index, let d be the vector satisfying
(34) in assumption (A2a). Multiplying the vector v from (41) by this d yields

vT d = uG
i0

︸︷︷︸

<0

∇Gi0(z
∗)T d

︸ ︷︷ ︸

>0

< 0. (43)

By comparing representation (34) of d with the representation (7) of T lin

NLP∗(β1,β2)
(z∗), we see

that d ∈ T lin

NLP∗(β1,β2)
(z∗) for all partitions (β1, β2) ∈ P(β) such that i0 ∈ β2. For any such

partition (β1, β2), it holds that v ∈ T lin

NLP∗(β1,β2)
(z∗)

∗
by (39), and hence we have vT d ≥ 0

which is a contradiction to (43), yielding uG
i ≥ 0. This completes the proof. �

The proof of Theorem 4.7 is closely related to the proof of Theorem 1 in Pang and
Fukushima’s paper [15]. In fact, the only difference in the statement of our theorem and
theirs is the relaxation of one of the assumptions: where we show MPEC-ACQ and (A2)
to suffice, they require (A1) and (A2). (Note that (A1) obviously implies MPEC-ACQ.)

Remark. It is of some interest that the proofs of Theorems 4.5 and 4.7 differ substantially.
The technique of the proof of Theorem 4.5 can, however, be applied to Theorem 4.7, if
assumption (A2) is replaced by the partial MPEC-LICQ which is said to hold if for every
vector u := (ug, uh, uG, uH) satisfying

0 =
∑

i∈Ig

u
g
i∇gi(z

∗) +

p
∑

i=1

uh
i ∇hi(z

∗) +
∑

i∈α∪β

uG
i ∇Gi(z

∗) +
∑

i∈γ∪β

uH
i ∇Hi(z

∗), (44)

it is implied that uG
β = uH

β = 0 (see, e.g., [22]). Hence, using the technique of the proof
of Theorem 4.5, it can be shown that if a feasible point z∗ satisfies both MPEC-ACQ and
partial MPEC-LICQ, then it also satisfies GCQ.

Note that in general, partial MPEC-LICQ is a stronger assumption than (A2), since
according to Lemma 1 in [15], (A2) is equivalent to stating that (44) implies that uG

βGH
1

=

uH
βGH
2

= 0 (note that βGH
1 , βGH

2 ∈ β).
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5 Conclusion

The goal of this paper was to clarify the position of Guignard CQ in the context of MPECs
and put it in relation to other CQs examined by others [15, 18].

In this context we recapitulated why other constraint qualifications known from stan-
dard nonlinear programming fail to hold for MPECs. Even Adabie CQ, which is one of
the weaker CQs, was shown to hold for MPECs only under very restrictive circumstances.

Acknowledgements. We would like to thank Danny Ralph and Jong-Shi Pang for first
suggesting to investigate the Guignard constraint qualification. Again, we are grateful to
Marco López for supplying us with Example 3.5. Involved in the creation of Figure 1 for
this example was Manfred Dobrowolski, whom, with this, we also wish to thank.
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