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Abstract

We propose an augmented Lagrangian-type algorithm for the solution of gen-
eralized Nash equilibrium problems (GNEPs). Specifically, we discuss the
convergence properties with regard to both feasibility and optimality of limit
points. This is done by introducing a secondary GNEP as a new optimal-
ity concept. In this context, special consideration is given to the role of
suitable constraint qualifications that take into account the particular struc-
ture of GNEPs. Furthermore, we consider the behaviour of the method for
jointly-convex GNEPs and describe a modification which is tailored towards
the computation of variational equilibria. Numerical results are included to
illustrate the practical performance of the overall method.

1 Introduction

We consider the generalized Nash equilibrium problem which consists of N players,
where each player ν = 1, . . . , N tries to solve his optimization problem

min
xν

θν(x) s.t. cν(x) ≤ 0, (1)

where θν : Rn → R denotes the objective or utility function of player ν, cν : Rn →
Rrν defines the constraints, and the vector x consists of the block components xν ∈
Rnν , ν = 1, . . . , N . These block vectors xν denote the variables of player ν, and we
subsume the remaining blocks into the subvector x−ν , and then sometimes write
x = (xν , x−ν) to indicate the importance of the block vector xν within the whole
vector x. Note that we have n = n1 + . . .+nN ; furthermore, we set r := r1 + . . .+rN
for the total number of constraints. The GNEP is called player-convex if all functions
θν(·, x−ν) and cνi (·, x−ν) are convex for any given x−ν , whereas the GNEP is called
jointly-convex if, again, the utility functions θν are convex as a mapping of xν and
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the constraints coincide for all players, i.e. c1 = . . . = cN =: c, and c is convex as a
function of the entire vector x. Note that the GNEP reduces to the standard Nash
equilibrium problem (NEP) in the special case where cν depends on the subvector
xν only.

Using this notation, we recall that x̄ =
(
x̄1, . . . , x̄N

)
is a (generalized) Nash

equilibrium or simply a solution of the GNEP if x̄ satisfies all the constraints and,
in addition, for each player ν = 1, . . . , N , it holds that

θν(x̄) ≤ θν(x
ν , x̄−ν) ∀xν : cν(xν , x̄−ν) ≤ 0,

i.e., x̄ is a solution if and only if no player ν can improve his situation by unilaterally
changing his strategy.

Note that we do not include equality constraints in our GNEP simply for the
sake of notational convenience; our subsequent approach can easily be extended
to equality and inequality constraints. Apart from this, the above setting is very
general since, so far, we do not assume any convexity assumptions on the mappings
θν and cν as is done in many other GNEP papers where only the player-convex or
jointly-convex case is considered, cf. [2, 6, 8, 11, 12, 17, 19] for more details. It
follows that our framework can, in principle, be applied to very general classes of
GNEPs.

In the meantime, there exist a variety of methods for the solution of GNEPs,
though most of them are designed for player- or jointly-convex GNEPs and therefore
do not cover the GNEP in its full generality. We refer the interested reader once
again to the two survey papers [12, 17] and the references therein for a quite complete
overview of the existing approaches. One of the main problems when solving a
GNEP is an inherent singularity property that arises when some players share the
same constraints, see [10] for more details. Hence, second-order methods with fast
local convergence are difficult to design. This also motivates us to consider methods
which may not be locally superlinearly or quadratically convergent, but have nice
global convergence properties.

Penalty-type schemes belong to this class of methods. The first penalty method
for GNEPs that we are aware of is due to Fukushima [18]. A related penalty algo-
rithm was also proposed in [13], and a modification of this algorithm is described in
[14] where only some of the constraints are penalized. While all these approaches
prove exactness results under suitable assumptions, they suffer from the drawback
that the resulting penalized subproblems are nonsmooth Nash equilibrium problems
and therefore difficult to solve numerically.

Taking this into account, it is natural to apply an augmented Lagrangian-type
approach in order to solve GNEPs because the resulting subproblems then have a
higher degree of smoothness and should therefore be easier to solve. This idea is not
completely new since Pang and Fukushima [23] applied this idea to quasi-variational
inequalities (QVIs). An improved version of that method can be found in [21],
also for QVIs. Since the GNEP is a special instance of a QVI, these two papers
also discuss the GNEP within their general QVI-framework. Here, we apply the
augmented Lagrangian idea directly to GNEPs. It turns out that the corresponding
results are significantly stronger than or simply different from those that arise from
the QVI-framework in [21, 23].
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Recall that the augmented Lagrangian (or multiplier-penalty) method is one of
the traditional methods for the solution of constrained optimization problems [3,
22] which have also been the subject of some recent research with several improved
convergence results, see, e.g., [4] and references therein. We therefore try to adapt
these recent improvements to GNEPs in order to get a better understanding of
the augmented Lagrangian approach applied to GNEPs. It turns out, however,
that some results are different from those that are known for standard optimization
problems.

This paper is organized as follows. In Section 2, we deal with GNEP-tailored
constraint qualifications (CQs), prove some basic results and present an error bound
as an application. Section 3 contains a precise statement of our algorithm; starting
with that section, we divide the constraint functions cν into two parts and penalize
only one of these two parts within our (partial) augmented Lagrangian approach.
Hence, we consider a whole class of methods which is quite flexible and can take
into account the special structure of the underlying GNEP in a very favourable
way. Section 4 is then dedicated to a thorough convergence analysis. To this end,
we consider both the feasibility and optimality of limit points of our algorithm;
in particular, we introduce a secondary GNEP called Feasibility GNEP as a new
optimality concept for generalized Nash games which may be viewed as an interesting
counterpart of a feasibility result for limit points in the optimization framework, see
[4]. In Section 5, we describe how to modify our algorithm in a way that is tailored
to the computation of variational equilibria for jointly-convex GNEPs, and state
corresponding convergence theorems. Section 6 presents some numerical results,
and we conclude with some final remarks in Section 7.

Notation: Given a function f = f(x) of suitable dimension, we denote by ∇f
the transposed Jacobian of f . If xν is a given subvector of x, then ∇xνf denotes
the submatrix of ∇f which corresponds to the components xν . Furthermore, given
a scalar α, we write α+ for max{0, α}. Similarly, given a vector v, we write v+ for
the vector where the plus-operator is applied component-wise. When dealing with
a function, we occasionally also write f+(x) = (f(x))+. All vector norms (without
an index like ‖x‖) are Euclidean norms, the induced matrix norm is denoted by the
same symbol.

2 GNEP Constraint Qualifications

This section is dedicated to an analysis of constraint qualifications for GNEPs and
their properties. In the theory of augmented Lagrangian methods for optimization
problems, two constraint qualifications have proven to be particularly important: the
(extended) Mangasarian-Fromovitz constraint qualification and the constant posi-
tive linear dependence condition (see [4, 26]). Here, we present suitable extensions
of these conditions to the GNEP setting.

2.1 Constraint Qualifications

Recall that we have a GNEP of the form (1). The first condition we present is a
GNEP-tailored version of CPLD. Note that we call a collection of vectors v1, . . . , vk
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positively linearly dependent if the system λ1v1 + . . . + λkvk = 0, λi ≥ 0, has a
nontrivial solution. Otherwise, the vectors are called positively linearly independent.

Definition 2.1. Consider a GNEP of the form (1). Let ν be a given index and
x ∈ Rn be a given point with cν(x) ≤ 0. We say that cν satisfies CPLD with respect
to player ν or simply CPLDν if, whenever the partial gradients ∇xνc

ν
i (x) (i ∈ I) are

positively linearly dependent for some subset I ⊂ {i ∈ {1, . . . , rν} | cνi (x) = 0}, the
same gradients are linearly dependent in some neighbourhood of x. Moreover, we
say that the GNEP (1) satisfies GNEP-CPLD in x if, for every ν ∈ {1, . . . , N}, the
function cν satisfies CPLDν in x.

In the simplest case N = 1 (i.e. there is only one player), the above reduces to the
classical CPLD, cf. [26]. Hence, one might consider GNEP-CPLD as a straightfor-
ward generalization of CPLD to the multi-player setting. However, there are some
peculiarities that need to be pointed out. Clearly, the above condition only makes an
assertion about the partial gradients with regard to the respective player’s variable
xν . However, we require that the positive linear dependence (if there is one) extends
to a whole neighbourhood of x. This makes Definition 2.1 a condition which should
not be attributed to each player ν but rather to the GNEP as a whole.

We now define an analogue of the extended MFCQ. Here, we do not require the
point x to be feasible, hence the term extended MFCQ.

Definition 2.2. Consider a GNEP of the form (1). Let ν be a given index and
x ∈ Rn be a given point. We say that cν satisfies EMFCQ with respect to player ν
or simply EMFCQν if there is a vector dν ∈ Rnν such that

cνi (x) ≥ 0 =⇒ ∇xνc
ν
i (x)Tdν < 0

holds for every i ∈ {1, . . . , rν}. Moreover, we say that the GNEP (1) satisfies
GNEP-EMFCQ in x if, for every ν ∈ {1, . . . , N}, the function cν satisfies EMFCQν

in x.

While GNEP-CPLD seems to be a new constraint qualification for GNEPs, the
GNEP-EMFCQ condition is already used in [13, 18] to prove exactness results for
suitable penalty methods; apart from this, these references do not contain any fur-
ther discussion of GNEP-EMFCQ. Since both constraint qualifications play a central
role in our subsequent analysis, we therefore discuss their main properties in this
section.

To this end, first note that EMFCQ boils down to the classical MFCQ condition
in case of feasible points x. Hence, when dealing with feasible points, we will some-
times simply write GNEP-MFCQ instead of GNEP-EMFCQ. By use of a classical
theorem of the alternative, it is easy to see that Definition 2.2 can equivalently be
stated as the gradients ∇xνc

ν
i (x) (cνi (x) ≥ 0) being positively linearly independent.

This immediately shows that GNEP-MFCQ (for feasible points) implies GNEP-
CPLD.

Clearly, the above two CQs are conditions which are tailored to GNEPs. How-
ever, it is not immediately clear whether there is a relationship between the ”clas-
sical” constraint qualifications and their GNEP counterparts. In fact, one could
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simply concatenate the player constraints cν into one mapping

c(x) =

 c1(x)
...

cN(x)

 (2)

and ask whether we can reduce GNEP constraint qualifications to conditions for
this function. In general, however, this is not possible. To this end, consider the
following set of examples.

Example 2.3. In both examples, we have two players ν = 1, 2 with n1 = n2 := 1,
and the mapping c is defined by (2) with r1 = r2 := 1. To simplify the notation, we
write c1 and c2 instead of c11 and c21, respectively, for the two components of c.

(a) Consider the function

c(x1, x2) =

(
x1

x1 + x22

)
and the point x = (0, 0). Using d = (−1, 0), it follows that ∇c1(x)Td < 0 and
∇c2(x)Td < 0. Hence, standard EMFCQ holds for this constraint. However,
we have ∇x2c2(x) = 0, which means that EMFCQ2 cannot hold. In fact, even
CPLD2 is not satisfied since ∇x2c2(x) = 2x2 for all x ∈ R.

(b) Consider the function

c(x1, x2) =

(
2x1 − x22 − 1
2x2 − x21 − 1

)
and the point x = (1, 1). Due to ∇x1c1(x) = ∇x2c2(x) = 2, it is clear that
GNEP-EMFCQ holds in x. On the other hand, the gradients of c are given by

∇c1(x) =

(
2
−2x2

)
, ∇c2(x) =

(
−2x1

2

)
.

This shows that c satisfies neither EMFCQ nor CPLD in x.

These examples show that, in general, the classical CPLD and EMFCQ are entirely
different conditions in comparison to their GNEP counterparts. There is, however,
an important special case which arises if the functions cν depend on xν only, so
we have a standard NEP. In this case, the transposed Jacobian ∇c(x) is a block
diagonal matrix of the form

∇c(x) =

∇x1c
1(x1)

. . .

∇xN c
N(xN)

 with ∇xνc
ν(xν) ∈ Rnν×rν . (3)

This makes it easy to prove that GNEP-CPLD is equivalent to CPLD (for the
function c), and the same holds with CPLD replaced by EMFCQ. The precise proof,
however, is rather technical.
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Theorem 2.4. Consider a GNEP of the form (1) where θν and cν are C1-functions,
and let c be given by (2) with cν depending on xν alone. If x ∈ Rn is a given point,
then the following assertions are true:

(a) If x is feasible, then GNEP-CPLD holds in x iff c satisfies CPLD in x.

(b) GNEP-EMFCQ holds in x iff c satisfies EMFCQ in x.

Proof. Let us define the sets

I = {i ∈ {1, . . . , r} | ci(x) ≥ 0}, Iν = {i ∈ {1, . . . , rν} | cνi (x) ≥ 0}

of active or violated indices with regard to c and cν , respectively, at the given point
x. Note that, in the setting of (a), there are no violated constraints.

(a) First assume that CPLD holds at x. In order to verify GNEP-CPLD at x, con-
sider an arbitrary player ν and assume that there is a subset Jν ⊆ Iν such that
the partial gradients ∇xνc

ν
i (x) (i ∈ Jν) are positively linearly dependent. Since the

mappings cνi depend on xν only, this implies that the corresponding full gradients
∇cνi (x) (i ∈ Jν) are also positively linearly dependent. Furthermore, due to the defi-
nition of c, the set Jν corresponds to some set of indices J ⊆ I, i.e. each cνi (i ∈ Jν) is
equal to some cj (j ∈ J). Since CPLD holds at x by assumption, it follows that the
full gradients ∇cj(x) (j ∈ J) are linearly dependent for all x from a neighbourhood
of x. Exploiting once again the fact that cνi = cj depends on xν alone, this implies
that the corresponding partial gradients ∇xνc

ν
i (x) (i ∈ Jν) are linearly dependent.

Hence GNEP-CPLD holds at x.
For the converse direction, let GNEP-CPLD be satisfied at x. Suppose that the

gradients ∇ci(x) (i ∈ J) are positively linearly dependent for some index set J ⊆ I.
Barring some simple re-indexing, we can partition J into suitable sets Jν ⊆ Iν

(some of these index sets might be empty). Exploiting the block structure from
(3), it follows that there exists an index ν such that the subset of full gradients
∇ci(x) (i ∈ Jν) are positively linearly dependent. This is equivalent to the corre-
sponding partial gradients ∇xνc

ν
i (x) (i ∈ Jν) being positively linearly dependent.

By GNEP-CPLD, the partial gradients ∇xνc
ν
i (x) (i ∈ Jν) are linearly dependent

for every x in a sufficiently small neighbourhood of x. Again using (3), it follows
that the full gradients ∇cνi (x) (i ∈ Jν) are linearly dependent. Since Jν ⊆ J , this
implies that the full gradients ∇ci(x) (i ∈ J) are linearly dependent for all x close
to x. Hence CPLD holds at x.

(b) Assume that GNEP-EMFCQ holds at x. Then, for each player ν, there exists a
vector dν ∈ Rnν such that ∇xνc

ν
i (x)Tdν < 0 (i ∈ Iν). Now, let d = (d1, . . . , dN), and

take an arbitrary index i ∈ I. It follows that ci is equal to cνj for some ν ∈ {1, . . . , N}
and j ∈ {1, . . . , rν}. Hence, by (3), we have ∇ci(x)Td = ∇xνc

ν
j (x

ν)Tdν < 0. This
implies that EMFCQ holds at x.

Conversely, assume that EMFCQ is satisfied at x. Then there exists a vector
d such that ∇ci(x)Td < 0 for all i ∈ I. Let us partition the vector d into d =
(d1, . . . , dN) with dν ∈ Rnν for all ν = 1, . . . , N . Take an index ν ∈ {1, . . . , N}
and choose j ∈ Iν . Then cνj corresponds to an index i ∈ I. Exploiting again the
particular structure from (3), it follows that ∇xνc

ν
j (x)Tdν = ∇ci(x)Td < 0 (note

that the same subvector dν works for all j ∈ Iν). Hence GNEP-EMFCQ holds at
x.
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We now prove two theorems which establish the role of GNEP-CPLD and GNEP-
EMFCQ as constraint qualifications. These theorems play a fundamental role in our
analysis and will be referenced multiple times later on. It should be noted, however,
that the proofs are obtained by suitable adaptations of the corresponding proofs for
classical optimization problems.

Theorem 2.5. Consider a GNEP of the form (1) where θν and cν are C1-functions.
Let (xk) ⊂ Rn be a sequence converging to x and (λν,k) ⊂ Rrν be sequences of
multipliers such that

∇xνθ
ν(xk) +∇xνc

ν(xk)λν,k → 0 and min{−cν(xk), λν,k} → 0 (4)

holds for every ν. If GNEP-CPLD holds in x, then x together with some multiplier
λ is a KKT point of the GNEP.

Proof. Let ν ∈ {1, . . . , N}. Since the relations (4) remain true if we replace λν,k by
λν,k+ , we may assume, without loss of generality, that λν,k ≥ 0 for all k. Furthermore,

we have λν,ki → 0 for every i with cνi (x) < 0. Hence, we get

∇xνθν(x
k) +

∑
cνi (x)=0

λν,ki ∇xνc
ν
i (x

k)→ 0.

Using a Carathéodory-type result, cf. [4, Lem. 3.1], we can choose subsets

Iν,k ⊂ {i | cνi (x) = 0}

such that the gradients ∇xνci(x
k) (i ∈ Iν,k) are linearly independent and we can

write ∑
cνi (x)=0

λν,ki ∇xνc
ν
i (x

k) =
∑
i∈Iν,k

λ̂ν,ki ∇xνc
ν
i (x

k)

for some vectors λ̂ν,k ≥ 0. Subsequencing if necessary, we may assume that Iν,k = Iν

for every k, i.e. we get

∇xνθν(x
k) +

∑
i∈Iν

λ̂ν,ki ∇xνc
ν
i (x

k)→ 0. (5)

We claim that the sequence (λ̂ν,k) is bounded. If this is not the case, then we
can divide both sides of the above equation by ‖λ̂ν,k‖, take the limit k → ∞ on
a suitable subsequence and obtain a nontrivial positive linear combination of the
gradients ∇xνci(x), i ∈ Iν , which vanishes. Hence, by CPLD, these gradients should
be linearly dependent in a neighbourhood of x, which is a contradiction.

Hence (λ̂ν,k) is bounded; let λ
ν

i (i ∈ Iν) be a limit point. Setting λ
ν

i := 0 for all
i 6∈ Iν , and taking into account (5), it follows that x together with the multiplier λ

ν

satisfies the KKT conditions of player ν. Since ν ∈ {1, . . . , N} was chosen arbitrarily,
the statement follows.

Note that assumption (4) means that xk, together with some multiplier estimate λν,k,
satisfies the KKT conditions of player ν inexactly. In contrast to the approximate
KKT conditions used in [4] (also applied in [21]), however, we do not assume that the
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multiplier estimates are nonnegative which gives some more freedom in our choice
of methods for computing approximate KKT points. Furthermore, let us mention
explicitly that (4) automatically implies that any limit point of the sequence (xk) is
at least feasible for the GNEP (1).

We also stress that, as is usually the case with CPLD-type conditions, the ν-th
component of the vector λ is not necessarily a limit point of the sequence (λν,k). This
property is, in general, only true if we assume a stronger constraint qualification.
To this end, consider the following theorem which uses GNEP-MFCQ (recall the
feasibility of the limit points, hence there is no need to assume GNEP-EMFCQ).

Theorem 2.6. Consider a GNEP of the form (1) where θν and cν are C1-functions.
Let (xk) ⊂ Rn be a sequence converging to x and (λν,k) ⊂ Rrν be sequences of
multipliers such that (4) holds for every ν. If GNEP-MFCQ holds in x, then the
sequences (λν,k) are bounded. Moreover, if λ

ν
is a limit point of (λν,k) for every ν,

then x together with λ = (λ
1
, . . . , λ

N
) is a KKT point of the GNEP.

Proof. Clearly, it suffices to show the boundedness. To this end, let ν ∈ {1, . . . , N}
be an arbitrary player. By assumption, we have λν,ki → 0 for every i with cνi (x) < 0.
Hence, recalling that x is feasible by (4), we get

∇xνθν(x
k) +

∑
cνi (x)=0

λν,ki ∇xνc
ν
i (x

k)→ 0.

Assume now, by contradiction, that ‖λν,k‖ → ∞. Dividing the above equation by
‖λν,k‖, we obtain

∑
cνi (x)=0

αν,ki ∇xνc
ν
i (x

k)→ 0, where αν,k =
λν,k

‖λν,k‖
.

Obviously, (αν,k) is bounded and has a limit point αν with αν ≥ 0 and ‖αν‖ = 1.
Hence, we obtain ∑

cνi (x)=0

ανi∇xνc
ν
i (x) = 0,

which contradicts GNEP-MFCQ.

The previous results indicate that GNEP-MFCQ is a more practical property than
GNEP-CPLD, because it allows us to explicitly construct the multipliers which make
x a KKT point. However, when dealing with approximate KKT conditions of the
type

∇xνθν(x
k) +∇xνc

ν(xk)λν,k → 0 (6)

we will typically use an inexact stopping criterion. That is, we stop the iteration
as soon as the left-hand side of the above equation is sufficiently close to zero,
regardless of whether λν,k is close to a multiplier λ

ν
which satisfies ∇xνθν(x) +

∇xνc
ν(x)λ

ν
= 0. It is a peculiarity of GNEP-CPLD that the sequence of multipliers

can be unbounded, but we still have the approximate KKT condition (6).
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2.2 An Error Bound Result

There exist different types of error bounds in the optimization literature. One class
of error bounds provides a computable estimate for the distance of a given point to
the solution set or the set of KKT points, the other class provides a measure for
the distance to the feasible set. For GNEPs, there exist some error bound results of
the former type, see the papers [7, 20], whereas here we use our GNEP constraint
qualifications to show that they can be used to obtain an error bound of the latter
type.

To this end, consider a GNEP of the form (1) where cν is the constraint function
of player ν. It will be convenient to define the sets

Xν(x
−ν) = {xν ∈ Rnν | cν(xν , x−ν) ≤ 0}.

It is well known that, for classical optimization problems, the CPLD constraint
qualification implies a local error bound on the feasible set, see [1]. This result can
readily be applied to GNEPs if we consider the concatenated constraint function c
from (2). This yields an error bound on the distance to the set

X = {x ∈ Rn | c(x) ≤ 0},

i.e. the set of points which are feasible for every player. However, this set is not
natural to GNEPs since it does not preserve the structure of the players’ individual
optimization problems. Furthermore, we cannot expect such an error bound to hold
without additional requirements on the partial gradients ∇xµc

ν(x), µ 6= ν, of player
ν’s constraint function with respect to another player µ. Hence, it is more natural
to ask for player-specific error bounds of the form

dist(xν , Xν(x
−ν)) ≤ C‖cν+(x)‖, (7)

which measure the distance of xν to the corresponding set Xν(x
−ν). Special care

needs to be taken because the set Xν(x
−ν) could be empty. In fact, this latter

point is where the theory of GNEP error bounds is substantially different from the
corresponding theory for classical optimization problems. To see this, consider a
point x and a player ν such that xν is on the boundary of Xν(x

−ν). Two questions
need to be considered:

• Is there a neighbourhood U of x such that the set Xν(y
−ν) is nonempty for

every y ∈ U?

• If yk is a sequence of points converging to x, does the sequence of distances
dk = dist(yν,k, Xν(y

−ν,k)) converge to zero?

It is particularly the second question which poses significant difficulties to our anal-
ysis. In fact, a consequence of these problems is that GNEP-CPLD is not strong
enough to imply a partial error bound.

Example 2.7. (a) Consider a jointly-convex GNEP with two players, each con-
trolling a single variable. For simplicity, we denote the variables by x and
y. The constraint function is given by c1(x, y) = c2(x, y) = x. Clearly,
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x

y

(ε, y)

X2(ε) = ∅

x

y

(1, ε)X1(ε)

Figure 1: Illustration of Example 2.7(a) (left) and (b) (right).

GNEP-CPLD holds at every feasible point, because the constraints are lin-
ear. However, given any point (0, y) on the boundary of the feasible region and
a neighbourhood U , there are points (x, y) ∈ U such that X2(x) is empty. For
instance, we can simply choose (x, y) = (ε, y) for any ε > 0, cf. Figure 1 (left).

(b) Consider another GNEP with two players, each controlling a single variable.
Like above, we write x and y. Let player 1’s (smooth!) constraint function
be given by c1(x, y) = y − min{0, x}2. Consider the feasible point (x, y) =
(1, 0). The function c1 is linear in a neighbourhood of (x, y), which implies
that GNEP-CPLD holds. Furthermore, unlike with example (a), the set X1(y)
is nonempty for every (x, y) in a neighbourhood of (x, y). Despite this, an
error bound does not hold because, given any point (x, y) = (1, ε) with ε > 0,
it holds that dist(x,X1(y)) = 1 +

√
ε, cf. Figure 1 (right).

Despite this negative result, it turns out that GNEP-MFCQ does imply an error
bound. In order to show this, we first prove a technical lemma.

Lemma 2.8. For a GNEP of the form (1), let ν be a given index, let x be a given
point with cν(x) ≤ 0 and assume that cν satisfies MFCQν in x. Then we have the
following properties:

(a) There is a neighbourhood U of x such that, for every y ∈ U , the set Xν(y
−ν)

is nonempty.

(b) Given ε > 0, we can choose a neighbourhood U of x such that, for every y ∈ U ,
there is a point zν ∈ Xν(y

−ν) with ‖zν − yν‖ ≤ ε.

Proof. Since statement (b) implies (a), it suffices to show assertion (a). To this
end, let ε > 0 be a positive number. By MFCQν , there is a vector dν ∈ Rnν

such that ∇xνc
ν
i (x)Tdν < 0 holds for every i with cνi (x) = 0. By the mean value

theorem and the continuity of cν , this implies that, for sufficiently small t > 0,
the point xt = (xν + tdν , x−ν) is strictly feasible for player ν, i.e. cνi (x

t) < 0 for
all i = 1, . . . , rν and all t > 0 sufficiently small. We then choose t > 0 small
enough so that ‖xt−x‖ ≤ ε/2 and, subsequently, a radius r > 0 such that the (full-
dimensional) neighbourhood Br(xt) consists of feasible points for player ν; note that
the latter exists by the continuity of cν and the strict feasibility of xt for player ν.
Now, set r′ = min{r, ε/2} and U = Br′(x). We claim that this set U has the
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desired properties. In fact, take an arbitrary element y ∈ U , and define zν :=
xν + tdν . Then we have (zν , y−ν) ∈ Br(xt) and hence zν ∈ Xν(y

−ν). Furthermore,
‖xν − yν‖ ≤ ‖x− y‖ ≤ r′ ≤ ε/2 and ‖zν − xν‖ = ‖tdν‖ = ‖xt− x‖ ≤ ε/2, hence the
triangle inequality implies ‖zν − yν‖ ≤ ‖zν − xν‖ + ‖xν − yν‖ ≤ ε. This completes
the proof.

The above lemma guarantees that, for y in a vicinity of a given point x, the projection
of yν onto the feasible set Xν(y

−ν) is sufficiently well-behaved. Roughly speaking,
if y is close to x, then there is a feasible point (zν , y−ν) which is close to y (and
hence, close to x). Note that, in view of the previous examples, GNEP-CPLD is not
enough to even imply part (a) of the lemma.

Theorem 2.9. For a GNEP of the form (1), let ν be a given index and x be a
given point with cν(x) ≤ 0. Assume that cν satisfies MFCQν in x and ∇xνc

ν is
Lipschitz-continuous in a neighbourhood of x. Then there is a constant C > 0 and
a neighbourhood U of x such that, for every y ∈ U , we have the error bound (7).

Proof. By Lemma 2.8 (a), there is a neighbourhood Ũ of x such that, for every
y ∈ Ũ , the set Xν(y

−ν) is nonempty. By the local Lipschitz continuity of ∇xνc
ν , we

can choose Ũ small enough so that there is a constant C1 > 0 with

cνi (z) +∇zνc
ν
i (z)T (yν − zν) ≤ cνi (y) + C1‖zν − yν‖2 (8)

for every i = 1, . . . , rν and y, z ∈ Ũ with y−ν = z−ν . Now, let y ∈ Ũ be an infeasible
point for player ν (for feasible points, there is nothing to prove), and let zν = zν(y)
be a projection of yν onto the (nonempty and closed, but not necessarily convex)
set Xν(y

−ν), i.e. zν is a solution of the optimization problem

min ‖ξν − yν‖ s.t. cν(ξν , y−ν) ≤ 0. (9)

For brevity, we write z = (zν , y−ν). Since MFCQν holds at x, this condition also
holds in a neighbourhood of x. Taking into account Lemma 2.8 (b), it follows that
the point z is arbitrarily close to y. Hence, without loss of generality, we can assume
that MFCQν holds at z. It then follows that zν satisfies the KKT condition

zν − yν

‖zν − yν‖
+∇zνc

ν(z)λν = 0

of the optimization problem (9), where λν = λν(y) ∈ Rrν denotes a corresponding
(nonnegative) Lagrange multiplier. Premultiplying this equation by (zν−yν)T yields

‖zν − yν‖ = (λν)T∇zνc
ν(z)T (yν − zν) ≤

∑
i∈Iν

λνi∇zνc
ν
i (z)T (yν − zν),

where Iν = Iν(y) is the set of indices for which the corresponding term in the sum is
positive. Since λνi ≥ 0 for all i = 1, . . . , rν , this implies λνi > 0 and ∇zνc

ν
i (z)T (yν −

zν) > 0 for all i ∈ Iν . In particular, we have cνi (z) = 0 for every i ∈ Iν . Furthermore,
Theorem 2.6 implies the existence of a constant C2 > 0 such that ‖λν(y)‖ ≤ C2 for
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every y ∈ Ũ . We now apply Lemma 2.8 (b) with ε = (2rνC1C2)
−1 and obtain a

neighbourhood U ⊂ Ũ of x with ‖zν(y)− yν‖ ≤ ε for every y ∈ U . It follows that

‖zν − yν‖ ≤
∑
i∈Iν

λνi︸︷︷︸
≤C2

∇zνc
ν
i (z)T

(
yν − zν

)︸ ︷︷ ︸
>0

≤ C2

∑
i∈Iν

(
cνi (z)︸ ︷︷ ︸
=0

+∇zνc
ν
i (z)T

(
yν − zν

))
(8)

≤ C2

∑
i∈Iν

(
cνi (y) + C1‖zν − yν‖2

)
≤ C2

∑
i∈Iν

cνi (y) + C1C2rν‖zν − yν‖2

and hence

‖zν − yν‖ − rνC1C2‖zν − yν‖2 ≤ C2

∑
i∈Iν

cνi (y) ≤ C2‖cν+(y)‖1

for every y ∈ U . This implies the desired error bound, since

‖zν − yν‖ − rνC1C2‖zν − yν‖2 ≥
1

2
‖zν − yν‖

by the definition of ε.

The above theorem establishes player-individual error bounds for GNEPs which
satisfy GNEP-MFCQ. Note that this does not imply an error bound to the set X
of points which are feasible for the GNEP as a whole. In fact, the latter set could
be empty and Theorem 2.9 still holds.

3 An Augmented Lagrangian Method

This section describes an augmented Lagrangian method for GNEPs. Due to the
nature of our penalization scheme, we have decided to adjust the notation in a
manner that accounts for the possibility of partial penalization. To this end, we
replace the constraint functions cν from (1) by pairs of functions

cν =

(
gν

hν

)
with gν : Rn → Rmν , hν : Rn → Rpν (i.e. rν = mν + pν)

both of which are assumed to be at least continuously differentiable. Similarly to
the previous notation, we write

m := m1 + . . .+mN , p := p1 + . . .+ pN

and consider a GNEP where player ν has to solve the optimization problem

min
xν

θν(x) s.t. gν(x) ≤ 0, hν(x) ≤ 0. (10)

In principle, this is exactly the same problem as (1). However, the two functions gν

and hν play completely different roles in our method. More precisely, gν describes
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the set of constraints which we will penalize, whereas hν is an (optional) constraint
function which will stay as a constraint in the penalized subproblems. We stress that
this framework is very general and gives us some flexibility to deal with different
situations. The most natural choices are probably the following ones:

1. Penalize all contraints. This full penalization approach is probably the simplest
and most straightforward approach where, formally, we set pν = 0 for every
player. The resulting subproblems are unconstrained NEPs and are therefore,
in principle, simple to solve. Note that, since we use an augmented Lagrangian
method, these subproblems are still smooth in contrast to the (exact) penalty
schemes investigated in [13, 18].

2. Another natural splitting is the case where hν covers all constraints that de-
pend on xν only, whereas gν subsumes the remaining constraints. The re-
sulting penalized problems then become standard (constrained) NEPs and are
therefore easier to solve than the given GNEP since the (presumably) difficult
constraints are moved to the objective function.

3. Finally, the functions hν might, in addition to those constraints depending
on xν only, also contain some constraints that depend on the whole vector
x, like some joint constraints for all players. The advantages is that these
constraints might yield a compact feasible set, so this approach might be
useful to guarantee the solvability of the resulting subproblems. The latter
are, in general, more complicated in this case, but might still be easier than
the original GNEP, for example, in the particular case where the penalized
subproblem becomes a jointly-convex GNEP.

In any case, from now on, we consider GNEPs where player ν has to solve problems
of the form (10) (recall that hν might not exist). Since we perform a partial penal-
ization of (10), we obtain a penalized GNEP where each player ν has to solve the
optimization problem

min
xν

Lνa(x, u
ν ; ρν) s.t. hν(x) ≤ 0 (11)

for some parameters uν and ρν which will typically vary in each iteration. The
function Lνa is the augmented Lagrangian of player ν. A typical choice is

Lνa(x, u; ρ) = θν(x) +
ρ

2

∥∥∥∥(gν(x) +
u

ρ

)
+

∥∥∥∥2 ,
which is the classical Powell-Hestenes-Rockafellar augmented Lagrangian (see [27])
of the optimization problem

min
xν

θν(x) s.t. gν(x) ≤ 0.

Note that multiple variants of Lνa exist in the literature.
We proceed by stating our algorithmic framework. Whenever there is a sequence

such as (λk) which consists of components for each player, we will indicate the
sequences of each player by (λν,k). That is, we have λk =

(
λ1,k, . . . , λN,k

)
. We use

this notation whenever applicable.
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Algorithm 3.1. (Augmented Lagrangian method for GNEPs)

(S.0) Let umax ≥ 0, τν ∈ (0, 1), γν > 1 and ρν,0 > 0 for all ν = 1, . . . , N . Choose
x0 ∈ Rn, λ0 ∈ Rm, µ0 ∈ Rp, u0 ∈ [0, umax]m, and set k := 0.

(S.1) If (xk, λk, µk) is an approximate KKT point of the GNEP: STOP.

(S.2) Compute an approximate KKT point (to be defined below) (xk+1, µk+1) of the
GNEP consisting of the minimization problems

min
xν

Lνa(x, u
ν,k; ρν,k) s.t. hν(x) ≤ 0 (12)

for each player ν = 1, . . . , N .

(S.3) For ν = 1, . . . , N , update the vector of multipliers to

λν,k+1 =
(
uν,k + ρν,kg

ν(xk+1)
)
+
. (13)

(S.4) For all ν = 1, . . . , N , if∥∥min{−gν(xk+1), λν,k+1}
∥∥ ≤ τν

∥∥min{−gν(xk), λν,k}
∥∥, (14)

then set ρν,k+1 := ρν,k. Else, set ρν,k+1 := γνρν,k.

(S.5) Set uk+1 = min{λk+1, umax}, k ← k + 1, and go to (S.1).

Some comments are due. First among them is the fact that the objective functions
in (12) are continuously differentiable, and their gradients are given by

∇Lνa(x, u; ρ) = ∇θν(x) +∇gν(x) (u+ ρgν(x))+ ;

a similar expression holds for the partial gradients with respect to xν . Note that
Lνa is, in general, not twice differentiable even if all functions involved in our GNEP
from (10) are twice continuously differentiable, however, the above expression of the
gradient clearly shows that the gradient of Lνa is still (strongly) semismooth, see,
e.g., [15] for more details.

Secondly, it should be noted that the sequence (uk) plays an essential role in
the algorithm. Due to the formula in Step 5, it is natural to think of uk as a
safeguarded analogue of λk. In fact, the boundedness of (uk) is the single property
which is most important to our convergence theory. To this end, it should be noted
that we could have used individual bounds uν,max for every player or even specialized
bounds uν,max

i for every component of λν,k. However, we have decided to avoid this
notational overhead for the sake of simplicity.

Our third comment is a practical one. Clearly, the main cost for a single iteration
of Algorithm 3.1 lies in Step 2, where we have to (approximately) solve a penalized
GNEP. Hence, the overall feasibility of the method crucially depends on the solution
of these subproblems. In an ideal scenario, we are able to compute approximate
solutions for the penalized GNEPs relatively cheaply. However, we are yet to specify
what we mean by ”approximate solutions”. To this end, consider the following
assumption.
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Assumption 3.2. At Step 2 of Algorithm 3.1, we obtain xk+1 ∈ Rn and µk+1 ∈ Rp

with ∥∥∇xνL
ν
a(x

k+1, uν,k; ρν,k) +∇xνh
ν(xk+1)µν,k+1

∥∥ ≤ εk

‖min{−hν(xk+1), µν,k+1}‖ ≤ ε′k

for every ν. Here, (εk) ⊂ R+ is bounded and (ε′k) ⊂ R+ tends to zero.

Of course, when dealing with optimality theorems, we will make the additional
assumption that εk → 0.

At first glance, it seems that Assumption 3.2 is nothing but an approximate KKT
condition for the subproblem given by (12). However, we do not require the multi-
pliers µν,k to be nonnegative. This is because the second condition already implies
that lim infk→∞ µ

ν,k ≥ 0 for every ν, where the limit is understood component-wise.
In other words, every limit point of the sequence (µν,k) must be nonnegative, but the
values µν,k themselves are allowed to be negative. This has the benefit that, when
computing approximate solutions of (12), we allow the solutions to be inexact even
in the sense that the multipliers could become negative. From a practical point of
view, this difference plays some role because it allows, for example, the application
of semismooth Newton-type methods for the inexact solution of the resulting pe-
nalized subproblems (which, in general, do not guarantee the nonnegativity of the
multiplier estimates).

Let us also stress that we do not assume that we solve (or approximately solve)
the penalized subproblems in (S.4), only (approximate) KKT points are required.
This is of particular importance since, in principle, our method should be able to
deal with nonconvex problems, i.e. with GNEPs which, in general, are neither player-
convex nor jointly-convex. Of course, this general setting does not allow us to get
solutions of the original GNEP, but the subsequent convergence theory still shows
that we get something useful as limit points.

As a final note, it is evident that Assumption 3.2 can be simplified in the case
of full penalization. Here, we can equivalently state the assumption as∥∥∇xνL

ν
a(x

k+1, uν,k; ρν,k)
∥∥ ≤ εk

and omit the auxiliary parameters µν,k and ε′k.

4 Convergence Analysis

We proceed with a thorough convergence analysis for Algorithm 3.1. The analysis
is split into two parts: one which deals with the feasibility of limit points and one
which deals with optimality. Throughout this section, we will implicitly assume that
the method generates an infinite sequence (xk), i.e. the stopping criterion in Step 1
of Algorithm 3.1 is never satisfied.

4.1 Feasibility

A central question in all penalty- and augmented Lagrangian-type schemes is the
feasibility of limit points. This problem also arises for standard optimization prob-
lems. Due to some recent results in this area, see [4] and references therein, it turns
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out that augmented Lagrangian methods have a very favourable property regarding
feasibility, namely that, under mild conditions, every limit point has a minimizing
property with respect to the constraint violation.

Here we try to find a counterpart of this result for GNEPs that will also play a
central role within our subsequent optimality results. It turns out that this coun-
terpart is a secondary GNEP defined by the constraint functions gν and hν alone,
where player ν has to solve the optimization problem

min
xν
‖gν+(x)‖2 s.t. hν(x) ≤ 0. (15)

We will refer to this problem as the Feasibility GNEP since it describes the best
we can expect regarding the feasibility of the limit points: player ν minimizes the
violation of the penalized constraints given by gν (with respect to his own variables
xν) under the non-penalized constraints described by hν .

We will now see that the behaviour of Algorithm 3.1 crucially depends on the
structure of this auxiliary problem. More precisely, under certain assumptions, every
limit point of our algorithm is a solution of the Feasibility GNEP.

Lemma 4.1. Let (xk) be generated by Algorithm 3.1 under Assumption 3.2 and let
x be a limit point of (xk+1)K for some K ⊂ N. Then there are multipliers (µ̂k+1),
k ∈ K, such that the approximate KKT conditions

∇xν‖gν+(xk+1)‖2 +∇xνh
ν(xk+1)µ̂ν,k+1 →K 0 (16)

min{−hν(xk+1), µ̂ν,k+1} →K 0

of (15) hold for every ν.

Proof. Let ν ∈ {1, . . . , N}. Clearly, Assumption 3.2 implies that hν(x) ≤ 0. If the
sequence (ρν,k) is bounded, (14) implies gν(x) ≤ 0. Hence, in this case, (16) follows
by simply setting µ̂ν,k+1 := 0. Assume now that (ρν,k) is unbounded. For k ∈ K,
consider the sequence (µν,k+1) from Assumption 3.2 and define

αk = ∇xνθν(x
k+1) +∇xνg

ν(xk+1)(uν,k + ρν,kg
ν(xk+1))+ +∇xνh

ν(xk+1)µν,k+1.

By Assumption 3.2, (αk) is bounded. Dividing by ρν,k, we see that

αk

ρν,k
=

1

ρν,k
∇xνθν(x

k+1) +∇xνg
ν(xk+1)

(
uν,k

ρν,k
+ gν(xk+1)

)
+

+∇xνh
ν(xk+1)

µν,k+1

ρν,k

approaches zero. For every i with gνi (x) < 0, we have (uν,ki /ρν,k + gνi (xk+1))+ = 0 for
sufficiently large k ∈ K. Hence, we obtain

∑
gνi (x)≥0

max

{
0,
uν,ki
ρν,k

+ gνi (xk+1)

}
∇xνg

ν
i (xk+1) +∇xνh

ν(xk+1)
µν,k+1

ρν,k
→ 0.

Since uν,ki /ρν,k → 0 by the boundedness of (uν,k), this implies that∑
gνi (x)≥0

gνi (xk+1)∇xνg
ν
i (xk+1) +∇xνh

ν(xk+1)
µν,k+1

ρν,k
→ 0. (17)
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Let us define

Iν(x) :=
{
i | gνi (x) ≥ 0

}
, Iν(xk+1) :=

{
i | gνi (xk+1) ≥ 0

}
.

Then Iν(xk+1) ⊆ Iν(x) for all k ∈ K sufficiently large. Furthermore, let

µ̂ν,k+1 :=
µν,k+1

ρν,k
∀k ∈ K.

Then Assumption 3.2 immediately shows that the second part of (16) holds. Fur-
thermore, the first part also holds since

∇xν
1

2

∥∥gν+(xk+1)
∥∥2 +∇xνh

ν(xk+1)µ̂ν,k+1

=
∑

i∈Iν(xk+1)

gνi (xk+1)∇xνg
ν
i (xk+1) +∇xνh

ν(xk+1)µ̂ν,k+1

=
∑

i∈Iν(x)

gνi (xk+1)∇xνg
ν
i (xk+1) +∇xνh

ν(xk+1)µ̂ν,k+1

︸ ︷︷ ︸
→K0 by (17)

−
∑

i∈Iν(x)\Iν(xk+1)

gνi (xk+1)∇xνg
ν
i (xk+1)︸ ︷︷ ︸

→K0 since gνi (x)=0

→K 0.

This completes the proof.

Clearly, (16) is an approximate KKT condition which we have already encountered
in Theorems 2.5 and 2.6. This immediately yields the following corollary.

Corollary 4.2. Let (xk) be generated by Algorithm 3.1 under Assumption 3.2, x be
a limit point of (xk) and assume that, for every ν, the function hν satisfies CPLDν

in x. Then x is a KKT point of the Feasibility GNEP (15).

Proof. This is a direct consequence of Lemma 4.1 and Theorem 2.5.

The above results establish the aforementioned connection between Algorithm 3.1
and the Feasibility GNEP. Hence, it is natural to ask for the solution set of this
auxiliary problem. Clearly, every feasible point of the original GNEP is a solution
of (15), since the objective functions are zero. The converse is not true, in general,
unless we assume some regularity conditions. The most important example is given
in the following theorem.

Theorem 4.3. Let x be a KKT point of the Feasibility GNEP and assume that the
original GNEP satisfies GNEP-EMFCQ in x. Then we have gν(x) ≤ 0 for every
ν, i.e., x is feasible for the GNEP from (10); in particular, x is a solution of the
Feasibility GNEP (15).

Proof. Assume that there is a ν ∈ {1, . . . , N} and an ` ∈ {1, . . . ,mν} such that
gν` (x) > 0. By assumption, there are multipliers wν ∈ Rpν such that

∇xν‖gν+(x)‖2 +∇xνh
ν(x)wν = 0 and min{−hν(x), wν} = 0
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holds. After removing some vanishing terms, we obtain

2
∑

gνi (x)>0

gνi (x)∇xνg
ν
i (x) +

∑
hνj (x)=0

wνj∇xνh
ν
j (x) = 0.

Premultiplication of this equation with dν , where dν is the vector from GNEP-
EMFCQ, yields a contradiction.

The above theorem shows that our convergence theory naturally comprises GNEP-
EMFCQ. Of course, we could easily have carried out our analysis without even con-
sidering the (weaker) GNEP-CPLD. However, we believe that the theorems above
together with the Feasibility GNEP most clearly explain the structure and behaviour
of Algorithm 3.1, especially with regard to our GNEP-tailored constraint qualifica-
tions.

Another interesting case in which the Feasibility GNEP has some structural
properties is the following, which covers, as a special case, the jointly-convex GNEP.
Assume that the functions gν describe a shared constraint (which we denote by g)
and that hν is a function of xν only. Furthermore, assume that both g and hν are
convex. Hence, player ν’s optimization problem takes the form

min
xν

θν(x) s.t. g(x) ≤ 0, hν(xν) ≤ 0. (18)

For such GNEPs, we can prove the following theorem which makes the same assertion
as Theorem 4.3. Note, however, that we do not require any further constraint
qualifications, particularly for the function g.

Theorem 4.4. Consider a GNEP of the form (18) with g, hν being convex, and
assume that the GNEP has feasible points. Then, if x is a KKT point of the corre-
sponding Feasibility GNEP, we have g(x) ≤ 0, i.e. x is feasible for (18).

Proof. Since x is a KKT point of the Feasibility GNEP, there are multipliers wν

such that

∇xν‖g+(x)‖2 +∇hν(xν)wν = 0 and min{−hν(xν), wν} = 0

for every ν. Hence, x together with w = (w1, . . . , wN) is a KKT point of the
optimization problem

min ‖g+(x)‖2 s.t. h1(x1) ≤ 0, . . . , hN(xN) ≤ 0.

Note that this is a convex optimization problem. Hence the KKT point is a global
minimum of this minimization problem. By assumption, however, the feasible set
of (18) is nonempty. This implies that g+(x) = 0, hence the assertion follows.

The results in this section have shown that Algorithm 3.1 does (in some sense) tend
to achieve feasibility. However, it should be noted that our analysis does not exclude
the possibility of the sequence (xk) converging to an infeasible point. For instance,
the Feasibility GNEP could have solutions which are not feasible for (10). This is
particularly plausible if GNEP-EMFCQ is not satisfied or the constraint functions
gν , hν are not convex.
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4.2 Optimality

We proceed by discussing the optimality of limit points of Algorithm 3.1 applied to
the general GNEP from (10). To this end, we recall Assumption 3.2. If we assume
εk → 0, the assumption can be stated as

∇xνL
ν
a(x

k+1, uν,k; ρν,k) +∇xνh
ν(xk+1)µν,k+1 → 0,

min{−hν(xk+1), µν,k+1} → 0.

By expanding the augmented Lagrangian, we obtain

∇xνθν(x
k+1) +∇xνg

ν(xk+1)λν,k+1 +∇xνh
ν(xk+1)µν,k+1 → 0, (19)

which already suggests that the sequence xk satisfies an approximate KKT condition
for the GNEP (10). In fact, we can prove the following lemma.

Lemma 4.5. Let (xk) be a sequence generated by Algorithm 3.1 under Assumption
3.2, where εk ↓ 0, and let x be a limit point of (xk) on some subsequence K ⊂ N. If
x is feasible, we have

∇xνθν(x
k) +∇xνg

ν(xk)λν,k +∇xνh
ν(xk)µν,k →K 0

min{−gν(xk), λν,k} →K 0, min{−hν(xk), µν,k} →K 0.

for every ν.

Proof. We only need to prove the second assertion. To this end, let ν and i be given
indices such that gνi (x) < 0. If (ρν,k) is bounded, (14) implies that λν,ki →K 0. On
the other hand, if (ρν,k) is unbounded, the updating scheme in (13) also implies
λν,k →K 0.

The above theorem shows that, barring the feasibility of x, the sequence (xk)K
satisfies the approximate KKT conditions from Theorem 2.5. Hence, we can use
this fact to prove the optimality theorem below. Note that we need to explicitly
assume the feasibility of x. In some cases, this is not necessary – consider, for
instance, the setting of Theorem 4.3, where we have GNEP-EMFCQ.

Theorem 4.6. Let (xk) be a sequence generated by Algorithm 3.1 under Assump-
tion 3.2, where εk ↓ 0, and let x be a limit point of (xk). Assume that one of the
following conditions is satisfied:

(a) x is feasible and GNEP-CPLD holds in x.

(b) GNEP-EMFCQ holds in x.

Then x is a KKT point of the GNEP.

Proof. First assume that (a) holds. Since x is feasible, we can apply Lemma 4.5
and obtain a sequence of approximate KKT points for the GNEP from (10). The
statement then follows from Theorem 2.5 by using the fact that we have cν =(
gν , hν

)
.
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Next consider case (b). Since GNEP-EMFCQ implies GNEP-CPLD, it follows
that, for each player ν, CPLDν holds for cν = (gν , hν). This, by definition, yields
that, for each ν = 1, . . . , N , CPLDν holds for hν . Hence Corollary 4.2 shows that
x is a KKT point of the Feasibility GNEP (15). Consequently, we obtain from
Theorem 4.3 that x is feasible for the GNEP (10). Then we can proceed as in part
(a).

Note that, despite Lemma 4.5, the multipliers λ and µ which make x a KKT point
are not necessarily limit points of the sequences (λk) and (µk). This is a consequence
of GNEP-CPLD, see Theorem 2.5. However, we do get this property if we assume
GNEP-EMFCQ instead, see Theorem 2.6.

Finally, without proof, we would like to briefly mention another kind of conver-
gence theorem one can easily show for Algorithm 3.1. In the above results, we have
usually required that the sequence (xk) has a limit point. If we make the (much
stronger) assumption that the sequence of triples (xk, λk, µk) has a limit point, we
obtain the following theorem which does not require any constraint qualifications.

Theorem 4.7. Let (xk), (λk) and (µk) be the sequences generated by Algorithm 3.1
under Assumption 3.2, where εk ↓ 0. Then every limit point of the sequence of
triples (xk, λk, µk) is a KKT point of the GNEP.

5 Computing Variational Equilibria

We have already seen that Algorithm 3.1 possesses some particular convergence
properties for jointly-convex GNEPs – consider, for instance, Theorem 4.4. In this
section, we present a modified method which is tailored towards the computation of
variational (or normalized) equilibria, cf. [12, 17, 28]. To this end, we perform an
obvious change in notation and consider a GNEP of the form

min
xν

θν(x) s.t. g(x) ≤ 0, h(x) ≤ 0 (20)

with smooth functions g : Rn → Rm and h : Rn → Rp whose components are
assumed to be convex. Hence, all players share the same constraints. The most
straightforward modification of Algorithm 3.1 is to simply choose the same iteration
parameters

τν , γν , ρν,0, λν,0, uν,0, and µν,0

for every player ν. Looking at the updating scheme in Algorithm 3.1, this implies
that the corresponding parameters uν,k, λν,k, and ρν,k will remain independent of
ν throughout – something which is clearly desirable when computing variational
equilibria. For the sake of simplicity, we can now drop the index ν altogether and
simply refer to the parameters as uk, λk, ρk, and so on. This prompts us to restate
the algorithm as follows.

Algorithm 5.1. (Augmented Lagrangian method for variational equilibria)

(S.0) Let umax ≥ 0, τ ∈ (0, 1), γ > 1 and ρ0 > 0. Choose x0 ∈ Rn, λ0 ∈ Rm,
µ0 ∈ Rp, u0 ∈ [0, umax]m, and set k := 0.
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(S.1) If (xk, λk, µk) is an approximate KKT point of the GNEP: STOP.

(S.2) Compute an approximate KKT point (xk+1, µk+1) of the GNEP consisting of
the minimization problems

min
xν

Lνa(x, u
k; ρk) s.t. h(x) ≤ 0 (21)

for each player ν = 1, . . . , N .

(S.3) Update the vector of multipliers to

λk+1 =
(
uk + ρkg

ν(xk+1)
)
+
. (22)

(S.4) If ∥∥min{−g(xk+1), λk+1}
∥∥ ≤ τ

∥∥min{−g(xk), λk}
∥∥, (23)

then set ρk+1 := ρk. Else, set ρk+1 := γρk.

(S.5) Set uk+1 = min{λk+1, umax}, k ← k + 1, and go to (S.1).

Clearly, Algorithm 5.1 is nothing but a special instance of Algorithm 3.1. Hence, the
convergence theory established in Section 4 remains valid. However, we can use the
fact that we have unified sequences (for both multipliers and penalty parameters)
to prove different convergence theorems. Before we do so, we should revisit the
subproblems which occur in Step 2. With the understanding that we are looking for
variational equilibria, it is natural to make the following assumption.

Assumption 5.2. At Step 2 of Algorithm 5.1, we obtain xk+1 ∈ Rn and µk+1 ∈ Rp

with ∥∥∇xνL
ν
a(x

k+1, uk; ρk) +∇xνh(xk+1)µk+1
∥∥ ≤ εk

‖min{−h(xk+1), µk+1}‖ ≤ ε′k

for every ν. Here, (εk) ⊂ R+ is bounded and (ε′k) ⊂ R+ tends to zero.

Note that Assumption 5.2 is, essentially, a refined version of Assumption 3.2. The
key difference is that µk is independent of the player index ν.

We now turn to a brief convergence analysis for Algorithm 5.1. To this end,
recall that we have used the GNEP-CPLD constraint qualification for an analysis of
Algorithm 3.1. Furthermore, the discussion in Section 2 shows that, in general, this
is a condition which is independent of CPLD. Despite this fact, it turns out that we
can use the classical CPLD as a constraint qualification for Algorithm 5.1.

Theorem 5.3. Let (xk) be generated by Algorithm 5.1 under Assumption 5.2, let x
be a limit point of (xk) and assume that h satisfies CPLD in x. Then x is a global
solution of

min ‖g+(x)‖2 s.t. h(x) ≤ 0. (24)

In particular, if there are feasible points, then x is feasible.
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Proof. Since g and h are assumed to be convex, it suffices to show that x is a KKT
point of (24). To verify this, we can proceed as in the proof of Lemma 4.1 and
obtain a sequence (µ̂k) of multipliers such that

∇xν‖g+(xk)‖2 +∇xνh(xk)µ̂k →K 0 and min{−h(xk), µ̂k} →K 0

for every ν, where K ⊂ N is some appropriate subsequence (note that the proof of
Lemma 4.1 shows that we can choose the same multipliers for each player). This
implies

∇‖g+(xk)‖2 +∇h(xk)µ̂k →K 0 and min{−h(xk), µ̂k} →K 0.

Since CPLD holds, we may assume without loss of generality that the sequence {µ̂k}
is bounded. Subsequencing if necessary, we can therefore assume that µ̂k →K µ for
some vector µ ∈ Rp. It then follows that (x, µ) is a KKT point of (24). Since this
is a convex program and there exist feasible points by assumption, the statement
follows.

The proof of Theorem 5.3 clearly shows that we need the multipliers µ̂k to be inde-
pendent of ν, a property which, in general, does not hold for the iterates generated
by Algorithm 3.1. On the other hand, we do not require a special structure for the
function h. In this sense, the theorem is actually much stronger than Theorem 4.4.

We proceed by stating an optimality result akin to Theorem 4.6. Note that
we do not need to explicitly assume the feasibility of the limit point because of
Theorem 5.3.

Theorem 5.4. Let (xk) be generated by Algorithm 5.1 and x be a limit point of
(xk). If (xk) satisfies Assumption 5.2, the constraints g and h permit feasible points
and the function

x 7→
(
g(x)
h(x)

)
satisfies CPLD in x, then x is feasible and solves the GNEP.

Proof. Under the given assumptions, it is clear that h itself also satisfies CPLD.
Hence, by Theorem 5.3, x is feasible. Furthermore, Lemma 4.5 gives us the asymp-
totic conditions

∇xνθν(x
k) +∇xνg(xk)λk +∇xνh(xk)µk →K 0

min{−g(xk), λk} →K 0, min{−h(xk), µk} →K 0.

for every ν. The result then follows by concatenating these systems for every ν and
using CPLD.

The above results are particularly interesting because the classical CPLD is a more
amenable condition than GNEP-CPLD. For example, we have the well-known chain
of implications Slater =⇒ MFCQ =⇒ CPLD, which allows us to use the (easily
verifiable) Slater condition as a CQ for jointly-convex GNEPs.
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Before we conclude this section, we would like to point out another property of
Algorithm 5.1. The augmented Lagrangian for player ν is given by

Lνa(x, u; ρ) = θν(x) +
ρ

2

∥∥∥∥(g(x) +
u

ρ

)
+

∥∥∥∥2 .
Clearly, the second term is independent of ν. This allows us to decompose the
augmented Lagrangian in the following way:

Lνa(x, u; ρ) = θν(x) + P (x, u; ρ),

where P is a convex penalty term which is independent of ν. This decomposition is
useful when designing methods for the solution of the subproblems. For instance, it
is well-known that a critical property of (jointly-convex) GNEPs is the monotonicity
of the function

F (x) =

 ∇x1θ1(x)
...

∇xN θN(x)

 .

When adding a convex penalty term to the functions θν , it is easy to see that this
property is preserved.

6 Implementation and Numerical Results

In this section, we present some empirical results to showcase the convergence of our
method(s). To this end, we implement Algorithm 3.1 in MATLAB R© and, for the
sake of simplicity, we solve every problem by performing a full penalization. This
is especially attractive because many of the convergence theorems (e.g. 4.2 and 4.4)
hold without any further assumptions.

The test suite we use is identical to the one from [13]. For every problem, we use
the same parameters umax = 106 and ρν,0 = 1 for every ν. The remaining parameters
are chosen depending on the size of the problem:

τν = 0.1, γν = 10, if n ≤ 100;

τν = 0.5, γν = 2, if n > 100.

This represents a quite aggressive penalization for small problems and a more cau-
tious scheme for large problems. We have found this distinction to be very efficient
for our problem set. For the computation of the initial multipliers λν,0 (and uν,0,
which we set to the same value), we recall the KKT conditions for player ν, which
can be stated as

∇xνθν(x
0) +∇xνg

ν(x0)λν,0 = 0 and min{−gν(x0), λν,0} = 0.

We now solve the first condition in a least-squares sense by setting λν,0i = 0 for
every i with gνi (x0) < 0 and using the MATLAB R© function lsqnonneg to compute
a nonnegative least-squares solution of

∇xνθν(x
0) +∇xνg

ν(x0)λν,0 = 0.
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Finally, the overall stopping criterion we use is

‖∇xνθν(x) +∇xνg
ν(x)λν‖∞ ≤ ε, ‖gν+(x)‖∞ ≤ ε, and |gν(x)Tλν | ≤ ε

for every ν. Here, ε is some prescribed stopping tolerance which we set to 10−8.

6.1 Solution of the subproblems

Since we perform a full penalization, the subproblems which occur at Step 2 of
Algorithm 3.1 are unconstrained NEPs where player ν’s optimization problem is
given by

min
xν

Lνa(x, u
ν,k; ρν,k).

Hence, we simply solve these problems by considering the nonlinear equation

F (x) =

 ∇x1L
1
a(x, u

1,k; ρ1,k)
...

∇xNL
N
a (x, uN,k; ρN,k)

 !
= 0. (25)

In principle, we could use any general-purpose nonlinear equation solver to solve this
equation. However, it should be noted that F is, in general, a semismooth function
with non-isolated solutions. Hence, special care needs to be taken when selecting an
algorithm. For instance, the classical semismooth Newton method [24, 25] typically
does not exhibit (locally) superlinear convergence for such problems, whereas more
sophisticated methods such as Levenberg-Marquardt methods [16, 29] or the LP-
Newton method [9] are known to be more efficient under certain assumptions. For
our numerical testing, we decided to employ a Levenberg-Marquardt type algorithm
from [16] where the basic step d is given by(

J(x)TJ(x) + α(x)I
)
d = −J(x)TF (x).

Here, J(x) is some suitable (generalized) Jacobian of F and α(x) = ‖F (x)‖. In
order to improve the global convergence properties of this method, we have decided
to combine it with a classical Levenberg-Marquardt parameter updating scheme, i.e.
we consider the equation(

J(x)TJ(x) + α‖F (x)‖I
)
d = −J(x)TF (x)

and iteratively update α (in a heuristic manner) based on the success of the last
step. A precise statement of the algorithm is as follows.

Algorithm 6.1. (Levenberg-Marquardt type method for F )

(S.0) Let x0 ∈ Rn, α0 = 1, ε > 0, and set k = 0.

(S.1) If ‖F (xk)‖ ≤ ε holds: STOP.

(S.2) Choose Vk ∈ ∂F (xk) and compute dk by solving

(V T
k Vk + αk‖F (xk)‖I)dk = −V T

k F (xk). (26)

If ‖F (xk + dk)‖ < ‖F (xk)‖, set αk+1 = 0.1αk and go to (S.4).
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(S.3) Iteratively set αk ← 10αk and re-compute dk as given by (26) until ‖F (xk +
dk)‖ < ‖F (xk)‖. Finally, set αk+1 = αk.

(S.4) Set xk+1 = xk + dk, k ← k + 1, and go to (S.1).

Note that we use the same tolerance ε = 10−8 as given at the beginning of this
section. Furthermore, since F is only semismooth, the above is not a globally
convergent algorithm. In fact, the loop in (S.3) does not necessarily terminate
finitely if the current point xk is one where F is not differentiable. To safeguard
against this case, we terminate the loop in (S.3) if

‖d‖ < ε

‖V k‖F
.

Despite the necessity of such safeguarding techniques, we have found the above
method to be sufficient for nearly all our examples.

6.2 Numerical Results

We now present our results. For a given problem, N denotes the number of players,
n is the total number of variables, k is the number of outer iterations, itotal is the
accumulated number of inner iterations and F denotes a failure. We also include
certain values which measure the feasiblity, optimality and complementarity at the
solution. These are denoted Rf , Ro and Rc, respectively. The values are calculated
as follows:

Rf = max
ν=1,...,N

‖gν+(x)‖∞

Ro = max
ν=1,...,N

‖∇xνθν(x) +∇xνg
ν(x)λν‖∞

Rc = max
ν=1,...,N

|gν(x)Tλν |.

Clearly, some remarks are in order:

1. With the exception of problem A.8, the augmented Lagrangian method was
able to solve every problem quite efficiently. It is particularly noteworthy that
the method achieves a very high accuracy, typically in the region of 10−10.
This compares quite favourably to other methods for GNEPs, such as the
interior-point method from [8] or the exact penalty method from [13].

2. For most problems, the stopping accuracy tends to have little effect on the
speed of the algorithm. A notable exception is problem A.2, where we observed
significantly lower (by a factor of 3) iteration numbers when using a tolerance
of 10−4. We suspect that this is a consequence of the very narrow feasible set
in this problem (see [13]).

3. Clearly, the overall speed of the algorithm crucially depends on how quickly the
subproblems are solved. In this regard, the Levenberg-Marquardt algorithm
seems to greatly benefit from the (semi-)smoothness of the function F from
(25). We investigated some of the problems on a sample basis and found that
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Example N n x0 k itotal Rf Ro Rc ρmax

A.1 10 10 0.01 7 20 1.5e-10 8.9e-16 4.2e-11 100
0.1 6 13 8e-09 5.9e-13 2.1e-09 100
1 7 19 1.5e-10 2.9e-16 4.2e-11 100

A.2 10 10 0.01 11 111 0 2.2e-11 1.8e-12 1e+06
0.1 8 69 2.9e-09 3.5e-09 2.9e-11 1e+05
1 9 307 1.7e-09 8.1e-10 2.2e-09 1e+06

A.3 3 7 0 1 4 0 1e-09 0 1
1 1 5 0 3.6e-15 0 1
10 1 5 0 1.7e-10 0 1

A.4 3 7 0 12 63 2.6e-11 1.5e-09 2.6e-09 1e+04
1 0 0 0 0 0 1
10 15 120 4.2e-12 6.9e-11 1.2e-09 1e+04

A.5 3 7 0 8 20 2e-10 1.7e-13 4.8e-10 1000
1 8 20 3.5e-10 4.9e-13 8.3e-10 1000
10 9 26 5e-10 6.5e-13 1.2e-09 1000

A.6 3 7 0 14 69 1.8e-11 6.2e-10 3.9e-09 1e+04
1 11 92 9.8e-12 4.5e-09 5.1e-09 1e+04
10 14 83 1.8e-11 6.2e-10 3.9e-09 1e+04

A.7 4 20 0 13 35 6.6e-12 1.7e-11 2.3e-09 1e+04
1 12 39 1.1e-11 1.4e-11 3.8e-09 1e+04
10 13 53 1.5e-11 9.8e-12 5.4e-09 1e+05

A.8 3 3 0 F
1 1 4 4.9e-11 4.9e-11 4.9e-11 1
10 3 14 4.5e-12 4.9e-12 4.5e-12 100

A.9a 7 56 0 9 46 2.3e-09 8e-15 7.6e-09 10
A.9b 7 112 0 26 75 2.8e-10 1e-14 2.7e-09 16
A.10a 8 24 see [13] 11 243 9.8e-13 4.5e-11 4.5e-12 1e+05
A.10b 25 125 see [13] 19 2549 6.2e-10 1.4e-11 4.4e-09 64
A.10c 37 222 see [13] 40 3656 2.5e-11 5.3e-12 9e-09 4e+06
A.10d 37 370 see [13] 19 2766 2.9e-11 2.3e-12 3.1e-10 256
A.10e 48 576 see [13] 18 3923 5.4e-10 8.7e-11 6.7e-09 256
A.11 2 2 0 9 17 6.4e-09 2.9e-15 3.2e-09 10
A.12 2 2 (2,0) 1 5 0 8.9e-16 0 1
A.13 3 3 0 4 20 3.3e-09 7.6e-12 1.9e-09 1
A.14 10 10 0.01 1 8 0 8.2e-14 0 1
A.15 3 6 0 1 7 0 2.8e-14 0 1
A.16a 5 5 10 10 26 1.3e-10 6e-14 3.7e-09 10
A.16b 5 5 10 9 26 6.1e-11 3.6e-15 1.1e-09 10
A.16c 5 5 10 7 23 9e-10 1.5e-13 6.4e-09 10
A.16d 5 5 10 9 24 4e-09 2.1e-14 1.9e-09 1
A.17 2 3 0 7 19 6.1e-11 5.5e-12 1.5e-10 1000
A.18 2 12 0 9 34 1.3e-11 1.1e-11 2.4e-10 1000

1 9 34 1.3e-11 1.2e-11 2.4e-10 1000
10 9 32 1.3e-11 1.8e-11 2.4e-10 1000
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the Levenberg-Marquardt method appears to be superlinearly convergent for
all of them. Despite this, we believe that there is a lot of room for improvement
here.

4. Another factor which has great effect on the performance of the algorithm is the
choice of the parameters which handle the multipliers and penalty parameters.
In this regard, our choices are quite simple and straightforward. However,
for some problems, we observed that fine-tuning the parameters can yield a
significant speed improvement.

5. For problem A.8 with the starting point x0 = 0, the subproblem algorithm is
unable to compute a solution and, hence, the overall iteration breaks down.
Another peculiarity of problem A.8 is that, for a suitable choice of parameters,
one can get the algorithm to converge to the infeasible point x = (1.5, 0, 2).
This point (together with its corresponding multipliers) satisfies the stationar-
ity part of the KKT conditions, but (due to the infeasibility) is not a solution
of the GNEP. Furthermore, one can easily verify that x is a solution of the
Feasibility GNEP (15), as suggested by Theorem 4.2, but GNEP-EMFCQ does
not hold in x. This shows that the assertions of Theorem 4.2 can, in general,
not be sharpened.

7 Final Remarks

We have introduced an augmented Lagrangian method for the solution of general-
ized Nash equilibrium problems. Our method is quite flexible in the sense that it
allows partial penalization of constraints and can be modified for the computation
of variational equilibria of jointly-convex GNEPs. The numerical testing we have
done indicates that the method works quite well in practice, since it possesses good
global convergence properties and easily achieves a very high accuracy, provided the
problem is sufficiently well-behaved.

It should be noted that there are still many aspects which might lead to substan-
tial numerical improvements. Aside from the fine-tuning of iteration parameters, a
more detailed analysis of the subproblems which occur in our method might lead to
insights on their solution. In this regard, it would be interesting to analyse whether
the subproblems satisfy certain regularity conditions such as an error-bound to the
solution set [7, 20] or how other methods such as smoothing Newton methods [24]
could be incorporated into the solution process. Further possible extensions of the
ALM are second-order multiplier iterations or approaches such as the exponential
method of multipliers, cf. [3].

On another note, the theoretical analysis of our algorithm has uncovered a series
of properties and concepts which extend the rich theoretical background of aug-
mented Lagrangian methods to the field of GNEPs. For instance, the constraint
qualifications introduced in Section 2 (one of which has previously been used in the
literature) are very general and hence, we hope, they will find applications in the
context of other methods for multi-player games.

The same goes for our notion of the Feasibility GNEP, which is a new optimality
concept for GNEPs that offers a very clear insight on the behaviour of the augmented
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Lagrangian method. This is a generalization of a corresponding concept for classical
optimization problems, cf. [4], which has enjoyed a variety of applications, e.g. in
the context of Sequential Quadratic Programming (SQP) methods in [5]. A natural
continuation of this idea would be an SQP-type method for GNEPs, which we
envision as a possible path for future research.

References

[1] R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva. “A relaxed con-
stant positive linear dependence constraint qualification and applications”.
Math. Program. 135.1-2, Ser. A (2012), pp. 255–273.

[2] A. Bensoussan. “Points de Nash dans le cas de fonctionnelles quadratiques
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