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Abstract. The semismooth Newton method is a nonsmooth Newton-type method applied
to a suitable reformulation of the complementarity problem as a nonlinear and nonsmooth
system of equations. It is one of the standard methods for solving these kind of problems,
and it can be implemented in an inexact way so that all linear systems of equations have
to be solved only inexactly. However, from a practical point of view, this inexact Newton
method seems to have a significantly worse behaviour than its exact counterpart. The aim
of this paper is therefore to show that the inexact Newton method can also be used in a
reliable and efficient way at least for some classes of problems. We illustrate this statement
by some numerical examples with up to one million variables.

Key Words. Complementarity problems, Newton’s method, semismooth functions, ob-
stacle problems, optimal control problems.
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1 Introduction

The complementarity problem is to find a solution x∗ ∈ R
n of the system

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i = 1, . . . , n, (1)

where F : R
n → R

n denotes a continuously differentiable function. Many applications
from the engineering sciences, economics, game theory etc. lead to problems of this kind,
see [15] for a survey.

Most algorithms for the solution of the complementarity problem are based on a suit-
able reformulation of the complementarity problem either as a system of equations, as an
optimization problem or as a fixed-point problem etc. We refer the interested reader to
the survey papers [20, 13] for the basic ideas of some algorithms. In fact, many of these
reformulations can be obtained for the slightly more general mixed complementarity prob-
lem. However, in order to keep our notation as simple as possible, our focus will be on the
standard complementarity problem (1).

The semismooth method to be considered in more detail in this paper is based on a
reformulation of the complementarity problem (1) as a nonlinear system of equations

Φ(x) = 0, (2)

where Φ : R
n → R

n is defined componentwise by

Φi(x) := ϕ
(
xi, Fi(x)

)
(3)

for some mapping ϕ : R
2 → R having the property

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (4)

Clearly, this property guarantees that a vector x∗ ∈ R
n is a solution of the complementarity

problem (1) if and only if x∗ solves the system of equations (2). Applying Newton’s method
to the system (2) then leads to the class of semismooth methods, see [6, 26, 40, 12, 25, 3, 39]
for some references. Depending on the choice of the mapping ϕ, we obtain different methods
with different properties. Some of these methods will be discussed in more detail in Sections
2 and 3.

Most semismooth methods have a very strong theoretical background and seem to be
quite reliable and efficient also from a numerical point of view, at least when an exact
Newton-type method is applied to the system (2). However, in the large-scale case, we
may not be able to find the exact solution of the corresponding linearized equation

Hkd = −Φ(xk), (5)

where Hk ∈ R
n×n stands for the Jacobian Φ′(xk) or a suitable approximation to it. Fortu-

nately, the theory for the semismooth method can be carried over to the inexact case where
we allow iterative solvers to find only approximate solutions of the linear subproblems (5).
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Hence the inexact semismooth Newton method seems to be a suitable candidate for the
solution of large scale complementarity problems. This is in contrast to the PATH solver,
see [9, 14] for more details, which has to work with exact factorizations of a certain matrix.
Hence the PATH solver, probably the most widely used solver in the complementarity field,
cannot be adapted to the solution of large scale problems, at least not in a direct way.

On the other hand, the inexact semismooth method, being a potential candidate for
large-scale problems and having a good theoretical background, seems to have a signifi-
cantly worse numerical behaviour than its exact counterpart. We will come back to this
point in Section 2. The aim of this paper is therefore to show that the inexact semismooth
method can nevertheless be applied in a reliable and efficient way at least to certain classes
of problems.

The organization of this paper is as follows. In Section 2, we recall the properties of
some exact and inexact semismooth Newton methods based on some Fischer-Burmeister-
type functions ϕ. We also discuss its advantages and disadvantages when iterative solvers
are used for the approximate solution of the linear subproblems (5). Section 3 reviews
some properties of the semismooth method when the minimum function is used for ϕ.
This reformulation leads to completely different properties and is therefore covered in an
extra section. Finally, we illustrate the numerical properties of the inexact semismooth
methods when applied to some special problems in Section 4. Taking into account the
special structure of these problems, we will show that the inexact semismooth solver is
able to deal with problems with up to one million variables.

The Euclidean space is denoted by R
n. If x ∈ R

n is a vector with components xi
for i = 1, . . . , n and I ⊆ {1, . . . , n} denotes a subset, then xI is the vector in R

|I| with
components xi, i ∈ I. Similarly, if A ∈ R

n×n is a given matrix with elements aij and
I,J ⊆ {1, . . . , n} are two subsets, we write AIJ for the submatrix comprised by the
elements aij with i ∈ I and j ∈ J . The unique symmetric positive (semi-) definite square
root of a symmetric positive (semi-) definite matrix A ∈ R

n×n is denoted by A1/2. Finally,
vector or matrix inequalities like x ≥ 0 and A ≥ 0 are to be understood componentwise.

2 Fischer-Burmeister-type Functions

In this section we consider the reformulation (2), (3) of the complementarity problem (1)
based on two functions ϕ from (4), namely the Fischer-Burmeister function

ϕFB(a, b) := a+ b−
√
a2 + b2

introduced in [16] and the penalized Fischer-Burmeister function

ϕPFB(a, b) := λϕFB(a, b) + (1− λ) max{0, a}max{0, b}
(
λ ∈ (0, 1)

)

from [3]. Consequently, the mapping ϕ denotes any of these two mappings throughout this
section. The properties of the corresponding semismooth methods are discussed in [6] and
[3], respectively.
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A major advantage of these two reformulations is that the merit function

Ψ(x) :=
1

2
Φ(x)TΦ(x) (6)

turns out to be continuously differentiable although the equation operator Φ itself is nons-
mooth. Hence, if we apply the nonsmooth Newton method from [34, 33] to the equation (2),
we can globalize this method in a standard way. One simple example of such a globalized
method is given in our following algorithm from [6], where ∂Φ(x) denotes the generalized
Jacobian of Φ at a point x, see [4].

Algorithm 2.1 (Semismooth Method Based on Fischer-Burmeister-type Functions)

(S.0) Choose x0 ∈ R
n, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, ε ≥ 0, and set k := 0.

(S.1) If ‖∇Ψ(xk)‖ ≤ ε: STOP.

(S.2) Select an element Hk ∈ ∂Φ(xk). Find a solution dk ∈ R
n of the linear system

Hkd = −Φ(xk). (7)

If this system is not solvable or if the descent condition

∇Ψ(xk)Tdk ≤ −ρ‖dk‖p

is not satisfied, set dk := −∇Ψ(xk).

(S.3) Compute tk := max{β` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tkd
k) ≤ Ψ(xk) + σtk∇Ψ(xk)Tdk.

(S.4) Set xk+1 := xk + tkd
k, k ← k + 1, and go to (S.1).

It can be shown that Algorithm 2.1 is locally superlinearly convergent under a certain
assumption (called R-regularity in [6] and taken from [35]). If, in addition, F ′ is locally
Lipschitzian, then this method is locally quadratically convergent. Furthermore, one can
show that every accumulation point of a sequence generated by Algorithm 2.1 is at least
a stationary point of the merit function Ψ, see [6]. Under further assumptions, satisfied,
e.g., for monotone mappings F , such a stationary point is already a solution of the com-
plementarity problem (1). Moreover, the existence of an accumulation point can also be
guaranteed. For example, F being strongly monotone implies the existence of an accumu-
lation point when using the Fischer-Burmeister function, and F being monotone implies
the same for the penalized Fischer-Burmeister function provided that the complementar-
ity problem (1) has a strictly feasible point, i.e., a point x̂ ∈ R

n such that x̂ > 0 and
F (x̂) > 0. This latter difference shows that the penalized Fischer-Burmeister function has
slighlty stronger theoretical properties. Extensive numerical tests also indicate that the
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semismooth Newton method based on the penalized Fischer-Burmeister function usually
gives better numerical results than the semismooth Newton method based on the Fischer-
Burmeister function, see [3, 29].

The theoretical properties of the semismooth Newton method applied to either of these
two Fischer-Burmeister-type reformulations of the complementarity problem can be carried
over to the inexact semismooth method where we solve the linearized system (5) only
inexactly in the sense that

‖Hkd+ Φ(xk)‖ ≤ ηk‖Φ(xk)‖ (8)

for some forcing sequence {ηk}. Like in the classical case for smooth equations (see [8]), we
obtain superlinear convergence if ηk → 0 and quadratic convergence if ηk = O(‖Φ(xk)‖)
(under the same assumption as for the exact semismooth Newton method), see [27, 11, 12]
for more details.

However, the inexact semismooth method applied to either of these two Fischer-Bur-
meister-type reformulations does not seem to be as successful as its exact counterpart from
a numerical point of view. To illustrate this statement, let us apply both the semismooth
Newton method from Algorithm 2.1 and the inexact semismooth Newton method to the
MCPLIB test problem collection from [10] (note, however, that we use an updated collec-
tion here). For the inexact semismooth method, we used the QMR solver as an iterative
method for the linear subproblems (5), however, the results are not significantly different
for other iterative solvers like CGS, BiCGSTAB, TFQMR or GMRES(m). For more details
on these iterative linear system solvers, the reader is referred to [37].

The methods are applied to all problems from the extended MCPLIB with dimension
n ≤ 150 and to the reformulation (2) based on the penalized Fischer-Burmeister function
with parameter λ = 0.95. Our exact semismooth method is a simple MATLAB implemen-
tation of Algorithm 2.1 with no further improvements except that the standard Armijo rule
from (S.3) is replaced by a nonmonotone Armijo rule, see [19]. The inexact semismooth
method uses the same framework but with (7) being replaced by the rule (8) with the
choice

ηk = min
{
10−2/k, ‖Φ(xk)‖

}
.

The other parameters are taken as

ρ = 10−8, β = 0.5, σ = 10−4, p = 2.1,

and we terminate the iteration if

k > 300 or Ψ(xk) ≤ 10−12.

The following table presents the number of failures of the exact and inexact semismooth
Newton methods using different preconditioners for the inexact solver.
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Method Iterative Solver Preconditioner # failures
Exact Semismooth — — 7
Inexact Semismooth QMR none 14
Inexact Semismooth QMR Jacobi 15
Inexact Semismooth QMR Gauss-Seidel 14
Inexact Semismooth QMR Incomplete LU 6

The failures of the exact semismooth method are on test problems billups, colvdual,

duopoly, ne-hard, pgvon106, scarfbsum, simple-ex. Some of these failures can be
avoided by using some further improvements like a preprocessor, a watchdog strategy or a
suitable restart as described in [29]. However, this is not the point we are mainly interested
in here.

What is more important is the fact that (most of) the inexact semismooth methods
produce significantly more errors than the exact semismooth method. Looking at the
iteration process, it turns out that the reason for these additional failures lies in the iterative
solver (QMR in this case) which is quite often not able to solve the underlying linear
system with the required accuracy. This observation is interesting especially since we
are only looking at the small problems with n ≤ 150 and since we allow a maximum
number of inner iterations which is equal to the dimension n of the test problem. In exact
arithmetic, this implies that the QMR solver should be able to find the exact solution of
the corresponding linear system of equations.

Note that these problems occur even if we use suitable standard preconditioners for
the QMR method. One exception, however, is the inexact semismooth method with an
incomplete LU preconditioner. Here, it turns out that the incomplete LU preconditioner
quite often solves the linear system. If we apply the QMR method with the incomplete
LU preconditioner to the larger problems from the MCPLIB, however, also this method is
not able to solve many of the linear equations (5), resulting in a couple of failures for the
inexact semismooth method where the exact semismooth method has no problems at all.

Motivated by these observations, we therefore take a closer look at the structure of the
linear equations (5). For both the Fischer-Burmeister and the penalized Fischer-Burmeister
function, the matrix Hk ∈ ∂Φ(xk) is of the form

Hk = Da +DbF
′(xk) (9)

with certain diagonal matrices (depending on the iteration index k)

Da = diag
(
a1, . . . , an

)
, Db = diag

(
b1, . . . , bn

)

which contain the partial derivatives of the mapping ϕ with respect to the first variable
a and the second variable b, respectively, or a suitable approximation to these partial
derivatives at those points where ϕ is not differentiable. The precise values of Da, Db

may be found in the corresponding references [6, 3]. Here we only note that both for the
Fischer-Burmeister function and the penalized Fischer-Burmeister function, we have

ai ≥ 0, bi ≥ 0, ai + bi > 0 ∀i = 1, . . . , n, (10)
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i.e., Da, Db are positive semidefinite and their sum Da +Db is always positive definite.
This observation may be used in order to show that the matrix Hk from (9) is always

nonsingular provided that F ′(xk) is a P0-matrix, see, for example, [6]. Note that this is
true, in particular, if F ′(xk) is positive semidefinite and therefore especially for monotone
mappings F . Since a positive semidefinite matrix might be singular, this means that the
two diagonal matrices Da and Db may be viewed as a kind of regularization, i.e., although
the Jacobian F ′(xk) itself might be singular, the matrix Hk from (9) is always nonsingular
for certain classes of functions F including the monotone ones.

Furthermore, if bi = 0 for some index i ∈ {1, . . . , n}, we have ai > 0 because of (10).
Therefore, it is possible to eliminate the ith row from the linear equation (5) and to obtain
a linear system of equations of dimension n− 1. Carrying out this elimination process for
all i with bi = 0 therefore results in a linear system of equations of the form (5) (with
a slightly different right-hand side) whose coefficient matrix has the same structure as in
(9) but with the matrix Db being positive definite. We therefore assume without loss of
generality that the matrix Db ∈ R

n×n in (9) is positive definite for the rest of this section.
A major disadvantage of the linear system (5) is, however, that the coefficient matrix

Hk from (9) is, in general, nonsymmetric even if the Jacobian F ′(xk) itself is symmetric.
For iterative linear system solvers, however, the symmetry of a matrix plays a major
role since this allows the application of some reliable methods like CG or MINRES. The
situation becomes much more complicated for nonsymmetric systems since then, basically,
all iterative solvers based on short-term recurrences have some drawbacks. In fact, unless
additional assumptions are satisfied, these methods are no longer guaranteed to find the
solution and sometimes even stop with a serious breakdown, see [37].

On the other hand, in the lucky situation where F ′(xk) is symmetric, we can exploit
this structure and use our assumption that Db is positive definite by replacing the linear
system

Hkd = −Φ(xk)⇐⇒
(
Da +DbF

′(xk)
)
d = −Φ(xk)

by the equivalent left-preconditioned system

(
D + F ′(xk)

)
d = −D−1

b Φ(xk) with D := D−1
b Da, (11)

whose coefficient matrix D + F ′(xk) is now again symmetric. In fact, this matrix is sym-
metric positive definite if F ′(xk) is symmetric positive semidefinite. In general, however,
the condition number of this matrix becomes arbitrarily large when xk converges to a so-
lution x∗ of the complementarity problem (1) since one can show that, in this case, some
elements of the diagonal matrix D converge to zero whereas other elements are unbounded.
This observation does not necessarily exclude the application of iterative methods like CG
or MINRES, however, it indicates that one has to expect some difficulties.

A further reformulation of the preconditioned linear system (11) can be obtained if we
can factorize the Jacobian F ′(xk) in the form

F ′(xk) = LLT (12)
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with some matrix L ∈ R
n×n. Here L is not necessarily the Cholesky factor of F ′(xk).

However, the existence of the factorization (12) requires F ′(xk) to be symmetric positive
semidefinite and is therefore not always applicable. On the other hand, if we have such a
factorization, it is not difficult to see that the linear system (11) is equivalent to the linear
least squares problem

min

∥
∥
∥
∥

(
LT

D1/2

)

d+

(
L−1D−1

b Φ(x)
0

)∥
∥
∥
∥

2

. (13)

In fact, (11) are precisely the normal equations of (13). The standard iterative method
for solving this least squares problem is the LSQR method from [30]. Theoretically, LSQR
is equivalent to the CG method applied directly to the linear system (11), numerically,
however, LSQR applied to the least squares formulation (13) is usually more reliable than
the CG method applied to (11).

Such a reformulation will be exploited for the class of optimal control problems in
Section 4 where a factorization of the form (12) arises in a very natural way.

3 The Minimum Function

In this section, we investigate a semismooth Newton method for the solution of the com-
plementarity problem (1) when the minimum function

ϕMIN(a, b) := min{a, b}

is used for ϕ in (3). This minimum function plays a crucial role in many previous papers
including [31, 32, 21, 17, 38, 7]. When applied to a linear complementarity problem, where
the mapping F is given by F (x) := Mx + q for some constant matrix M ∈ R

n×n and
a constant vector q ∈ R

n, it is well-known that the semismooth method applied to the
corresponding nonlinear system of equations Φ(x) = 0 has a finite termination property
under suitable assumptions, see [21, 17, 38]. Furthermore, local superlinear and quadratic
convergence of this method can be obtained under slightly weaker assumptions than for
the two Fischer-Burmeister-type approaches discussed in the previous section, see [7].

Hence the minimum function approach has very desirable local convergence properties.
A globalization of this approach, however, is more difficult because the corresponding merit
function (6) is nondifferentiable in general, although some strategies exist in order to avoid
this problem, see, for example [31, 32, 21, 7].

Here our focus will be on the minimum function approach being applied to the linear
complementarity problem defined by an M -matrix, i.e., we assume that F (x) = Mx + q
and that M = (mij) has the following properties (cf. [24]):

• M is nonsingular with M−1 ≥ 0

• mij ≤ 0 for all i, j = 1, . . . , n with i 6= j.
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Our notion of an M -matrix coincides with that of a nonsingular M -matrix in [2]. It can
also be shown to be equivalent to the class of K-matrices considered in [5].

For a linear complementarity problem defined by an M -matrix, it turns out that a
globalization is not necessary and that the method will find the unique solution in a finite
number of steps, namely in at most n iterations. This result has recently been proved in
the optimal control literature (see [22], where the minimum function approach is called the
primal-dual active set method) and does not seem to be well-known in the complementarity
field, so that we restate it here within our framework.

To this end, let us first derive the method. The matrix Hk has the same structure as
in (9) with certain diagonal matrices

Da := Dk
a = diag

(
ak1, . . . , a

k
n

)
, Db := Dk

b = diag
(
ak1, . . . , a

k
n

)
,

where the diagonal elements are taken as

aki :=

{
1, if i ∈ Ak,
0, if i ∈ Ik and bki :=

{
0, if i ∈ Ak,
1, if i ∈ Ik

with Ak and Ik being the index sets

Ak :=
{
i ∈ {1, . . . , n}

∣
∣ xki < [Mxk + q]i

}
, (14)

Ik :=
{
i ∈ {1, . . . , n}

∣
∣ xki ≥ [Mxk + q]i

}
. (15)

Note that these definitions imply that the corresponding matrix Hk is equal to the Jacobian
F ′(xk) at any point xk where F is differentiable. Furthermore, the diagonal elements aki , b

k
i

also satisfy property (10) known from the Fischer-Burmeister-type functions.
Using this notation, the linear system (5), or, equivalently,

(
Dk
a +Dk

bM
)
d = −min{xk,Mxk + q},

may be written as

(
IAkAk

0
MIkAk

MIkIk

)(
dAk

dIk

)

=

(
−xkAk

−[Mxk + q]Ik

)

.

This is equivalent to the decomposed system

dAk
= −xkAk

,

MIkAk
dAk

+MIkIk
dIk

= −
[
Mxk + q

]

Ik

= −MIkAk
xkAk
−MIkIk

xkIk
− qIk

.

SinceMIkAk
dkAk

= −MIkAk
xkAk

, the second formula simplifies to some extent, and we obtain
the following semismooth Newton-type method for the minimum function approach.

Algorithm 3.1 (Semismooth Method Based on Minimum Function)
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(S.0) Choose x0 ∈ R
n, ε ≥ 0, and set k := 0.

(S.1) If ‖min{xk, F (xk)}‖ ≤ ε: STOP.

(S.2) Define the index sets Ak and Ik as in (14) and (15), respectively, and compute
dk =

(
dkAk

, dkIk

)
using the formulas

dkAk
:= −xkAk

,

dkIk
:= −xkIk

−M−1
IkIk

qIk
.

(S.3) Set xk+1 := xk + dk, k ← k + 1, and go to (S.1).

It should be noted that we have to solve only one linear system with coefficient matrix
MIkIk

in order to compute the search direction dk in (S.2) of Algorithm 3.1, i.e., we have to
solve only a linear system of reduced dimension. The reduction might be considerable, i.e.,
at each iteration k, there might be many components i such that bki = 0, whereas for the
Fischer-Burmeister-type functions such an event is very unlikely. Moreover, the coefficient
matrix of this reduced system is symmetric if M itself is symmetric, so the symmetry
does not get destroyed as in the previous section. Furthermore, the condition number
of the linear system depends on M only and does not depend on the diagonal matrices
Dk
a and Dk

b (except that the submatrix MIkIk
depends on these diagonal matrices). In

particular, there is no inherent ill-conditioning when xk approaches the solution of the
complementarity problem. Together with the stronger local properties mentioned in the
beginning of this section, it therefore follows that the minimum function approach has
several advantages over the Fischer-Burmeister-type approaches described in Section 2.

However, Algorithm 3.1 is, in general, only a local algorithm unless relatively strong
assumptions are satisfied. If these assumptions do not hold and one has to globalize the
semismooth Newton method, the Fischer-Burmeister-type approaches are usually much
better than the semismooth method based on the minimum function.

We now state the main convergence result for Algorithm 3.1 which is essentially the
result from [22].

Theorem 3.2 Let F (x) = Mx+ q with q ∈ R
n and M ∈ R

n×n being an M -matrix. Then
Algorithm 3.1 is well-defined and finds the unique solution of the corresponding linear
complementarity problem in at most n iterations.

Proof. First note that an M -matrix is a P -matrix, cf. [24, 2, 5]. Hence the linear comple-
mentarity problem has a unique solution (see [5]) and all principal submatrices MII are
nonsingular, where I is an arbitrary subset of {1, . . . , n}. This implies that Algorithm 3.1
is well-defined.

To prove finite termination in at most n iterations, we first note that we have

xk+1
Ak

= xkAk
+ dkAk

= 0 (16)
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and [
Mxk+1 + q

]

Ik

= MIkIk
xk+1
Ik

+MIkAk
xk+1
Ak

︸︷︷︸

=0

+qIk

= MIkIk
xkIk

+MIkIk
dkIk

+ qIk

= 0.

(17)

in view of the updating rules in (S.2) of Algorithm 3.1. In particular, we have

xki = 0 or [Mxk + q]i = 0 (18)

for each index i = 1, . . . , n and at each iteration k ≥ 1. This implies

xki ≤ 0 ∀i ∈ Ak and
[
Mxk + q

]

i
≤ 0 ∀i ∈ Ik (19)

at each iteration k ≥ 1. In fact, if we would have xki > 0 for an index i ∈ Ak, we would
obtain [Mxk + q]i > 0 from the definition of the index set Ak. This, however, contradicts
(18) which states that at least one of these two numbers must be zero for each index i. In
a similar way, the definition of Ik implies the second inequality in (19). By an analogous
argument, we also get

xki ≥ 0 ∀i ∈ Ik and
[
Mxk + q

]

i
≥ 0 ∀i ∈ Ak (20)

at each iteration k ≥ 1.
We now want to show that the inclusion

Ik ⊆ Ik+1 (21)

holds for each k ≥ 1. To this end, we note that M being an M -matrix implies that each
submatrix MII is again an M -matrix, see [24]. Hence it follows that

M−1
IkIk

︸ ︷︷ ︸

≥0

MIkAk
︸ ︷︷ ︸

≤0

≤ 0 (22)

at each iteration k. Furthermore, (19) and (16) imply

xk+1
Ak

= 0 ≥ xkAk
. (23)

We therefore obtain

dkIk
= −xkIk

−M−1
IkIk

qIk

= −M−1
IkIk

(
MIkIk

xkIk
+ qIk

)

= −M−1
IkIk

︸ ︷︷ ︸

≥0

( [
Mxk + q

]

Ik
︸ ︷︷ ︸

≤0 by (19)

−MIkAk
xkAk

)

≥ M−1
IkIk

MIkAk
xkAk
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(16)
= −M−1

IkIk
MIkAk

︸ ︷︷ ︸

≥0 by (22)

(
xk+1
Ak
− xkAk

)

︸ ︷︷ ︸

≥0 by (23)

≥ 0.

Since xkIk
≥ 0 for all k ≥ 1 by (20), it follows that

xk+1
Ik

= xkIk
+ dkIk

≥ 0
(17)
=

[
Mxk+1 + q

]

Ik

.

This means that Ik ⊆ Ik+1.
We now prove that the method terminates in at most n iterations. Since Ik cannot

contain more than n elements, it follows from (21) that there is an index k0 ∈ {1, . . . , n}
such that Ik0 = Ik0+1. Using (20) with k = k0 + 1, we obtain

xk0+1
Ik0

= xk0+1
Ik0+1

≥ 0.

Similarly, it follows from (20) that

[
Mxk0+1 + q

]

Ak0

=
[
Mxk0+1 + q

]

Ak0+1

≥ 0.

Since we also have xk0+1
Ak0

= 0 and
[
Mxk0+1+q

]

Ik0

= 0 in view of (16) and (17), respectively,

we see that xk0+1 is a solution of the linear complementarity problem. �

Obviously, Theorem 3.2 does not hold when we allow inexact solutions of the linear system
in (S.2) of Algorithm 3.1, but it indicates that we can expect almost finite termination if
the linear systems are solved very accurately as this is usually done by inexact Newton
methods when approaching the solution of the underlying problem.

4 Numerical Results

In this section, we consider two classes of problems, namely the optimal control problem
and the obstacle problem. Both classes are infinite-dimensional problems and result into
large-scale complementarity problems after a suitable discretization. We describe these
problems, give the details of their reformulation as a complementarity problem and present
some numerical results obtained with the methods from the previous sections.

4.1 Optimal Control Problems

Let Ω ⊆ R
n be a given domain. The class of optimal control problems we consider here is

as follows:
min J(u) := 1

2
‖y(u)− yd‖2L2(Ω) + α

2
‖u− ud‖2L2(Ω)

s.t. u ∈ F := {u ∈ L2(Ω) |u ≤ ψ a.e. in Ω}, (24)
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where α > 0 denotes the regularization parameter, y = y(u) ∈ H1
0 (Ω) it the weak solution

of
−∆y = u on Ω

and
yd, ud, ψ ∈ L2(Ω)

are given functions. Here u denotes the control and y the state variable.
To be more specific, let Ω = (0, 1) × (0, 1) ⊆ R

2 and let A denote the standard five-
point finite difference approximation to the negative Laplacian with uniform stepsize h :=
1/(N + 1) for some N ∈ N. Then the discretized optimal control problem becomes

min
u,y

1

2
‖y − yd‖22 +

α

2
‖u− ud‖22 s.t. Ay = u, ψ − u ≥ 0,

where the discretized functions u, y etc. are denoted by the same letters as their continuous
counterparts.

Using u = Ay in order to remove the control variable, we obtain

min
y

1

2
‖y − yd‖22 +

α

2
‖Ay − ud‖22 s.t. ψ − Ay ≥ 0.

Setting v := ψ − Ay then gives

min
v

1

2
‖A−1(ψ − v)− yd‖22 +

α

2
‖ψ − v − ud‖22 s.t. v ≥ 0.

Defining vd := yd − A−1ψ and ψd := ud − ψ, we finally obtain the problem

min
v

f(v) :=
1

2
‖A−1v + vd‖22 +

α

2
‖v + ψd‖22 s.t. v ≥ 0

which is obviously equivalent to the linear complementarity problem

v ≥ 0, F (v) ≥ 0, vTF (v) = 0

with
F (v) := ∇f(v) :=

(
A−1A−1 + αI

)

︸ ︷︷ ︸

=:M

v + A−1vd + αψd
︸ ︷︷ ︸

=:q

.

Of course, we do not want to calculate the matrix A−1 explicitly. To avoid this, let us take
a closer look at the corresponding linear equation (5) resulting from any of the semismooth
approaches described in the previous sections.

To this end, let us remove the iteration index k for a while, and let Da, Db be the
diagonal matrices resulting from the function ϕ. Without loss of generality, we assume
that Db is positive definite since otherwise we can consider a reduced linear system of
similar structure. Then

Hd = −Φ(x) ⇐⇒
(
Da +DbM

)
d = −Φ(x)
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⇐⇒
(
Da +Db

(
A−1A−1 + αI

))
d = −Φ(x)

⇐⇒
(
D−1
b Da + A−1A−1 + αI

)
d = −D−1

b Φ(x)

D:=D−1

b
Da+αI⇐⇒

(
A−1A−1 +D

)
d = −D−1

b Φ(x)

⇐⇒
(
I +DAA

)
d̃ = −D−1

b Φ(x), d := AAd̃

⇐⇒
(
D−1 + AA

)
d̃ = −D−1D−1

b Φ(x), d := AAd̃.

Now we may use the observation from the end of Section 2 in order to see that the last
system is equivalent to the linear least squares problem

min

∥
∥
∥
∥

(
A

D−1/2

)

d̃+

(
A−1D−1D−1

b Φ(x)
0

)∥
∥
∥
∥

2

, d := AAd̃

At this stage, we can apply the LSQR method from [30] in order to solve this least squares
problem inexactly.

The only other problem is that we have to compute, at each outer iteration, a few
vectors of the form A−1b for some right-hand sides b. This means that we have to solve a
linear system of equations with the coefficient matrix A. Fortunately, since A corresponds
to the five-point finite difference approximation of the negative Laplacian, these systems
can be solved, e.g., by a fast sine transform, in only O(N 2 log2N) ≈ O(n log2 n) arithmetic
operations. Altogether, it follows that one outer iteration of a semismooth method applied
to the discretized optimal control problem is quite cheap.

Taking into account these considerations, let us apply our method to an example from
[1] with the following data:

yd(x1, x2) :=
1

6
sin(2πx1) sin(2πx2) exp(2x1), ud ≡ 0, ψ ≡ 0, α := 10−2. (25)

We use different discretizations N ∈ N. Note that the dimension of the corresponding com-
plementarity problem is n = N 2. Table 1 contains the number of iterations needed by our
different methods using either the minimum function ϕMIN or the Fischer-Burmeister func-
tion ϕFB or the penalized Fischer-Burmeister function ϕPFB. For the minimum function,
we also include the results if no globalization is used.

ϕ line search N = 30 N = 60 N = 90 N = 120 N = 150
ϕMIN yes 5 8 15 28 47
ϕFB yes 8 8 11 15 20
ϕPFB yes 8 9 11 15 20
ϕMIN no 4 5 8 9 12

Table 1: Numerical results for the optimal control example from (25)

Table 2 contains the corresponding numerical results for our second example, also taken
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from [1] and given by the data

yd(x1, x2) :=

{
200x1x2(x1 − 1

2
)2(1− x2), if 0 < x1 ≤ 1

2
,

200x2(x1 − 1)(x1 − 1
2
)2(1− x2), if 1

2
< x1 ≤ 1,

ud ≡ 0, ψ ≡ 1, α := 10−2.

(26)
Both tables indicate that our inexact semismooth methods may be applied very successfully
to optimal control problems of the form (24). The minimum function approach seems to
work better for smaller problems, whereas the number of iterations seems to stay smaller for
the two Fischer-Burmeister-type approaches when the dimension is getting larger. In any
case, however, the minimum function approach works best if no line search globalization
is used. In fact, the number of iterations increases very slowly in this case.

ϕ line search N = 30 N = 60 N = 90 N = 120 N = 150
ϕMIN yes 5 9 12 19 31
ϕFB yes 8 9 12 15 20
ϕPFB yes 7 9 12 15 21
ϕMIN no 4 6 7 8 11

Table 2: Numerical results for the optimal control example from (26)

The resulting optimal controls and optimal states for the two examples from (25) and
(26) are shown in Figures 1 and 2, respectively. These figures clearly show the areas where
the upper bound ψ on the control u is active.
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Figure 1: Optimal control (left) and optimal state (right) for the example from (25)
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Figure 2: Optimal control (left) and optimal state (right) for the example from (26)

4.2 Obstacle Problems

Let Ω ⊆ R
n be a given domain. The obstacle problem (see, e.g., [36]) consists in finding the

equilibrium position of an elastic membrane subject to an external force f and an obstacle
ψ. Hence the infinite-dimensional problem is to minimize the total energy

E(u) :=
1

2

∫

Ω

‖∇u‖2dx−
∫

Ω

fudx

such that u ∈ K, where K denotes the cone

K :=
{
v ∈ H1

0 (Ω)
∣
∣ v ≥ ψ a.e. in Ω

}
.

The optimality conditions for this optimization problem lead to the variational inequality
of finding an element u ∈ K such that

∫

Ω

∇u · ∇(v − u)dx ≥
∫

Ω

f(v − u)dx ∀v ∈ K. (27)

Under a weak regularity condition, this is equivalent to the complementarity formulation

−∆u ≥ f on Ω
u ≥ ψ on Ω

(
−∆u− f

)
(u− ψ) = 0 on Ω

u ≡ 0 on ∂Ω.

(28)

In fact, the variational inequality (27) is the weak formulation of this complementarity
problem.
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N 300 400 500 600 700 800 900 1000
# outer it. 6 6 6 6 6 6 6 6
# inner it. (av.) 470,5 627,3 784,3 942,0 1.133,7 1.297,0 1.415,0 1.624,0

Table 3: Numerical results for the obstacle Bratu problem with data from (29)

Now let us take n = 2 and let Ω = (0, 1)× (0, 1) be the standard rectangle. As before,
the matrix A denotes the five-point finite difference approximation to the negative Laplace
operator on a uniform grid with stepsize h := 1/(N + 1), N ∈ N. Then the discretized
form of (28) becomes

Au ≥ f, u ≥ ψ, (Au− f)(u− ψ) = 0
v:=u−ψ⇐⇒ Av + Aψ ≥ f, v ≥ 0,

(
Av + Aψ

)
T

v = 0

⇐⇒ v ≥ 0, F (v) ≥ 0, vTF (v) = 0

with F (v) := A(v + ψ)− f.

The obstacle problem we are interested in is the obstacle Bratu problem from [28, 23].
Here f depends on v and is given by

f = f(v) := −λe−ψ−v

for some parameter λ ≥ 0. In [28, 23], this problem has been investigated as a function of
λ. Here we are only interested in the particular instance given by the data

ψ ≡ −4, λ := 1 (29)

which are also used as a complementarity test problem in, for example, [18]. The mapping
F is nonlinear and not monotone. Hence the Jacobian F ′(x) is not positive semidefinite in
general, but is is always symmetric. Since the CG methods works quite well on symmetric
matrices, we solve the corresponding linear systems (5) using conjugate gradients. An
alternative would be the MINRES method.

We present our numerical results for this example using the penalized Fischer-Bur-
meister function which seems to give the best results. The minimum function approach
does not seem to be a good idea in this case since the mapping F does not have any of the
desirable properties usually needed for the minimum function to work well.

The numerical results for this example are given in Table 3 for different dimensions N .
There we also present the average number of CG iterations needed to solve the correspond-
ing linear equations (5). Note that this number is very small, although the dimension of
the linear systems are pretty large. In particular, for N = 1000 we solve a nonlinear and
nonmonotone example with one million variables.
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5 Final Remarks

In this paper, we have shown that the inexact semismooth Newton method for a nons-
mooth reformulation of the complementarity problem may be applied quite successfully to
certain large-scale problems. However, the solution of these large-scale problems within
the inexact Newton framework depends very much on the availability of a good itera-
tive linear system solver. For symmetric positive definite systems, the CG method is a
good choice. For symmetric and possibly indefinite systems, also the CG method or the
MINRES method is a suitable candidate. The numerical results from Section 2 indicate,
however, that the nonsymmetric iterative linear system solvers do not seem to work quite
well in our context. On the other hand, the behaviour of these nonsymmetric solvers can
be improved dramatically by using good preconditioners. On the other hand, none of the
standard preconditioners seems to do a good job for complementarity problems. Further
research is therefore necessary in order to find either a good general purpose precondi-
tioner for complementarity problems or at least good preconditioners for special classes of
complementarity problems.
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