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Abstract. Using a regularized Nikaido-Isoda function, we present a (nonsmooth) con-
strained optimization reformulation of a class of generalized Nash equilibrium problems
(GNEPs). Further we give an unconstrained reformulation of a large subclass of all GNEPs
which, in particular, includes the jointly convex GNEPs. Both approaches characterize all
solutions of a GNEP as minima of optimization problems. The smoothness properties of
these optimization problems are discussed in detail, and it is shown that the corresponding
objective functions are continuous and piecewise continuously differentiable under mild as-
sumptions. Some numerical results based on the unconstrained optimization reformulation
being applied to player convex GNEPs are also included.

Key Words: Generalized Nash equilibrium problem; jointly convex; player convex; opti-
mization reformulation; continuity; PC1 mapping; constant rank constraint qualification.



1 Introduction

This paper considers the generalized Nash equilibrium problem, GNEP for short, with N
players ν = 1, . . . , N . Each player ν ∈ {1, . . . , N} controls the variables xν ∈ R

nν , and the
vector x = (x1, . . . , xN)T ∈ R

n with n = n1 + . . . + nN describes the decision vector of all
players. To emphasize the role of player ν’s variables within the vector x, we often write
(xν , x−ν) for this vector. Each player has a cost function θν : R

n → R and his own strategy
space Xν(x

−ν) ⊆ R
nν that depends on the other players’ variables x−ν . Typically, these

sets are defined explicitly via some constraint functions, say

Xν(x
−ν) := {xν ∈ R

nν | gν(xν , x−ν) ≤ 0} (1)

for suitable functions gν : R
n → R

mν , ν = 1, . . . , N . Let

Ω(x) := X1(x
−1) × . . . × XN(x−N)

be the Cartesian product of these strategy spaces. Then a vector x∗ ∈ Ω(x∗) is called a
generalized Nash equilibrium, or simply a solution of the GNEP, if

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν) for all xν ∈ Xν(x
∗,−ν)

holds for all players ν = 1, . . . , N , i.e. if x∗,ν solves the optimization problem

min
xν

θν(x
ν , x∗,−ν) s.t. xν ∈ Xν(x

∗,−ν)

for all ν = 1, . . . , N . There is an important subclass of GNEPs which are often called jointly
convex GNEPs. In that case there are convex feasible sets for all players which depend on
the rivals’ strategies, but they are defined via the same convex set for all players. More
precisely, there exists a common convex strategy space Y ⊆ R

n such that the feasible set
of player ν is given by

Xν(x
−ν) = {xν ∈ R

nν | (xν , x−ν) ∈ Y }

or in the setting of (1), we have g1 = g2 = . . . = gN =: g and

Xν(x
−ν) = {xν ∈ R

nν | g(xν , x−ν) ≤ 0},

where g is convex (“jointly”) in all variables x. This special case was discussed in a number
of recent papers, see [6, 10] and references therein. Here, however, we consider the more
general case where the functions gν may be different for all players and are only assumed
to be convex with respect to xν .

Throughout this paper, we therefore assume that the following standard requirements
are satisfied.

Assumption 1.1 (a) The cost functions θν : R
n → R are continuous and, as a function

of xν alone, convex.
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(b) For all ν = 1, . . . , N and all i = 1, . . . , mν, the component functions gν
i : R

n → R are
continuous and, as a function of xν alone, convex.

A GNEP satisfying Assumption 1.1 is called player convex. Assumption 1.1 is rather weak
in the context of GNEPs, nevertheless, for the presentation of some counterexamples,
we will sometimes be slightly more general and simply assume that the strategy spaces
Xν(x

−ν) are nonempty, closed, and convex, but not necessarily defined by a mapping gν

satisfying the requirements from Assumption 1.1.
So far there is a very limited number of papers that deal with the player convex case

of a GNEP, see [5, 6, 7, 9, 12, 20, 21]. These papers take different approaches using
penalty methods, variational inequalities, and KKT systems. The one we follow here uses
a regularized Nikaido-Isoda function and is similar to one mentioned in the survey article
[6]. In contrast to the one given there, however, we obtain a “real” optimization problem
and not a constrained “quasi-optimization” problem.

More specifically, the current work may be viewed as an extension of the two previ-
ous papers [14, 4]. In [14], some optimization reformulations of the jointly convex GNEP
were considered, with a particular emphasis on differentiable formulations. However, these
differentiable formulations can only be used in order to find so-called normalized (or vari-
ational) Nash equilibria of the jointly convex GNEP, whereas many other solutions cannot
be found in this way. The subsequent work [4] therefore gives a much more detailed analysis
of some nonsmooth optimization reformulations which themselves were already introduced
in [14]. These nonsmooth optimization reformulations have the advantage that the min-
ima of the corresponding minimization problems coincide with the entire solution set of
the underlying GNEP, hence one can also find the non-normalized solutions in this way.
However, the approach from [4] is restricted to jointly convex GNEPs. The aim of this
paper is therefore to extend the techniques from [4] in order to obtain (nonsmooth) opti-
mization reformulations of the much larger class of player convex GNEPs. In particular,
we present a new unconstrained optimization reformulation of GNEPs.

We note that there exist some other recent approaches which try to characterize the
complete solution set of a given GNEP by using different techniques based on parame-
terized variational inequalities, see [11, 19]. In principle, these parameterized variational
inequalities might be easier to solve than our nonsmooth optimization approach, however,
both papers [11, 19] are restricted to the class of jointly convex GNEPs, and both papers
do not get a full characterization of the GNEP solution set. Furthermore, a higher degree
of differentiability is required by the techniques from [11, 19].

This paper is organized in the following way: Section 2 contains the constrained and
unconstrained optimization reformulation of a jointly convex GNEP together with some
additional elementary observations. The precise smoothness properties of these two refor-
mulations, the constrained and the unconstrained optimization one, will be discussed in
Sections 3 and 4, respectively. There, we show that the two reformulations have continuous
objective functions under fairly mild conditions which may also be viewed as generaliza-
tions of the corresponding result for jointly convex GNEPs shown in [4]. We also show that
the objective functions are piecewise continuously differentiable under the constant rank
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constraint qualification. This, in particular, implies that the functions are directionally
differentiable, locally Lipschitz and semismooth. This paves the way for the application of
suitable nonsmooth optimization solvers in order to find generalized Nash equilibria. We
therefore present some numerical results for the unconstrained reformulation in Section
5 using a sampling method from [1] for nonsmooth optimization. As test examples, we
consider player convex problems only, since numerical results for jointly convex GNEPs
may already be found in [4] for a closely related approach. We then close with some final
remarks in Section 6.

Notation: With ‖·‖ we denote the Euclidean norm. PX [x] is the (Euclidean) projection
of a vector x ∈ R

n onto the nonempty, closed and convex set X ⊆ R
n, i. e. it is the unique

solution of

min
1

2
‖z − x‖2 s.t. z ∈ X.

A function g : R
n → R

m is called a PC1 (piecewise continuously differentiable) function in
a neighbourhood of a given point x∗, if g is continuous and there exist a neighborhood U of
x∗ and a finite family of continuous differentiable functions {G1, G2, . . . , Gk} defined on U ,
such that for all x ∈ U we have g(x) ∈ {G1(x), G2(x), . . . , Gk(x)}. For a locally Lipschitz
function H : R

m×R
n → R

n, (x, y) 7→ H(x, y) we denote with ∂H the generalized Jacobian
of H in the sense of Clarke [3] and by πy∂H(x, y) the set of all matrices M ∈ R

n×n such
that there exists a matrix N ∈ R

n×m with [N, M ] ∈ ∂H(x, y).

2 Constrained and Unconstrained Optimization Re-

formulation

Here we present two new reformulations of the GNEP, one as a constrained optimization
problem and the other one as an unconstrained optimization problem. The constrained
reformulation is similar to the one introduced in [14] and further discussed in [4] for the
case of a jointly convex GNEP, whereas the unconstrained reformulation is a generalization
of an approach from [4].

The basis of both reformulations is the Nikaido-Isoda function (also called Ky Fan-
function) which is defined by

Ψ(x, y) :=

N∑

ν=1

[
θν(x

ν , x−ν) − θν(y
ν, x−ν)

]
.

Since θν is convex in xν by Assumption 1.1, it is easy to see that Ψ(x, .) is concave for any
fixed x. Hence the regularized Nikaido-Isoda-function, cf. [13],

Ψα(x, y) :=
N∑

ν=1

[

θν(x
ν , x−ν) − θν(y

ν , x−ν) − α

2
‖xν − yν‖2

]

,
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is uniformly concave as a function of the second argument, where α > 0 denotes a fixed
parameter. Using this function, we define

Vα(x) := max
y∈Ω(x)

Ψα(x, y)

= max
y∈Ω(x)

N∑

ν=1

[

θν(x
ν , x−ν) − θν(y

ν, x−ν) − α

2
‖xν − yν‖2

]

(2)

=

N∑

ν=1

[

θν(x
ν , x−ν) − min

yν∈Xν(x−ν)

(

θν(y
ν, x−ν) +

α

2
‖xν − yν‖2

)]

.

Note that both Xν(x
−ν) and Ω(x) are closed and convex sets in view of Assumption 1.1,

and that all appearing objective functions are uniformly concave or convex, respectively.
Hence the mapping Vα(x) is well-defined for all x ∈ R

n such that Ω(x) 6= ∅. Note also
that, formally, the definition of the mapping Vα is the same as the one from [4], where its
smoothness properties are discussed in detail. However, here the sets Xν(x

−ν) are more
general since we consider a not necessarily jointly convex GNEP, hence the properties of
Vα have to be investigated in this setting.

Now let us define the set

W := {x ∈ R
n | xν ∈ Xν(x

−ν) for all ν = 1, . . . , N}
= {x ∈ R

n | gν(x) ≤ 0 for all ν = 1, . . . , N}, (3)

where the second equality follows from the representation of the sets Xν(x
−ν), cf. Assump-

tion 1.1. The set W is obtained by concatenating the constraints of all players. This set
will play an important role in our subsequent discussion, and we therefore begin with some
simple observations.

Remark 2.1 (a) Consider a Nash game with two players having arbitrary cost functions.
Player 1 controls the single variable x1, and player 2 controls the single variable x2 (note
that we use subscripts here since these variables are real numbers in this example). Let
the strategy spaces X1(x2) and X2(x1) be defined by the mappings

g1(x) := x2
1 − x2

2 and g2(x) := x2
1 + x2

2 − 1,

respectively. Note that these functions satisfy the properties from Assumption 1.1, but
that g1 is not convex as a function of the whole vector x. The corresponding set W is
shown in Figure 1. Obviously, this set is not convex. Note also that there is no (clear)
connection to the sets Ω(x). For example, taking x := (1

2
, 1

2
)T ∈ W , an easy calculation

shows that Ω(x) = [−1
2
, 1

2
]× [−

√
3

2
,
√

3
2

], and this set is neither a subset of W nor vice versa.

(b) Consider once again a Nash game with two players. Once more, the cost functions are
arbitrary, and player 1 has the single decision variable x1, whereas player 2 has the single
decision variable x2. Let the strategy spaces be defined by

X1(x2) =

{
R, if x2 6= 0,
∅, if x2 = 0,

and X2(x1) =

{
R, if x1 6= 0,
∅, if x1 = 0.
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Note that these sets are always closed and convex. In this case, however, the set W is
equal to R

2\{(x1, x2) | x1x2 = 0}, hence W is neither closed nor convex.

(c) The previous counterexample is somewhat artificial since the sets Xν(x
−ν) were not

defined by some functions gν . Of course, if we have Xν(x
−ν) = {xν | gν(xν , x−ν) ≤ 0} for

all ν = 1, . . . , N for some continuous functions gν (as required in Assumption 1.1), then
the set W is obviously closed. Recall, however, that Figure 1 shows that W is nonconvex
in general.

(d) Let x∗ be a solution of the GNEP. Then x∗ ∈ Ω(x∗), and this implies x∗ ∈ W (see
Theorem 2.2 (a) for a formal proof of this statement). In particular, W is nonempty
whenever the GNEP has at least one solution. ♦

1

1

x1

x2

W

Figure 1: The set W for the example from Remark 2.1 (a)

For the case of a jointly convex GNEP, the mapping Vα was already used in [14, 4] in
order to get a reformulation of this GNEP as a constrained optimization problem. In the
following result, we show that this is also possible for the player convex GNEP.

Theorem 2.2 Let Assumption 1.1 be satisfied. Then the following statements hold:

(a) x ∈ W if and only if x ∈ Ω(x).

(b) Vα(x) ≥ 0 for all x ∈ W .

(c) x∗ is a generalized Nash equilibrium if and only if x∗ ∈ W and Vα(x∗) = 0.

(d) For all x ∈ R
n with Ω(x) 6= ∅, there exists a unique vector yα(x) :=

(
y1

α(x), . . . , yN
α (x)

)

such that
arg minyν∈Xν(x−ν)

[

θν(y
ν, x−ν) +

α

2
‖xν − yν‖2

]

= yν
α(x)

for all ν = 1, . . . , N .
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(e) x∗ is a generalized Nash equilibrium if and only if x∗ is a fixed point of the mapping
x 7→ yα(x), i.e. if and only if x∗ = yα(x∗).

Proof. (a) By definition, x ∈ Ω(x) means xν ∈ Xν(x
−ν) for all ν = 1, . . . , N , which is

equivalent to x ∈ W .

(b) For all x ∈ W we have x ∈ Ω(x) by part (a). Therefore

Vα(x) = max
y∈Ω(x)

Ψα(x, y) ≥ Ψα(x, x) = 0.

(c) Let x∗ be a generalized Nash equilibrium. Then we have x∗ ∈ Ω(x∗) (hence x∗ ∈ W by
part (a)) and

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν) for all xν ∈ Xν(x
∗,−ν), ν = 1, . . . , N.

This implies

Ψα(x∗, y) =
N∑

ν=1

(
θν(x

∗,ν , x∗,−ν) − θν(y
ν , x∗,−ν)

)

︸ ︷︷ ︸

≤0

−α

2
‖x∗ − y‖2 ≤ 0

for all y ∈ Ω(x∗). Therefore, we get Vα(x∗) = maxy∈Ω(x∗) Ψα(x∗, y) ≤ 0. Together with
part (b), we obtain Vα(x∗) = 0.

Conversely assume that x∗ ∈ W (which is equivalent to x∗ ∈ Ω(x∗) by part (a)) and
Vα(x∗) = 0. Then Ψα(x∗, y) ≤ 0 holds for all y ∈ Ω(x∗). Let ν ∈ {1, . . . , N} be a fixed
player, xν ∈ Xν(x

∗,−ν) and λ ∈ (0, 1) arbitrary. Define y = (y1, . . . , yN) ∈ R
n by

yµ :=

{
x∗,µ, if µ 6= ν,
λx∗,ν + (1 − λ)xν , if µ = ν

∀µ = 1, . . . , N.

The convexity of Xν(x
∗,−ν) implies yµ ∈ Xµ(x∗,−µ) for all µ = 1, . . . , N and therefore

y ∈ Ω(x∗). Using this special y and exploiting the convexity of θν with respect to xν , we
get

0 ≥Ψα(x∗, y)

=θν(x
∗,ν , x∗,−ν) − θν(λx∗,ν + (1 − λ)xν , x∗,−ν) − α

2
(1 − λ)2‖x∗,ν − xν‖2

≥(1 − λ)θν(x
∗,ν , x∗,−ν) − (1 − λ)θν(x

ν , x∗,−ν) − α

2
(1 − λ)2‖x∗,ν − xν‖2.

Dividing both sides by (1 − λ) and taking the limit λ ↑ 1, we see

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν).

Since this is true for all xν ∈ Xν(x
∗,−ν) and all players ν = 1, . . . , N , x∗ is a generalized

Nash equilibrium.
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(d) For x ∈ R
n with Ω(x) 6= ∅, the closed and convex sets Xν(x

−ν) are nonempty for all
ν = 1, . . . , N . The statement therefore follows from the fact that the uniformly convex
function (uniform with respect to yν)

θν(y
ν, x−ν) +

α

2
‖xν − yν‖2

attains a unique minimum on the nonempty, closed and convex set Xν(x
−ν).

(e) First, let x∗ be a generalized Nash equilibrium. Then x∗ ∈ Ω(x∗) by definition, and
Vα(x∗) = 0 in view of part (c). Therefore, we obtain

Ψα(x∗, x∗) = 0 = Vα(x∗) = max
y∈Ω(x∗)

Ψα(x∗, y) = Ψα(x∗, yα(x∗)),

where yα(x∗) :=
(
y1

α(x∗), . . . , yN
α (x∗)

)
. With x∗ ∈ Ω(x∗), we get x∗ = yα(x∗) from part (d),

taking into account the uniqueness of the maximizer yα(x∗).
Conversely, let x∗ ∈ R

n be such that x∗ = yα(x∗). Then x∗ ∈ Ω(x∗) and, therefore,
x∗ ∈ W in view of part (a). Moreover, we obtain

0 = Ψα(x∗, x∗) = Ψα(x∗, yα(x∗)) = Vα(x∗),

and this means that x∗ is a generalized Nash equilibrium by part (c). �

In our subsequent discussion, we frequently use the notation yα(x) for the vector

yα(x) :=
(
y1

α(x), . . . , yN
α (x)

)
,

where yν
α(x) is defined by Theorem 2.2 (d).

Theorem 2.2 implies that finding a solution of the GNEP is equivalent to finding a
minimum x∗ of the constrained optimization problem

min Vα(x) s.t. x ∈ W (4)

satisfying Vα(x∗) = 0. The set W is nonempty (at least if the GNEP has at least one
solution) and closed under Assumption 1.1, but might be nonconvex, cf. Remark 2.1. As
for each x ∈ W we have x ∈ Ω(x) by Theorem 2.2 (a), it follows that Ω(x) is nonempty
and, thus, the objective function Vα is well-defined on W . However, Vα is nondifferentiable
and might even be discontinuous. An example for the latter effect is given in [4].

Besides this negative observation, it turns out that the function Vα is continuous and
even a PC1 mapping under fairly mild conditions. This will be discussed in more detail in
Section 3. In the following, however, we modify the previous approach and present a new
unconstrained optimization reformulation of the GNEP.

To this end, we have to find a way to define the function Vα(x) := maxy∈Ω(x) Ψα(x, y)
for those points x ∈ R

n where Ω(x) is empty. So far, we only know that Ω(x) 6= ∅ for all
x ∈ W . Since the set W is, in general, not convex, and since we will later compute suitable
projections, we define the set

X := cl(conv(W )). (5)

The following is a central assumption for our subsequent analysis.
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Assumption 2.3 W is nonempty and Ω(x) is nonempty for all x ∈ X, where W and X
are defined by (3) and (5), respectively.

Assumption 2.3 implies that the set X is always nonempty, closed, and convex. In partic-
ular, the Euclidean projection onto this set is well-defined and unique. This observation
will be exploited in order to derive our unconstrained optimization reformulation. To this
end, we stress that the closure in (5) is really needed, cf. Remark 2.4 (d) below.

Note also that Assumption 2.3 restricts the class of GNEPs that we will be able to
deal with in our unconstrained optimization reformulation. The following remark, how-
ever, shows that the class of GNEPs satisfying Assumption 2.3 contains the jointly convex
GNEPs, and is, in fact, strictly larger, but that not all GNEPs satisfy Assumption 2.3.

Remark 2.4 (a) Consider a jointly convex GNEP. Then there is a common nonempty,
closed, and convex set Y ⊆ R

n such that

Xν(x
−ν) := {xν ∈ R

nν | (xν , x−ν) ∈ Y }

for all players ν = 1, . . . , N . In this case, we obviously have W = Y which, in turn,
implies X = cl(conv(W )) = Y since Y is already closed and convex. Moreover, W 6= ∅
and Ω(x) 6= ∅ for all x ∈ X = Y since x belongs to Ω(x) for all x ∈ X, cf. [14]. Hence
Assumption 2.3 holds for jointly convex GNEPs.

(b) Remark (a) can be generalized in the following way: Consider a GNEP with strategy
sets being given by

Xν(x
−ν) := {xν ∈ R

nν | gν(xν , x−ν) ≤ 0}
for ν = 1, . . . , N , where gν : R

n → R
mν is continuous and convex as a function of all

variables x. Then, again, we have X = W due to the assumed continuity and convexity of
all gν . Moreover Ω(x) 6= ∅ for all x ∈ W = X. If a solution exists, we have W 6= ∅. Hence
Assumption 2.3 also holds in this situation.

(c) An explicit example of a non-jointly convex GNEP which obviously satisfies Assump-
tion 2.3 is the one from Remark 2.1 (a). In particular, this shows that the class of GNEPs
satisfying Assumption 2.3 strictly includes the class of jointly convex GNEPs.

(d) On the other hand, there exist GNEPs which do not satisfy Assumption 2.3. To see
this, consider a GNEP with two players, player 1 controlling the single variable x1, player
2 having the single variable x2, and the strategy spaces of both players being defined by

X1(x2) = {x1 ∈ R | g1(x) := 1 − x1x2 ≤ 0} =







(−∞, 1/x2], if x2 < 0,
∅, if x2 = 0,

[1/x2,∞), if 0 < x2,

X2(x1) = {x2 ∈ R | g2(x) := x2 − 1 ≤ 0} = (−∞, 1].

Then the functions gν are convex in xν for fixed x−ν and all the Xν(x
−ν) are closed and

convex. Moreover, we have W = {x ∈ R
2 | x1x2 ≥ 1, x2 ≤ 1} which is not connected
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and, in particular, not convex. We further get X = cl(conv(W )) = R × (−∞, 1] and
Ω((0, 0)) = ∅. Hence Assumption 2.3 is violated in this case.

(e) If we have a GNEP where Assumption 1.1 holds, but there exist x ∈ X with Ω(x) = ∅
then the set W is not convex, because otherwise, if W = conv(W ), Assumption 1.1 makes
W a closed set, see Remark 2.1 (c), and hence X = cl(conv(W )) = W , so that Ω(x) 6= ∅
for all x ∈ X = W would follow from Theorem 2.2 (a). These GNEPs are the hard ones,
since we do not get an unconstrained reformulation for them and even the constrained
optimization problem is a non-convex and therefore difficult problem. ♦

In the following definition, we modify the objective function Vα in such a way that we
obtain an unconstrained optimization reformulation.

Definition 2.5 Consider GNEPs where Assumption 2.3 holds. For those we define for all
x ∈ R

n and α > 0

ȳα(x) := arg maxy∈Ω(PX [x])Ψα(x, y) and

V̄α(x) := max
y∈Ω(PX [x])

Ψα(x, y) = Ψα(x, ȳα(x)).

Given two parameters 0 < α < β and a constant c > 0, we then define

V̄αβ(x) := V̄α(x) − V̄β(x) + c‖x − PX [x]‖2

for all x ∈ R
n, where V̄β(x) is defined similarly to V̄α(x).

The difference between the definitions of Vα and V̄α is that we maximize over Ω(x) in
the former case, whereas we maximize over the set Ω(PX [x]) in the latter case. This is
important since Ω(x) might be empty for certain x ∈ R

n, whereas the projection PX [x]
always exists due to the fact that X is nonempty, closed, and convex as a consequence of
Assumption 2.3 and, furthermore, the set Ω(PX [x]) is (closed, convex, and) nonempty again
by Assumption 2.3. Consequently, ȳα(x) and therefore also V̄α(x) are well-defined for all x ∈
R

n. This, in turn, implies that V̄αβ is well-defined for all x ∈ R
n. Therefore, Assumption

2.3 guarantees that our functions are well-defined. Note that, in [4], we introduced a similar
function in order to get an unconstrained optimization reformulation of the jointly convex
GNEP which, however, does not need the additional term c‖x − PX [x]‖2 in the definition
of V̄αβ. In fact, this additional term is not needed for the case of jointly convex GNEPs,
whereas in the more general player convex case considered here, it is strictly necessary to
have this term in the definition of V̄αβ. An example is given at the end of this section.

Note also that we have

ȳα(x) = yα(x) and therefore V̄α(x) = Vα(x) for all x ∈ X, (6)

hence these two functions coincide on the set X. This simple observation will be used
fruitfully in our subsequent analysis.

The next lemma will be crucial to prove that we get an unconstrained reformulation of
the GNEP by the function V̄αβ .
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Lemma 2.6 Let Assumption 2.3 hold. Then we have for all x ∈ R
n the following inequal-

ities:

β − α

2
‖x − ȳβ(x)‖2 + c‖x − PX [x]‖2 ≤ V̄αβ(x),

β − α

2
‖x − ȳα(x)‖2 + c‖x − PX [x]‖2 ≥ V̄αβ(x).

Proof. Assumption 2.3 guarantees that all involved functions are well-defined. We have
ȳα(x) ∈ Ω(PX [x]) and ȳβ(x) ∈ Ω(PX [x]). Therefore

V̄β(x) = Ψβ(x, ȳβ(x)) = max
y∈Ω(PX [x])

Ψβ(x, y) ≥ Ψβ(x, ȳα(x)), (7)

V̄α(x) = Ψα(x, ȳα(x)) = max
y∈Ω(PX [x])

Ψα(x, y) ≥ Ψα(x, ȳβ(x)). (8)

On the one hand, this implies

V̄αβ(x) = V̄α(x) − V̄β(x) + c‖x − PX [x]‖2

(7)

≤ Ψα(x, ȳα(x)) − Ψβ(x, ȳα(x)) + c‖x − PX [x]‖2

=
β − α

2
‖x − ȳα(x)‖2 + c‖x − PX [x]‖2

and, on the other hand, we obtain

V̄αβ(x) = V̄α(x) − V̄β(x) + c‖x − PX [x]‖2

(8)

≥ Ψα(x, ȳβ(x)) − Ψβ(x, ȳβ(x)) + c‖x − PX [x]‖2

=
β − α

2
‖x − ȳβ(x)‖2 + c‖x − PX [x]‖2

for all x ∈ R
n. �

We are now in a position to show that the function V̄αβ provides an unconstrained opti-
mization reformulation of the GNEP.

Theorem 2.7 Under Assumption 2.3 the following statements hold:

(a) V̄αβ(x) ≥ 0 for all x ∈ R
n.

(b) x∗ is a generalized Nash equilibrium if and only if x∗ is a minimum of V̄αβ satisfying
V̄αβ(x∗) = 0.

Proof. Again Assumption 2.3 is needed to guarantee that the functions are all well-
defined. The first inequality in Lemma 2.6 immediately gives

V̄αβ(x) ≥ β − α

2
‖x − ȳβ(x)‖2 + c‖x − PX [x]‖2 ≥ 0

10



for all x ∈ R
n, hence statement (a) holds.

In order to verify the second statement, first assume that x∗ is a generalized Nash
equilibrium. Then x∗ ∈ Ω(x∗), and Theorem 2.2 (a) therefore implies x∗ ∈ W ⊆ X. This,
in turn, gives PX [x∗] = x∗, and together with the fixed point characterization of Theorem
2.2 (e), we get

x∗ = yα(x∗) = ȳα(x∗),

where the second equality follows from (6). The second inequality of Lemma 2.6 then
implies V̄αβ(x∗) ≤ 0. In view of part (a), we therefore have V̄αβ(x∗) = 0.

Conversely, assume that V̄αβ(x∗) = 0 for some x∗ ∈ R
n. Then we obtain from the first

inequality of Lemma 2.6 that

0 = V̄αβ(x∗) ≥ β − α

2
‖x∗ − ȳβ(x∗)‖2 + c‖x∗ − PX [x∗]‖2 ≥ 0.

Since c > 0, this means PX [x∗] = x∗, i.e. x∗ ∈ X, and

x∗ = ȳβ(x∗) = yβ(x
∗),

where, once again, we used (6). Hence x∗ is a generalized Nash equilibrium by the fixed
point characterization from Theorem 2.2 (e). �

In the jointly convex case, it is possible to show that the additional term c‖x− PX [x]‖2 is
not necessary, so we can define V̄αβ with c := 0 in this case. This observation is essentially
the result from [4]. For the general case it is strictly necessary, as the next example shows.

Example 2.8 Consider the two player game defined via

Player 1: min
x1

x2
1 s.t. x2

1 + x2
2 ≤ 1,

Player 2: min
x2

(x2 + 3)2 s.t. −2 ≤ x2 ≤ −1.

Then we have W = X = {(0,−1)T}. If we consider the point x̂ = (0,−2)T , we have
PX [x̂] = (0,−1)T and Ω((0,−1)T ) = {0} × [−2,−1]. Thus we get

ȳγ(x̂) = (0,−2)T = x̂

for all γ > 0 and this implies for 0 < α < β

V̄α(x̂) − V̄β(x̂) = Ψα(x̂, ȳα(x̂)) − Ψβ(x̂, ȳβ(x̂)) = 0.

But we have x̂ 6∈ W and, therefore, x̂ is not a solution of the GNEP. This shows that we
cannot skip the additional term c‖x − PX [x]‖2 in the definition of V̄αβ . ♦

Theorem 2.7 shows that the generalized Nash equilibria x∗ are exactly the minima of the
function V̄αβ satisfying V̄αβ(x∗) = 0. We therefore have the unconstrained optimization
reformulation

min V̄αβ(x), x ∈ R
n, (9)
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in order to find solutions of a GNEP. Note, however, that we obtain this unconstrained
reformulation only for the class of GNEPs which satisfy Assumption 2.3, whereas the
corresponding constrained reformulation (4) holds for an arbitrary player convex GNEP,
not necessarily satisfying this condition.

Similar to the constrained reformulation, however, the objective function V̄αβ is nondif-
ferentiable in general and, even worse, might be discontinuous. The smoothness properties
of V̄αβ will be discussed in more detail in Section 4.

3 Smoothness Properties of the Constrained Refor-

mulation

Here we consider the constrained reformulation (4) of the GNEP with the objective function
Vα from (2). Since this objective function is nondifferentiable and possibly even discontin-
uous, we take a closer look at the smoothness properties of this mapping. Our aim is to
show the following results:

• Vα is continuous provided that either Xν(x
−ν) satisfies a Slater condition or consists

of a single element;

• Vα is a PC1 function provided that it is continuous, the functions gν and θν are twice
continuously differentiable and a constant rank constraint qualification holds.

The analysis is similar to the one given in [4] for the case of jointly convex GNEPs. For the
sake of completeness and since some of the subsequent results need weaker assumptions
than the corresponding ones in [4] even for jointly convex GNEPs, we give all the details
here.

To verify the continuity of Vα, we first recall some terminology and results from set-
valued analysis. The interested reader is referred to [16, 24] for further properties.

Definition 3.1 Suppose X ⊆ R
n, Y ⊆ R

m, and Φ : X ⇉ Y is a point-to-set mapping.
Then Φ is called

(a) lower semicontinuous in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all
y∗ ∈ Φ(x∗), there exists a number m ∈ N and a sequence {yk} ⊆ Y with yk → y∗ and
yk ∈ Φ(xk) for all k ≥ m;

(b) closed in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all sequences
yk → y∗ with yk ∈ Φ(xk) for all k ∈ N sufficiently large, we have y∗ ∈ Φ(x∗);

(c) lower semicontinuous or closed on X if it is lower semicontinuous or closed in every
x ∈ X.

The definition of a lower semicontinuous set-valued mapping is in the sense of Berge.
Alternative names used in the literature are “open mapping” (see [16]) and “inner semi-
continuous mapping” (see [24]). A useful result for our subsequent analysis is the following
one which follows immediately from [16, Corollaries 8.1 and 9.1].
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Lemma 3.2 Let X ⊆ R
n arbitrary, Y ⊆ R

m convex, and f : X × Y → R be concave
in y for fixed x and continuous on X × Y . Let Φ : X ⇉ Y be a point-to-set map which
is closed in a neighbourhood of x̄ and lower semicontinuous in x̄, and Φ(x) convex in a
neighbourhood of x̄. Define

Y (x) := {z ∈ Φ(x) | sup
y∈Φ(x)

f(x, y) = f(x, z)}

and assume that Y (x̄) has exactly one element. Then the point-to-set mapping x 7→ Y (x)
is lower semicontinuous and closed in x̄.

We can use Lemma 3.2 to prove a sufficient condition for continuity of Vα.

Theorem 3.3 Suppose that Assumption 1.1 holds and that the point-to-set mapping x →
Ω(x) is lower semicontinuous in x∗ ∈ W . Then the functions yα and Vα are continuous at
x∗ ∈ W .

Proof. First observe that Assumption 1.1 implies that the function Ψα(x, .) is concave
for fixed x and continuous on R

n × R
n.

By the product structure Ω(x) = X1(x
−1) × . . . × XN (x−N) it is clear that Ω(x) is

closed if and only if Xν(x
−ν) is closed for all ν = 1, . . . , N . The point-to-set mappings

x−ν 7→ Xν(x
−ν), ν = 1, . . . , N , are closed for all x ∈ W since their graphs {(yν, x−ν) ∈

R
nν ×R

n−nν | gν(yν, x−ν) ≤ 0} are closed sets due to the assumed continuity of gν, see [16,
Theorem 2].

Theorem 2.2 (a) implies that Ω(x) is nonempty for all x ∈ W ; moreover, these sets
are also convex as a consequence of Assumption 1.1. Theorem 2.2 (d) shows that the sets
Yα(x) := {z ∈ Ω(x) | supy∈Ω(x) Ψα(x, y) = Ψα(x, z)} consist of exactly one element for
all x ∈ W , namely yα(x). Lemma 3.2 therefore implies that x → {yα(x)}, viewed as a
point-to-set mapping, is lower semicontinuous and closed in x∗ ∈ W . This implies that the
single-valued function x 7→ yα(x) is continuous at x∗ ∈ W . Hence, Vα(x) = Ψα(x, yα(x)),
being a composition of continuous maps, is also continuous at x∗ ∈ W . �

In view of Theorem 3.3, our next aim is to find a condition guaranteeing that Xν(x
−ν) =

{yν ∈ R
nν | gν(yν , x−ν) ≤ 0} is lower semicontinuous for all ν = 1, . . . , N . The proof of

the following lemma is based on the fact that lower semicontinuity can be obtained by the
Slater condition, saying that for a given x−ν ∈ R

n−nν there exists a yν ∈ R
nν such that

gν(yν , x−ν) < 0 for all ν = 1, . . . , N .

Lemma 3.4 Suppose that Assumption 1.1 holds. Then the functions yν
α, ν = 1, . . . , N ,

and Vα are continuous in x∗ ∈ W provided the Slater condition holds at Xν(x
∗,−ν) for all

ν = 1, . . . , N .

Proof. Let x∗ ∈ W be given such that Xν(x
∗,−ν) satisfies the Slater condition for all

ν = 1, . . . , N . By Assumption 1.1 we can apply [16, Theorem 12] and get lower semiconti-
nuity of the point-to-set mapping x−ν 7→ Xν(x

−ν) at x∗,−ν for all ν = 1, . . . , N . Therefore,
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also the point-to-set mapping x 7→ Ω(x) is lower semicontinuous at x∗. Hence continuity of
yα, in particular of all components yν

α, ν = 1, . . . , N , and of Vα at x∗ follow from Theorem
3.3. �

Unfortunately, it seems natural that many GNEPs possess points x∗ ∈ W at which the
Slater condition is violated for some ν = 1, . . . , N . In the example from Remark 2.1 (a),
e.g., for x∗ = (0, 0) the set X1(0) violates the Slater condition.

Whereas the latter example is degenerate, at least in the jointly convex case with a
bounded common strategy space Y = {x ∈ R

n | g(x) ≤ 0} the failure of the Slater
condition at certain (boundary) points of W = Y cannot be avoided: for any ν = 1, . . . , N
the domain of Xν ,

dom Xν = {x−ν ∈ R
n−nν | Xν(x

−ν) 6= ∅},
is closed and bounded as the orthogonal projection of Y to R

n−nν and, by the continuity
of g, at all boundary points x̄−ν of domXν the Slater condition has to be violated in
Xν(x̄

−ν) = {yν ∈ R
nν | g(yν, x̄−ν) ≤ 0}. In view of x̄−ν ∈ dom Xν , on the other hand,

there exists some ȳν ∈ R
nν with (ȳν , x̄−ν) ∈ Y or, equivalently, g(ȳν, x̄−ν) ≤ 0. As Xν(x̄

−ν)
violates the Slater condition, the latter inequality has to be satisfied with equality and,
thus, under mild assumptions (ȳν , x̄−ν) is a boundary point of W = Y (e.g., if Y itself
satisfies the Slater condition). Note that simple examples show that in general not all
boundary points of W correspond to the violation of the Slater condition in some player’s
strategy space.

In the following we will prove continuity of yα and Vα at points x ∈ W also in the case
that the Slater condition is violated in one or more strategy spaces Xν(x

−ν), ν = 1, . . . , N ,
as long as the strategy spaces then collapse to singletons. In view of Theorem 2.2 (a), they
then have to coincide with the corresponding set {xν}.

Theorem 3.5 Suppose Assumption 1.1 holds, and assume that for each x∗ ∈ W and all
ν = 1, . . . , N the set Xν(x

∗,−ν) either satisfies the Slater condition or coincides with the
singleton {x∗,ν}. Then the functions yα and Vα are continuous on W .

Proof. In view of Theorem 3.3 we have to show lower semicontinuity of x 7→ Ω(x) at
x∗, i.e. for all sequences {xk} ⊆ W with limk→∞ xk = x∗ and all y∗ ∈ Ω(x∗) we have to
find a sequence {yk} converging to y∗ with yk ∈ Ω(xk) for all k ∈ N sufficiently large.
We will define the elements of yk componentwise for each player ν = 1, . . . , N . For those
ν ∈ {1, . . . , N}, where Xν(x

∗,−ν) satisfies the Slater condition, the mapping x−ν 7→ Xν(x
−ν)

is lower semicontinuous at x∗,−ν by Lemma 3.4, and hence a sequence {yk,ν} converging to
y∗,ν with yk,ν ∈ Xν(x

k,−ν) for all k sufficiently large exists. For all the other ν ∈ {1, . . . , N}
we have Xν(x

∗,−ν) = {x∗,ν} = {y∗,ν} by assumption. Defining yk,ν := xk,ν we get a se-
quence {yk,ν} converging to y∗,ν with yk,ν = xk,ν ∈ Xν(x

k,−ν) by Theorem 2.2 (a), since
xk ∈ W . Therefore x 7→ Ω(x) is lower semicontinuous at x∗, since we have a sequence {yk}
with limk→∞ yk = y∗ and yk,ν ∈ Xν(x

k,−ν) for all ν = 1, . . . , N , i.e. yk ∈ Ω(xk) for all k
sufficiently large. �
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Hence the optimization reformulation (4) of the GNEP is at least a continuous problem
under the assumptions of Theorem 3.5. This observation immediately gives the existence
result from part (a) of the following note.

Remark 3.6 (a) If the set W is nonempty and bounded and for each x∗ ∈ W and all
ν = 1, . . . , N , the set Xν(x

∗,−ν) either satisfies the Slater condition or coincides with the
singleton {x∗,ν}, it is an immediate consequence of the Weierstraß theorem that the opti-
mization problem (4) possesses a globally minimal point.

(b) In general, there are three possible situations which fully describe the relationship
between the GNEP and the optimization problem (4):

• The GNEP has a solution, and therefore the optimization problem (4) also has a
solution in view of Theorem 2.2 (with zero as optimal function value).

• The GNEP has no solution, but the optimization problem (4) has a solution (then,
necessarily, with a positive optimal function value).

• Neither the GNEP nor the optimization problem (4) have a solution.

Under the assumption from part (a), the last case cannot occur. In this situation, the
optimization problem (4) therefore characterizes the solvability of a GNEP: The existing
minimum of (4) is a solution of the GNEP if and only if the optimal function value is zero.

(c) Here we give an instance for the second case mentioned in (b). In Example 2.8 we have
a nonempty and bounded set W = {(0,−1)T}, the single valued set X1(−1) = {0} and the
set X2(0) = [−2,−1], which satisfies the Slater condition, but we do not have a solution,
since for the only possible point (0,−1)T ∈ W , we get yα((0,−1)T ) = (0,−2)T 6= (0,−1)T

for all α ≤ 2. A short calculation shows that Vα((0,−1)T ) = 3 − α/2 holds for all α ≤ 2,
so the optimal value of the optimization problem (4) is strictly positive. ♦

In our subsequent analysis we will show that (4) has, in fact, a piecewise continuously differ-
entiable objective function under some stronger assumptions. This additional smoothness
property is highly important from a practical point of view since it implies that several
algorithms for nonsmooth optimization problems can be applied to the problem (4).
To this end it will be useful to define the function

h : R
n × R

n → R
m by h(x, y) :=






g1(y1, x−1)
...

gN(yN , x−N)




 ,

where
m := m1 + . . . + mN
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with mν being given by Assumption 1.1. This assumption also implies that all component
functions hi are convex as a function of y alone. Furthermore, the function h has the nice
property that

y ∈ Ω(x) ⇐⇒ h(x, y) ≤ 0 (10)

for any given x.
Now we require some stronger smoothness properties of the defining functions θν and gν.

Assumption 3.7 The functions θν : R
n → R and gν : R

n → R
mν are twice continuously

differentiable.

Note that Assumption 3.7 implies that the function h is also twice continuously differen-
tiable. Hence yα(x) is the unique solution of the twice continuously differentiable opti-
mization problem

max
y

Ψα(x, y) s.t. h(x, y) ≤ 0. (11)

Let
I(x) := {i ∈ {1, . . . , m} | hi(x, yα(x)) = 0}

be the set of active constraints. Consider, for a fixed subset I ⊆ I(x), the problem (which
has equality constraints only)

max
y

Ψα(x, y) s.t. hi(x, y) = 0 (i ∈ I). (12)

Let
LI

α(x, y, λ) := −Ψα(x, y) +
∑

i∈I

λihi(x, y)

be the Lagrangian of the optimization problem (12). Then the KKT-system of this problem
reads

∇yL
I
α(x, y, λ) = −∇yΨα(x, y) +

∑

i∈I

λi∇yhi(x, y) = 0, hi(x, y) = 0 ∀i ∈ I. (13)

This can be written as a nonlinear system of equations

ΦI
α(x, y, λ) = 0 with ΦI

α(x, y, λ) :=

(
∇yL

I
α(x, y, λ)

hI(x, y)

)

, (14)

where hI consists of all components hi of h with i ∈ I. The function ΦI
α is continuously

differentiable since Ψα and g are twice continuously differentiable, and we have

∇ΦI
α(x, y, λ) =

(
∇2

yxL
I
α(x, y, λ)T ∇2

yyL
I
α(x, y, λ) ∇yhI(x, y)T

∇xhI(x, y) ∇yhI(x, y) 0

)

.

Therefore, we obtain

∇(y,λ)Φ
I
α(x, y, λ) =

(
∇2

yyL
I
α(x, y, λ) ∇yhI(x, y)T

∇yhI(x, y) 0

)

.

Then we have the following result whose proof is standard and therefore omitted.
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Lemma 3.8 Suppose that Assumption 3.7 holds, that ∇2
yyL

I
α(x, y, λ) is positive definite

and that the gradients ∇yhi(x, y) (i ∈ I) are linearly independent. Then ∇(y,λ)Φ
I
α(x, y, λ)

is nonsingular.

Note that the positive definiteness assumption of the Hessian ∇2
yyL

I(x, y, λ) can be relaxed
in Lemma 3.8, but that this condition automatically holds in our situation, so we do not
really need a weaker assumption here. Furthermore, we stress that the assumed linear
independence of the gradients ∇yhi(x, y) (i ∈ I) is a very strong condition for certain
index sets I, however, in our subsequent application of Lemma 3.8, we will only consider
index sets I where this assumption holds automatically, so this condition is not crucial in
our context.

We next introduce another assumption that will be used in order to show that our
objective function Vα is a PC1 mapping.

Assumption 3.9 The (feasible) constant rank constraint qualification (CRCQ) holds at
x∗ ∈ W if there exists a neighbourhood N of x∗ such that for every subset I ⊆ I(x∗) := {i |
hi(x

∗, yα(x∗)) = 0}, the set of gradient vectors

{∇yhi(x, yα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N ∩ W .

Note that the previous definition requires the same rank only for those x ∈ N which
also belong to the common feasible set W ; this is why we call this assumption the feasible
CRCQ, although, in our subsequent discussion, we will simply speak of the CRCQ condition
when we refer to Assumption 3.9. This feasible CRCQ has also been used before in [8], for
example, where the authors simply call this condition the CRCQ.

The following result is motivated by [23] (see also [15]) and states that both yα and Vα

are piecewise continuously differentiable functions.

Theorem 3.10 Suppose that Assumptions 1.1 and 3.7 hold, let x∗ ∈ W be given, and
suppose that the solution mapping yα : W → R

n of (11) is continuous in a neighbourhood
of x∗ (see Theorem 3.5 for sufficient conditions). Then there exists a neighbourhood N̂
of x∗ ∈ W such that yα is a PC1 function on N̂ ∩ W provided that the (feasible) CRCQ
condition from Assumption 3.9 holds at x∗.

Proof. We divide the proof into several steps.

Step 1: Here we introduce some notation and summarize some preliminary statements that
will be useful later on.

First let x∗ ∈ W be fixed such that Assumption 3.9 holds in a neighbourhood N of x∗.
Recall that

I(x) := {i | hi(x, yα(x)) = 0}
for all x ∈ N ∩ W . Furthermore, for any such x ∈ N ∩ W , let us denote by

M(x) := {λ ∈ R
m | (yα(x), λ) is a KKT point of (11)}
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the set of all Lagrange multipliers of the optimization problem (11). Since CRCQ holds at
x∗, it is easy to see that CRCQ also holds for all x ∈ W sufficiently close to x∗. Without loss
of generality, let us say that CRCQ holds for all x ∈ N ∩W with the same neighbourhood
N as before. Then it follows from a result in [17] that the set M(x) is nonempty for all
x ∈ N ∩ W . This, in turn, implies that the set

B(x) :=
{
I ⊆ I(x) | ∇yhi(x, yα(x)) (i ∈ I) are linearly independent and

supp(λ) ⊆ I for some λ ∈ M(x)
}

is also nonempty for all x in a sufficiently small neighbourhood of x∗, say, again, for
all x ∈ N ∩ W (see [15] for a formal proof), where supp(λ) denotes the support of the
nonnegative vector λ, i.e.,

supp(λ) := {i | λi > 0}.

Furthermore, it can be shown that, in a suitable neighbourhood of x∗ (which we assume
to be N once again), we have B(x) ⊆ B(x∗), see, e.g., [23, 15].

Step 2: Here we show that, for every x ∈ N ∩ W and every I ∈ B(x), there is a unique
multiplier λI

α(x) ∈ M(x) such that ΦI
α(x, yα(x), λI

α(x)) = 0, where N,M(x), and B(x) are
defined as in Step 1.

To this end, let x ∈ N ∩ W and I ∈ B(x) be arbitrarily given. The definition of
B(x) implies that there is a Lagrange multiplier λI

α(x) ∈ M(x) with supp(λI
α(x)) ⊆ I.

Since (x, yα(x), λI
α(x)) satisfies the KKT conditions of the optimization problem (11),

[λI
α(x)]i = 0 for all i 6∈ I, and hi(x, yα(x)) = 0 for all i ∈ I (since I ⊆ I(x)), it fol-

lows that ΦI
α(x, yα(x), λI

α(x)) = 0. Moreover, the linear independence of the gradients
∇yhi(x, yα(x)) for i ∈ I shows that the multiplier λI

α(x) is unique.

Step 3: Here we claim that, for any given x∗ ∈ W satisfying Assumption 3.9 and an arbi-
trary I ∈ B(x∗) with corresponding multiplier λ∗, there exist open neighbourhoods N I(x∗)
and N I(yα(x∗), λ∗) as well as a C1-diffeomorphism

(
yI(·), λI(·)

)
: N I(x∗) → N I(yα(x∗), λ∗)

such that yI(x∗) = yα(x∗), λI(x∗) = λ∗ and ΦI
α(x, yI(x), λI(x)) = 0 for all x ∈ N I(x∗).

To verify this statement, let x∗ ∈ W be given such that the CRCQ holds, choose
I ∈ B(x∗) arbitrarily, and let λ∗ ∈ M(x∗) with supp(λ∗) ⊆ I be a corresponding multiplier
coming from the definition of the set B(x∗). Now, consider once again the nonlinear
system of equations ΦI

α(x, y, λ) = 0 with ΦI
α being defined in (14). The function ΦI

α

is continuously differentiable, and the triple (x∗, yα(x∗), λ∗) satisfies this system. The
convexity of θν with respect to xν implies that −ΨI

α(x∗, .) is strongly convex with respect
to the second argument and, therefore, ∇2

yy(−ΨI
α(x∗, yα(x∗))) is positive definite. Moreover,

the convexity of hi(x
∗, .) in the second argument implies the positive semidefiniteness of

∇2
yyhi(x

∗, yα(x∗)). Since λ∗ ≥ 0, it follows that the Hessian of the Lagrangian LI
α evaluated

in (x∗, yα(x∗), λ∗), i.e. the matrix

∇2
yyL

I
α(x∗, yα(x∗), λ∗) = −∇2

yyΨα(x∗, yα(x∗)) +
∑

i∈I

λ∗
i∇2

yyhi(x
∗, yα(x∗))
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is positive definite. Since, in addition, ∇yhi(x
∗, yα(x∗)) (i ∈ I) are linearly independent

in view of our choice of I ∈ B(x∗), the matrix ∇(y,λ)Φ
I
α(x∗, yα(x∗), λ∗) is nonsingular by

Lemma 3.8. The statement therefore follows from the standard implicit function theorem,
where, without loss of generality, we can assume that N I(x∗) ⊆ N .

Step 4: Here we verify the statement of our theorem.
Let x∗ ∈ W be given such that CRCQ holds in x∗. Define N̂ :=

⋂

I∈B(x∗) N I(x∗) with

the neighbourhoods N I(x∗) from Step 3. Since B(x∗) is a finite set, N̂ is a neighborhood
of x∗.

Choose x ∈ N̂ ∩ W arbitrarily. Step 2 shows that, for each I ⊆ B(x)
(
⊆ B(x∗)

)
, there

exist a unique multiplier λI
α(x) ∈ M(x) satisfying ΦI

α(x, yα(x), λI
α(x)) = 0. On the other

hand, Step 3 guarantees that there exists neighbourhoods N I(x∗) and N I(yα(x∗), λ∗) and a
C1-diffeomorphism

(
yI(·), λI(·)

)
: N I(x∗) → N I(yα(x∗), λ∗) such that ΦI

α(x, yI(x), λI(x)) =
0 for all x ∈ N I(x∗). In particular, yI(x), λI(x) is the locally unique solution of the system
of equations ΦI

α(x, y, λ) = 0. Hence, as soon as we can show that (yα(x), λI
α(x)) belongs

to the neighbourhood N I(yα(x∗), λ∗) for all x ∈ N̂ ∩ W sufficiently close to x∗, the local
uniqueness then implies yα(x) = yI(x) (for all I ∈ B(x) ⊆ B(x∗)).

Suppose this is not true in a sufficiently small neighbourhood. Then there is a sequence
{xk} ⊆ W with {xk} → x∗ and a corresponding sequence of index sets Ik ∈ B(xk) such
that

(
yα(xk), λIk

α (xk)
)
6∈ N Ik(yα(x∗), λ∗) for all k ∈ N.

Since B(xk) ⊆ B(x∗) contains only finitely many index sets, we may assume that Ik is the
same index set for all k which we denote by I.

By the continuity of yα in x∗, we have yα(xk) → yα(x∗). On the other hand, for every
xk with associated yα(xk) and λI

α(xk) from Step 2, we have

−∇yΨα(xk, yα(xk)) +
∑

i∈I

[λI
α(xk)]i∇yhi(x

k, yα(xk)) = 0 (15)

for all k. The continuity of all functions involved, together with the linear independence of
the vectors ∇yhi(x

∗, yα(x∗)) (which is a consequence of I ∈ B(xk) ⊆ B(x∗) and the assumed
CRCQ condition) implies that the sequence {λI

α(xk)} is convergent, say {λI
α(xk)} → λ̄I for

some limiting vector λ̄I . Taking the limit in (15) and using once again the continuity of
the solution mapping yα(·) in x∗ then gives

−∇yΨα(x∗, yα(x∗)) +
∑

i∈I

λ̄I
i∇yhi(x

∗, yα(x∗)) = 0.

Note that the CRCQ condition implies that λ̄I is uniquely defined by this equation and
the fact that λ̄I

i = 0 for all i 6∈ I. However, by definition, the vector λ∗ also satisfies
this equation, hence we have λI

α(xk) → λ∗. But then it follows that (yα(xk), λI
α(xk)) ∈

N I(yα(x∗), λ∗), and this implies the desired statement. �

Thus we get the following corollary.
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Corollary 3.11 Suppose that Assumptions 1.1 and 3.7 hold. Moreover, suppose that for
each x∗ ∈ W and all ν = 1, . . . , N the set Xν(x

∗,−ν) either satisfies the Slater condition or
conicides with the singleton {x∗,ν}, and that Assumption 3.9 holds in x∗ ∈ W . Then yα

and Vα are PC1 functions in a neighbourhood of x∗ in W .

Proof. From Corollary 3.5, we obtain the continuity of yα, whereas Theorem 3.10 implies
the PC1 property of yα near x∗. Hence the composite mapping Vα(x) = Ψα(x, yα(x)) is
also continuous and a PC1 mapping in a neighbourhood of x∗. �

To close this section, we want to give an example showing that the (feasible) CRCQ from
Assumption 3.9, without the Slater condition, does not even imply continuity.

Example 3.12 Consider the two player game where each player ν controls a single variable
xν , ν = 1, 2. The cost functions are defined by

θ1(x) :=
1

2
(x1 − 1)2 and θ2(x) :=

1

2
(x2 − 1)2,

and the strategy sets are given by

X1(x2) := {y1 ∈ R | y2
1x

2
2 ≤ 0} =

{
R, if x2 = 0,
{0}, if x2 6= 0,

X2(x1) := {y2 ∈ R | y2
2x

2
1 ≤ 0} =

{
R, if x1 = 0,
{0}, if x1 6= 0,

i.e., the strategy sets are defined by the functions g1(x) := g2(x) := x2
1x

2
2 which satisfy the

requirements from Assumptions 1.1 and 3.7 (whereas the Slater condition is violated). We
therefore have W = {x ∈ R

2 | x1 = 0 or x2 = 0} and X = cl(conv(W )) = R
2. An easy

calculation shows that

yα(x) =
1

1 + α







(1, 1), if x = (0, 0),
(1 + αx1, 0), if x1 6= 0, x2 = 0,
(0, 1 + αx2), if x1 = 0, x2 6= 0,
(0, 0), if x1 6= 0, x2 6= 0.

Using this expression for yα(x) and Theorem 2.2 (e), we deduce that the GNEP has two

solutions given by (0, 1)T and (1, 0)T . With the function h : R
4 → R

2, h(x, y) =

(
y2

1x
2
2

y2
2x

2
1

)

,

we have

∇yh(x, yα(x)) =

(
2y1

α(x)x2
2 0

0 2y2
α(x)x2

1

)

=

(
0 0
0 0

)

for all x ∈ X = R
2 which shows, in particular, that the (feasible) CRCQ condition from

Assumption 3.9 holds everywhere. But, obviously, the function yα is not continuous in
any point of W except (− 1

α
, 0)T and (0,− 1

α
)T , in particular, it is discontinuous in the

two solutions. Moreover, this function is discontinuous in (0, 0)T even if we view it as a
mapping on W only. ♦
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4 Smoothness Properties of the Unconstrained Re-

formulation

In contrast to the previous section where a general player convex GNEP was considered,
this section deals with GNEPs satisfying Assumption 2.3. Recall, however, that this is
still a rather large class of GNEPs including, in particular, the jointly convex ones, cf.
the observations from Remark 2.4. Under Assumption 2.3, we have the unconstrained
optimization reformulation (9) with the objective function V̄αβ from Definition 2.5. Fur-
thermore, throughout this section we denote by X the set defined in (5).

We will show that the PC1 property, that was shown for the constrained reformulation
in the previous section, also holds for the unconstrained reformulation and, with a further
assumption, also the continuity property transfers to the unconstrained reformulation. The
proofs of these smoothness properties are similar (though not identical) to the proofs given
in the previous section, so that we concentrate on the differences in the proofs without
recapitulating all the details. We also refer to [4] for similar considerations in the context
of jointly convex GNEPs, although the additional term c‖x − PX [x]‖2 from the definition
of V̄αβ does not occur in [4].

Our first aim is to obtain a continuity result for V̄αβ . Since the projection mapping is
continuous the additional term c‖x−PX [x]‖2 is continuous, hence we only need continuity
of ȳα for arbitrary α > 0 to get this property for V̄α and V̄αβ. In Theorem 3.5 we used the
property x ∈ Ω(x) for all x ∈ W . The problem occuring here is that the corresponding
property PX [x] ∈ Ω(PX [x]) is only valid for x ∈ W but not necessarily for x ∈ X. To prove
a continuity result for the unconstrained reformulation we need the additional assumption
of uniform continuity of the functions gν

i (yν, .) : R
n−nν → R, ν = 1, . . . , N, i = 1, . . . , mν

for all yν ∈ R
nν .

Theorem 4.1 Suppose Assumptions 1.1 and 2.3 hold and further assume that the func-
tions gν

i (y
ν, .) : R

n−nν → R, ν = 1, . . . , N, i = 1, . . . , mν are uniformly continuous for all
yν ∈ R

nν . Then V̄αβ is continuous in x∗ ∈ R
n provided the sets Xν(PX [x∗]−ν) are either

single-valued or satisfy the Slater condition.

Proof. As in the proof of the corresponding Theorem 3.5 for the constrained formu-
lation, it is enough to show that the point-to-set maps x 7→ Xν(PX [x]−ν), ν = 1, . . . , N
are closed on R

n and lower semicontinuous in x∗. The proof of closedness is analogous to
the constrained formulation and so is the proof of lower semicontinuity in the case where
Xν(PX [x∗]−ν) satisfies the Slater condition.

Hence it remains to show lower semicontinuity when Xν(PX [x∗]−ν) is single valued.
Therefore let an x∗ ∈ R

n and an arbitrary but fixed ν ∈ {1, . . . , N} be given such that
we have a single valued set Xν(PX [x∗]−ν) = {y∗,ν}. For a given sequence {xk} ⊆ R

n with
xk → x∗ we have to show the existence of a sequence {yk,ν} ⊆ R

nν with yk,ν → y∗,ν and
yk,ν ∈ Xν(PX [xk]−ν) for all k sufficiently large.

Define the function ḡ(yν, x−ν) := maxi=1,...,mν
gν

i (yν, x−ν) which is still uniformly contin-
uous and convex in yν. Further define K := {k ∈ N | y∗,ν 6∈ Xν(PX [xk]−ν)}. For k 6∈ K we
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simply define yk,ν := y∗,ν. If K is a finite set the proof is already complete. Otherwise con-
sider the subsequence {yk,ν}k∈K . We have ḡ(y∗,ν, PX [xk]−ν) > 0 and, since Xν(PX [xk]−ν)
is nonempty by Assumption 2.3, there exists a wk,ν ∈ R

nν such that ḡ(wk,ν, PX [xk]−ν) ≤ 0.
Continuity of ḡ implies the existence of an yk,ν ∈ Xν(PX [xk]−ν) on the line segment from
wk,ν to y∗,ν with ḡ(yk,ν, PX [xk]−ν) = 0. It remains to show that yk,ν converges to y∗,ν .

First of all we have limk∈K ḡ(yk,ν, PX[xk]−ν) = 0. The uniform continuity of ḡ together
with the continuity of the projection map imply

lim
k∈K

|ḡ(yk,ν, PX [xk]−ν) − ḡ(yk,ν, PX [x∗]−ν)| = 0,

and thus we obtain
lim
k∈K

ḡ(yk,ν, PX [x∗]−ν) = 0. (16)

We have ḡ(zν , PX [x∗]−ν) > 0 for all zν 6= y∗,ν, because Xν(PX [x∗]−ν) = {y∗,ν}. Therefore
y∗,ν is a strict global minimum of the convex function ḡ(., PX [x∗]−ν) which implies

ε := min
aν∈bd(B1(y∗,ν))

ḡ(aν , PX [x∗]−ν) > 0,

where bd(B1(y
∗,ν)) := {aν | ‖aν − y∗,ν‖ = 1} is the boundary of the ball B1(y

∗,ν) with
centre y∗,ν and radius 1. With convexity of ḡ(·, PX[x∗]−ν) we get

ḡ(yν , PX [x∗]−ν) ≥ ε for all yν 6∈ B1(y
∗,ν).

This together with (16) shows that {yk,ν} ∈ B1(y
∗,ν) for all k ∈ K sufficiently large. But

this implies boundedness of the whole sequence {yk,ν} and thus the existence of an ac-
cumulation point ŷν. Closedness of the point-to-set mapping x 7→ Xν(PX [x]−ν) therefore
shows ŷν ∈ Xν(PX [x∗]−ν) = {y∗,ν}. Since this is true for all accumulation points, we have
convergence of the sequence {yk,ν} to y∗,ν , which completes the proof. �

Our next aim is to show that the function V̄αβ is a PC1 mapping under suitably adopted
assumptions. To this end, we first define the function

h̄ : R
n × R

n → R
m by h̄(x, y) :=






g1(y1, (PX [x])−1)
...

gN(yN , (PX [x])−N )




 .

This function will play the role of the mapping h from Section 3. In particular, it has the
corresponding property that, for any given x,

y ∈ Ω(PX [x]) ⇐⇒ h̄(x, y) ≤ 0. (17)

This implies that ȳα(x) is the unique solution of

max
y

Ψα(x, y) s.t. h̄(x, y) ≤ 0. (18)
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Note, however, that (in contrast to the function h) the function h̄ is not differentiable
in general (even if all gν are differentiable) due to the projection term inside the defini-
tion of h̄. This causes some technical difficulties in generalizing the PC1 property to the
unconstrained reformulation. However h̄ is a PC1 mapping if all gν are smooth and the
projection mapping is PC1. The latter holds in view of [22] under the smoothness condi-
tions of Assumption 3.7 and a constant rank constraint qualification in a version that we
define next.

Assumption 4.2 The constant rank constraint qualification (CRCQ) holds at x∗ ∈ R
n

if there exists a neighbourhood N of x∗ such that, for every subset I ⊆ Ī(x∗) := {i |
h̄i(x

∗, ȳα(x∗)) = 0}, the set of gradient vectors

{∇yh̄i(x, ȳα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N .

Assumption 4.2 is slightly stronger than the feasible CRCQ from Assumption 3.9 since we
consider a full-dimensional neighbourhood N of x∗, whereas in Assumption 3.9 we only
consider a feasible neighbourhood of x∗.

Consider the optimization problem (18) once again. Let

Ī(x) := {i ∈ {1, . . . , m} | h̄i(x, ȳα(x)) = 0}

be the set of active inequality constraints. Consider, for a fixed subset I ⊆ Ī(x), the
equality constrained problem

max
y

Ψ(x, y) s.t. h̄i(x, y) = 0 (i ∈ I). (19)

Let
L̄I

α(x, y, λ) := −Ψα(x, y) +
∑

i∈I

λih̄i(x, y)

be the corresponding Lagrangian. Then the KKT conditions of (19) are equivalent to the
nonlinear system of equations

Φ̄I
α(x, y, λ) = 0 with Φ̄I

α(x, y, λ) :=

(
∇yL̄

I
α(x, y, λ)

h̄I(x, y)

)

.

In the proof of Theorem 3.10 (Step 3), we applied the implicit function theorem to the
corresponding mapping ΦI

α from the previous section. In contrast to ΦI
α, however, Φ̄I

α is not
differentiable everywhere, hence the standard implicit function theorem cannot be used in
the current situation. However, under suitable assumptions including the CRCQ condition,
the projection map and, therefore, also the function Φ̄I

α is a PC1 mapping. Hence we need
an implicit function theorem for PC1 equations. The following is such a result that was
obtained in [4] as a consequence of an inverse function theorem for PC1 mappings from
[8].
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Theorem 4.3 Assume H : R
m × R

n → R
n is a PC1 function in a neighborhood of (x̄, ȳ)

with H(x̄, ȳ) = 0 and all matrices in πy∂H(x̄, ȳ) have the same nonzero orientation. Then
there exists an open neighborhood U of x̄ and a function g : U → R

n which is a PC1

function on U such that g(x̄) = ȳ and H(x, g(x)) = 0 for all x ∈ U .

Now we are in a position to generalize Theorem 3.10 to the unconstrained optimization
reformulation.

Theorem 4.4 Suppose that Assumptions 1.1, 2.3, and 3.7 hold. Furthermore, suppose
that x∗ ∈ R

n is such that the CRCQ condition from Assumption 4.2 is satisfied at x∗ and
the solution mapping ȳα : R

n → R
n of (18) is continuous in a neighbourhood of x∗ (see

Theorem 4.1 for a sufficient condition). Then ȳα is a PC1 function in a neighbourhood of
x∗.

Proof. We follow the proof of Theorem 3.10 by dividing the proof into four steps. Rather
than giving all the details, however, we more or less only mention the differences.

Step 1: Similar to the discussion in Section 3, let us introduce the sets

M̄(x) := {λ ∈ R
m | (ȳα(x), λ) is a KKT point of (18)}

and

B̄(x) :=
{
I ⊆ Ī(x) | ∇yh̄i(x, ȳα(x)) (i ∈ I) are linearly independent and

supp(λ) ⊆ I for some λ ∈ M̄(x)
}

Then Assumption 4.2 implies that there is a neighbourhood N of x∗ such that M̄(x) 6=
∅, B̄(x) 6= ∅ and B̄(x) ⊆ B̄(x∗) for all x ∈ N .

Step 2: Using the notation of (18), L̄I
α and Φ̄I

α, it follows as in the proof of Theorem 3.10
that, for every x ∈ N and every I ∈ B̄(x), there is a unique multiplier λI

α(x) ∈ M̄(x) such
that Φ̄I

α(x, ȳα(x), λI
α(x)) = 0, where N,M̄(x), and B̄(x) are the sets defined in Step 1.

Step 3: Here we have the main difference to the proof of Theorem 3.10 since the mapping
Φ̄I

α defined in Step 2 is only a PC1 function, but not continuously differentiable (in con-
trast to the mapping ΦI

α which was continuously differentiable). Therefore, we have to use
an implicit function theorem for PC1 functions instead of the standard implicit function
theorem. Let any x∗ ∈ R

n satisfying Assumption 4.2 and an arbitrary I ∈ B(x∗) with
corresponding multiplier λ∗ be given. Since Φ̄I

α(x, y, λ) is continuously differentiable with
respect to y and λ, it follows that π(y,λ)∂ΦI

α(x∗, ȳα(x∗), λ∗) has only one element, whose non-
singularity can be shown as in the proof of Theorem 3.10. In particular, the same nonzero
orientation of all the elements is guaranteed. Using the PC1 implicit function theorem 4.3
we get the existence of open neighbourhoods N I(x∗) and N I(ȳα(x∗), λ∗) as well as a PC1

function
(
yI(·), λI(·)

)
: N I(x∗) → N I(ȳα(x∗), λ∗) such that yI(x∗) = ȳα(x∗), λI(x∗) = λ∗

and Φ̄I
α(x, yI(x), λI(x)) = 0 for all x ∈ N I(x∗).

24



Step 4: Repeating the arguments from Step 4 of the proof of Theorem 3.10, we obtain
ȳα(x) ∈ {yI(x) | I ∈ B̄(x∗)} for all x in a sufficiently small neighborhood of x∗. Since all
yI are PC1 functions, it follows that also ȳα is a PC1 mapping in a neighbourhood of any
x∗ satisfying the CRCQ condition from Assumption 4.2. �

Altogether, we get the following corollary.

Corollary 4.5 Suppose that Assumptions 1.1, 2.3 and 3.7 hold. Moreover, suppose that
the functions gν

i (y
ν, .) : R

n−nν → R are uniformly continuous for all yν ∈ R
nν , Assumption

4.2 holds in x∗ ∈ R
n and that the sets Xν(PX [x]−ν), ν = 1, . . . , N either satisfy the Slater

condition or coincide with a singleton for all x sufficiently close to x∗. Then V̄αβ is a PC1

function in a neighbourhood of x∗.

Proof. Since the projection mapping has PC1 property, the additional term c‖x−PX [x]‖2

also has. From Theorem 4.1 we obtain the continuity of ȳα. Theorem 4.4 therefore
implies the PC1 property of ȳα near x∗ satisfying the CRCQ condition from Assump-
tion 4.2. Hence the composite mapping V̄α(x) = Ψα(x, ȳα(x)) and therefore also V̄αβ =
V̄α(x) − V̄β(x) + c‖x − PX [x]‖2 are PC1 mappings in a neighborhood of x∗. �

Being a PC1 mapping, it follows that V̄αβ is, in particular, directionally differentiable,
locally Lipschitz continuous and semismooth, cf. [2].

Unfortunately we were not able to give simple sufficient conditions for stationary points
of V̄αβ to be global minima of the function. As the following example shows this is probably
a difficult task.

Example 4.6 Consider the jointly convex 2-player game defined via

θ1(x) :=
1

2
(x1 + 2)2 and θ2(x) :=

1

2
(x2 + 2)2 and

X := {x ∈ R
2 | 0 ≤ x1 ≤ 2, x2 − x1 ≤ 0, x1 − x2 − 1 ≤ 0}.

A simple calculation shows that, for all α ∈ (0, 1] and all x ∈ X, we have

ȳα(x) = (max{0, x2}, x1 − 1).

Moreover, it is not difficult to see that the only solution of this GNEP is given by (0,−1).
Taking 0 < α < β ≤ 1, we obtain from the previous observation that ȳα(x) = ȳβ(x) and,
therefore,

V̄αβ(x) =
β − α

2
‖x − ȳα(x)‖2.

Thus we have for all x2 > 0

V̄αβ(x) =
β − α

2

(
(x1 − x2)

2 + (x2 − x1 + 1)2
)

= (β − α)

((

x2 − x1 +
1

2

)2

+
1

4

)

.
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Hence we see, that for all x ∈ X with x2 > 0 and x2 − x1 = −1
2
, the function V̄αβ has local

minima and hence stationary points with function value β−α

4
> 0. Therefore these points

are not global minima and hence not solutions of the GNEP. ♦

5 Numerical Results

As in the recent paper [4] we used the robust gradient sampling algorithm from [1] to
test our unconstrained optimization reformulation using the objective function V̄αβ. The
MATLABR© implementation is the one written by the authors of [1] which is available online
at the following address: http://www.cs.nyu.edu/overton/papers/gradsamp. Since the
algorithm computes random sampling gradients, it may generate different solutions even
if the same starting point is used. With probability one every limiting point of a sequence
generated by this method is a Clarke stationary point. The algorithm stops if the norm of
the vector with the smallest Euclidian norm in the convex hull of the sampled gradients
is less than 10−6. Apart from using standard parameter settings, we use the three values
α = 0.02, β = 0.05 and c = 103 which define our objective function. For every function
evaluation we have to solve optimization problems to obtain ȳα(x) and ȳβ(x). This is done
by using the fmincon solver from the MATLABR© Optimization Toolbox. Further if x 6∈ X
we have to compute the projection onto the convex set X for which we either used the
quadprog (for polyhedral X) or again the fmincon solver (for nonpolyhedral X) from the
MATLABR© Optimization Toolbox.

Since we already presented numerical results for jointly convex GNEPs in the previous
paper [4], we now concentrate on player convex GNEPs. First we present four small
examples with 2 players, each contolling a single variable, where the solution sets can be
computed analytically. These examples were tested with 100 randomly choosen starting
vectors and the distribution of the solutions is shown in scatter plots in Figure 2. There
one can see that the solutions obtained by the algorithm spread over the entire solution
set.

Example 5.1 This two player game is defined via the following problems:

Player 1: min
x1

(x1 − 2)2 s.t. x1 + x2 ≤ 1,

Player 2: min
x2

(x2 − 2)2 s.t. x1 + x2 ≤ 1, x2 − x1 ≤ 0.

An elementary calculation shows that the solution set is given by

{

(λ, 1 − λ) | λ ∈
[
1

2
, 2

]}

.

Our starting points were chosen randomly in [−10, 10]2. ♦
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Example 5.2 Here we consider once again a GNEP with two players, whose optimization
problems are given by

Player 1: min
x1

1

2
x2

1 + 3x1x2 s.t. x1 − 3x2 ≤ 2, −3x1 + x2 ≤ 2, x1 + x2 ≤ 1,

Player 2: min
x2

1

2
x2

2 + 3x1x2 s.t. x1 − 3x2 ≤ 2, −3x1 + x2 ≤ 2.

Based on some elementary considerations, it is possible to verify that the corresponding
solution set is given by

{(0, 0), (−1,−1)} ∪
{

(λ,−2

3
+

1

3
λ) | λ ∈

[
1

5
, 1

]}

∪
{

(λ, 2 + 3λ) | λ ∈
[

−3

5
,−1

3

]}

.

The starting points were taken randomly from [−2, 2]2. ♦

Example 5.3 This game is defined by

Player 1: min
x1

(x1 − 1)2 s.t. x2
1 − x2

2 ≤ 0,

Player 2: min
x2

(x2 − x1)
2 s.t. x2

1 + x2
2 ≤ 1.

In this example the set W := {x ∈ R
2 | x2

1 − x2
2 ≤ 0, x2

1 + x2
2 ≤ 1} is not convex, but the

set X = cl(conv(W )) = {x ∈ R
2 | −1

2
≤ x1 ≤ 1

2
, x2

1 + x2
2 ≤ 1} can be computed easily, cf.

Figure 1. The solution set of the game is
{

(λ, λ) | λ ∈
[

0,
1√
2

]}

and the starting vector was choosen randomly in [−2, 2]2. ♦

Example 5.4 Here we have the following situation for the two players:

Player 1: min
x1

(x1 − 1)2 s.t. x2
1 − x2

2 ≤ 0, x2
1 + x2

2 ≤ 1,

Player 2: min
x2

(x2 −
1

2
x1 − 2)2 s.t. x2

1 + x2
2 ≤ 1.

The sets W and X are the same as in the previous Example 5.3. The solution set is
{

(λ,
√

1 − λ2) | λ ∈
[

0,
1√
2

]}

and the starting vector was choosen randomly in [−2, 2]2. ♦

The further test examples we used are all taken from the appendix of the paper [7]. We only
report results for the test runs with the starting vectors given therein. Recall, however,
that two runs with the same starting vector can give different solutions, since the algorithm
uses a random sampling strategy. Table 5 shows the results, where the column x0 contains
the equal value of all variables of the starting vector, column (It.) is the number of
iterations, x∗ the computed solution and V̄αβ(x∗) the corresponding objective function
value at the solution. Since the MATLABR© function fmincon computes a solution at a
certain precision it is possible that for ȳα(x) ≈ ȳβ(x) the objective function values V̄αβ(x)
get slightly negative, although theoretically we have V̄αβ(x) ≥ 0 for all x ∈ R

n.
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6 Final Remarks

This paper gives a constrained reformulation of all solutions of a player convex GNEP and
therefore generalizes the results of [4] where a reformulation is given only for jointly convex
GNEPs. Further we introduce a new unconstrained reformulation for general player convex
GNEPs where the sets Ω(x) are nonempty for certain x. Both reformulations characterize
all solutions of general player convex GNEPs as solutions of optimization problems. These
problems are continuous if a Slater condition is satisfied on the sets Ω(x) or if all degenerate
strategy spaces are singletons. If we additionally suppose a constant rank constrained
qualification we get a PC1 objective function, which allows the application of nonsmooth
optimization software for finding a solution of a GNEP.
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Example 5.1: Example 5.2:
{
(λ, 1 − λ) | λ ∈

[
1
2
, 2
]}

{(0, 0), (−1,−1)}∪
{
(λ,−2

3
+ 1

3
λ) | λ ∈

[
1
5
, 1
]}

∪
{
(λ, 2 + 3λ) | λ ∈

[
−3

5
,−1

3

]}
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Example 5.3: Example 5.4:
{

(λ, λ) | λ ∈
[

0, 1√
2

]} {

(λ,
√

1 − λ2) | λ ∈
[

0, 1√
2

]}
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Figure 2: Scatter plots of the solutions of the 2-dimensional GNEPs
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Example x0 It. x∗ V̄αβ(x∗)

A.1 0.01 78
(0.3004, 0.0692, 0.0694, 0.0694, 0.0692,
0.0698, 0.0696, 0.0690, 0.0690, 0.0700)

-4.8e-7

0.1 49
(0.3000, 0.0694, 0.0693, 0.0694, 0.0695,
0.0694, 0.0695, 0.0694, 0.0695, 0.0694)

3.2e-9

1 53
(0.3000, 0.0696, 0.0694, 0.0691, 0.0697,
0.0691, 0.0695, 0.0693, 0.0699, 0.0691)

-4.8e-7

A.2 0.01 89
(0.3008, 0.0247, 0.0316, 0.0294, 0.2444,
0.3180, 0.0120, 0.0118, 0.0121, 0.0110)

-2.4e-6

0.1 66
(0.3026, 0.0364, 0.0250, 0.0374, 0.2425,
0.2944, 0.0134, 0.0122, 0.0178, 0.0110)

-6.5e-6

1 103
(0.3004, 0.0326, 0.0280, 0.0251, 0.2233,
0.3342, 0.0116, 0.0115, 0.0115, 0.0118)

9.1e-8

A.3 0 84 (−0.3812,−0.1265,−0.9972, 0.3900, 1.1653, 0.0502, 0.0186) -3.3e-7

1 64 (−0.3730,−0.1259,−0.9764, 0.3806, 1.1357, 0.0489, 0.0200) -3.8e-7

10 81 (−0.3874,−0.1236,−1.0119, 0.3988, 1.1876, 0.0521, 0.0171) -2.3e-7

A.4 0 45 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 1.5e-12

1 33 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 1.3e-11

10 38 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 5.9e-12

A.5 0 56 (0.0000, 0.2028, 0.0000, 0.0000, 0.0722, 0.0255, 0.0001) -5.0e-7

1 41 (0.0001, 0.2024, 0.0001, 0.0001, 0.0714, 0.0253, 0.0003) -4.3e-7

10 61 (0.0008, 0.1970, 0.0010, 0.0019, 0.0577, 0.0300, 0.0039) -3.7e-8

A.6 0 49 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) 3.8e-11

1 38 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) 6.6e-11

10 35 (1.0000, 1.0000, 1.0000, 1.4167, 1.0000, 1.0000, 1.0000) 2.6e-11

A.7 0 115
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.8e-11

1 120
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.7e-11

10 149
(1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
1.0000, 1.0000, 1.0000, 1.0000, 1.8427, 1.0000, 1.0000,

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000)
1.5e-11

A.8 0 23 (0.6005, 0.3995, 0.9009) 0

1 20 (0.5550, 0.4447, 0.8322) 7.7e-9

10 18 (0.6284, 0.3716, 0.9421) 1.2e-8

A.9 (a) 0 79 available on request 3.7e-9

A.9 (b) 0 157 available on request 5.0e-6

Table 1: Numerical results for test problems from [7]
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