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Abstract. This article studies differentiability properties for a reformulation of a player
convex generalized Nash equilibrium problem as a constrained and possibly nonsmooth
minimization problem. By using several results from parametric optimization we show
that, apart from exceptional cases, all locally minimal points of the reformulation are dif-
ferentiability points of the objective function. This justifies a numerical approach which
basically ignores the possible nondifferentiabilities.
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1 Introduction

We consider generalized Nash equilibrium problems (GNEPs) in which each player ν ∈
{1, . . . , N} controls a decision variable xν ∈ R

nν and where x = (x1, . . . , xN ) ∈ R
n with

n = n1 + . . . + nN describes the decision vector of all players. To emphasize the role of
player ν’s variable xν within the vector x, we often write x = (xν , x−ν). For each player ν
a cost function θν(·, x−ν) and a strategy space

Xν(x
−ν) := {xν ∈ R

nν | gν(xν , x−ν) ≤ 0}

are given, which both depend on the other players’ decisions x−ν . All functions θν : Rn → R

and gν : Rn → R
mν are assumed to be at least continuous.

The difference to a classical Nash equilibrium problem (NEP) lies in the x−ν-dependence
of the strategy spaces Xν(x

−ν), that is, in a standard NEP, each player has a fixed strategy
space Xν . While NEPs were introduced in [17], GNEPs go back to [3, 1]. For a survey on
theory, applications, and algorithms for the solution of GNEPs, we refer to [7, 10].

In a GNEP, each player ν ∈ {1, . . . , N} wishes to minimize his cost function θν(·, x−ν)
over his strategy space Xν(x

−ν), that is, to solve the problem

Qν(x
−ν) : min

xν

θν(x
ν , x−ν) s.t. gν(xν , x−ν) ≤ 0,

where the other players’ strategies enter as the parameter vector x−ν . If Sν(x
−ν) denotes

the set of optimal points of Qν(x
−ν), ν = 1, . . . , N , then the generalized Nash equilibrium

problem can formally be stated as

GNEP: find some x ∈ R
n with xν ∈ Sν(x

−ν), ν = 1, . . . , N.

A solution point x⋆ of GNEP is also called a generalized Nash equilibrium.
A natural assumption to make GNEP numerically tractable is the convexity of the

problems Qν(x
−ν), ν = 1, . . . , N , in the respective player variable xν . Assumption 1.1 will

be a standing assumption throughout this paper.

Assumption 1.1 (Player convexity) For each ν ∈ {1, . . . , N} and any given x−ν , the
defining functions θν , g

ν
i , i = 1, . . . , mν, of Qν(x

−ν) are convex with respect to the player
variable xν .

GNEPs satisfying Assumption 1.1 are called player-convex. Apart from very few excep-
tions, see [4, 19, 20], it is the most general form of a GNEP studied in the literature. A
widely studied sub-class are the jointly-convex GNEPs where g1 = g2 = . . . = gN =: g
holds and the components of the constraint function g are convex in the whole vector
x = (x1, . . . , xN). Although we will not study this problem class in detail in the present
paper, Remark 4.14 below will summarize the implications of joint convexity for our ap-
proach.

The focus of this paper is on smoothness properties of a suitable optimization refor-
mulation of GNEPs based on the Nikaido-Isoda function. The original reference [18] uses
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this mapping as a theoretical tool, however, later it was also explored algorithmically in
[15, 25] where certain fixed-point algorithms are considered. A regularized version of the
Nikaido-Isoda function was then introduced in [12] and later explored in [13, 5] in order to
reformulate the jointly-convex GNEP either as a constrained or unconstrained optimization
problem. This work was extended very recently to the larger class of player-convex GNEPs,
see [6]. A major drawback of the corresponding optimization problems, however, is the fact
that they typically have nonsmooth objective functions. The aim of this paper is therefore
to have a closer look at the smoothness properties of these objective functions. Prelim-
inary results of this kind, especially regarding the continuity and piecewise smoothness,
can already be found in [6]. Here we show further structural properties, in particular, our
main result indicates that, apart from some degenerate points, the objective functions are
differentiable in (local or global) minima. Note that this result is also of some importance
for jointly-convex GNEPs, although there exist differentiable optimization formulations of
this class of problems, cf. [13]. However, the solutions of these differentiable formulations
do not characterize the full solution set of jointly-convex GNEPs (only so-called normal-
ized solutions can be obtained), whereas here we consider reformulations characterizing all
solutions of both jointly-convex and player-convex GNEPs.

The paper is structured as follows. In Section 2 we recall from [6] the reformulation
of a GNEP as a possibly nonsmooth constrained minimization problem and rewrite its
objective function in a way which makes it more accessible for results from parametric op-
timization. Section 3 reviews from [6] a result on the continuity of the objective function
and relates it to interior points of the domain of the objective function, where subsequently
its differentiability properties can be studied. Our main result on differentiability of the
objective function at locally minimal points of the reformulation (Theorem 4.10) is devel-
oped in Section 4. This result motivates the application of certain smooth optimization
techniques, and Section 5 therefore presents some numerical results. Section 6 closes the
article with final remarks. The main results are illustrated by accompanying examples.

2 Reformulation as a Constrained Optimization Prob-

lem

This section briefly reviews from [6] how GNEP can be equivalently replaced by a (possi-
bly nonsmooth) constrained optimization problem. In the following, we will consider the
optimal value function resulting from maximization of the so-called Nikaido-Isoda function
([18])

ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(yν, x−ν)
]

for parameter x over the variable

y ∈ Ω(x) := X1(x
−1)× . . .×XN(x

−N).
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As, under Assumption 1.1, all strategy spaces Xν(x
−ν) are closed convex sets, so is their

product space Ω(x) for any x ∈ R
n. Moreover, the Nikaido-Isoda function is concave with

respect to y.
To guarantee the existence of a maximal point of ψ(x, ·) even on unbounded sets Ω(x),

in the following we will replace ψ by the regularized Nikaido-Isoda function ([12])

ψα(x, y) :=

N∑

ν=1

[
θν(x

ν , x−ν)− θν(yν, x−ν)
]
− α

2
‖x− y‖22

with α > 0 (and ψ0 = ψ). As ψα is strongly concave in y for α > 0, a unique maximal
point y(x) exists and, thus, the optimal value function

V (x) := max
y∈Ω(x)

ψα(x, y)

is real-valued exactly on the domain

domΩ := {x ∈ R
n| Ω(x) 6= ∅}

of the set-valued mapping Ω : Rn ⇉ R
n. As x ∈ Ω(x) holds if and only if gν(x) ≤ 0 is

satisfied for all ν = 1, . . . , N , it is natural to define the set

W := {x ∈ R
n| gν(x) ≤ 0, ν = 1, . . . , N}. (1)

The central properties of V and W are summarized in the following result, whose proof
may be found in [6].

Proposition 2.1 The following statements hold:

(a) x ∈ Ω(x) if and only if x ∈ W ; in particular, we have W ⊂ domΩ, so that V is
real-valued on W .

(b) V (x) ≥ 0 for all x ∈ W .

(c) x⋆ is a generalized Nash equilibrium if and only if x⋆ ∈ W and V (x⋆) = 0.

(d) x⋆ is a generalized Nash equilibrium if and only if x⋆ = y(x⋆) holds, that is, x⋆ is a
fixed point of the mapping x 7→ y(x).

Proposition 2.1 (a)–(c) show that the computation of a generalized Nash equilibrium x⋆ is
equivalent to finding an optimal point x⋆ of

P : min V (x) s.t. x ∈ W (2)

with V (x⋆) = 0. As the choice of the regularization parameter α > 0 is irrelevant for this
result, in the following we will not explicitly state the dependence on α of the optimal values
V (x), the optimal points y(x), or the problem P . If the unique solvability of maximizing
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ψα(x, ·) over Ω(x) is clear for other reasons, we will also allow the choice α = 0, that is,
employment of the original Nikaido-Isoda function.

Theoretical and numerical results on the solution of P obviously depend on the struc-
tures of the objective function V and of the feasible set W . While not much can be said
about the set W , basic continuity and differentiability properties of V on W for player
convex GNEPs were studied in [6]. The present paper complements this with additional
interesting properties of V at its points of nondifferentiability.

To study its structural properties, we rewrite the function V for any x ∈ W as

V (x) = max
y∈Ω(x)

ψα(x, y)

= max
y∈Ω(x)

(
N∑

ν=1

[
θν(x

ν , x−ν)− θν(yν, x−ν)
]
− α

2
‖x− y‖22

)

= max
y∈Ω(x)

N∑

ν=1

(
θν(x

ν , x−ν)− θν(yν, x−ν)− α

2
‖xν − yν‖22

)

=

N∑

ν=1

[
θν(x

ν , x−ν)− min
yν∈Xν(x−ν)

(
θν(y

ν , x−ν) +
α

2
‖xν − yν‖22

)]

=
N∑

ν=1

[
θν(x)− ϕν(x)

]
(3)

with the optimal value functions

ϕν(x) := min
yν∈Xν(x−ν)

[
θν(y

ν, x−ν) +
α

2
‖xν − yν‖22

]
(4)

of the (convex and uniquely solvable) problems

Qν(x) : min
yν

θν(y
ν , x−ν) +

α

2
‖xν − yν‖22 s.t. gν(yν , x−ν) ≤ 0

for ν = 1, . . . , N . Clearly, the structural properties of V heavily depend on the structural
properties of the functions ϕν .

In the following, yν(x) will denote the unique optimal point of Qν(x), ν = 1, . . . , N , for
x ∈ W , hence we can rewrite the optimal value functions ϕν as

ϕν(x) = θν(y
ν(x), x−ν) +

α

2
‖xν − yν(x)‖22.

It is easy to see that (y1(x), . . . , yN(x)) coincides with the unique maximizer y(x) of ψα(x, ·)
on Ω(x).

3 Continuity and the Domain of V

Before we turn our attention to differentiability properties, let us briefly recall sufficient
conditions for continuity of V on W .
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Lemma 3.1 ([6, Lemma 3.4]) Let Assumption 1.1 hold, and for x̄ ∈ W as well as for
all ν ∈ {1, . . . , N}, let Xν(x̄

−ν) satisfy the Slater condition. Then the functions yν, ϕν,
ν = 1, . . . , N , and V are continuous at x̄.

With the ‘degenerate point set’

D1 := {x ∈ W | for some ν = 1, . . . , N the set Xν(x
−ν)

violates the Slater condition}

Lemma 3.1 guarantees continuity of V on W \D1. As explained in [6] and illustrated in
Example 3.2 below, one has to expect that D1 is nonempty. This was the motivation to
develop a weaker sufficient condition for continuity of V on W , for which the interested
reader is referred to [6, Theorem 3.5].

The following example illustrates these continuity properties and will also serve to
illustrate differentiability properties below.

Example 3.2 Consider a player convex GNEP with N = 2, n1 = n2 = 1, θ1(x) = x1,
θ2(x) = x2, g

1
1(x) = −2x1 + x2, g

2
1(x) = x21 + x22 − 1, g22(x) = −x1 − x2. Then for all

x ∈ W = {x ∈ R
2| x21 + x22 ≤ 1, −x1 ≤ x2 ≤ 2x1} (cf. Fig. 1) the problems Q1(x) and

Q2(x) are easily seen to be uniquely solvable for α = 0. Note that we have x1 = x−2 = x1
and x2 = x−1 = x2.

x2

x1

−1

1−1

1

W

Figure 1: Illustration of the set W in Example 3.2

In fact, for x ∈ W we obtain the strategy spaces

X1(x2) =
[x2
2
,+∞

)
,

X2(x1) =

[
max

{
−x1,−

√
1− x21

}
,
√

1− x21
]
,
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so that the optimal points as well as optimal values of Q1(x) and Q2(x) are

y1(x) = ϕ1(x) =
x2
2
,

y2(x) = ϕ2(x) = max

{
−x1,−

√
1− x21

}
.

Due to (3) this results in

V (x) = θ1(x) + θ2(x)− ϕ1(x)− ϕ2(x)

= x1 + x2 +min

{
x1,
√

1− x21
}
− x2

2
.

Note that, in spite of player convexity, V is a concave function as the minimum of two
smooth concave functions (compare also Fig. 2 and Remark 3.10 below).

For all x ∈ W the set X1(x2) obviously satisfies the Slater condition. However, the
set X2(x1) satisfies the Slater condition only for values x1 6= 1, whereas X2(1) = {0}
is a singleton. This results in D1 = {(1, 0)} and shows that D1 can easily be nonempty.
Lemma 3.1 then yields continuity of V only onW \D1. On the other hand, direct inspection
shows that V is continuous even on all of W where, however, V as ‘infinite slope’ at the
point x = (1, 0). We remark that, for the present example, the improvement of Lemma 3.1
by [6, Theorem 3.5] also yields continuity of V at (1, 0).

Figure 2: V on W for Example 3.2
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It is not hard to see that the function V has a unique globally minimal point on W
at the origin. Its optimal value is zero, so that the origin is the unique generalized Nash
equilibrium in view of Proposition 2.1. However, one can also show that V has a locally
minimal point on W at (1, 0) with value one. We point out that the latter point is the
element of D1, so that D1 is not only nonempty, but, at least in the present example, also
contains a ‘structurally relevant’ point. ♦

In the remainder of this section we will see that the set D1 also plays a crucial role for
differentiability properties of V . In fact, in Section 4 we shall study differentiability of V
at points in the topological interior of the domain of V , where in Section 2 we have seen
that the domain of V ,

domV = {x ∈ R
n | V (x) ∈ R}

coincides with the domain of the set-valued mapping Ω(x) = X1(x
−1)× . . .×XN(x

−N ),

domΩ = {x ∈ R
n | Ω(x) 6= ∅}.

Hence, their topological interiors satisfy

int domV = int domΩ. (5)

The following example shows that, despite the fact that we have W ⊂ domΩ = domV ,
we cannot expect the inclusion W ⊂ int domV to hold.

Example 3.3 In the situation of Example 3.2 we have int domV = int domΩ = (−1/
√
2, 1)×

R, so that
W \ {(1, 0)} = W ∩ int domV.

Recall that D1 = {(1, 0)} holds in this example, so that we arrive at W \ D1 = W ∩
int domV . ♦

The next result guarantees that the inclusion W \ D1 ⊂ W ∩ int domV is also true in
general.

Lemma 3.4 Let Assumption 1.1 hold. Then we have

W \D1 ⊂ W ∩ int domV. (6)

Proof. In view of (5), the assertion is shown if we can prove the relation

W \D1 ⊂W ∩ int domΩ.

Choose x̄ ∈ W \ D1. Then we have x̄ ∈ W , and for all ν = 1, . . . , N there exists some
ȳν ∈ R

nν with gν(ȳν, x̄−ν) < 0. Due to the continuity of the functions gν, we can choose
a neighborhood U of x̄ such that for all x ∈ U and ν = 1, . . . , N also gν(ȳν, x−ν) < 0 is
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satisfied. In particular, for all x ∈ U each set Xν(x
−ν), ν = 1, . . . , N , is nonempty, so that

U is contained in domΩ. This shows the assertion. �

Lemma 3.4 will allow us to study differentiability properties of V on the set W \ D1 in
Section 4. While Lemma 3.4 does, of course, not exclude that also some elements of D1 are
contained in int domV , we conjecture that, under mild additional assumptions, actually
equality holds in (6). In the sequel, we will at least show this fact under certain conditions,
including Assumption 3.5 below, though we believe that this assumption can be relaxed.
Note, however, that we will use this assumption only in Theorem 3.9 below, but not in the
remainder of this paper.

Assumption 3.5 (Joint constraint convexity)
All functions gνi , i = 1, . . . , mν , ν = 1, . . . , N , are convex.

Clearly, under Assumption 3.5 the set W is convex. From now on we will also assume that
all defining functions of GNEP are at least continuously differentiable.

Assumption 3.6 (Smoothness) For each ν ∈ {1, . . . , N} the functions θν , g
ν
i , i =

1, . . . , mν, are continuously differentiable.

In the sequel ∇θν will stand for the column vector of partial derivatives of θν , and Dθν =
∇⊺θν will denote the corresponding row vector, etc.

Furthermore, for each ν = 1, . . . , N , we let Iν = {1, . . . , mν} denote the index set of
inequality constraints of player ν, we put

Wν := {x ∈ R
n| gνi (x) ≤ 0, i ∈ Iν} (7)

and, for x ∈ Wν , we define the active index set

Iν0 (x) := {i ∈ Iν | gνi (x) = 0}. (8)

Note that Wν coincides with gphXν , the graph of the set-valued mapping Xν , and that
we obviously have W =

⋂N
ν=1Wν .

Recall that for ν ∈ {1, . . . , N} the Mangasarian Fromovitz constraint qualification
(MFCQ) holds at x ∈ Wν if there exists some vector d ∈ R

n (typically depending on the
index ν) with

Dgνi (x) d < 0, i ∈ Iν0 (x).

Assumption 3.7 (Joint MFCQ) For each ν ∈ {1, . . . , N} the MFCQ holds everywhere
in Wν.

Note that, under Assumption 3.5, Assumption 3.7 is equivalent to the Slater condition for
each Wν , ν = 1, . . . , N .

Remark 3.8 We stress that Assumption 3.7 is unrelated to the assumption of MFCQ
everywhere in the set W . In fact, on the one hand, assuming MFCQ at points in W does
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not allow conclusions about points in Wν \W for any ν. In particular, MFCQ may be
violated at some x̄ ∈ Wν \W , so that Assumption 3.7 does not hold. On the other hand,
consider a two player game with n1 = n2 = 1 as well as g1(x) = (x1 − 1)2 + x22 − 1 and
g2(x) = (x1 + 1)2 + x22 − 1. Then Assumption 3.7 holds, but MFCQ is violated in the set
W = {0}. ♦

If, for player ν and a point x ∈ Wν , MFCQ holds at xν ∈ Xν(x
−ν), that is, there exists

some vector dν ∈ R
nν with

Dxνgνi (x
ν , x−ν) dν < 0, i ∈ Iν0 (xν , x−ν),

we will refer to this as player MFCQ in the sequel. Note that, for given ν and x−ν , the
active index set Iν0 (x

ν , x−ν) of xν in Xν(x
−ν) coincides with the active index set of (xν , x−ν)

in Wν as defined in (8).

Theorem 3.9 Let Assumptions 1.1, 3.5, 3.6, and 3.7 hold. Then we have

W \D1 = W ∩ int domV.

Proof. In view of Lemma 3.4 and (5), the assertion is shown if we can prove the relation

W ∩ int domΩ ⊂ W \D1.

Let x̄ ∈ D1. We will show that then x̄ lies in the set complement (int domΩ)c. Due to
D1 ⊂W ⊂ domΩ it suffices to guarantee that any neighborhood of x̄ contains points from
(domΩ)c.

Choose some ν ∈ {1, . . . , N} such that Xν(x̄
−ν) violates the Slater condition. Then

player MFCQ is violated at any element of Xν(x̄
−ν) and, in particular, at x̄ν . By the

Lemma of Gordan, there exist multipliers λi ≥ 0, i ∈ Iν0 (x̄), with
∑

i∈Iν
0
(x̄) λi = 1 such that

dν :=
∑

i∈Iν
0
(x̄)

λi∇xνgνi (x̄) = 0. (9)

We use the same multipliers to define

d−ν :=
∑

i∈Iν
0
(x̄)

λi∇x−νgνi (x̄)

as well as d := (dν , d−ν). We claim that d is nonzero. In fact, if we had d = 0, we
would obtain

∑
i∈Iν

0
(x̄) λi∇gνi (x̄) = 0, hence, noting that x̄ ∈ Wν , it would follow from

Assumption 3.7 and the fact that MFCQ is equivalent to the positive linear independence
of the corresponding vectors that λi = 0 for all i ∈ Iν0 (x̄), a contradiction to

∑
i∈Iν

0
(x̄) λi = 1.

Consequently, d 6= 0 and, in view of (9), we then also know that d−ν cannot vanish.
We now define the ray

x−ν(t) := x̄−ν + td−ν

9



and shall show that for all t > 0 the set Xν(x
−ν(t)) is empty.

To this end, we note that Assumption 3.5 implies that, for all x ∈ Wν , we have

0 ≥ Dgνi (x̄)(x− x̄), i ∈ Iν0 (x̄).

Taking the convex combination of the latter inequalities with the above coefficients λi, and
using dν = 0, implies that all x ∈ Wν also satisfy

0 ≥ d⊺(x− x̄) = (d−ν)⊺(x−ν − x̄−ν). (10)

Consequently for each x−ν ∈ domXν there exists some xν ∈ R
nν with x ∈ gphXν = Wν ,

hence (10) holds. As (10) does not depend on xν , this means

domXν ⊂ {x−ν ∈ R
n−nν | (d−ν)⊺(x−ν − x̄−ν) ≤ 0}.

On the other hand, for any t > 0 the point x−ν(t) satisfies

(d−ν)⊺(x−ν(t)− x̄−ν) = t‖d−ν‖22 > 0,

so that x−ν(t) 6∈ domXν , that is, Xν(x
−ν(t)) = ∅. This shows the assertion. �

Note that in Example 3.2 the assumptions of Theorem 3.9 are satisfied.

Remark 3.10 Under Assumption 3.5 and the additional assumption of (affine) linear
functions θν , ν = 1, . . . , N , along the lines of the proof of [22, Prop. 3.1.26] one can show
that the functions ϕν , ν = 1, . . . , N , are convex on W , and that V is concave on W .
Example 3.2 illustrates this situation. ♦

4 Differentiability Properties

In this section we will study differentiability properties of V on W \D1, as motivated by
Lemma 3.4 and Theorem 3.9. Assumptions 1.1 and 3.6 will be blanket assumptions for
this section.

For the following lemma, recall that Sν(x) denotes the set of optimal points of Qν(x),
let

Lν(x, y
ν, γν) := θν(y

ν, x−ν) +
α

2
‖xν − yν‖22 + (γν)⊺gν(yν, x−ν) (11)

denote the Lagrange function of Qν(x), and let

KKTν(x) := {γν ∈ R
mν | ∇yνLν(x, y

ν , γν) = 0, γν ≥ 0, (γν)⊺gν(yν , x−ν) = 0}

be the set of Karush-Kuhn-Tucker multipliers for yν ∈ Sν(x). Note that KKTν(x) does
not depend on yν as Qν(x) is a convex problem ([11]). Before stating the next result, we
recall that a given mapping f is called directionally differentiable at a point x if the limit

lim
tց0

f(x+ td)− f(x)
t
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exists for all directions d, whereas f is called directionally differentiable in the Hadamard
sense or simply Hadamard directionally differentiable at x if the limit

lim
tց0,d′→d

f(x+ td′)− f(x)
t

exists for all directions d. Note that Hadamard directional differentiability implies the
usual directional differentiability, and that we denote the common limit by f ′(x, d).

Theorem 4.1 Let x ∈ W \D1. Then V is Hadamard directionally differentiable at x with

V ′(x, d) =

N∑

ν=1

[
Dθν(x) d− max

γν∈KKTν(x)
DxLν(x, y

ν(x), γν) d

]

for all d ∈ R
n.

Proof. In view of (3), we have

V (x) =

N∑

ν=1

[
θν(x)− ϕν(x)

]

with θν being differentiable and the possibly nondifferentiable optimal value functions
ϕν from (4). Since x ∈ W \ D1, the sets Xν(x

−ν) satisfy the Slater condition for all
ν = 1, . . . , N , hence, by a standard result (see, e.g., [11, 14, 21]), the functions ϕν are
Hadamard directionally differentiable, and their directional derivatives are given by

ϕ′
ν(x, d) = min

yν∈Sν(x)
max

γν∈KKTν(x)
DxLν(x, y

ν , γν) d (12)

for all d ∈ R
n. Taking into account that Sν(x) = {yν(x)} is actually a singleton in our

case, the desired statement follows. �

Obviously, the formula for the directional derivative of ϕν from (12) simplifies further if
not only Sν(x), but also KKTν(x) is a singleton. For the following, recall that a function
is called Gâteaux differentiable if it is directionally differentiable and if the directional
derivative is a linear function of the direction.

Proposition 4.2 For some ν ∈ {1, . . . , N} and x ∈ Wν, let Xν(x
−ν) satisfy the Slater

condition, and let KKTν(x) be the singleton {γν(x)}. Then ϕν is Gâteaux differentiable
at x with

ϕ′
ν(x, d) = DxLν(x, y

ν(x), γν(x)) d

for all d ∈ R
n.

The previous result motivates to define a second ‘degenerate point set’,

D2 = {x ∈ W | for some ν = 1, . . . , N the set KKTν(x) is not a singleton }.
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A sufficient condition for x ∈ W to lie in Dc
2 is that for all ν = 1, . . . , N the linear

independence constraint qualification holds at yν(x) in Xν(x
−ν), that is, the gradients

∇xνgνi (y
ν(x), x−ν), i ∈ Iν0 (yν(x), x−ν),

are linearly independent. We will refer to this property as player LICQ. In fact, it is well
known that player LICQ entails a unique KKT multiplier γν(x) at the optimal point yν(x).

By a result from [16], at points x ∈ W a characterization for x ∈ Dc
2 is given by the fact

that for all ν = 1, . . . , N the strict Mangasarian Fromovitz constraint qualification holds
at yν(x) in Xν(x

−ν) with a multiplier γν ∈ KKTν(x), that is, the gradients

∇xνgνi (y
ν(x), x−ν), i ∈ Iν0+(yν(x), x−ν),

are linearly independent, and there exists some vector dν ∈ R
nν with

Dxνgνi (y
ν(x), x−ν) dν = 0, i ∈ Iν0+(yν(x), x−ν),

Dxνgνi (y
ν(x), x−ν) dν < 0, i ∈ Iν00(yν(x), x−ν),

where

Iν0+(x) = {i ∈ Iν0 (x)| γνi > 0},
Iν00(x) = {i ∈ Iν0 (x)| γνi = 0}.

In the sequel, this property will be called player SMFCQ. This yields

D2 = {x ∈ W | for some ν = 1, . . . , N player SMFCQ is violated

at yν(x) in Xν(x
−ν) } (13)

and allows us to prove the following relation between D1 and D2.

Lemma 4.3 The degenerate point sets satisfy D1 ⊂ D2.

Proof. Choose any point x ∈ Dc
2. The assertion is trivial if x ∈ W c. Otherwise, in view of

(13) for all ν = 1, . . . , N player SMFCQ holds at yν(x) in Xν(x
−ν). Since player SMFCQ

implies the ordinary player MFCQ at the latter point, Xν(x
−ν) also satisfies the Slater

condition for all ν = 1, . . . , N . This means that x lies in Dc
1 and shows the assertion. �

In view of Lemma 4.3, in Proposition 4.2 the assumption that Xν(x
−ν) satisfies the Slater

condition may be dropped, and we arrive at the following theorem.

Theorem 4.4 For x ∈ W \D2 let γ
ν(x), ν = 1, . . . , N , denote the unique KKT multipliers.

Then V is Gâteaux differentiable at x with

V ′(x, d) =

(
N∑

ν=1

[
Dθν(x)−DxLν(x, y

ν(x), γν(x))
]
)
d

for all d ∈ R
n.
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Clearly player LICQ, or even player SMFCQ, cannot be expected to hold at yν(x) in
Xν(x

−ν) for all x ∈ W , even if the set W itself satisfies LICQ everywhere, that is, the (full)
gradients

∇gνi (x), i ∈ Iν0 (x), ν = 1, . . . , N

are linearly independent at each x ∈ W . To begin with, the point (yν(x), x−ν) ∈ Wν does
not even have to belong to W . However, violation of player SMFCQ is in some sense
exceptional, as the following example illustrates.

Example 4.5 In the situation of Example 3.2, recall that for x ∈ D1 = {(1, 0)} the
set X2(x1) violates the Slater condition and, thus, player SMFCQ is violated at its single
element. In the following we check for points in D2 \D1.

The Lagrangian of player 1 is

L1(x, y1, γ
1) = y1 + γ11(−2y1 + x2).

The optimal point y1(x) =
x2

2
has the active index set I10 (y1(x), x2) = {1}, and we obtain

the multiplier set

KKT1(x) = {γ1 ∈ R| 1− 2γ11 = 0, γ11 ≥ 0} = {1/2}.

In particular, the multiplier γ1(x) = 1
2
is unique for any x ∈ W .

For player 2 the Lagrangian is

L2(x, y2, γ
2) = y2 + γ21(x

2
1 + y22 − 1) + γ22(−x1 − y2).

For x ∈ W \D1 with x1 > 1/
√
2 the optimal point is y2(x) = −

√
1− x21 with active index

set I20 (x1, y2(x)) = {1}, and we obtain the multiplier set

KKT2(x) = {γ2 ∈ R
2| 1 + 2γ21y2(x)− γ22 = 0, γ21 ≥ 0, γ22 = 0}

=

{((
2
√
1− x21

)−1

, 0

)}
.

For x ∈ W with x1 < 1/
√
2 the optimal point is y2(x) = −x1 with active index set

I20 (x1, y2(x)) = {2}, and we obtain the multiplier set

KKT2(x) = {γ2 ∈ R
2| 1 + 2γ21y2(x)− γ22 = 0, γ21 = 0, γ22 ≥ 0} = {(0, 1)} .

Altogether, for all x ∈ W \D1 with x1 6= 1/
√
2 the multiplier γ2(x) is unique.

On the other hand, for x ∈ W with x1 = 1/
√
2, the active index set of y2(x) = −1/

√
2

is I20 (x1, y2(x)) = {1, 2}, and we obtain the nonunique multiplier set

KKT2(x) = {γ2 ∈ R
2| 1 + 2γ21y2(x)− γ22 = 0, γ2 ≥ 0}

=
{
γ2 ≥ 0

∣∣∣ γ22 = 1−
√
2γ21

}
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=
{(
t, 1−

√
2t
) ∣∣∣ t ∈

[
0, 1/
√
2
]}

.

Thus, we arrive at
D2 = D1 ∪ {x ∈ W | x1 = 1/

√
2}

and, in view of Theorem 4.4, V is Gâteaux differentiable on W \D2.
Finally we check for differentiability properties of V on D2 \D1. Recall that we cannot

study differentiability of V on D1 = {(1, 0)}, as the point (1, 0) is not an interior point of
domV . In fact, as mentioned already in Example 3.2, V actually has ‘infinite slope’ at
(1, 0).

For all x ∈ D2 \ D1, that is, x ∈ W with x1 = 1/
√
2, Theorem 4.1 yields directional

differentiability of V with

V ′(x, d) = Dθ1(x) d+Dθ2(x) d−DxL1(x, y
1(x), γ1(x)) d

− max
γ2∈KKT2(x)

DxL2(x, y
2(x), γ2(x)) d

= d1 + d2 −
1

2
d2 − max

t∈[0,1/
√
2]
(2t/
√
2− (1−

√
2t)) d1

= d1 +
1

2
d2 + min

t∈[0,1/
√
2]
(1− 2

√
2t) d1

=

{
2d1 +

1
2
d2, d1 < 0

1
2
d2, d1 ≥ 0

for all d ∈ R
2. This corresponds to the ‘concave kink’ in the graph of V which is illustrated

in Figure 2. ♦

The observed differentiability properties in Example 4.5 guarantee that any local minimizer
x̄ of V on W either lies in D1, or the function V is Gâteaux differentiable at x̄.

In the sequel we will show that, under mild assumptions, this also holds in the general
case. The essential implications for the design of numerical methods to solve P in (2) are
apparent (cf. Sec. 5). We begin with a preliminary result which gives a representation for
the gradient of Lagrangian Lν from (11).

Lemma 4.6 Let Lν be the Lagrangian of Qν(x
−ν). Then the gradient with respect to all

variables x = (x1, . . . , xN ), evaluated at a point (x̄, ȳν, γν) with x̄ ∈ W, ȳν := yν(x̄), has
the representation

∇xLν(x̄, ȳ
ν, γν) = ∇θν(ȳν, x̄−ν) +

∑

i∈Iν
0
(ȳν ,x̄−ν)

γνi∇gνi (ȳν, x̄−ν).

Proof. The definitions of Lν(x, y
ν, γ) and KKTν(x) immediately imply that, for all µ ∈

{1, . . . , N} \ {ν}, we have

∇xµLν(x̄, ȳ
ν, γν) = ∇xµθν(ȳ

ν , x̄−ν) +
∑

i∈Iν
0
(ȳν ,x̄−ν)

γνi ∇xµgν(ȳν, x̄−ν). (14)
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Moreover, the combination of

∇xνLν(x̄, ȳ
ν , γν) = α(x̄ν − ȳν)

and, by the definition of KKTν(x̄),

0 = ∇yνLν(x̄, ȳ
ν, γν)

= ∇xνθν(ȳ
ν, x̄−ν)− α(x̄ν − ȳν) +

∑

i∈Iν
0
(ȳν ,x̄−ν)

γνi∇xνgν(ȳν, x̄−ν)

shows that (14) also holds for µ = ν (independent of α). �

The following result will be used in order to show that at certain points there exist feasible
descent directions for V on W . To this end, we exclude some degenerate points from D2

for proving the result of Theorem 4.10. In fact, we define D3 to be the set of points in D2

such that whenever player SMFCQ is violated at yµ(x) in Xµ(x
−µ) for some µ = 1, . . . , N ,

we have

span {∇gνi (x), i ∈ Iν0 (x), ν = 1, . . . , N} ∩
span

{
∇gµi (yµ(x), x−µ), i ∈ Iµ0 (yµ(x), x−µ)

}
6= {0}, (15)

that is,

D3 :=
{
x ∈ D2 | (15) holds for all µ = 1, . . . , N

where SMFCQ is violated at yµ(x) ∈ Xµ(x
−µ)
}
.

Note that at least the unconstrained points x ∈ D2, that is, the ones with Iν0 (x) = ∅,
ν = 1, . . . , N , do not lie in D3, as span ∅ = {0}. More generally, in the case

∑N
ν=1 |Iν0 (x)|+

|Iµ0 (yµ(x), x−µ)| ≤ n one may expect that x does not lie in D3, as the involved gradients are
evaluated at different arguments. On the other hand, for

∑N
ν=1 |Iν0 (x)|+ |Iµ0 (yµ(x), x−µ)| >

n and linearly independent gradients, x will definitely lie in D3.
Also, if a generalized Nash equilibrium x happens to lie in D2, under mild conditions it

necessarily is an element of D3. In fact, due to x ∈ D2, for some ν the SMFCQ is violated
at (yν(x), x−ν) in Xν(x

−ν) so that, in particular, Iν0 (y
ν(x), x−ν) is nonempty. Moreover,

by Proposition 2.1(d), in a generalized Nash equilibrium the points yν(x) and xν coincide.
This means that in (15) the vectors ∇gνi (x), i ∈ Iν0 (x), appear in both spans, where Iν0 (x)
is nonempty. Thus, except for the case where all these vectors vanish, the intersection of
the two spans is strictly larger than {0}.

With regard to linear independence, we will actually need the following assumption,
which strengthens Assumption 3.7.

Assumption 4.7 (Joint LICQ) For each ν = 1, . . . , N , LICQ holds everywhere in Wν .

Proposition 4.8 Let x̄ ∈ D2 \ (D1 ∪ D3) and Assumption 4.7 hold. Then there exists a
vector d ∈ R

n solving the system

V ′(x̄, d) < 0, Dgνi (x̄) d ≤ 0, i ∈ Iν0 (x̄), ν = 1, . . . , N. (16)
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Proof. Assume that (16) does not possess a solution d ∈ R
n. By Theorem 4.1, the

directional derivative of V is

V ′(x̄, d) =

N∑

ν=1

[
Dθν(x̄) d− max

γν∈KKTν(x̄)
DxLν(x̄, ȳ

ν, γν) d
]

for all d ∈ R
n, where we put ȳν = yν(x̄) for ν = 1, . . . , N . Hence, the inconsistency of (16)

implies that for any choice

γ := (γ1, . . . , γN) ∈ KKT1(x̄)× . . .×KKTN (x̄) (17)

also the system

(
N∑

ν=1

[
Dθν(x̄)−DxLν(x̄, ȳ

ν, γν)
]
)
d < 0,

Dgνi (x̄) d ≤ 0, i ∈ Iν0 (x̄), ν = 1, . . . , N

is inconsistent. By the Lemma of Farkas, the latter holds if and only if there exist scalars
λνi (γ) ≥ 0, i ∈ Iν0 (x̄), ν = 1, . . . , N , with

N∑

ν=1

[
∇θν(x̄)−∇xLν(x̄, ȳ

ν, γν)
]
+

N∑

ν=1

∑

i∈Iν
0
(x̄)

λνi (γ)∇gνi (x̄) = 0.

After rearranging terms, we find that for any choice γ with (17) there exist multipliers
λνi (γ) ≥ 0 with

N∑

ν=1

(
∇θν(x̄) +

∑

i∈Iν
0
(x̄)

λνi (γ)∇gνi (x̄)
)

=
N∑

ν=1

∇xLν(x̄, ȳ
ν, γν). (18)

Using Lemma 4.6 to replace the expression for the gradient on the right-hand side, we
conclude that for any choice γ with (17) there exist multipliers λνi (γ) ≥ 0 with

N∑

ν=1

(
∇θν(x̄) +

∑

i∈Iν
0
(x̄)

λνi (γ)∇gνi (x̄)
)

=
N∑

ν=1

(
∇θν(ȳν , x̄−ν) +

∑

i∈Iν
0
(ȳν ,x̄−ν)

γνi ∇gνi (ȳν, x̄−ν)
)
. (19)

Next we use that x̄ was chosen from D2 so that at least for one µ ∈ {1, . . . , N} the player
SMFCQ is violated at ȳµ, say for µ = 1. Then KKT1(x̄) contains two different multipliers
γ̂1 6= γ̃1. For ν = 2, . . . , N we choose any γν ∈ KKTν(x̄) and put γ̂ := (γ̂1, γ2, . . . , γN) as
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well as γ̃ := (γ̃1, γ2, . . . , γN). Equation (19) then holds with γ = γ̂ as well as with γ = γ̃.
Subtracting these two equations leads to

N∑

ν=1

∑

i∈Iν
0
(x̄)

(
λνi (γ̂)− λνi (γ̃)

)
∇gνi (x̄) =

∑

i∈I1
0
(ȳ1,x̄−1)

(γ̂1i − γ̃1i )∇g1i (ȳ1, x̄−1),

where the left hand side is some element of

span {∇gνi (x̄), i ∈ Iν0 (x̄), ν = 1, . . . , N} ,

and the right hand side is some element of

span
{
∇g1i (ȳ1, x̄−1), i ∈ I10 (ȳ1, x̄−1)

}
,

which, in addition, cannot vanish due to γ̂1 6= γ̃1, (ȳ1, x̄−1) ∈ W1 and Assumption 4.7.
Therefore, the intersection of these two spans is nontrivial. However, since x̄ was taken
from D2 \D3, this is a contradiction. Consequently, contrary to our assumption, (16) must
be consistent. This shows the assertion. �

Before we state the main result of this section, we need one more assumption. To this end,
we first recall that the tangent (or contingent or Bouligand) cone to W at x̄ is defined by

TW (x̄) := {d ∈ R
n| ∃tk ց 0, dk → d : x̄+ tkd

k ∈ W for all k ∈ N},

and that the linearization cone to W at x̄ is given by

LW (x̄) := {d ∈ R
n| Dgνi (x̄) d ≤ 0, i ∈ Iν0 (x̄), ν = 1, . . . , N}.

The inclusion TW (x̄) ⊂ LW (x̄) always holds (cf., e.g., [23]). The Abadie constraint qualifi-
cation (ACQ) is said to hold at x̄ ∈ W , if both cones actually coincide.

Assumption 4.9 (Joint ACQ in W ) The ACQ holds everywhere in W .

The ACQ is typically considered a very weak constraint qualification. Nevertheless, we
point out that the example from Remark 3.8 shows that neither Assumption 3.7 nor As-
sumption 4.7 imply Assumption 4.9.

The following is the main result this section.

Theorem 4.10 Let Assumptions 1.1, 3.6, 4.7, and 4.9 hold. Then any local minimizer x̄
of V on W either lies in D1 ∪D3, or the function V is Gâteaux differentiable at x̄.

Proof. By Theorem 4.4, V is Gâteaux differentiable everywhere on W \D2. Choose any
x̄ ∈ D2 \ (D1 ∪D3). The assertion is shown if we can prove that x̄ is not a local minimizer
of V on W . The main idea of the proof is to show this by guaranteeing the existence of a
first order feasible descent direction for V on W in x̄.

In view of Proposition 4.8, there exists a vector d ∈ R
n solving the system (16). In

particular, d belongs to the linearization cone LW (x̄). In view of Assumption 4.9, d also
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lies in the tangent cone TW (x̄), that is, there exist sequences tk ց 0 and dk → d with
x̄+ tkd

k ∈ W for all k ∈ N.
Assume that x̄ is a local minimizer of V on W . This implies V (x̄+ tkd

k) ≥ V (x̄) and,
thus,

V (x̄+ tkd
k)− V (x̄)
tk

≥ 0 (20)

for all sufficiently large k ∈ N. By Theorem 4.1, V is Hadamard directionally differentiable
at x̄ so that the limit of the left-hand side in (20) exists and equals V ′(x̄, d) (note that,
here, we exploit the fact that V is actually Hadamard directionally differentiable and not
just directionally differentiable in the ordinary sense). However, since the implication
V ′(x̄, d) ≥ 0 contradicts (16), x̄ cannot be a local minimizer of V on W . �

It is well-known (cf., e.g., [23, Prop. 3.2]) that ACQ holds everywhere in W in the case
where all constraints gνi are linear. This immediately leads to the following result.

Corollary 4.11 Let Assumptions 1.1, 3.6, 4.7 hold, and assume that all constraint func-
tions gνi are linear. Then any local minimizer x̄ of V on W either lies in D1 ∪D3, or the
function V is Gâteaux differentiable at x̄.

We remark that in Example 4.5 the two constrained elements of D2 belong to D3, but first
order feasible descent directions for V on W still exist in these points. This indicates that
it should be possible to weaken the assumptions of Theorem 4.10.

With respect to Remark 3.10 we note that, although V is not necessarily concave under
the general assumptions of Theorem 4.10, coarsely speaking ‘a concavity property prevails
in the kinks of V ’.

For completeness, we emphasize that in Theorem 4.4 the Gâteaux differentiability of V
can be replaced by Fréchet differentiability if the partial derivatives of V are continuous.
The next corollary formulates this fact more explicitly.

Corollary 4.12 For x̄ ∈ W \D2 and each ν = 1, . . . , N , let the function yν be continuous
at x̄, let the unique multiplier γν be continuous at x̄, and put ȳν := yν(x̄) as well as
γ̄ν := γν(x̄). Then V is Fréchet differentiable at x̄ with

∇V (x̄) =
N∑

ν=1

[
∇θν(x̄)−∇xLν(x̄, ȳ

ν, γ̄ν)
]
.

Under the assumptions of Corollary 4.12, also in Theorem 4.10 Gâteaux differentiability
can be replaced by Fréchet differentiability.

Remark 4.13 Under the assumptions of Corollary 4.12 and using (13), a point x ∈ W is
not an element of D2 if for all ν = 1, . . . , N at yν(x) in Xν(x

−ν) the gradients

∇xνgνi (y
ν(x), x−ν), i ∈ Iν0+(yν(x), x−ν),
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are linearly independent, and there exists some vector dν ∈ R
nν with

Dxνgνi (y
ν(x), x−ν) dν = 0, i ∈ Iν0+(yν(x), x−ν)

Dxνgνi (y
ν(x), x−ν) dν < 0, i ∈ Iν00(yν(x), x−ν),

where

Iν0+(x) = {i ∈ Iν0 (x)| γνi (x) > 0},
Iν00(x) = {i ∈ Iν0 (x)| γνi (x) = 0}.

Hence, if additionally for each x ∈ W \ D2 the set Iν00(x) remains constant under small
perturbations of x (e.g., due to Iν00(x) = ∅, i.e., strict complementary slackness), then
continuity arguments show that SMFCQ is stable at yν(x) for all ν = 1, . . . , N under
sufficiently small perturbations of x. Consequently, then the set D2 is closed and, under
the additional assumptions of Theorem 4.10, V is not only Fréchet differentiable at each
local minimizer of V on W , outside of D1 ∪D3, but also on a whole neighborhood of such
a local minimizer. ♦

Remark 4.14 Recall that in the jointly convex case one assumes identical constraints for
all players, g1 = g2 = . . . = gN =: g, and that the components of g are convex in the whole
vector x = (x1, . . . , xN). The strategy spaces thus have the representation

Xν(x
−ν) = {xν ∈ R

nν | g(xν , x−ν) ≤ 0}, ν = 1, . . . , N,

so that x ∈ Ω(x) holds if and only if x lies in the set

W̃ := {x ∈ R
n| g(x) ≤ 0}. (21)

Note that, in contrast to the player convex case, W̃ is necessarily convex (and Assump-

tion 3.5 automatically holds). An important observation is that the definition of W̃ is
slightly different from the definition of W in (1). In fact, while the geometries of both
sets coincide, their functional descriptions are different as, formally, W is described by
N identical inequalities g(x) ≤ 0 in the jointly convex case. With regard to constraint
qualifications like LICQ, the latter description of W is necessarily degenerate at boundary
points, while the description of W̃ from (21) may be expected to enjoy nondegeneracy
properties.

In particular, all sets Wν , ν = 1, . . . , N , from (7) coincide with W̃ , and Assumption 3.7

coincides with the assumption of MFCQ everywhere in W̃ . Of course, the latter is equiv-
alent to the Slater condition for W̃ and implies the Abadie constraint qualification for
W̃ . Moreover, Assumption 4.7 on LICQ at each point of each set Wν , ν = 1, . . . , N , can
be replaced by the assumption of LICQ at each point of W̃ which, in turn, implies the
Slater condition for W̃ . In any case, Assumption 4.9 is superfluous in Theorem 4.10 for
jointly convex problems. Hence, in contrast to the player convex case, our assumptions on
constraint qualifications are highly interrelated in the jointly convex case. We also remark

19



that, in the jointly convex case, D3 is defined to be the set of points in D2 such that
whenever player SMFCQ is violated at yµ(x) in Xµ(x

−µ) for some µ = 1, . . . , N , we have

span {∇gi(x), i ∈ I0(x)} ∩ span
{
∇gi(yµ(x), x−µ), i ∈ I0(yµ(x), x−µ)

}
6= {0}. (22)

We emphasize that so-called shared constraints as in the jointly convex case lead to
numerical difficulties in all established numerical methods for the solution of GNEPs. In
fact, while repeating identical constraints can be expected to lead to degeneracies in any
numerical approach, dropping redundant constraints basically leads to underdetermined
systems and, thus, alternative numerical problems in all approaches which we are aware of.
In contrast to this, dropping redundant constraints in the present approach by switching
from W to W̃ does not introduce numerical problems. ♦

The following example illustrates for the jointly convex case that a generalized Nash equi-
librium can fall in any of the three categories mentioned in Theorem 4.10.

Example 4.15 We slightly modify Example 3.2 by setting N = 2, n1 = n2 = 1, θ1(x) =
−x1, θ2(x) = x2, g

1
1(x) = g21(x) = −2x1 + x2, g

1
2(x) = g22(x) = x21 + x22− 1, g13(x) = g23(x) =

−x1 − x2. Then for all x ∈ W̃ = {x ∈ R
2| x21 + x22 ≤ 1, −x1 ≤ x2 ≤ 2x1} (cf. Fig. 1) the

problems Q1(x) and Q2(x) are easily seen to be uniquely solvable for α = 0. Moreover,
it is not hard to see that the assumptions of Theorem 4.10 with the modifications from
Remark 4.14 are satisfied.

As to be expected for problems with shared constraints, the set of generalized Nash
equilibria is not a singleton, but it is formed by the (closed) boundary arc of W̃ connecting
the points x̄1 = 1/

√
2 (1,−1) and x̄2 = (1, 0). Both x̄1 and x̄2 are elements of D1, and

x̄1 also lies in D3 since SMFCQ is violated at y2(x̄
1) = −1/

√
2 in X2(1/

√
2) and the

intersection of spans in (22) is R2.
On the other hand, by direct inspection or as shown in Theorem 4.10, the resulting

function V (x) = −x1 + x2 +
√

1− x22 +min{x1,
√

1− x21} is (even Fréchet) differentiable
at all generalized Nash equilibria except for x̄1 and x̄2. ♦

5 Numerical Results

In view of Proposition 2.1, we know that the computation of a generalized Nash equilibrium
is equivalent to solving the constrained optimization problem P from (2). The objective
function V of this optimization problem is, in general, nondifferentiable. However, our
previous results indicate that, on the one hand, the set of nondifferentiable points is ex-
ceptional and, on the other hand (and more importantly), we may expect differentiability
of V at any solution of the GNEP. Hence, we may view problem P essentially as a smooth
optimization problem. The objective function V , however, may not be defined outside the
feasible set W , hence any suitable algorithm applied to problem P should guarantee that
all iterates stay feasible. We therefore decided to apply a feasible direction-type method
to problem P .
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The class of feasible direction methods was introduced by Zoutendijk [26]. A variant
is due to Topkins and Veinott [24] which, in turn, is the basis of the method presented by
Birge et al. in [2]. The latter method uses a convex quadratic program at each iteration
and will be used in order to solve our problem P . For the sake of completeness, we restate
this method here.

Algorithm 5.1 (Feasible direction-type method from [2])

(S.0) Choose x0 ∈ W , H0 ∈ R
n×n symmetric positive definite, β, σ ∈ (0, 1), c0ν,i > 0 for all

i = 1, . . . , mν , ν = 1, . . . , N , c0V > 0, and set k := 0.

(S.1) If a suitable termination criterion holds: STOP.

(S.2) Compute a solution (dk, δk) ∈ R
n × R of

min δ +
1

2
dTHkd

s.t. ∇V (xk)Td ≤ ckV δ,

gνi (x
k) +∇gνi (xk)Td ≤ ckν,iδ ∀i = 1, . . . , mν , ν = 1, . . . , N.

If (dk, δk) = (0, 0): STOP. Otherwise go to (S.3).

(S.3) Compute a stepsize tk = max{βl | l = 0, 1, 2, . . .} such that the following conditions
hold:

V (xk + tkd
k) ≤ V (xk) + σtk∇V (xk)Tdk

and
gνi (x

k + tkd
k) ≤ 0 ∀i = 1, . . . , mν , ν = 1, . . . , N.

(S.4) Choose ck+1
ν,i > 0 (i = 1, . . . , mν , ν = 1, . . . , N), ck+1

V > 0, Hk+1 ∈ R
n×n symmetric

positive definite, set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

The main termination criterion used in (S.1) is

V (xk) ≤ N · ε with ε := 10−5.

The factor N in front of ε comes from the fact that V is the sum of N terms, see (3),
and the basic idea is that each term should be less than ε, hence our termination criterion
is, in some way, independent of the number of players. Moreover, the parameter ε should
not be taken too small since the feasible directon method used here is not a locally fast
convergent method.

The computation of the matrix Hk was done in the following way: We begin with
H0 := I and compute Hk+1 as the BFGS-update of Hk whenever this gives a symmetric
positive definite matrix, whereas we simply take Hk+1 := I otherwise. Furthermore, the
parameters ckν,i, c

k
V are chosen in the following way: We always use ckν,i := 1 for all i, ν and

for all iterations k (including k = 0), whereas we take c0V := 10 in Step (S.0) and update
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Ex. N n x
0

k Vopt

A1 10 10 0.01 6 6.4089e-05
0.1 2 4.9819e-06
1 2 4.9819e-06

A3 3 7 0 14 2.6397e-05
1 14 2.9342e-06
10 29 2.3998e-06

A4 3 7 10 62 0
A5 3 7 0 13 1.5470e-05

1 29 2.5578e-05
10 55 1.9534e-05

A6 3 7 0 92 2.1231e-05
1 33 2.4189e-05
10 89 2.7651e-05

A7 4 20 0 77 2.2178e-05
1 65 2.4832e-05
10 153 2.5712e-05

A8 3 3 0 15 1.1013e-05
1 13 1.2011e-05
10 13 1.2010e-05

Ex. N n x
0

k Vopt

A9a 7 56 0 119 5.4673e-05
A9b 7 112 0 395 4.1144e-05
A11 2 2 0 6 1.0419e-05
A12 2 2 (2,0) 15 1.4158e-05
A13 3 3 0 10 8.1729e-06
A14 10 10 0 3 6.2243e-05
A15 3 6 0 24 1.0849e-05
A16a 5 5 10 22 0
A16b 5 5 10 11 0
A16c 5 5 10 10 0
A16d 5 5 10 13 2.3575e-05
A17 2 3 0 23 1.0266e-05
A18 2 12 0 44 9.1178e-06

1 57 2.8294e-06
10 57 1.6509e-05

Ex. 3.2 2 2 1 8 0
0.5 8 1.7113e-05

(0.5,0) 6 1.8224e-05
(0.9,0) 9 1.3397e-05

Table 1: Table with numerical results using different problems from the collection in [9] as
well as Example 3.2

this parameter in Step (S.4) by ck+1
V := 5 · ckV whenever tk < 1 had to be chosen in (S.3);

otherwise we set ck+1
V := ckV . We also note that for Algorithm 5.1, the stepsize tk = 1 is

not necessarily a natural choice; therefore, we also allow a larger stepsize whenever this
is possible, i.e., when tk = 1 satisfies the criteria from (S.3), we test tk = 1/β and so on,
until one of the conditions is violated for the first time. Finally, the values β = 0.5 and
σ = 10−4 were chosen for all test runs.

The numerical results obtained in this way are summarized in Table 1. All results are
based on the choice α = 10−2 for the regularization parameter α in the definition of V .
The test examples called A1–A18 are those taken from the report-version [9] of the paper
[8], where all details are given and suitable references are provided. We choose the same
starting point as in [9] which, however, does not necessarily belong to the feasible set W .
Hence we first project this starting point onto W and then begin our iteration with this
projected starting point. In some cases, this projection was already the solution of the
underlying GNEP, and we therefore do not present results for these GNEPs; for example,
the reader therefore does not find problem A2 in Table 1.

For each test example, Table 1 contains the following data: The name of the example,
the number of players N , the total number of variables n, the starting point x0 (all com-
ponents of this starting point are equal to the number given here, unless more than one
number is provided), the number of iterations k needed until convergence, and the final
value of the objective function V in column Vopt.

The results from Table 1 may be difficult to interpret, however, it can be noted that
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Algorithm 5.1 solves all test examples, whereas, for example, the penalty method from
[9] has two failures on this set, namely on Examples A7 and A8, when using the third
starting point. Furthermore, the number of iterations is quite reasonable and typically
better than the corresponding number of iterations reported in [6] for an unconstrained
optimization reformulation, especially because each function evaluation of the objective
function in this unconstained optimization reformulation comes with the cost of the solution
of two maximization problems, whereas in our case we only need to solve one maximization
problem in order to compute V (x).

Moreover, we would like to draw the attention to the results obtained for Example 3.2.
Table 1 shows that we always converge to the unique solution of the GNEP and, hence,
to the global minimum of problem P . This is particularly interesting since one can verify,
similar to Example 3.2 where α = 0 was chosen, that the objective function V still has a
strict local minimum at (1, 0) with a positive function value V (1, 0) = 1 − α

2
(at least for

all α < 0.5), so that this minimum does not correspond to a solution of the GNEP. We
even converge to the global minimum when the starting point is chosen close to the local
minimum. In this respect, please recall that we cannot start exactly at the local minimum
since V is not differentiable in this point.

Finally, we stress that we had to use a method for the solution of problem P which
generates feasible iterates since otherwise V might not be well-defined. On the other hand,
this also has the advantage that we may apply our method to problems where the objective
functions θν of the players ν are not defined outside of W due to some logarithmic terms,
for example. This is in contrast to other existing methods which assume that the functions
θν are defined on the whole space R

n.

6 Final Remarks

We investigated some structural properties of a constrained optimization reformulation of
the player-convex generalized Nash equilibrium problem. In particular, we proved that,
apart from some exceptional cases, the objective function of the optimization problem is
differentiable at every minimum point. Hence the optimization problem is essentially differ-
entiable and therefore allows the application of suitable algorithms for smooth optimization
problems.

On the other hand, for jointly-convex GNEPs, one can characterize certain (normal-
ized) solutions as the minima of a smooth optimization problem, cf. [13], whose objective
function is once but not twice continuously differentiable. We believe that a similar anal-
ysis can be carried out in order to verify twice continuous differentiability of this function
under suitable assumptions. The details are left as a future research topic.

Acknowledgements: The third author wishes to thank Christian Reger and Frieder
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