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herits the nice local convergence properties of its monotone counterpart and
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applied to the same reformulation used within our trust-region framework.
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1 Introduction

The aim of this paper is to construct an efficient method for the solution of
generalized Nash equilibrium problems (GNEPs for short). These problems
have a wide range of applications in economics, operations research, computer
science, telecommunications etc. The interested reader is referred to the survey
papers [9,12] for more details regarding applications, theoretical results and
numerical approaches for the solution of GNEPs.

The main difficulty with GNEPs is that these problems tend to have solu-
tion sets which are even locally nonunique. This means that standard Newton-
type schemes typically do not work very well. This is also illustrated, for exam-
ple, in the more general context of quasi-variational inequality problems by the
semismooth Newton method from [10] which works extremely well for some
examples, but fails for quite a few other test problems. On the other hand,
there exist some very reliable methods with nice global convergence properties
like the interior-point-type scheme from [8] or the augmented Lagrangian-type
method from [16], but they are not locally fast convergent, and might even
have problems in getting high accuracy of the solutions.

In order to obtain a globally and locally superlinearly convergent method
for GNEPs, we are therefore urged to apply suitable methods which also work
for nonunique solutions. Fortunately, in the meantime, there exist a few meth-
ods for optimization problems and nonlinear systems of equations which have
this desired property under an error bound condition, see, e.g., [5,11,13,17,
21] for some attempts in this direction. Moreover, there also exist some re-
cent papers that provide error bounds for GNEPs [7,15]. However, these error
bounds depend on the particular reformulation of the GNEP. The most promi-
nent reformulations take the KKT conditions of the players, concatenate all
KKT conditions into a larger system and apply, e.g., the Fischer-Burmeister
function in order to get a semismooth system of equations. Unfortunately, it
turns out to be difficult to find Newton-type methods for nonsmooth systems
of equations which converge locally superlinearly under an error bound con-
dition without any further assumptions, see, for example, the discussion in
[14].

We therefore use a smooth reformulation of the GNEP with some simple
bound constraints for which a suitable error bound is available from [7]. More-
over, we take the trust-region method from [20] which works precisely in our
situation where we have a smooth constrained system of equations and which
is locally superlinearly convergent under an error bound condition. In order
to improve the practical convergence of the trust-region method from [20], we
introduce a nonmonotone variant of that method in such a way that it is still
globally convergent and inherits the local properties of the original method.

The paper is therefore organized in the following way: Section 2 presents
our algorithmic scheme. There we first recall the (monotone) trust-region
method from [20] and then derive the necessary modifications for a nonmono-
tone version with the same local convergence properties. The global conver-
gence of the nonmonotone trust-region method is shown in Section 3. The
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details for the application of this method applied to GNEPs are presented in
Section 4. The corresponding numerical results are given in Section 5. We then
conclude with some final remarks in Section 6.

Notation: Rn denotes the n-dimensional Euclidean vector space, Rn+ is its
subset in which vectors have only nonnegative components, the symbol ‖ · ‖
is the Euclidean vector norm, G′ is the Jacobian of a generic differentiable
mapping G, ∇G is its transposed and ∇zνG is the same, but with respect to
the variables zν , where zν typically indicates a suitable subvector of z. The
symbol Br(z) denotes the (Euclidean) ball of radius r > 0 around a given point
z, while PΩ(z) stands for the (Euclidean) projection of z onto a nonempty,
closed and convex set Ω.

2 Trust-Region Methods

Let F : Rn → Rn be a given function and Ω ⊆ Rn be a nonempty set. We
consider the problem of finding a solution of the constrained nonlinear system
of equations

F (x) = 0, x ∈ Ω (1)

which is of much interest for its own since problems of this kind arise in many
situations. The GNEP discussed in some more detail in Section 4 is only one
of the applications. The solution set of (1) will be denoted by X∗.

2.1 The Monotone Trust-Region Method

In this section we report the trust-region method by Tong and Qi [20], formu-
lated in a way such that its generalization to a nonmonotone framework will
be easy to state with just some minor modifications.

We first recall or state the assumptions that are assumed to hold for prob-
lem (1) in order to get global and local fast convergence of the trust-region
method.

Assumption 1 (a) F is continuously differentiable with F ′ being locally Lip-
schitzian.

(b) Ω is nonempty, closed, and convex.
(c) The solution set X∗ is nonempty.
(d) ‖F (x)‖ provides a local error bound in a neighbourhood of a solution

x∗ ∈ X∗, i.e. there exists constants δ > 0 and γ > 0 such that

dist(x,X∗) ≤ γ‖F (x)‖ ∀x ∈ Ω ∩Bδ(x∗).

Note that the central condition in Assumption 1 is part (d) where the usual
nonsingularity condition of F ′(x∗) is replaced by a (weaker) error bound. This
condition is only required in the local analysis in order to prove local fast
convergence properties.
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In order to describe the trust-region method, let us introduce the merit
function

Ψ(x) :=
1

2
‖F (x)‖2

associated to (1). Since X∗ is nonempty, x∗ solves (1) if and only if x∗ is a
solution of the optimization problem

min
x

Ψ(x) s.t. x ∈ Ω. (2)

We call x∗ a stationary point of (1) if x∗ is a stationary point of the corre-
sponding optimization problem (2), i.e. if

∇Ψ(x∗)T (x− x∗) ≥ 0 ∀x ∈ Ω;

recall that this is equivalent to x∗ satisfying the fixed-point equation

x∗ = PΩ
(
x∗ − γ∇Ψ(x∗)

)
for an arbitrary constant γ > 0.

To deal with locally nonunique solutions, the trust-region method considers
a subproblem where the objective function involves an additional regulariza-
tion term. More precisely, the regularized trust-region subproblem at a current
iterate xk is given by

min Φk(d) :=
1

2
‖F (xk) + F ′(xk)d‖2 +

1

2
µk‖d‖2

s.t. ‖d‖ ≤ ∆,
(3)

where ∆ > 0 denotes the trust-region radius and µk > 0 is a suitable con-
stant depending on the iteration index k. This notation allows us to state the
following trust-region method which corresponds to the method from [20], ex-
cept that we leave the choice of an appropriate scalar r̂k unspecified for the
moment.

Algorithm 1 (Trust-Region Framework)

(S.0) Choose a starting point x0 ∈ Ω and suitable constants α1, α2, ρ1, ρ2, η, σ,
∆min, ∆max, ∆0, C such that 0 < α1 < 1 < α2, 0 < ρ1 < ρ2 < 1, η ∈
(0, 1), σ ∈ (0, 1), C > 0, ∆0 > 0, ∆max > ∆min > 0. Set k := 0.

(S.1) If xk is a stationary point of the optimization problem (2): STOP. Other-
wise set ∆k := min

{
∆max,max{∆min, ∆k}

}
, ∆ := ∆k, µk := C‖F (xk)‖.

(S.2) Projected Gradient Direction: Compute

dGk (∆) := −
( ∆

∆max

)
γk∇Ψ(xk), (4)

d̄Gk (∆) := PΩ
[
xk + dGk (∆)

]
− xk (5)

with

γk := min

{
1,

∆max

‖∇Ψ(xk)‖
,

ηΨ(xk)

‖∇Ψ(xk)‖2

}
.
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(S.3) Projected Trust-Region Direction: Solve the trust-region subproblem (3)
by a suitable algorithm and denote its solution by dtrk (∆). Then compute

d̄trk (∆) := PΩ [xk + dtrk (∆)]− xk.

(S.4) Optimal Combined Direction: Compute

d̄k(∆) := t∗(∆)d̄Gk (∆) +
(
1− t∗(∆)

)
d̄trk (∆),

where t∗(∆) ∈ [0, 1] is an optimal solution of the problem

min
t∈[0,1]

qk∆(t) :=
1

2

∥∥F (xk) + F ′(xk)
(
td̄Gk (∆) + (1− t)d̄trk (∆)

) ∥∥2
,

see below for more details.
(S.5) Updates: Define the actual and predicted reductions by

Aredk(∆) := Ψ
(
xk + d̄k(∆)

)
− Ψ(xk),

P redk(∆) :=
1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2 − Ψ(xk),

respectively, and choose a suitable scalar r̂k. If the following two conditions

−Predk(∆) ≥ −σ∇Ψ(xk)T d̄Gk (∆) (6)

and
r̂k ≥ ρ1 (7)

hold, set

xk+1 := xk + d̄k(∆), ∆k+1 :=

{
∆ if ρ1 ≤ r̂k < ρ2,

α2∆ if r̂k ≥ ρ2,

define ∆∗k := ∆ as the trust-region radius that allowed xk + d̄k(∆) to be
accepted, set k ← k + 1, and go to (S.1). Otherwise set ∆ := α1∆, and go
to (S.2).

Let us give a few comments to explain the previous algorithm: in our con-
vergence analysis we always assume implicitly that the termination criterion
in (S.1) does not hold after finitely many iterations. Hence we assume in our
theoretical analysis of Algorithm 1 that none of the iterates xk is an exact
stationary point of problem (2), so that PΩ

[
xk −∇Ψ(xk)

]
− xk 6= 0 or, equiv-

alently, that d̄Gk (∆) 6= 0 holds for all k. The remainder of (S.1) initializes some
parameters for the inner iteration starting in (S.2). In particular, we reset the
trust-region radius ∆k by taking its projection onto the interval [∆min, ∆max].

Step (S.2) then computes a projected gradient direction which, more or
less, is responsible for the global convergence of Algorithm 1. The projected
trust-region step from (S.3), on the other hand, is the main ingredient to verify
local fast convergence under an error bound assumption. In (S.4), a convex
combination of these two directions is taken which yields the smallest objective
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function of the standard quadratic approximation of the mapping Ψ . Note that
the optimal t∗(∆) in this step can be computed analytically. In fact, it is not
difficult to see that it has the closed form expression

t∗(∆) = max
{

0,min{1, t(∆)}
}
,

where t(∆) is the solution of ∇qk∆(t) = 0 and is given by

t(∆) =



−(F (xk)+F ′(xk)d̄trk (∆))
T
F ′(xk)(d̄Gk (∆)−d̄trk (∆))

‖F ′(xk)(d̄Gk (∆)−d̄trk (∆))‖2

if F ′(xk)d̄Gk (∆) 6= F ′(xk)d̄trk (∆),

any number in (−∞,+∞)

if F ′(xk)d̄Gk (∆) = F ′(xk)d̄trk (∆).

In (S.5), we first compute the actual and predicted reductions at the current
point. The subsequent update rule in (S.5) depends on the suitable choice of
r̂k. The standard choice corresponding to the monotone trust-region method
from [20] is

r̂k :=
Aredk(∆)

Predk(∆)
(8)

and completely specifies Algorithm 1. The updates in (S.5) are then similar to
a standard trust-region update except that the new point is accepted only if
the two conditions (6) and (7) hold. This second condition, which is standard
for monotone trust-region method, will be relaxed in our nonmonotone version.
The reason for having the additional criterion from (6) comes from the fact
that we need to have the predicted reduction to be a negative number whenever
we leave the inner iteration. This property is not clear a priori, but will be a
consequence of Lemma 1 below.

Note that, by construction, all iterates xk generated by Algorithm 1 belong
to the feasible set Ω. Furthermore, let us recall from [20] that Algorithm 1 with
the standard choice of r̂k from (8) is

– well-defined, in particular, for each outer iteration k, the number of inner
iterations between (S.2) and (S.5) is finite,

– globally convergent in the sense that every accumulation point is a station-
ary point of (2), and

– locally fast convergent under the relatively weak error bound condition
from Assumption 1.

For the details, we refer the reader to [18,20].
We close this section by stating two results that were given for a somewhat

different active-set-type trust-region method in [18], but whose statements
also hold for the above (monotone) trust-region method. These results will be
used in our subsequent convergence analysis. For the sake of completeness, we
provide the full proofs in an appendix. The first of these results corresponds
to [18, Lemma 4.3].
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Lemma 1 Consider the trust-region method from Algorithm 1 with the update
r̂k from (8). Then, for all k ∈ N and all ∆ ∈ (0, ∆max], it holds that

∇Ψ(xk)T d̄Gk (∆) ≤ −
(

∆

∆maxγk

)∥∥d̄Gk (∆max)
∥∥2
.

Note that this result implies that the predicted reduction is a negative number
whenever we leave the inner iteration in Algorithm 1, i.e. we always have

Predk(∆∗k) < 0, (9)

cf. (6).
We next state a technical result which is the counterpart of [18, Proposition

4.1] and whose proof is also given in the appendix.

Proposition 1 Consider the monotone trust-region method from Algorithm 1
with the update r̂k from (8). Suppose that x∗ is an accumulation point of a
subsequence {xk}k∈K . If x∗ is not a stationary point, then there exist an index

k̂ > 0 and a constant ∆̄ > 0 such that, for all k ∈ K with k ≥ k̂, (6) and (7)
hold for all ∆ ∈ (0, ∆̄).

2.2 The Nonmonotone Trust-Region Method

Here we present a nonmonotone version of Algorithm 1. The main idea is to
accept also suitable points which do not necessarily reduce the objective func-
tion value. This is achieved by accepting the new step d̄k(∆) more frequently.
To this end, we relax condition (7). The strategy is inspired by the work [19]
by Toint. We will see in Section 5 that the nonmonotonicity improves the
numerical behaviour of the trust-region method.

To give a precise statement of the nonmonotone trust-region method, let
us introduce one further parameter W ∈ N. We then define

Ψkmax := max
k−W≤i≤k

Ψ(xi) (10)

as the largest function value among the last few iterations, where, formally,
we set x−1 := x−2 := . . . := x−W := x0 (or, alternatively, we can replace
W by Wk := min{k,W}). Since we are interested in the behaviour of an
infinite sequence, we may assume without loss of generality that we always
have k ≥W . Furthermore, let us define

r(k) as the (say, largest) iteration index such that Ψ(xr(k)) = Ψkmax (11)

holds. We then define a modified (nonmonotone) actual reduction at iteration
k by

Ared ′k(∆) := Ψ
(
xk + d̄k(∆)

)
− Ψkmax. (12)
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Using an elementary calculation, we obtain the representation

Ared ′k(∆) = Ψ
(
xk + d̄k(∆)

)
− Ψkmax

= Ψ
(
xk + d̄k(∆)

)
− Ψ(xr(k))

= Ψ
(
xk + d̄k(∆)

)
− Ψ(xk) +

k−1∑
i=r(k)

[
Ψ(xi+1)− Ψ(xi)

]
= Ψ

(
xk + d̄k(∆)

)
− Ψ(xk) +

k−1∑
i=r(k)

[
Ψ
(
xi + d̄i(∆

∗
i )
)
− Ψ(xi)

]
= Aredk(∆) +

k−1∑
i=r(k)

Aredi(∆
∗
i ),

where ∆∗i is defined as in (S.5) of Algorithm 1. This representation motivates
to define a corresponding modified (nonmonotone) predicted reduction by

Pred ′k(∆) := Predk(∆) +

k−1∑
i=r(k)

Predi(∆
∗
i ). (13)

The idea is then to replace (7) by the condition

max

{
Aredk(∆)

Predk(∆)
,
Ared ′k(∆)

Pred ′k(∆)

}
≥ ρ1. (14)

Hence, the nonmonotone trust-region method is fully specified by Algorithm 1
with the choice

r̂k := max

{
Aredk(∆)

Predk(∆)
,
Ared ′k(∆)

Pred ′k(∆)

}
, (15)

in (S.5). Since (14) is a relaxation of the corresponding monotone condition
from (7), and all other parts in Algorithm 1 remain unchanged (in particular,
we still use the condition from (6)), it follows that the nonmonotone trust-
region method from Algorithm 1 with the update of r̂k from (15) is also well-
defined (in particular, the inner loop at each outer iteration k is always finite)
and also inherits the local convergence properties from the monotone method
and, therefore, the fast convergence rate under the error bound condition from
Assumption 1. Hence, it remains to show that our nonmonotone modification
does not destroy the global convergence. This is the aim of the next section.

3 Global Convergence

Here we want to show that every accumulation point of a sequence generated
by the nonmonotone trust-region method from Algorithm 1 with the specifica-
tion of r̂k from (15) is still a stationary point of the corresponding optimization
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problem (2). A central step in this direction is contained in the following result.
Recall that, also in this section, we assume implicitly that our method does
not terminate after finitely many iterations with an exact stationary point.

Lemma 2 Let {xk} be a sequence generated by Algorithm 1 with r̂k defined
by (15). Then the inequality

Ψ(x0)− Ψ(xk+1) ≥ −ρ1

k∑
l=0

Predl(∆
∗
l ) (16)

holds for every k ∈ N.

Proof Let k ≥ 0 be fixed. Then we define an index

p(k + 1) :=

k, if
Aredk(∆∗k)

Predk(∆∗k)
≥ Ared ′k(∆∗k)

Pred ′k(∆∗k)
,

r(k), otherwise,

where r(k) denotes the index defined in (11). We call the corresponding iterate
xp(k+1) the “predecessor” of xk+1. We then construct a sequence of strictly
increasing iteration counters {

k0, k1, k2, k3, . . .}

in such a way that ki = p(ki+1) for all i = 1, 2, . . ., i.e. xki is the predecessor of
xki+1 . Recursively, this means that ki−1 = p(ki) = p(p(ki+1)) and so on, until
we get down to the index k1 such that the starting point x0 is the predecessor
of xk1 , i.e. k0 := 0 := p(k1). By definition, for each i ∈ N, we either have
ki = p(ki+1) = ki+1 − 1 or ki = p(ki+1) = r(ki+1 − 1).

Now, consider the iterate xk+1, and let xkl be the corresponding predeces-
sor for some l ∈ N. Then, we can write

ψ(x0)− ψ(xk+1) = ψ(x0)− ψ(xk1) (17)

+

l−1∑
i=1

[
ψ(xki)− ψ(xki+1

)
]

(18)

+ψ(xkl)− ψ(xk+1). (19)

We next take a closer look at each of the three terms (17)–(19).
First consider the term (18) and choose an arbitrary (but fixed) index

i ∈ {1, . . . , l − 1}. We distinguish two situations: if ki = p(ki+1) = ki+1 − 1,
we have Aredki(∆

∗
ki

)/Predki(∆
∗
ki

) ≥ ρ1. Since the denominator is negative in
view of (9), we therefore get

ψ(xki)− ψ(xki+1) = ψ(xki)− ψ(xki+1)

= −Aredki(∆∗ki)
≥ −ρ1Predki(∆

∗
ki)

= −ρ1

ki+1−1∑
j=ki

Predj(∆
∗
j ).
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On the other hand, if ki = p(ki+1) = r(ki+1−1), we haveAred ′ki+1−1(∆∗ki+1−1) ≤
ρ1Pred

′
ki+1−1(∆∗ki+1−1) because of (13) and (9). We then obtain

ψ(xki)− ψ(xki+1) = ψ(xr(ki+1−1))− ψ(xki+1)

= ψki+1−1
max − ψ(xki+1

)

= −Ared ′ki+1−1(∆∗ki+1−1)

≥ −ρ1Pred
′
ki+1−1(∆∗ki+1−1)

= −ρ1

ki+1−1∑
j=r(ki+1−1)

Predj(∆
∗
j )

= −ρ1

ki+1−1∑
j=p(ki+1)

Predj(∆
∗
j )

= −ρ1

ki+1−1∑
j=ki

Predj(∆
∗
j ).

In a similar way, we can deal with the two terms from (17) and (19), respec-
tively, and obtain that

ψ(x0)− ψ(xk1) ≥ −ρ1

k1−1∑
j=0

Predj(∆
∗
j )

and

ψ(xkl)− ψ(xk+1) ≥ −ρ1

k∑
j=kl

Predj(∆
∗
j ).

The assertion follows by inserting the last three estimates into (17)–(19). ut

The previous result allows us to prove global convergence of the nonmonotone
trust-region method.

Theorem 1 Let {xk} be the sequence generated by Algorithm 1 with r̂k defined
by (15). Then every accumulation point of {xk} is a stationary point of (2).

Proof Let x∗ be an accumulation point of {xk} and let

lim
k∈K, k→∞

xk = x∗

be a convergent subsequence. By contradiction, suppose that x∗ is not a sta-
tionary point of problem (2). Then

γ∗ := lim
k∈K, k→∞

γk = min

{
1,

∆max

‖∇Ψ(x∗)‖
,

ηΨ(x∗)

‖∇Ψ(x∗)‖2

}
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is a positive number. The definition of d̄Gk (∆) via (4) and (5) together with
the continuity of the projection operator then implies

∥∥d̄Gk (∆max)
∥∥→ ∥∥PΩ [x∗ − γ∗∇Ψ(x∗)]− x∗

∥∥ > 0 as k ∈ K, k →∞,

where the right-hand side is positive since γ∗ > 0 and x∗ is not a stationary
point. Hence, there exist an index k̃ > 0 and a constant b > 0 such that

∥∥d̄Gk (∆max)
∥∥ ≥ b ∀k ∈ K, k ≥ k̃. (20)

Moreover, using Proposition 1, there exist k̂ and ∆̄ such that, for all k ∈
K, k ≥ k̂, and all ∆ ∈ (0, ∆̄), the two conditions (6) and (14) are satisfied. Let

us define k̂ := max{k̂, k̃}.
Let k ∈ K and k ≥ k̂. Using the previous observation together with the

updating rule of the trust-region radius in Algorithm 1, it follows that

∆∗k > α1∆̄, (21)

so we have a uniform lower bound on the size of ∆∗k for all sufficiently large
k ∈ K. Taking into account Lemma 2, inequalities (9) and (6) as well as

Lemma 1, we obtain for all k ∈ K, k ≥ k̂ that

Ψ(x0)− Ψ(xk+1) ≥ −ρ1

k∑
l=0

Predl(∆
∗
l )

≥ −ρ1

k∑
l∈K, l≥k̂

Predl(∆
∗
l )

≥ −ρ1σ

k∑
l∈K, l≥k̂

∇Ψ(xl)
T d̄Gl (∆∗l )

≥ ρ1σ
k∑

l∈K, l≥k̂

( ∆∗l
∆maxγl

)
‖d̄Gl (∆max)‖2

≥ ρ1σ

k∑
l∈K, l≥k̂

( ∆∗l
∆max

)
b2.

(22)

where the last inequality follows from (20) and the fact that γk ≤ 1. Taking
k → ∞ with k ∈ K, the right-hand side of (22) goes to infinity because of
(21), while the left-hand side is bounded since Ψ(x) ≥ 0 for all x ∈ Rn. This
contradiction completes the proof. ut
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4 Application to Generalized Nash Equilibrium Problems

As noted in the introduction, a typical class of problems which often have
nonunique solutions are the so-called Generalized Nash Equilibrium Problems
(GNEPs). Let N be the number of players (or agents) ν of the GNEP (ν =
1, ..., N). Each agent’s problem then consists of an optimization problem of
the form

min
zν

θν(zν , z−ν) s.t. gν(zν , z−ν) ≤ 0, (23)

where zν ∈ Rnν represents the variables which are controlled by the ν-th
player, z−ν ∈ Rnn−nν express the remaining ones he cannot control, θν :
Rn → R is his objective (or utility) function, while gν : Rn → Rmν describes
his constraints and defines the possible strategies of player ν. Note that both
θν and gν depend on all variables, but that (23) is an optimization problem
in zν only (parameterized by z−ν).

The ν-th player controls nν variables and the total number of variables
of the problem, grouped under the name z, is n := n1 + · · · + nN . Without
loss of generality, we assume that players’ options are only constrained by
inequalities. The decision of player ν is affected by mν inequalities, and the
total number of inequalities of the problem is m := m1 + · · ·+mN .

A solution of a GNEP is called generalized Nash equilibrium and is reached
when none of the N agents is able to obtain a better value for his utility
function by unilaterally changing his strategy. This means that z∗ ∈ Rn is a
generalized Nash equilibrium if, for all ν = 1, ..., N , it holds that

gν(z∗,ν , z∗,−ν) ≤ 0 and θν(z∗,ν , z∗,−ν) ≤ θν(zν , z∗,−ν)

∀zν ∈ Rnν : gν(zν , z∗,−ν) ≤ 0.

We assume the following properties to hold for all θν and gν .

Property 1 Functions θν and gν are twice continuously differentiable with lo-
cally Lipschitz continuous second order derivatives for all ν = 1, ..., N .

Property 2 The GNEP is player-convex, i.e. θν(·, z−ν) and gνi (·, z−ν) are con-
vex functions for every ν = 1, ..., N , i = 1, ...,mν and z−ν .

Note that the player-convex case is typically the most general class of GNEPs
considered in the literature and, in particular, allows much more freedom than
the jointly-convex case, cf. [9] for more details.

The Lagrangian function related to the ν-th optimization problem (23) is

Lν(z, λν) := θν(zν , z−ν) +

mν∑
i=1

λνi g
ν
i (zν , z−ν),

where λν ∈ Rmν is the vector of Lagrange multipliers of player ν. If we con-
catenate all the multipliers, all the constraints, and all the gradients of the
Lagrangian, we obtain

λ :=
(
λν
)N
ν=1

, H(z, λ) :=
(
∇zνLν(z, λν)

)N
ν=1

, g(z) :=
(
gν(z)

)N
ν=1

.
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Let z be a solution of (23). If we assume any standard constraint qualification
to hold for every player ν = 1, . . . , N , it follows that there exists a vector
λ ∈ Rm such that the following (concatenated) KKT-system holds:

H(z, λ) = 0, λ ≥ 0, g(z) ≤ 0, λT g(z) = 0. (24)

Conversely, any solution of the system yields a solution of the GNEP (without
any constraint qualification) due to the assumed player-convexity property.

We, therefore, focus on solving (24) in order to obtain a solution of the
original problem (23). The mixed system (24), in turn, might be reformulated
in different ways, but for reasons explained in the introduction, we concentrate
on a simple, smooth reformulation as a constrained nonlinear system of equa-
tions: introducing slack variables w ∈ Rm+ and using the Hadamard product
(the component-wise product (w ◦ λ)i := wiλi for all i = 1, . . . ,m), we obtain
the following box-constrained system of equations:

F (x) :=

 H(z, λ)
g(z) + w
w ◦ λ

 = 0, s.t. x := (z, λ, w) ∈ Ω := Rn × Rm+ × Rm+ .

(25)
We assume that the corresponding solution set X∗ := {x ∈ Ω : F (x) = 0} is
nonempty.

Then we are precisely in the situation described in (1). Since Ω is defined
by some nonnegativity constraints only, the projections onto Ω are easy to
compute. Assumption 1 (a)-(c) also hold in our GNEP-setting. Furthermore,
also the local error bound condition from (d) of this assumption was shown to
be satisfied under suitable assumptions in [7]. In particular, these assumptions
do not require that the Jacobian of F is nonsingular at a solution. In fact,
even nonisolated solutions are allowed. We do not recall the precise conditions
here and refer the interested reader to [7] for more details.

5 Numerical Results

In this section we report some numerical results of computational experiments
performed in order to evaluate the effectiveness of the proposed nonmonotone
algorithm. To this end, we first recall that our method is particularly designed
to solve difficult problems with high accuracy under a relatively weak (error
bound) condition. For those examples which satisfy stronger assumptions like
a nonsingularity condition, one has to expect that other Newton-type schemes
are more efficient. Nevertheless, the overall results indicate that our method
is very competitive.

Our first aim is to compare the numerical behaviour of our method on a
larger set of examples. To this end, we use the following three algorithms:

1. Algorithm 1 with rk defined in (8): the original Monotone Trust-Region
(MTR) framework by Tong and Qi [20];
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2. Algorithm 1 with rk defined in (15): the Nonmonotone Trust-Region (NTR)
framework extending MTR;

3. STRSCNE [1,2], a specific solver for nonlinear, box-constrained systems of
equations.

MTR and NTR have been implemented in MATLAB, the same programming
language used also for the STRSCNE code. The algorithms terminate success-
fully when

‖F (xk)‖∞ ≤ ε1, with ε1 = 10−4. (26)

For the algorithms, the maximum numbers of function evaluations and Jaco-
bian evaluations have been fixed equal to 100,000. The termination criterion
described in Algorithm 1 (‖d̄Gk (∆)‖ < ε2) and used in our theoretical investiga-
tion has not been employed in our implementation since STRSCNE does not
use any similar criterion. Regarding nonmonotone window, above results are
obtained with W = 50, thus NTR might be considered strongly nonmonotone.

The three methods have been tested on a dataset of 35 different GNEPs
[8]. The total number of runs is 57 because multiple starting points have been
used for some of the problems (see Table 5.1 of [8] for more details).

We first compare the number of failures obtained by the three algorithms:

– 9 for STRSCNE;
– 12 for MTR;
– 7 for NTR.

From the above comparison, we might see that the adoption of the nonmono-
tone strategy yields significant advantages in terms of computed global solu-
tions, with respect to the original monotone version of Algorithm 1 (MTR). In
fact, MTR seems to converge more frequently to nonoptimal stationary points.
Furthermore, Algorithm NTR also outperforms STRSCNE.

The algorithms have been numerically compared using performance profiles
[6]. In Figure 1 we show results obtained employing the following measures:

- total number of function evaluations (Figure 1a);
- total number of Jacobian evaluations (Figure 1b);
- actual computational time, estimated by tic toc MATLAB function (Fig-

ure 1c).

Note that in order to obtain reliable measurements on computational time,
experiments have been repeated several times, choosing the minimum obtained
results as the final one. In addition, algorithms are considered to be equivalent
on this metric, if the difference between their measures is smaller than 10−3 s.
Moreover, note that scale used for all the metrics in Figure 1 is logarithmic
since results are sometimes pretty close.

Figure 1 clearly shows the good performances of the proposed algorithm
with respect to all the employed metrics. Again, it may be observed that the
employment of the nonmonotone strategy leads to a significant improvement
of the performances of the original monotone version of the algorithm. The
proposed algorithm may be considered at least competitive with a sound and
efficient code as STRSCNE.
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Fig. 1: Performance profiles between STRSCNE (black dotted line), MTR
(blue dashed line) and NTR (red solid line).

(a) Function Evaluations

(b) Jacobian Evaluations

(c) Time
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Table 1: Detailed numerical results for problem A11.

k ‖F (x)‖∞ ‖d̄Gk (∆∗k)‖2 ∆k

0 1.00e+02 1.1e-01 5.00
1 5.65e+01 2.0e-01 10.00
2 1.56e+01 2.6e-01 20.00
3 3.85e+00 1.5e-01 40.00
4 9.48e-01 1.5e-01 80.00
5 2.22e-01 4.2e-02 160.00
6 4.33e-02 1.1e-02 320.00
7 4.44e-03 2.0e-03 640.00
8 7.38e-05 5.2e-05 1000.00

Final 2.20e-08 3.1e-08

An illustrative example

In the remainder of this section we are going to show performances obtained
by NTR on a specific GNEP from [8]: example A11. As presented in Example 1
from [7], this is a peculiar problem because the error bound condition for (25) is
proven to be valid for the whole solution set, while the Jacobian of F is singular
at all solutions. This means that local fast convergence for classical Newton-
like methods cannot be expected here, while MTR and NTR are proven to be
locally superlinearly convergent.

In Table 1 we present the iteration history obtained by NTR where the
columns show, for each iteration, {‖F (xk)‖∞}, {‖d̄Gk (∆∗k)‖2} and the initial
trust region radius ∆k.

From Table 1 we may observe the two phases of the algorithm: the glob-
alization strategy might be considered active between iterations 0 and 4, as
the measure of stationarity ‖d̄Gk (∆∗k)‖ is not sufficiently small and not always
decreasing. Starting with iteration 5, the norm of the projected gradient is
decreasing rapidly, following the typical behaviour of superlinear convergence.

6 Conclusions

This paper modifies a (monotone) trust-region method for constrained sys-
tems of equations by introducing a suitable nonmonotonicity criterion. The
corresponding nonmonotone trust-region method is shown to be globally con-
vergent to stationary points and locally fast convergent under an error bound
condition. Numerical results obtained for a suitable reformulation of general-
ized Nash equilibrium problems indicate that the nonmonotone method is both
more reliable and more efficient than its monotone counterpart. A preliminary
testing shows that the numerical behaviour can still be improved if one simply
skips the additional criterion (6) from Algorithm 1. Part of our future research
is, therefore, to investigate whether this condition can (at least) be relaxed in
an appropriate way.
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A Proofs of Lemma 1 and Proposition 1

We first recall some elementary properties of the projection operator.

Lemma 3 The following statements hold:

(a)
(
PΩ(z)− z)T

(
PΩ(z)− x

)
≤ 0 ∀x ∈ Ω, ∀z ∈ Rn;

(b) ‖PΩ(x2)− PΩ(x1)‖ ≤ ‖x2 − x1‖ ∀x1, x2 ∈ Rn.
(c) Given x, d ∈ Rn, the function

θ(t) :=

∥∥PΩ(x+ td)− x
∥∥

t
, t > 0,

is nonincreasing.

The first two properties in Lemma 3 are a well-known characterization of the projection,
whereas the third property was shown, e.g., in [3] in the context of a suitable globalization
of a projected gradient method.

Proof of Lemma 1: Let k ∈ N be fixed, choose ∆ > 0, and define

zk := xk + dGk (∆) = xk −
∆

∆max
γk∇Ψ(xk)

for the sake of notational convenience. Then an elementary calculation yields

∇Ψ(xk)T d̄Gk (∆) = ∇Ψ(xk)T
(
PΩ(zk)− xk

)
=

∆max

∆ · γk

(
xk − zk

)T (
PΩ(zk)− xk

)
=

∆max

∆ · γk

(
PΩ(zk)− zk

)T (
PΩ(zk)− xk

)
+
∆max

∆ · γk

(
xk − PΩ(zk)

)T (
PΩ(zk)− xk

)
≤ −

∆max

∆ · γk

∥∥d̄Gk (∆)
∥∥2,

where the inequality follows from Lemma 3 (a), the definition of d̄Gk (∆), and the feasibility
of xk. On the other hand, Lemma 3 (c) with d := −∇Ψ(xk) implies that∥∥d̄Gk (∆)

∥∥
∆

=

∥∥PΩ(
xk − ∆

∆max
γk∇Ψ(xk)

)
− xk

∥∥
∆

≥
∥∥PΩ(

xk − γk∇Ψ(xk)
)
− xk

∥∥
∆max

=

∥∥d̄Gk (∆max)
∥∥

∆max

holds for all 0 < ∆ ≤ ∆max. Combining the last two inequalities yields the assertion. ut

Proof of Proposition 1: Since xk → x∗ for k ∈ K and k →∞, the continuity of F ′ implies
that there is a constant b1 such that ‖F ′(xk)‖ ≤ b1 for all k ∈ K. Using (4), (5), and
Lemma 3 (b), we therefore obtain for all k ∈ K∥∥F ′(xk)d̄Gk (∆)

∥∥ =
∥∥F ′(xk)(PΩ [xk + dGk (∆)]− xk)

∥∥
≤

∥∥F ′(xk)
∥∥∥∥xk + dGk (∆)− xk

∥∥
≤

∆γk

∆max

∥∥F ′(xk)
∥∥∥∥∇Ψ(xk)

∥∥
≤ b1∆,

(27)
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where the last inequality follows from the definition of γk in (S.2).
Since x∗ is not a stationary point by assumption, we can follow the argument from the

first part of the proof of Theorem 1 in order to see that there is a constant b > 0 such that∥∥d̄Gk (∆max)
∥∥ ≥ b ∀k ∈ K, k ≥ k̂. (28)

Let

∆̃ = min

{
∆max,

(1− σ)b2

b21∆max

}
. (29)

We first prove that (6) holds for all k ∈ K, k ≥ k̂ and all ∆ ∈ (0, ∆̃]. From the definition of
d̄k(∆), we get that

Predk(∆) =
1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2 − Ψ(xk)

≤
1

2

∥∥F (xk) + F ′(xk)d̄Gk (∆)
∥∥2 − Ψ(xk)

= ∇Ψ(xk)T d̄Gk (∆) +
1

2

∥∥F ′(xk)d̄Gk (∆)
∥∥2

= σ∇Ψ(xk)T d̄Gk (∆) + (1− σ)∇Ψ(xk)T d̄Gk (∆) +
1

2

∥∥F ′(x)d̄Gk (∆)
∥∥2

≤ σ∇Ψ(xk)T d̄Gk (∆)− (1− σ)
( ∆

∆maxγk

)∥∥d̄Gk (∆max)
∥∥2 +

1

2
b21∆

2

≤ σ∇Ψ(xk)T d̄Gk (∆)− b21∆∆̃+
1

2
b21∆

2

≤ σ∇Ψ(xk)T d̄Gk (∆),

where the second inequality follows directly from Lemma 1 and (27), the third inequality
follows from (28) and (29) and recalling that 0 < γk ≤ 1, while the last inequality holds
since ∆ ≤ ∆̃.

In order to prove that (7) holds for k ∈ K and k sufficiently large and for ∆ belonging
to an interval (0, ∆̄], we will first show that

−Predk(∆) ≥ β∆, (30)

and
Aredk(∆)− Predk(∆) ≤ c1∆2 (31)

hold for suitable constants β > 0 and c1 > 0
First we show that (30) holds. To this aim, taking ∆ ∈ (0, ∆̃], using Lemma 1 and (27),

we can write

1

2

∥∥F (xk) + F ′(xk)d̄Gk (∆)
∥∥2 =

1

2
‖F (xk)‖2 +∇Ψ(xk)T d̄Gk (∆) +

1

2

∥∥F ′(xk)d̄Gk (∆)
∥∥2

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄Gk (∆max)
∥∥2 +

1

2
b21∆

2

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄Gk (∆max)
∥∥2 +

1

2
∆
b2(1− σ)

∆max

≤ Ψ(xk)−
( ∆

γk∆max

)∥∥d̄Gk (∆max)
∥∥2 +

1

2
∆

∥∥d̄Gk (∆max)
∥∥2

γk∆max

= Ψ(xk)−
( ∆

2γk∆max

)∥∥d̄Gk (∆max)
∥∥2,

where the second inequality follows from (29), and the third holds recalling that (1− σ) <
1, γk ≤ 1, and (28). Consequently, we have

Predk(∆) ≤
1

2

∥∥F (xk) + F ′(xk)d̄Gk (∆)
∥∥2 − Ψ(xk) ≤ −

(
∆

2γk∆max

)∥∥d̄Gk (∆max)
∥∥2 < 0,
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where the first inequality follows from the definitions of d̄k and t∗(∆) in (S.4). Thus, using
(28) and recalling again that γk ≤ 1, we obtain that there exists β > 0 such that (30) is

satisfied for all k ∈ K, k ≥ k̂ and all ∆ ∈ (0, ∆̃].
Now we prove (31). From Lemma 3 (b), recalling the definitions of dGk (∆), d̄Gk (∆) and

γk, we have ∥∥d̄Gk (∆)
∥∥ ≤ ∥∥dGk (∆)

∥∥ ≤ ∆, ∀∆ ∈ (0,∆max].

From the definition of d̄trk (∆), using Lemma 3 (b) again, and recalling that dtrk (∆) is the
trust-region solution, we have∥∥d̄trk (∆)

∥∥ ≤ ∥∥dtrk (∆)
∥∥ ≤ ∆, ∀∆ ∈ (0,∆max].

Consequently, from the last two inequalities we get ‖d̄k(∆)‖ ≤ ∆. Since F ′ is locally Lips-
chitzian, it is globally Lipschitz on compact sets. Consequently, ∇Ψ is also globally Lipschitz
on compact sets. Since xk → x∗ for k ∈ K and d̄k(∆) is bounded for all ∆ ∈ (0,∆max], we
can apply the Mean Value Theorem and obtain the existence of suitable numbers θk ∈ (0, 1)
and a Lipschitz constant L > 0 such that

Ψ
(
xk + d̄k(∆)

)
− Ψ(xk)−∇Ψ(xk)T d̄k(∆) = ∇Ψ

(
xk + θkd̄k(∆)

)T
d̄k(∆)−∇Ψ(xk)T d̄k(∆)

≤ L∆‖d̄k(∆)‖

for all k ∈ K and all ∆ ∈ (0,∆max], where the last inequality takes into account the
Cauchy-Schwarz inequality. Hence, we can write

Aredk(∆)− Predk(∆) = Ψ
(
xk + d̄k(∆)

)
−

1

2

∥∥F (xk) + F ′(xk)d̄k(∆)
∥∥2

= Ψ
(
xk + d̄k(∆)

)
− Ψ(xk)−∇Ψ(xk)T d̄k(∆)

−
1

2
d̄k(∆)TF ′(xk)TF ′(xk)d̄k(∆)

≤ L∆
∥∥d̄k(∆)

∥∥− 1

2
d̄k(∆)TF ′(xk)TF ′(xk)d̄k(∆)

≤ L∆2 + c2
∥∥d̄k(∆)

∥∥2
≤ c1∆2

for suitable constants c1, c2 > 0.
Finally, exploiting (30) and (31), it follows that there exists ∆̄ > 0 such that

r̂k = 1−
Aredk(∆)− Predk(∆)

−Predk(∆)
≥ ρ1, ∀k ∈ K, k ≥ k̂ and ∀∆ ∈ (0, ∆̄].

This concludes the proof. ut
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