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1 Introduction

Given lower bounds li ∈ IR ∪ {−∞} and upper bounds ui ∈ IR ∪ {+∞} with li < ui for all
i ∈ I := {1, . . . , n}, the mixed complementarity problem (MCP for short) is to find a vector
x∗ ∈ [l, u] such that the following implications hold for any index i ∈ I:

x∗i = li =⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) =⇒ Fi(x
∗) = 0,

x∗i = ui =⇒ Fi(x
∗) ≤ 0;

here, F : IRn → IRn is a continuously differentiable function and

l := (l1, . . . , ln)T , u := (u1, . . . , un)T .

Since it is easy to see that x∗ is a solution of MCP if and only if it satisfies the variational
inequality

F (x∗)T (x− x∗) ≥ 0 for all x ∈ [l, u],

the mixed complementarity problem is sometimes also called the box constrained variational
inequality problem. Note that it reduces to the standard nonlinear complementarity problem
of finding a feasible point for the system

x ≥ 0, F (x) ≥ 0, xTF (x) = 0

if li = 0 and ui = +∞ for all i ∈ I, and that we obtain the problem of finding a solution of
the nonlinear system of equations

F (x) = 0

if li = −∞ and ui = +∞ for all i ∈ I.
Apart from these special cases, the mixed complementarity problem has a whole bunch of

other applications ranging from operations research to economic equilibrium and engineering
problems, and we refer the interested reader to the recent article [12] by Ferris and Pang for an
overview. Due to the importance of the mixed complementarity problem, many researchers
try to find efficient and robust methods for the solution of complementarity problems. In
fact, we believe that much progress has been made in this area during the last decade so
that we are able to solve much more complicated problems now than just a few years ago.

So far, almost all of these methods try to minimize a certain merit function for the MCP
which, typically, is zero at a solution and positive otherwise. Hence, minimizing such a
merit function is a global optimization problem. In fact, there are two steps where global
optimization plays a significant role.

The first step is the choice of a good merit function. This is highly important because
the right choice of a merit function may already avoid many problems with local-nonglobal
minimizers since one merit function may have local-nonglobal minimizers which another
merit function might not have. For example, it is known that the implicit Lagrangian [22]
is a merit function of the standard nonlinear complementarity problem which might have
local-nonglobal minimizers even for strictly monotone problems [30]. On the other hand, it is
known that all local minimizers are already global ones for, e.g., the Fischer-Burmeister merit
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function [13, 16, 9] if the complementarity problem is strictly monotone or just monotone.
However, one cannot expect to construct a merit function such that all minimizers are global
without requiring any monotonicity-type conditions on F .

We therefore believe that it is no longer possible to get substantial improvements by
introducing new merit functions. Instead, our feeling is that one has to consider algorithms
which are able to deal with the problem that even the currently best merit functions might
have local-nonglobal minimizers. And this is the second time where global optimization
plays a central role.

There are actually a couple of papers available which use ideas from global optimization
in order to solve complementarity and related problems. Most of these papers deal with
homotopy methods, see, e.g., Watson [29], Sellami and Robinson [25, 26] and Billups [3].
While these methods seem to be fairly robust, they usually need an enourmous number of
iterations in order to trace the underlying homotopy path. On the other hand, Kostreva
and Zheng [19] describe an integral optimization method for the solution of the standard
nonlinear complementarity problem, but they mainly focus on problems where the function
F is not necessarily differentiable (not even continuous). Finally, we mention the book [18]
for some further methods and stress that the situation becomes somewhat simpler if one
considers only linear (instead of nonlinear) complementarity problems.

In this paper, we discuss the theoretical and numerical properties of two different global
optimization techniques for the solution of mixed complementarity problems. The two tech-
niques investigated here are the tunneling approach [21] and the filled function method [15].
These two global optimization techniques seem to be relatively promising in our situation
without being too expensive from a computational point of view. We describe the influence
of these techniques in combination with one particular class of methods for the solution
of mixed complementarity problems, namely the class of semismooth solvers for MCP. As
known to the author, none of these techniques have been used earlier in the complementarity
community.

The organization of this paper is as follows: In Section 2 we first give a review of a
specific semismooth Newton-type method for the solution of the mixed complementarity
problem. This method is used as the basic solver in this paper. We stress, however, that
many other methods for MCP can be used as the basic solver. We then describe a switching
criterion in Section 3, i.e., a criterion which indicates when this semismooth solver is likely
to fail on the given example so that it seems advantageous to switch to a global optimization
method. Sections 4 and 5 then describe the main ideas of the tunneling and the filled function
methods. In fact, we also describe an extension of the original filled function idea by Ge
[15]. We then present extensive numerical results in Section 6 and conclude this paper with
some final remarks in Section 7.

The notation used in this paper is rather standard: The n-dimensional Euclidean space is
denoted by IRn, with scalar product xTy for two vectors x, y ∈ IRn. The symbol ‖ · ‖ denotes
the Euclidean vector norm or its associated matrix norm, whereas ‖x‖∞ is the maximum
norm in IRn. Finally, x+ denotes the projection of a vector x ∈ IRn onto the box [l, u].
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2 Basic Semismooth Newton-type Method

In this section we recall the basic facts about one of the standard methods for the solution
of the mixed complementarity problem. This method belongs to the class of semismooth
Newton-type methods and is, basically, a nonsmooth Newton method applied to a reformu-
lation of the MCP as a nonlinear (and nonsmooth) system of equations.

In the following, we give a short description of this reformulation, see [1, 10] for further
details. To this end, let us define the Fischer-Burmeister function φ : IR2 → IR by

φ(a, b) :=
√

a2 + b2 − a− b,

see [13], and let us introduce a partition of the index set I:

Il := {i ∈ I | −∞ < li < ui = +∞},
Iu := {i ∈ I | −∞ = li < ui < +∞},
Ilu := {i ∈ I | −∞ < li < ui < +∞},
If := {i ∈ I | −∞ = li < ui = +∞},

i.e., Il, Iu, Ilu and If denote the set of indices i ∈ I with finite lower bounds only, finite
upper bounds only, finite lower and upper bounds and no finite bounds on the variable xi,
respectively. Hence the subscripts in the above index sets indicate which bounds are finite,
with the only exception of If which contains the free variables.

We now define an operator Φ : IRn → IRn componentwise as follows:

Φi(x) :=


φ(xi − li, Fi(x)) if i ∈ Il,
−φ(ui − xi,−Fi(x)) if i ∈ Iu,
φ(xi − li, φ(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If .

Then it is easy to see that

x∗ solves MCP ⇐⇒ x∗ solves Φ(x) = 0.

A similar reformulation of the mixed complementarity problem, also based on the Fischer-
Burmeister function, is described in the paper [28] by Sun and Womersley. Further reformu-
lations can be obtained by replacing the Fischer-Burmeister function by, e.g., the recently
introduced function from [6] which seems to have somewhat stronger theoretical properties
and a better numerical behaviour. For the sake of simplicity, however, we will only consider
the reformulation introduced at the beginning of this section for the theoretical part of this
paper. The interested reader can easily extend our results to other appropriate reformula-
tions.

In order to solve the mixed complementarity problem, we now apply a nonsmooth Newton
method from Qi [23] to the system Φ(x) = 0 and globalize it using the corresponding merit
function

Ψ(x) :=
1

2
Φ(x)TΦ(x).
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Note that this function is continuously differentiable everywhere [1, 10] with

∇Ψ(x) = HTΦ(x), (1)

where H ∈ IRn×n denotes an arbitrary element from the B-subdifferential ∂BΦ(x), see [10, 23]
for a definition of this set.

Algorithm 2.1 (Semismooth Newton-type Method)

(S.0) (Initialization)
Choose x0 ∈ IRn, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, and set k := 0.

(S.1) (Stopping Criterion)
If xk satisfies a suitable termination criterion: STOP.

(S.2) (Search Direction Calculation)
Select an element Hk ∈ ∂BΦ(xk). Find a solution dk ∈ IRn of the linear system

Hkd = −Φ(xk). (2)

If this system is not solvable or if the descent condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (3)

is not satisfied, set dk := −∇Ψ(xk).

(S.3) (Line Search)
Compute tk := max{β` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + tk∇Ψ(xk)Tdk.

(S.4) (Update)
Set xk+1 := xk + tkd

k, k ← k + 1, and go to (S.1).

We next discuss the convergence properties of Algorithm 2.1. These properties can be derived
from the two papers [7] by De Luca, Facchinei and Kanzow and [10] by Ferris, Kanzow and
Munson, and we therefore refer the interested reader to these papers for some further details.
Our first result deals with the global convergence properties of Algorithm 2.1.

Theorem 2.2 Every accumulation point of a sequence {xk} generated by Algorithm 2.1 is
a stationary point of Ψ, and such a stationary point is a solution of MCP under relatively
mild assumptions.

Before summarizing the local convergence properties of Algorithm 2.1 in our next result, we
recall that a solution x∗ of MCP is said to be a BD-regular solution of the system Φ(x) = 0
if all elements H ∈ ∂BΦ(x∗) are nonsingular. For example, if x∗ is a strongly regular solution
of MCP in the sense of Robinson [24], then x∗ is a BD-regular solution of Φ(x) = 0, see [10].
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Theorem 2.3 Let x∗ ∈ IRn be a BD-regular solution of Φ(x) = 0 and assume that x∗ is
an accumulation point of a sequence {xk} generated by Algorithm 2.1. Then the following
statements hold:

(1) The entire sequence {xk} converges to x∗.

(2) The search direction dk is eventually given by the Newton equation (2).

(3) The full stepsize tk = 1 is eventually accepted in Step (S.3).

(4) The rate of convergence is Q-superlinear.

(5) If F ′ is locally Lipschitzian, then the rate of convergence is Q-quadratic.

For later reference, we will make statements (2) and (3) of Theorem 2.3 more precise in the
following remark.

Remark 2.4 Let x∗ ∈ IRn be a BD-regular solution of Φ(x) = 0. Then there is a neigh-
bourhood of x∗ such that, whenever xk belongs to this neighbourhood, the linear system (2)
has a unique solution dk which satisfies the descent condition (3). Moreover, the full stepsize
tk = 1 will be accepted for this descent direction by the Armijo-rule in Step (S.3).

3 Switching Criterion

In this section we investigate the following question: When shall we terminate Algorithm
2.1 if we run into troubles? This question is highly important from a practical point of
view because if we are able to identify (hopefully relatively early, but not too early) that
Algorithm 2.1 may not be able to solve a certain test example, we may want to switch to
another method (e.g., a global optimization method) hoping that this method will make
more progress.

Our answer to this question is given in the following algorithm. It is a modified semis-
mooth Newton-type method which differs from Algorithm 2.1 mainly in the introduction of
a new termination criterion in Step (S.3). The idea of this new termination check is that, if
one of the two conditions given there is satisfied, then something is going wrong, so we stop
the iteration. Later we will discuss the problem of what can be done if Step (S.3) becomes
active.

Note that the new termination check in Step (S.3) is related to the one introduced
by Billups and Ferris in their paper [4], where it is used in order to improve the global
convergence properties of a QP-based method for the solution of complementarity problems.

Algorithm 3.1 (Modified Semismooth Newton-type Method)

(S.0) (Initialization)
Choose x0 ∈ IRn, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, δ ∈ (0, 2), ∆ > 0, and set k := 0.

(S.1) (Termination Criterion)
If xk is a solution of MCP: STOP.

6



(S.2) (Search Direction Calculation)
Select an element Hk ∈ ∂BΦ(xk). Find a solution dk ∈ IRn of the linear system

Hkd = −Φ(xk). (4)

If this system is not solvable or if the descent condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p (5)

is not satisfied, set dk := −∇Ψ(xk).

(S.3) (Check for Failure)
If ∇Ψ(xk)Tdk ≥ −δΨ(xk) or if ‖dk‖ ≥ ∆, then terminate the algorithm, returning the
point xk along with a failure message; otherwise, continue.

(S.4) (Line Search)
Compute tk := max{β` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + tkσ∇Ψ(xk)Tdk.

(S.5) (Update)
Set xk+1 := xk + tkd

k, k ← k + 1, and go to (S.1).

In our subsequent analysis, we always assume implicitly that Algorithm 3.1 does not termi-
nate after finitely many iterations in Step (S.1).

We now want to show that Algorithm 3.1 has the same local convergence properties as
Algorithm 2.1. To this end, we prove that none of the tests in Step (S.3) of Algorithm 3.1 is
satisfied if we are sufficiently close to a BD-regular solution of the system Φ(x) = 0. We first
show that the first test in Step (S.3) is never active as long as dk is the Newton direction
calculated as the solution of the linear system (4).

Lemma 3.2 If xk is not a solution of MCP and dk ∈ IRn is computed from (4), then
∇Ψ(xk)Tdk < −δΨ(xk).

Proof. From (1), we have ∇Ψ(xk) = HT
k Φ(xk), where Hk denotes the matrix from the

linear system (4). On the other hand, we have Hkd
k = −Φ(xk) from (4). Since Ψ(xk) =

1
2
Φ(xk)TΦ(xk), we therefore get

∇Ψ(xk)Tdk = Φ(xk)THkd
k = −Φ(xk)TΦ(xk) = −2Ψ(xk) < −δΨ(xk),

where the last inequality follows from δ ∈ (0, 2) and Ψ(xk) > 0. 2

Note that Lemma 3.2 does not even assume that the matrix Hk in the Newton equation (4)
is nonsingular; instead, it just assumes that the linear system (4) is consistent.

The next result shows that the first test in Step (S.3) of Algorithm 3.1 is never satisfied
if we are sufficiently close to a BD-regular solution of Φ(x) = 0.
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Lemma 3.3 Let x∗ ∈ IRn be a BD-regular solution of Φ(x) = 0. Then there is a neighbour-
hood of x∗ such that

∇Ψ(xk)Tdk < −δΨ(xk)

for all xk in this neighbourhood, where dk denotes the search direction computed by Algorithm
3.1.

Proof. It follows from Remark 2.4 that, if xk is sufficiently close to x∗, then dk ∈ IRn can be
computed from (4) and satisfies the sufficient decrease condition (5). Hence, in a sufficiently
small neighbourhood of x∗, dk is always the Newton direction, so the assertion follows from
Lemma 3.2. 2

We next show that also the second test in Step (S.3) of Algorithm 3.1 is never met in a small
neighbourhood of a BD-regular solution of Φ(x) = 0.

Lemma 3.4 Let x∗ ∈ IRn be a BD-regular solution of Φ(x) = 0. Then there is a neighbour-
hood of x∗ such that

‖dk‖ < ∆

for all xk in this neighbourhood, where dk denotes the search direction computed by Algorithm
3.1.

Proof. Since x∗ is a BD-regular solution of the system Φ(x) = 0, it follows from Lemma 2.6
in Qi [23] that there is a constant c > 0 with ‖H−1

k ‖ ≤ c for all Hk ∈ ∂BΦ(xk) and all xk in
a sufficiently small neighbourhood of x∗. We therefore obtain from (4) that

‖dk‖ ≤ ‖H−1
k ‖ ‖Φ(xk)‖ ≤ c‖Φ(xk)‖ → 0

for xk → x∗. This immediately implies the statement of our lemma. 2

We obtain as a consequence of the previous results that Algorithm 3.1 eventually coincides
with Algorithm 2.1 if we are close enough to a BD-regular solution of Φ(x) = 0. Hence all
statements on the local rate of convergence as given in Theorem 2.3 also hold for Algorithm
3.1.

We now turn to the global convergence properties of Algorithm 3.1. The central part for
our main global convergence result is contained in the following statement.

Proposition 3.5 If Algorithm 3.1 does not terminate after finitely many iterations, then
{Ψ(xk)} → 0 (i.e., {xk} is a minimizing sequence for Ψ) or the entire sequence {xk} con-
verges to a unique point x∗ (which is not necessarily a solution of MCP).

Proof. In view of our assumption, neither the test in Step (S.1) nor the tests in Step (S.3) of
Algorithm 3.1 are satisfied for a finite index k. In particular, we have ∇Ψ(xk)Tdk < −δΨ(xk)
for all k. Hence, it follows from our line search rule in Step (S.4) that

Ψ(xk+1) ≤ Ψ(xk) + tkσ∇Ψ(xk)Tdk

< Ψ(xk)− σδtkΨ(xk)
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and therefore
αkΨ(xk) < Ψ(xk)−Ψ(xk+1), (6)

where αk := σδtk > 0.
Since the sequence {Ψ(xk)} is obviously monotonically decreasing and bounded from

below, it converges to a scalar Ψ∗ ≥ 0. If Ψ∗ = 0, then {Ψ(xk)} → 0 as stated. So consider
the case where Ψ∗ > 0. It follows from (6) that

k∑
j=0

αjΨ(xj) < Ψ(x0)−Ψ(xk+1).

Since {Ψ(xk)} → Ψ∗, this implies

∞∑
k=0

αkΨ(xk) ≤ Ψ(x0)−Ψ∗ <∞.

On the other hand, we have Ψ(xk) ≥ Ψ∗ for all k, so that

∞∑
k=0

αkΨ
∗ ≤

∞∑
k=0

αkΨ(xk) <∞

and therefore ∞∑
k=0

αk <∞

since Ψ∗ > 0. In view of the definition of αk, this means that the series
∑∞

k=0 tk is also finite.
Since our algorithm does not terminate after finitely many iterations, we also have ‖dk‖ < ∆
for all k, cf. the second test in Step (S.3). We therefore obtain

∞∑
k=0

tk‖dk‖ <∞. (7)

Since xk+1 = xk + tkd
k for all k, this implies that {xk} is a Cauchy sequence. Hence {xk} is

convergent. 2

We are now in the position to state and prove the main global convergence result for Al-
gorithm 3.1 which says that this method either terminates after finitely many iterations in
Step (S.3) or that it generates a minimizing sequence for our merit function Ψ so that, in
particular, any accumulation point is a solution of the MCP.

Theorem 3.6 Either Algorithm 3.1 generates a sequence {xk} such that {Ψ(xk)} → 0 or it
terminates after finitely many iterations in Step (S.3).

Proof. We first recall that, in view of our general assumption, Algorithm 3.1 does not
terminate in Step (S.1) after finitely many iterations. Assume now that Algorithm 3.1
generates an infinite sequence {xk}, i.e., also the termination criteria in Step (S.3) are not
active at any iteration k. Using Proposition 3.5, we then have {Ψ(xk)} → 0 or {xk} converges
to a unique point x∗. In the first case we are done.
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In the second case, the vector x∗ is a stationary point of Ψ; this follows from the obser-
vation that x∗ is a limit point of the sequence {xk} and that Algorithm 3.1 is identical to
Algorithm 2.1 (recall, by our assumption, that Step (S.3) in Algorithm 3.1 is never active),
so that we can apply Theorem 2.2 in this situation.

Now, by continuity, we have Ψ(xk) → Ψ(x∗). If Ψ(x∗) = 0, then {xk} is a minimizing
sequence of Ψ and there is nothing to prove any more. Otherwise we have Ψ(x∗) > 0. Since,
however, ∇Ψ(x∗) = 0 and the sequence {‖dk‖} is bounded (otherwise the second test in Step
(S.3) would be active), we have

∇Ψ(xk)Tdk ≥ −δΨ(xk)

for all large k, i.e., the first test in Step (S.3) is satisfied.
Hence we see that, in either case, our algorithm either generates a minimizing sequence

for Ψ or terminates after finitely many iterations in Step (S.3). 2

It is interesting to note that Theorem 3.6 holds without any assumptions on the MCP. Since
everything is fine if Algorithm 3.1 generates a minimizing sequence for Ψ, the critical case is
when this method terminates in Step (S.3). If this happens, we have to generate in some way
a better point. We state this formally in the next algorithm which differs from Algorithm
3.1 mainly in Step (S.3).

Algorithm 3.7 (Global Semismooth Newton-type Method)

(S.0) (Initialization)
Choose x0 ∈ IRn, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, δ ∈ (0, 2), ∆ > 0, γ ∈ (0, 1) and
set k := 0.

(S.1) (Termination Criterion)
If xk is a solution of MCP: STOP.

(S.2) (Search Direction Calculation)
Select an element Hk ∈ ∂BΦ(xk). Find a solution dk ∈ IRn of the linear system

Hkd = −Φ(xk).

If this system is not solvable or if the descent condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p

is not satisfied, set dk := −∇Ψ(xk).

(S.3) (Improve Current Point)
If ∇Ψ(xk)Tdk ≥ −δΨ(xk) or if ‖dk‖ ≥ ∆, then generate a point xk+1 with Ψ(xk+1) ≤
γΨ(xk), set k ← k + 1 and go to (S.1).

(S.4) (Line Search)
Compute tk := max{β` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + tkσ∇Ψ(xk)Tdk.
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(S.5) (Update)
Set xk+1 := xk + tkd

k, k ← k + 1, and go to (S.1).

It follows immediately from Theorem 3.6 that any sequence {xk} generated by Algorithm
3.7 is a minimizing sequence for the merit function Ψ. However, so far it is not clear how
to generate the improved point xk+1 in Step (S.3). Two possibilities of how this can be
accomplished will be discussed in more detail in the next two sections.

4 Tunneling Methods

Throughout this section, let x∗ be a local-nonglobal minimizer of Ψ or at least any vector
at which our basic semismooth solver from Algorithm 2.1 seems to run into troubles (e.g.,
in the sense that one of our tests in Step (S.3) in Algorithm 3.7 is satisfied). The main
idea of a tunneling method is to introduce a new function which has a pole at x∗ and which
can therefore be minimized in order to escape from this critical point. This idea was first
used by Levy and Montalvo [21] (for optimization problems) and later extended to (smooth)
nonlinear systems of equations by Levy and Gómez [20].

Here we introduce two different tunneling functions. The first one is the classical tunnel-
ing function from [21, 20]. It is defined by

T c
Ψ(x) :=

1

2
T c

Φ(x)TT c
Φ(x) =

1

2
‖T c

Φ(x)‖2,

where the operator TΦ : IRn \ {x∗} → IRn is given by

T c
Φ(x) :=

Φ(x)

‖x− x∗‖
.

Note that a vector is a solution of the MCP if and only if it is a solution of T c
Φ(x) = 0.

Moreover, the classical tunneling function can be rewritten as

T c
Ψ(x) =

Ψ(x)

‖x− x∗‖2
,

and this shows that T c
Ψ(x) itself is continuously differentiable on IRn \{x∗} since Ψ is smooth

everywhere. Hence we can apply our basic semismooth solver from Algorithm 2.1 to the
nonsmooth system of equations

T c
Φ(x) = 0

in order to minimize the classical tunneling function.
The second tunneling function to be considered in this paper is the exponential tunneling

function introduced in [17]. It is defined by

T e
Ψ(x) :=

1

2
T e

Φ(x)TT e
Φ(x) =

1

2
‖T e

Φ(x)‖2,

where

T e
Φ(x) := Φ(x) exp

(
1

‖x− x∗‖2

)
.

11



Again, we see that solving the MCP is equivalent to solving the nonlinear system of equations
T e

Φ(x) = 0; furthermore, since

T e
Ψ(x) = Ψ(x)

[
exp

(
2

‖x− x∗‖2

)]
,

we see that also the exponential tunneling function is continuously differentiable on IRn\{x∗}.
Hence, also the exponential tunneling function can be minimized by applying the basic
semismooth solver from Algorithm 2.1 to the nonlinear system of equations

T e
Φ(x) = 0.

Both the classical and the exponential tunneling functions have their drawbacks, how-
ever, they provide some reasonable (though heuristic) ways to escape from a local-nonglobal
minimum of the underlying merit function Ψ. Moreover, minimizing one of these tunneling
functions corresponds to solving the original MCP.

5 Filled Function Methods

The basic idea of using a filled function method is similar to the one of a tunneling method:
If x∗ denotes a local-nonglobal minimum of our merit function Ψ, it tries to escape from
this minimum by using a new function. In contrast to tunneling methods, the filled function
methods do not place an infinite pole at the point x∗ but introduce a new function which,
instead of having a minimum at x∗, has a maximum at this point and can therefore be further
minimized. This idea goes back to Ge [15].

In the following, we slightly extend the idea by Ge [15]. To this end, let us introduce a
one-dimensional function

θ : IR→ IR

having the following properties:

(P.1) θ(t) > 0 for all t ∈ IR;

(P.2) θ(0) = 1;

(P.3) θ(t) ≤ 1 for all t ∈ IR.

Basically, these conditions say that θ is any positive and bounded function which takes its
maximum value in the origin. We next give two simple examples.

Example 5.1 The following functions θ : IR→ IR satisfy properties (P.1)–(P.3):

(a) θ(t) := exp(−t2);

(b) θ(t) := 1/(1 + t2).
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Now let r > 0, ρ > 0 be any given constants and θ be any function satisfying properties
(P.1)–(P.3). Then define

Pθ(x; r, ρ) :=
1

Ψ(x) + r
θ(‖x− x∗‖/ρ), (8)

where x∗ denotes the local-nonglobal minimum of our merit function Ψ. The function
Pθ(·; r, ρ) is called a filled function. If θ is the function from Example 5.1 (a), we obtain

P1(x) := Pθ(x; r, ρ) =
1

Ψ(x) + r
exp(−‖x− x∗‖2/ρ2),

which is precisely the function considered by Ge [15], whereas we get

P2(x) := Pθ(x; r, ρ) =
1

Ψ(x) + r
· 1

1 + ‖x− x∗‖2/ρ2

when using the function θ from Example 5.1 (b). Generalizing Theorem 2.1 in Ge [15], we
can easily prove the following result which explains to some extent the name filled function
for Pθ(·; r, ρ).

Proposition 5.2 Let θ be any function satisfying properties (P.1)–(P.3) and define Pθ by
(8). Then the following statements hold:

(a) If x∗ is a local minimizer of Ψ, then x∗ is a local maximizer of Pθ.

(b) If x∗ is a strict local minimizer of Ψ, then x∗ is a strict local maximizer of Pθ.

Proof. We only prove part (a) since the proof of part (b) is very similar.
So assume that x∗ is a local minimizer of Ψ. Then

Ψ(x) ≥ Ψ(x∗)

for all x ∈ IRn sufficiently close to x∗. Hence we obtain for all these x by using properties
(P.1)–(P.3):

Pθ(x
∗; r, ρ) =

1

Ψ(x∗) + r

≥ 1

Ψ(x) + r

≥ 1

Ψ(x) + r
θ(‖x− x∗‖/ρ)

= Pθ(x; r, ρ).

This shows that x∗ is a local maximizer of Pθ(·; r, ρ). 2

In contrast to the tunneling methods, the filled function methods have the advantage that
we do not have to deal with any numerical difficulties which may arise around the possible

13



pole x∗ of the tunneling functions and that the filled function methods provide a completely
nonheuristic way to escape from local-nonglobal minima. On the other hand, the filled
function methods have severe disadvantages: Minimizing a filled function does not guarantee
that we find a solution of the underlying complementarity problem, and, furthermore, the
computational overhead is more significant: We cannot apply our basic semismooth solver in
order to minimize a filled function (since there is no corresponding equation formulation), so
we have to implement an unconstrained minimization method in order to minimize a filled
function Pθ. Since Pθ is only once but not twice continuously differentiable, we can only use
a first-order method. Second-order methods are also prohibited since, in general, the second
derivatives of the mapping F are not available.

6 Numerical Results

In this section, we present some numerical results for the different global optimization tech-
niques discussed in this paper. To this end, we implemented our basic semismooth solver
from Algorithm 2.1 in MATLAB using the parameters

ρ = 10−10, β = 0.5, σ = 10−4, and p = 2.1.

The termination criterion is
‖r(x)‖∞ ≤ 10−6,

where r(x) := x− [x−F (x)]+ denotes the natural residual of the MCP, but we also stop the
algorithm if the number of iterations exceeds 500. We use the constants

δ = 10−8, ∆ = n · 108, and γ = 0.9

in Step (S.3) of Algorithm 3.7; in addition, we switch to the global optimization technique
if the stepsize tk becomes too small.

Finally, we use the Polak-Ribière conjugate gradient method with restarts and a line
search satisfying the strong Wolfe-Powell conditions in order to minimize the two filled
functions from the previous section, see [14] for further details.

All our test problems are taken from the GAMSLIB and the MCPLIB, see [5, 8]. In-
stead of using all examples from these two test problem collections, we decided to present
numerical results only for those problems which are usually being regarded as very difficult.
Furthermore, all test examples selected here are of dimension n ≤ 150. Obviously, this is a
restriction, but it is our impression that neither the tunneling methods nor the filled function
methods are very reliable for larger problems.

We run our program on a SUN SPARC station and summarize the numerical results
in Tables 1 – 3, with Table 1 containing the results for the basic semismooth solver from
Algorithm 2.1, Table 2 containing the results for the modification using the two different
tunneling approaches, and Table 3 containing the results for the two different filled function
modifications (here, we call the filled functions P1 and P2 the exponential and the rational
filled function, respectively). The columns of these tables have the following meanings:

14



problem: name of the test problem in GAMSLIB/MCPLIB
n: dimension of the test problem
SP: number of starting point used
ksemi: number of iterations used in the basic semismooth solver
ktotal: total number of iterations used
jglobal: number of times we switch to the global optimization technique
‖r(xf )‖∞: norm of the natural residual at the final iterate xf .

Note that the difference between ktotal and ksemi gives the number of iterations used in
the global optimization techniques. More precisely, if the global optimization phase becomes
active more than once (i.e., if jglobal > 1), this difference provides the cumulated number of
these iterations.

We next discuss the results given in Tables 1 – 3: The results in Table 1 are basically
there in order to compare our global optimization techniques with the basic solver. The
only thing we want to stress here about Table 1 is that the reader might get a wrong feeling
about this basic solver since it fails on so many problems. However, we stress that the basic
solver is in fact one of the best solvers which is currently available and that the test problems
selected for this paper are just a subset of the most difficult problems from the GAMSLIB
and MCPLIB collections. In fact, the overall behaviour of the basic solver is much better,
and it is able to solve all other problems basically without any difficulties.

From the results in Table 2 we can deduce a couple of things: First of all, the global
optimization technique usually does not become active if the basic method itself was able
to solve the underlying problem. The only exception is problem vonthmcp. The fact that
the tunneling methods became active for this problem, however, was just helpful in this
case since the total number of iterations for the tunneling method is less than for the basic
semismooth solver. We therefore believe that our switching criterion is quite useful also from
a practical point of view. Furthermore, it does not seem to destroy the overall efficiency of
the algorithm.

Second, we see that the tunneling methods are quite successful: While there are 14
failures in Table 1, there are only 3 failures left for both tunneling methods in Table 2.
The failures occur on different test problems for the two tunneling versions: The classical
tunneling function was not able to solve problems duopoly and games (third and fifth starting
point) while the exponential tunneling method fails on the three starting points for problem
pgvon106. We stress, however, that the exponential tunneling method was able to reduce the
norm of the natural residual r(x) to a value which almost satisfied the termination criterion,
and that this happened for all three starting points of the pgvon106 example. In view of our
limited numerical results, it is therefore our feeling that the exponential tunneling method
is slightly superior to the classical tunneling approach.

Finally, the results in Table 3 clearly indicate that the filled function methods are less
successful than the tunneling methods. Both filled functions seem to have a similar be-
haviour, and they were able to solve four/five more problems than the basic semismooth
solver, so the improvement is much worse than the one we obtained with the two tunneling
approaches.
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Table 1: Numerical results for the basic semismooth solver

problem n SP ksemi ‖r(xf )‖∞
billups 1 1 — —
billups 1 2 — —
billups 1 3 — —
colvdual 20 1 14 1.1e-7
colvdual 20 2 37 7.5e-10
colvdual 20 3 10 1.7e-11
colvdual 20 4 — —
ehl k40 41 1 36 5.3e-8
ehl k60 61 1 38 2.8e-8
ehl k80 81 1 45 9.2e-9
ehl kost 101 1 27 6.6e-7
ehl kost 101 2 26 1.2e-9
ehl kost 101 3 26 1.2e-9
pgvon105 105 1 48 5.0e-10
pgvon105 105 2 — —
pgvon105 105 3 — —
pgvon106 106 1 — —
pgvon106 106 2 — —
pgvon106 106 3 — —
scarfbnum 39 1 21 3.3e-8
scarfbnum 39 2 20 2.8e-9
scarfbsum 40 1 20 3.6e-10
scarfbsum 40 2 19 3.3e-10
vonthmcp 125 1 48 1.6e-7
vonthmge 80 1 — —
duopoly 63 1 — —
simple-ex 17 1 — —
games 16 1 13 3.3e-8
games 16 2 14 5.6e-8
games 16 3 — —
games 16 4 20 1.1e-10
games 16 5 — —
games 16 6 22 2.4e-7
games 16 7 24 9.0e-9
games 16 8 17 1.2e-10
games 16 9 23 2.0e-9
games 16 10 18 1.5e-7
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Table 2: Numerical results for the tunneling methods

classical tunneling exponential tunneling
problem SP ksemi ktotal jglobal ‖r(xf )‖∞ ksemi ktotal jglobal ‖r(xf )‖∞
billups 1 9 12 1 4.7e-11 9 13 1 9.9e-12
billups 2 13 16 1 4.7e-11 13 17 1 9.9e-12
billups 3 11 14 1 4.7e-11 11 15 1 9.9e-12
colvdual 1 14 14 0 1.1e-7 14 14 0 1.1e-7
colvdual 2 37 37 0 7.5e-10 37 37 0 7.5e-10
colvdual 3 10 10 0 1.7e-11 10 10 0 1.7e-11
colvdual 4 295 407 4 2.6e-9 77 89 1 2.4e-10
ehl k40 1 36 36 0 5.3e-8 36 36 0 5.3e-8
ehl k60 1 38 38 0 2.8e-8 38 38 0 2.8e-8
ehl k80 1 45 45 0 9.2e-9 45 45 0 9.2e-9
ehl kost 1 27 27 0 6.6e-7 27 27 0 6.6e-7
ehl kost 2 26 26 0 1.2e-9 26 26 0 1.2e-9
ehl kost 3 26 26 0 1.2e-9 26 26 0 1.2e-9
pgvon105 1 48 48 0 5.0e-10 48 48 0 5.0e-10
pgvon105 2 182 186 1 5.6e-7 185 189 1 9.3e-7
pgvon105 3 155 159 1 8.7e-7 157 161 1 5.6e-7
pgvon106 1 99 244 2 7.3e-7 — — — —
pgvon106 2 201 260 1 8.8e-7 — — — —
pgvon106 3 345 478 1 8.4e-7 — — — —
scarfbnum 1 21 21 0 3.3e-8 21 21 0 3.3e-8
scarfbnum 2 20 20 0 2.8e-9 20 20 0 2.8e-9
scarfbsum 1 20 20 0 3.6e-10 20 20 0 3.6e-10
scarfbsum 2 19 19 0 3.3e-10 19 19 0 3.3e-10
vonthmcp 1 35 39 1 1.1e-8 35 40 1 2.5e-8
vonthmge 1 27 35 1 1.8e-12 35 37 1 6.1e-7
duopoly 1 — — — — 144 229 3 5.2e-8
simple-ex 1 25 34 1 6.9e-7 20 24 1 5.5e-7
games 1 13 13 0 3.3e-8 13 13 0 3.3e-8
games 2 14 14 0 5.6e-8 14 14 0 5.6e-8
games 3 — — — — 113 144 3 9.6e-7
games 4 20 20 0 1.1e-10 20 20 0 1.1e-10
games 5 — — — — 123 141 1 8.4e-7
games 6 22 22 0 2.4e-7 22 22 0 2.4e-7
games 7 24 24 0 9.0e-9 24 24 0 9.0e-9
games 8 17 17 0 1.2e-10 17 17 0 1.2e-10
games 9 23 23 0 2.0e-9 23 23 0 2.0e-9
games 10 18 18 0 1.5e-7 18 18 0 1.5e-7
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Table 3: Numerical results for the filled function methods

exponential filled function rational filled function
problem SP ksemi ktotal jglobal ‖r(xf )‖∞ ksemi ktotal jglobal ‖r(xf )‖∞
billups 1 11 12 1 4.1e-12 14 15 1 5.7e-8
billups 2 16 17 1 6.1e-8 20 21 1 7.9e-8
billups 3 14 15 1 5.8e-8 18 19 1 7.0e-8
colvdual 1 14 14 0 1.1e-7 14 14 0 1.1e-7
colvdual 2 37 37 0 7.5e-10 37 37 0 7.5e-10
colvdual 3 10 10 0 1.7e-11 10 10 0 1.7e-11
colvdual 4 — — — — — — — —
ehl k40 1 36 36 0 5.3e-8 36 36 0 5.3e-8
ehl k60 1 38 38 0 2.8e-8 38 38 0 2.8e-8
ehl k80 1 45 45 0 9.2e-9 45 45 0 9.2e-9
ehl kost 1 27 27 0 6.6e-7 27 27 0 6.6e-7
ehl kost 2 26 26 0 1.2e-9 26 26 0 1.2e-9
ehl kost 3 26 26 0 1.2e-9 26 26 0 1.2e-9
pgvon105 1 48 48 0 5.0e-10 48 48 0 5.0e-10
pgvon105 2 — — — — — — — —
pgvon105 3 — — — — — — — —
pgvon106 1 — — — — — — — —
pgvon106 2 — — — — — — — —
pgvon106 3 — — — — — — — —
scarfbnum 1 21 21 0 3.3e-8 21 21 0 3.3e-8
scarfbnum 2 20 20 0 2.8e-9 20 20 0 2.8e-9
scarfbsum 1 20 20 0 3.6e-10 20 20 0 3.6e-10
scarfbsum 2 19 19 0 3.3e-10 19 19 0 3.3e-10
vonthmcp 1 37 38 1 1.5e-7 37 38 1 1.5e-7
vonthmge 1 — — — — — — — —
duopoly 1 224 285 2 1.0e-11 161 274 3 6.6e-11
simple-ex 1 — — — — — — — —
games 1 13 13 0 3.3e-8 13 13 0 3.3e-8
games 2 14 14 0 5.6e-8 14 14 0 5.6e-8
games 3 — — — — — — — —
games 4 20 20 0 1.1e-10 20 20 0 1.1e-10
games 5 — — — — 110 112 1 8.2e-7
games 6 22 22 0 2.4e-7 22 22 0 2.4e-7
games 7 24 24 0 9.0e-9 24 24 0 9.0e-9
games 8 17 17 0 1.2e-10 17 17 0 1.2e-10
games 9 23 23 0 2.0e-9 23 23 0 2.0e-9
games 10 18 18 0 1.5e-7 18 18 0 1.5e-7
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7 Final Remarks

In this paper we were interested in the development of more robust (and still efficient) solvers
for the solution of mixed complementarity problems by using ideas from global optimization.
To this end, we took a standard semismooth solver, presented a theoretically justified switch-
ing criterion and tested two global techniques (tunneling and filled functions) on a couple
of very difficult test examples. The results indicate that especially the tunneling approach
leads to substantial numerical improvements.

As part of our future research, we plan to investigate some further techniques within
the algorithmic framework of this paper. In particular, we plan to study the influence of
proximal-point and regularization methods as suitable solvers in Step (S.3) of Algorithm
3.7. Although neither the proximal-point nor the regularization methods are really global
optimization techniques, they are sometimes quite helpful in improving the robustness of
existing codes, see [1, 2, 27, 31].
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[17] S. Gómez and C. Barrón: The exponential tunneling method. Technical Report,
Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Na-
cional Autonoma de Mexico, Mexico, July 1991.

[18] R. Horst and P.M. Pardalos (eds.): Handbook of Global Optimization. Kluwer
Academic Publishers, 1995.

[19] M.M. Kostreva and Q. Zheng: Integral global optimization method for solution
of nonlinear complementarity problems. Journal of Global Optimization 5, 1994, pp.
181–193.
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