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Abstract. The generalized Nash equilibrium is a Nash game, where not only the players’
cost functions, but also the constraints of a player depend on the rival players decisions.
We present a globally convergent algorithm that is suited for the computation of a nor-
malized Nash equilibrium in the generalized Nash game with jointly convex constraints.
The main tool is the regularized Nikaido-Isoda function as a basis for a locally convergent
nonsmooth Newton method and, in another way, for the definition of a merit function for
globalization. We conclude with some numerical results.

Key Words: Generalized Nash equilibrium problem, Regularized Nikaido-Isoda function,
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1 Introduction

The purpose of this paper is to propose a globally convergent method for the computation
of a normalized Nash equilibrium in the generalized Nash equilibrium problem (GNEP)
with jointly convex constraints. The generalized Nash equilibrium has drawn increasing
attention over the past years due to the fact that it serves as a useful modeling tool in,
for instance, energy markets, telecommunication engineering, climate policy, and machine
learning; see [2] for a recent overview on theory, applications and numerical methods for
the GNEP.

Our method is based on the characterizations of the normalized Nash equilibrium given
in [10, 12]. More precisely, our algorithm consists of a combination of the locally super-
linearly convergent Newton method from [12] and a globally convergent gradient method
with a continuously differentiable merit function. It draws on the features of the regu-
larized Nikaido-Isoda function, which has earlier been used as a tool to derive globally
convergent methods for the computation of normalized Nash equilibria. There have been
various attempts to develop numerical methods for computing generalized Nash equilibria
with different objectives and problem settings [3, 7, 9, 10, 11, 12, 15, 16, 19, 21, 23, 26].
However, to the authors’ knowledge, none of the proposed methods is both globally con-
vergent and locally superlinearly convergent at the same time, at least under reasonable
assumptions. For example, projection-type methods have relatively nice global convergence
properties, but the local rate of convergence is typically slow; on the other hand, refor-
mulations of the GNEP as a variational inequality allow, in principle, the application of
locally fast Newton-type methods which can also be globalized in a suitable way. However,
the assumptions to get local fast convergence usually include a linear independence-type
constraint qualification which is often violated in the context of GNEPs due to the fact
that some joint constraints are active.

The generalized Nash equilibrium problem is defined through a number of players N ,
cost functions θν : Rn → R, ν = 1, . . . , N , and a joint strategy set X ⊆ Rn. The idea of
the Nash game is that each player ν controls a strategy vector xν ∈ Rnν , and the strategy
vectors of all players together form the vector x = (x1, x2, . . . , xN) ∈ Rn with n :=

∑N
ν=1 nν .

This vector x determines the outcome of the game which are the costs θν(x) for each player
ν. The particular difficulty of the generalized Nash equilibrium problem is that the vector
x has to belong to a joint strategy set X that is not necessarily a Cartesian product of
strategy sets of individual players, but any convex closed set. For notational convenience,
we often denote x−ν = (x1, . . . , xν−1, xν+1, . . . , xN) ∈ Rn−nν and use the abbreviation
x = (xν , x−ν) for the vector x = (x1, x2, . . . , xN), especially in those situations where we
want to emphasize the ν-th player’s variables within the vector x ∈ Rn.

A solution to the generalized Nash equilibrium problem, or simply a generalized Nash
equilibrium, is a vector x̄ ∈ X such that

θν(x̄
ν , x̄−ν) ≤ θν(x

ν , x̄−ν) for all xν : (xν , x̄−ν) ∈ X (1)

holds for all ν = 1, . . . , N . In other words, a generalized Nash equilibrium is a vector x̄ ∈ X
such that the individual player ν cannot improve his costs θν(x̄

ν , x̄−ν) by changing his own
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strategy xν (taking into account the joint constraint X), as long as all other players retain
their strategies. The notion of a normalized Nash equilibrium [24], which is a particular
generalized Nash equilibrium, will be explained in the next section. Our algorithm is suited
for the following setting.

Assumption 1.1 (i) The cost functions θν , ν = 1, . . . , N, are twice continuously differ-
entiable and (player-) convex, that is, each function θν is convex with respect to the
variable xν.

(ii) The joint strategy set X ⊆ Rn is nonempty and defined by

X := {x ∈ Rn | g(x) ≤ 0},

where g : Rn → Rm is a twice continuously differentiable function with convex com-
ponent functions.

The smoothness assumptions on the cost functions and constraints are necessary since we
aim to design a locally superlinearly convergent method.

The paper is organized as follows. In the next section, we introduce the regularized
Nikaido-Isoda function along with the terminologies and results we need in order to state
our algorithm. Then, in Section 3, we present the algorithm and analyse both its global
and local convergence. Numerical results are stated in Section 4. We close with some final
remarks in Section 5.

Throughout the paper we use the following notation. For a real-valued function f :
Rn → R, the gradient of f is denoted by ∇f . For a vector-valued function G : Rn → Rm,
the symbol ∇G refers to the transpose of the Jacobian of G, that is, the columns of G
are the gradients of the component functions of G. Finally, if Ψ : Rn × Rn → R is
twice continuously differentiable, then ∇2

yxΨ(x, y) denotes the matrix of second partial
derivatives which is obtained by first differentiating with respect to y only, and then with
respect to the partial vector x.

2 Preliminaries

We consider a numerical approach that is based on the Nikaido-Isoda function. This
function initially has been introduced in [22] for theoretical analysis of Nash equilibria.
However, it is also suited for computational considerations with the addition of a regu-
larization term. The regularized Nikaido-Isoda function has been exploited in [10] and
subsequent works. We briefly recall the definitions and results required in the subsequent
analysis.

Given the player’s cost functions θν , ν = 1, . . . , N, and a fixed parameter γ > 0, the
regularized Nikaido-Isoda function is defined by

Ψγ(x, y) :=
N∑
ν=1

[
θν(x

ν , x−ν)− θν(yν , x−ν)−
γ

2
‖xν − yν‖2

]
(2)
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for x, y ∈ Rn. The Nikaido-Isoda function measures, roughly speaking, how much a player
gains if, at a certain stage of the game, the player changes his strategy from xν to yν ,
and sums this advantage up for all players. The regularization term γ

2
‖xν − yν‖2 mainly

serves for technical purposes. More specifically, if the cost functions θν , ν = 1, . . . , N, are
(player-) convex as in Assumption 1.1(i), then Ψγ is strongly concave with respect to y.
This, together with the assumption that the feasible set X is nonempty, closed and convex
(Assumption 1.1(ii)), implies that the optimization problem max

y∈X
Ψγ(x, y) has a unique

solution. Thus, its solution defines a function

yγ(x) := argmax
y∈X

Ψγ(x, y), (3)

which is, in general, not differentiable everywhere. Further, we define the function

Vγ(x) := Ψγ

(
x, yγ(x)

)
, (4)

and, in particular, for two different fixed parameters β > α > 0 we consider the function
build from the difference of two functions Vα and Vβ,

Vαβ(x) := Vα(x)− Vβ(x).

The functions yγ and Vαβ have a number of interesting properties that are summarized in
the following result, see [10] for the proof.

Theorem 2.1 Suppose that Assumption 1.1 holds and let γ > 0, β > α > 0 be fixed
parameters. Then

(i) the functions yγ, Vγ and Vαβ are continuous;

(ii) any vector x̄ ∈ Rn with yγ(x̄) = x̄ is a generalized Nash equilibrium;

(iii) Vαβ(x) ≥ 0 for all x ∈ Rn;

(iv) any vector x̄ ∈ Rn with Vαβ(x̄) = 0 is a generalized Nash equilibrium;

(v) the function Vαβ is continuously differentiable and its gradient is given by

∇Vαβ(x) =
N∑
ν=1

[
∇θν(yνβ(x), x−ν)−∇θν(yνα(x), x−ν)

]

+

 ∇x1θ1(y
1
α(x), x−1)−∇x1θ1(y

1
β(x), x−1)

...
∇xN θN(yNα (x), x−N)−∇xN θN(yNβ (x), x−N)


−α
(
x− yα(x)

)
+ β

(
x− yβ(x)

)
.
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Remark 2.2 (Normalized Nash equilibria) The statements (ii) and (iv) do not yield
a characterization of the full set of generalized Nash equilibria. In fact, both give a char-
acterization of the set of normalized Nash equilibria (NoE) [24], sometimes also called
variational equilibria [2], since, given that the cost functions and feasible set have some
additional properties, the set of normalized Nash equilibria equals the solution set of a
certain variational inequality problem, see [4]. For a discussion on further properties and
applications of normalized Nash equilibria, see, e.g., [2, 10]. ♦

Theorem 2.1 essentially provides two characterizations of normalized Nash equilibria. Let
γ = β > α > 0. Statement (ii) says that a normalized Nash equilibrium (NoE) is a solution
of the nonlinear equation

Fβ(x) := yβ(x)− x = 0, (5)

which is nonsmooth in general. Furthermore, statements (iii) and (iv) imply that x̄ is a
NoE if and only if it is a global solution with vanishing function value of the optimization
problem

min
x∈Rn

Vαβ(x), (6)

where the objective function Vαβ is continuously differentiable from (v). We combine
both characterizations to design a globally, and locally fast, convergent method for the
computation of a NoE. Specifically, we try to use a nonsmooth Newton direction for the
nonlinear equation (5) as long as it decreases the merit function Vαβ, but we switch to a
gradient direction for the function Vαβ if it fails to be a descent direction. The former aims
at fast local convergence, while the latter ensures global convergence of the algorithm.

To validate the proposed algorithm, we should find a condition that ensures that a
stationary point of the function Vαβ is a solution of problem (6), and hence, a normalized
Nash equilibrium. Further, for the nonsmooth Newton method, we have to establish con-
ditions which ensure that the function Fβ is at least Lipschitz-continuous, and calculate a
suitable approximation for the Jacobian of Fβ(x), in order to make a nonsmooth Newton
method conveniently implementable. Both questions have been answered in [10, 12].

In particular, the proof of the next lemma can be found in [10, Theorem 4.6].

Lemma 2.3 Assume that, in addition to Assumption 1.1, the following holds: For any
x ∈ Rn such that yα(x) 6= yβ(x), the inequality

N∑
ν=1

[
∇θν(yνβ(x), x−ν)−∇θν(yνα(x), x−ν)

]T (
yβ(x)− yα(x)

)
> 0 (7)

holds. Then any stationary point of the function Vαβ is a normalized Nash equilibrium.

Sufficient conditions for the condition (7) in Lemma 2.3 and a further discussion may be
found in [10, 11] and are somewhat related to the corresponding conditions given in [6, 25],
for example.

Moreover, there is an inequality relation among the values of Vαβ(x), ‖yα(x)− x‖, and
‖yβ(x)− x‖, which can be found in [10, Lemma 4.1]
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Lemma 2.4 The inequalities

β − α
2
‖x− yβ(x)‖2 ≤ Vαβ(x) ≤ β − α

2
‖x− yα(x)‖2 (8)

hold for all x ∈ Rn.

In our method, this growth condition on the merit function Vαβ is a necessary tool for the
transition from the globally convergent gradient method based on Vαβ to the locally con-
vergent Newton method based on Fβ(x) = yβ(x)−x. Such a technique has been applied to
the numerical solution of nonlinear complementarity problems, see for instance [5] and [18].

For the nonsmooth Newton method, we use the very same approach as in [12]. That is,
we compute an element of the computable generalized Jacobian of Fβ(x). By definition (3),
to calculate the value of yβ(x), we have to solve the maximization problem

max
y∈X

Ψβ(x, y). (9)

By Theorem 2.1 (i), yβ(·) is a continuous function. To get further insight into the ana-
lytic properties of the function yβ(·), we formulate the Karush-Kuhn-Tucker conditions for
problem (9). To this end, we need a constraint qualification. For our purposes, the con-
stant rank constraint qualification (CRCQ), which is weaker than the linear independence
constraint qualification (LICQ) [13] suffices. Note, in particular, that linear constraints
satisfy the CRCQ. For each x ∈ X, let I(x) := {i ∈ {1, . . . ,m} | gi(x) = 0} denote the
index set of active constraints at x.

Assumption 2.5 The constant rank constraint qualification (CRCQ) holds at x, that is,
there exists a neighbourhood U(x) of x such that for any subset J ⊆ I(x), the set of gradient
vectors {∇gi(z) | i ∈ J} has the same rank for all z ∈ U(x).

Given x ∈ Rn and the unique solution yβ(x) of problem (9), if Assumption 2.5 holds at
yβ(x), then there exists a Lagrange multiplier λ ∈ Rm such that the following Karush-
Kuhn-Tucker conditions hold:

−∇yΨβ(x, yβ(x)) +
m∑
i=1

λi∇gi(yβ(x)) = 0,

λi ≥ 0, gi(yβ(x)) ≤ 0, λi · gi(yβ(x)) = 0 ∀i = 1, . . . ,m.

(10)

Since we assume only the constant rank constraint qualification to hold, the Lagrange
multiplier is not necessarily unique. Let

M(x) := {λ ∈ Rm | (x, yβ(x), λ) satisfies (10)} (11)

denote the set of Lagrange multipliers. We define a family of certain subsets of the active
index set I(x) by

B(x) :=
{
J ⊆ I(x) | ∃λ ∈M(x) such that λi = 0 for all i ∈ I(x) \ J,

and {∇gi(x)}i∈J are linearly independent
}
.

(12)
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The next theorem is concerned with a formula for the computable generalized Jacobian of
Fβ. For details regarding its derivation see [12, Lemmata 3.4 and 3.5]. A function f is
said to be piecewise continuously differentiable near x ∈ Rn, if f is continuous and there
is a neighbourhood U(x) of x and a finite number of continuously differentiable functions
fi : U(x)→ Rn, i = 1, . . . , l, such that f(y) ∈ {f1(y), . . . , fl(y)} for all y ∈ U(x).

Lemma 2.6 Assume that Assumption 1.1 holds and that Assumption 2.5 holds at yβ(x).
Then the function Fβ(x) := yβ(x) − x is piecewise continuously differentiable near x, and
the computable generalized Jacobian of Fβ at x is defined by

∂CFβ(x) := {∇yJβ (x)T − In | J ∈ B(x)}, (13)

where
∇yJβ (x)T = C−1A− C−1D(DTC−1D)−1DTC−1A (14)

with

A := A(x) := ∇2
yxΨβ(x, yβ(x)),

C := CJ(x) := −∇2
yyΨβ(x, yβ(x)) +

∑
i∈J

λi∇2gi(yβ(x)),

D := DJ(x) := ∇gJ(yβ(x)).

Here ∇gJ(·) is a short-hand notation for the matrix with column vectors {∇gi(·)}i∈J , and
In ∈ Rn×n denotes the identity matrix.

The explicit formulas for ∇2
yxΨβ(x, y) and ∇2

yyΨβ(x, y) are given as follows (cf. [9]):

∇2
yxΨβ(x, y) = −

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θ1(y

1, x−1)
...

. . .
...

∇2
xNx1θN(yN , x−N) · · · ∇2

xNxN θN(yN , x−N)


+ diag

 ∇
2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(yN , x−N)

+ βI,

∇2
yyΨβ(x, y) = − diag

 ∇
2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(yN , x−N)

− βI.
Note that the Lagrange multiplier λ used in the definition of C does depend on x, though
not explicitly stated.

3 Globalized Newton Method via Vαβ

Using the notation of the previous section, we are now ready to state the algorithm.
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Algorithm 3.1 (Globalized Newton method via Vαβ)

(S.0) Choose x0 ∈ Rn, ε ≥ 0, s > 1, ρ > 0, τ ∈ (0, 1), σ ∈ (0, 1), and set k := 0.

(S.1) If ‖Fβ(xk)‖ = ‖yβ(xk)− xk‖ ≤ ε, STOP.

(S.2) Compute an element Hk ∈ ∂CFβ(xk), and find a solution dk ∈ Rn of the linear system

Hkd
k = −Fβ(xk), (15)

if one exists.

(S.3) If the system (15) was solved and if

Vαβ(xk + dk) ≤ τVαβ(xk), (16)

set xk+1 := xk + dk, k ← k + 1, and go to (S.1).

(S.4) If the system (15) was not solved or if the condition

∇Vαβ(xk)Tdk ≤ −ρ‖dk‖s (17)

is not satisfied, set dk := −∇Vαβ(xk).

(S.5) Compute tk := max{2−l | l = 0, 1, 2, . . .} such that

Vαβ(xk + tkd
k) ≤ Vαβ(xk) + σtk∇Vαβ(xk)Tdk. (18)

Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

This algorithm is reminiscent of the algorithm in [14] for solving the mixed complementarity
problem, which combines a nonsmooth Newton method for the natural residual equation
with a globalization strategy using the D-gap function.

Our analysis of Algorithm 3.1 starts with its accumulation points.

Theorem 3.2 Suppose Assumption 1.1 holds, and that Assumption 2.5 holds for all x ∈
X. Then Algorithm 3.1 with ε = 0 either stops at a normalized Nash equilibrium or every
accumulation point x̄ of a sequence generated by the algorithm is either a stationary point
of Vαβ or a normalized Nash equilibrium.

Proof. The proof is similar to those of the corresponding global convergence results in
[17, 18], and is given here mainly for the sake of completeness.

If the algorithm stops at (S.1), then we have Fβ(xk) = 0, and xk is a normalized Nash
equilibrium in view of Theorem 2.1 (ii). Otherwise, consider a subsequence {xk} converging
to x̄. If for an infinite set of indices in this subsequence, we have dk := −∇Vαβ(xk), then
x̄ is a stationary point of Vαβ by standard arguments. If (16) holds infinitely often, we
get Vαβ(xk) → 0 since Vαβ(x) ≥ 0 and τ ∈ (0, 1), implying that x̄ is a normalized Nash
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equilibrium by Theorem 2.1 (i), (iv). Therefore we assume, without loss of generality, that
the search direction is always obtained from the linear system Hkd

k = −Fβ(xk) and that
the condition (17) is always satisfied.

From (17), we have ∇Vαβ(xk)Tdk ≤ −ρ‖dk‖s, which together with s > 1 and continuity
of ∇Vαβ implies boundedness of the sequence {‖dk‖}. Subsequencing if necessary, we can
assume dk → d̄.

Assume d̄ 6= 0. From (18), we have Vαβ(xk + tkd
k) ≤ Vαβ(xk). Since Vαβ(x) ≥ 0 for all

x, it follows that Vαβ(xk + tkd
k)− Vαβ(xk)→ 0, which yields

tk∇Vαβ(xk)Tdk → 0. (19)

Now suppose tk → 0. Notice that the line search rule implies

Vαβ(xk + 2tkd
k)− Vαβ(xk)

2tk
> σ∇Vαβ(xk)Tdk.

Passing to the limit and exploiting the continuous differentiability of Vαβ, we have

∇Vαβ(x̄)T d̄ ≥ σ∇Vαβ(x̄)T d̄.

Since σ ∈ (0, 1), this yields ∇Vαβ(x̄)T d̄ ≥ 0, contradicting (17) since d̄ 6= 0. Therefore, {tk}
must be bounded away from zero. However, (19) and (17) then imply dk → 0, contradicting
dk → d̄ 6= 0.

Therefore we must have d̄ = 0. Lemma 2.6 implies that Fβ is a piecewise continu-
ously differentiable function, and hence, in a neighbourhood of x̄, each Hk is the Jaco-
bian of one of finitely many C1 functions. Thus, the sequence {Hk} is bounded. Since
‖Fβ(xk)‖ = ‖Hkd

k‖ ≤ ‖Hk‖‖dk‖ and dk → d̄ = 0, it follows that Fβ(x̄) = 0. Hence, again
from Theorem 2.1 (ii), we conclude that x̄ is a normalized Nash equilibrium. �

Remark 3.3 Note that Theorem 3.2 requires Assumption 2.5 to hold at every point x ∈
X. This requirement is unnecessarily strong and is used here only for a simple statement
of Algorithm 3.1 (since the computable generalized Jacobian may not exist without the
CRCQ). However, the result would remain true if the matrix Hk is alternatively chosen
from any set G(xk), where G is a set-valued mapping which is upper semi-continuous and
such that G(x) is a nonempty and compact set for all x ∈ Rn. A possible candidate for this
set-valued mapping is, for example, Clarke’s generalized Jacobian, cf. [1]. The reason for
using the computable generalized Jacobian from the very beginning is essentially due to
the observation that this Jacobian allows us to prove a very nice local convergence result.
♦

Lemma 2.3 shows a condition under which any stationary point of the function Vαβ is a
normalized Nash equilibrium. Next we examine the local convergence of Algorithm 3.1. To
this end, we consider the nonsingularity of matrices Hk and acceptance of the full Newton
step in (S.3) of Algorithm 3.1. The nonsingularity of matrices Hk in a neighbourhood of
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a normalized Nash equilibrium is guaranteed by [12, Lemma 4.2] in conjunction with the
following assumption. The result in [12, Lemma 4.2] is stated for x ∈ X. However, taking
a closer look at the proof of the lemma reveals that the assertion holds for all x ∈ Rn.

Assumption 3.4 For each J ∈ B(x) and λ ∈M(x), we have

dT

(
M(x, yβ(x)) +

∑
j∈J

λj∇2gj(yβ(x))

)
d 6= 0 ∀d ∈ T J(x) \ {0},

with T J(x) := {d ∈ Rn | ∇gj(yβ(x))Td = 0∀j ∈ J} and

M(x, y) :=

 ∇
2
x1x1θ1(y

1, x−1) . . . ∇2
x1xN θ1(y

1, x−1)
...

. . .
...

∇2
xNx1θN(yN , x−N) . . . ∇2

xNxN θN(yN , x−N)

 .

In addition to the nonsingularity of matrices Hk, for local superlinear convergence, we need
a superlinear approximation property. From [12, Theorem 4.5], we immediately obtain the
following lemma.

Lemma 3.5 Let x̄ be a normalized Nash equilibrium, suppose Assumptions 1.1, 2.5 and
3.4 hold at x̄, and let {xk} be any sequence converging to x̄. If dk is a solution of Hkd

k =
−Fβ(xk), then we have

‖xk + dk − x̄‖ = o‖xk − x̄‖

Furthermore, if all functions θν and gi have locally Lipschitz continuous second derivatives,
then

‖xk + dk − x̄‖ = O(‖xk − x̄‖2).

It remains to show that the full Newton step is eventually accepted in (S.3) of Algorithm 3.1.
This is done in a way as in [5] and [18] for the nonlinear complementarity problem, using
Lemma 3.5 above and the growth condition from Lemma 2.4.

Theorem 3.6 Let x̄ be a normalized Nash equilibrium and suppose that x̄ is an accumula-
tion point of a sequence {xk} generated by Algorithm 3.1. If Assumptions 1.1, 2.5 and 3.4
hold at x̄, then the entire sequence {xk} converges to x̄. Moreover, eventually the linear sys-
tem (15) is solvable and condition (16) is satisfied, and {xk} converges superlinearly to x̄.
If, in addition, all functions θν and gi have locally Lipschitz continuous second derivatives,
the convergence rate is quadratic.

Proof. (a) We begin with some preliminary observations. From [12, Lemma 4.2], under
Assumption 3.4, all matrices H(x̄) ∈ ∂CFβ(x̄) are nonsingular, and so are the matrices
H(x) ∈ ∂CFβ(x) for all x sufficiently close to x̄. Hence, the system (15) is solvable for all
x near x̄, and

‖H(x)(x− x̄)‖ ≥ ‖x− x̄‖
‖H(x)−1‖

≥ c‖x− x̄‖
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for some constant c > 0 and all x in a small neighbourhood of x̄. Moreover, we have

‖Fβ(x)−H(x)(x− x̄)‖ ≤ c

2
‖x− x̄‖

for all x sufficiently close to x̄, cf. [12, Lemma 4.4]. Therefore we obtain

c‖x− x̄‖ − ‖Fβ(x)‖ ≤ ‖H(x)(x− x̄)‖ − ‖Fβ(x)‖
≤ ‖Fβ(x)−H(x)(x− x̄)‖

≤ c

2
‖x− x̄‖,

that is,
c

2
‖x− x̄‖ ≤ ‖Fβ(x)‖, (20)

provided x is sufficiently close to x̄.

(b) Next, we show that the entire sequence {xk} converges to x̄. By [20, Lemma 4.10], it
suffices to show that x̄ is a locally unique solution of Fβ(x) = 0 and that {‖xk+1 − xk‖}K
converges to 0 for any subsequence {xk}K converging to x̄. The fact that x̄ is a locally
unique solution follows, under our assumptions, immediately from (20). The updating
rules in Algorithm 3.1 imply

‖xk+1 − xk‖ ≤ ‖dk‖ ∀k ∈ K. (21)

Furthermore, for all k ∈ K satisfying the test (17), the Cauchy-Schwarz inequality gives

ρ‖dk‖s ≤ −∇Vαβ(xk)Tdk ≤ ‖∇Vαβ(xk)‖ ‖dk‖,

which together with s > 1 implies

ρ‖dk‖s−1 ≤ ‖∇Vαβ(xk)‖.

It then follows from Theorem 3.2 that {‖dk‖}K tends to 0. (Recall that dk = −∇Vαβ(xk)
for all k ∈ K violating (17).) Hence the desired result follows from (21).

(c) Finally, we prove that {xk} converges locally superlinearly/quadratically to x̄. This
is done by showing that the globalized Newton method from Algorithm 3.1 eventually
coincides with the local Newton method and, therefore, inherits the convergence properties
from the local method. To this end, we have to show that the linear system (15) is solvable
and the corresponding Newton direction dk satisfies the test (16) for all k sufficiently large.

From Lemma 2.4, we know that

β − α
2
‖Fβ(x)‖2 ≤ Vαβ(x) ≤ β − α

2
‖Fα(x)‖2 (22)

for all x ∈ Rn. Let L > 0 be the local Lipschitz constant of the function Fα around x̄
(which exists since Fα is piecewise continuously differentiable due to Lemma 2.6). Then
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we have √
Vαβ(xk + dk)

(22)

≤
√
β − α

2
‖Fα(xk + dk)− Fα(x̄)︸ ︷︷ ︸

=0

‖

≤
√
β − α

2
L‖xk + dk − x̄‖

Lem. 3.5
= o

(
‖xk − x̄‖

)
.

Therefore, for k sufficiently large, we have√
Vαβ(xk + dk) ≤

√
τ

√
β − α

2

c

2
‖xk − x̄‖

(20)

≤
√
τ

√
β − α

2
‖Fβ(xk)‖

(22)

≤
√
τ
√
Vαβ(xk).

Hence the test (16) is eventually successful. By Lemma 3.5, we then have superlinear or
quadratic convergence of {xk} to x̄. �

The above proof shows that the globalized Newton method eventually coincides with the
local Newton method. Moreover, another result in [12] indicates that Algorithm 3.1 has
the following finite termination property: If the assumptions of Theorem 3.6 hold and the
Nash equilibrium problem is a quadratic game, i.e., the cost functions θν are quadratic for
all players ν = 1, . . . , N and the strategy set X is polyhedral, and if xk is sufficiently close
to a normalized Nash equilibrium x̄, then the next iterate xk+1 coincides with x̄.

4 Numerical Results

We implemented the globalized Newton method in MATLAB R©. We used the solver SNOPT
from the TOMLAB R© package to solve the subproblem

max
y

Ψγ(x, y) s.t. g(y) ≤ 0.

The algorithm stops if ‖Fβ(xk)‖ < ε, or the maximum number of iterations kmax is
reached. As parameters for the algorithm, we used ε = 10−6, kmax = 100, s = 2.1,
ρ = 10−8, τ = 0.5, σ = 10−2, and for the function Vαβ, we set α = 10−2 and β = 1. We
solved the jointly convex GNEPs named A11–A18, which are taken from the Appendix of
the report version of the paper [3], and an electricity market model named Heu, which is
taken from [8]. The details of these examples can be found in the references, thus we skip
them here.
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Table 1 reports the name of the example and the chosen starting point x0 in the first two
columns. All starting points x0 were chosen so that all of their components were identical.
For simplicity of notation, we denote for example x0 = 1 instead of x0 = (1, 1, . . . , 1)T . The
next three columns of the table show the number of iterations (It.), the number of gradient
steps (grad), and the function value (‖Fβ(x)‖) at the computed solution for the globalized
Newton method. Since our method is a globalization of the local Newton method from
[12], we also report numerical results for the local method, using both the parameter α in
columns 6 and 7 and the parameter β in columns 8 and 9. The local method has the same
stopping criteria as the globalized one. Additionally the algorithm stops if the Newton
equation (15) cannot be solved sufficiently accurate in the sense that for the computed
solution dk we have ‖Hkd

k+Fγ(x
k)‖ > 10−2. If this happens or if the maximum number of

iterations is reached, we report an “F” in Table 1, thus indicating a failure of the method.
The results show that the local method is very sensitive to the choice of the parameter.

The results for Examples A11–A17 do not show much difference between the local and
the globalized Newton methods. Note, however, that for Examples A16a, A16c and A16d,
we had failures for the starting point x0 = 1000 for the local method with the smaller
parameter α = 10−2. Moreover, Example A18 suffered from the singularity of matrices
Hk, and hence the globalized method did not use the Newton direction. Therefore the
globalized method was just a gradient method, and so it was slowly convergent. The local
methods had the same singularity problem in A18, but nevertheless tried to compute the
Newton direction. Although this failed in most cases, the method was successful in one
case (for the smaller parameter α and starting point x0 = 1), since the Newton equation
was solved with sufficient accuracy without Hk being nonsingular! Example Heu shows
the expected behaviour. The globalized method first took some gradient steps until it got
close to a solution, and then switched to Newton steps for fast local convergence. The
local method (with the small parameter α) was successful and much faster than the global
one for the two starting points closer to the solution, but could not find a solution within
the maximum number of iterations for the more far away one. For the larger parameter
β, however, the local method could not solve the Newton equation with sufficiently high
accuracy for any of the starting points.

The results show that the globalized Newton method is, as expected, more reliable
than the local one, because it has the additional option to switch to the gradient step. In
fact, the globalized Newton method was able to solve all test problems, whereas the local
method had six failures for each of the parameter values α and β (on a different set of
examples). The results also verify the finite termination property of the Newton method
that was mentioned at the end of the previous section. In fact, for most examples, the
function value at the last iterate is exactly zero!

5 Final Remarks

This paper describes a globalized Newton method for the computation of normalized Nash
equilibria and is based on the local Newton-type method from [12]. The globalized method
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turns out to be significantly more reliable than the corresponding local variant in our
numerical tests.

To the best of our knowledge, the method presented here is currently the only one
for which both global and local fast convergence (under fairly mild assumptions) can be
shown. In the moment, the globalization is rather simple by switching to a steepest de-
scent direction whenever the Newton-like direction does not seem to work. Alternatively,
however, it is possible to use more sophisticated globalization schemes by switching to
conjugate gradient or quasi-Newton directions whenever the Newton direction turns out
to be inadequate. The corresponding theory can, very likely, be adapted in a suitable way,
and the numerical performance might improve considerably by using such a strategy. The
details are left as possible future research topics.
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globalized Newton method local method with α local method with β
Example x0 It. grad ‖Fβ(x)‖ It. ‖Fα(x)‖ It. ‖Fβ(x)‖

A11 0 2 0 0.0000e+00 1 0.0000e+00 2 0.0000e+00
A11 1 1 0 0.0000e+00 1 0.0000e+00 1 0.0000e+00
A11 100 1 0 0.0000e+00 1 0.0000e+00 1 0.0000e+00
A12 0 1 0 0.0000e+00 1 0.0000e+00 1 0.0000e+00
A12 1 1 0 0.0000e+00 1 0.0000e+00 1 0.0000e+00
A12 100 1 0 0.0000e+00 3 0.0000e+00 1 0.0000e+00
A13 0 2 0 0.0000e+00 1 0.0000e+00 2 0.0000e+00
A13 1 2 0 0.0000e+00 1 0.0000e+00 2 0.0000e+00
A13 100 2 0 0.0000e+00 1 0.0000e+00 2 0.0000e+00
A14 0.01 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A14 1 3 0 0.0000e+00 4 0.0000e+00 3 0.0000e+00
A14 100 4 1 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A15 0 1 0 0.0000e+00 2 0.0000e+00 1 0.0000e+00
A15 1 1 0 0.0000e+00 2 0.0000e+00 1 0.0000e+00
A15 100 2 0 0.0000e+00 3 0.0000e+00 2 0.0000e+00
A16a 10 3 0 0.0000e+00 2 0.0000e+00 3 0.0000e+00
A16a 100 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16a 1000 3 0 0.0000e+00 1 F 3 0.0000e+00
A16b 10 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16b 100 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16b 1000 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16c 10 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16c 100 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16c 1000 3 0 0.0000e+00 2 F 3 0.0000e+00
A16d 10 4 0 0.0000e+00 2 0.0000e+00 4 0.0000e+00
A16d 100 3 0 0.0000e+00 3 0.0000e+00 3 0.0000e+00
A16d 1000 3 0 0.0000e+00 2 F 3 0.0000e+00
A17 0 2 0 0.0000e+00 3 0.0000e+00 2 0.0000e+00
A17 1 2 0 0.0000e+00 1 0.0000e+00 2 0.0000e+00
A17 100 2 0 0.0000e+00 4 0.0000e+00 2 0.0000e+00
A18 0 17 17 2.9461e-07 4 F 9 F
A18 1 17 17 2.9476e-07 2 0.0000e+00 8 F
A18 100 14 14 3.2129e-07 7 F 1 F
Heu 100 33 30 0.0000e+00 4 0.0000e+00 1 F
Heu 500 17 13 0.0000e+00 6 0.0000e+00 1 F
Heu 1000 19 14 0.0000e+00 101 F 1 F

Table 1: Numerical results for globalized and local Newton methods
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