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Abstract. Mathematical programs with equilibrium (or complementarity) con-
straints, MPECs for short, form a difficult class of optimization problems. The
feasible set of MPECs is described by standard equality and inequality constraints
as well as additional complementarity constraints that are used to model equilibrium
conditions in different applications. But these complementarity constraints imply
that MPECs violate most of the standard constraint qualifications. Therefore, more
specialized algorithms are typically applied to MPECs that take into account the
particular structure of the complementarity constraints. One popular class of these
specialized algorithms are the relaxation (or regularization) methods. They replace
the MPEC by a sequence of nonlinear programs NLP(t) depending on a parameter
t, then compute a KKT-point of each NLP(t), and try to get a suitable stationary
point of the original MPEC in the limit t → 0. For most relaxation methods, one
can show that a C-stationary point is obtained in this way, a few others even get
M-stationary points, which is a stronger property. So far, however, these results
have been obtained under the assumption that one is able to compute exact KKT-
points of each NLP(t). But this assumption is not implementable, hence a natural
question is: What kind of stationarity do we get if we only compute approximate
KKT-points? It turns out that most relaxation methods only get a weakly sta-
tionary point under this assumption, while in this paper, we show that the smooth
relaxation method by Lin and Fukushima [Annals of Operations Research 133, 2005,
pp. 63–84] still yields a C-stationary point, i.e. the inexact version of this relaxation
scheme has the same convergence properties as the exact counterpart.
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1 Introduction

A mathematical program with complementarity (or equilibrium) constraints, MPEC
for short, is a constrained optimization problem of the form

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀ i = 1, . . . , q,

(1)

where f, gi, hi, Gi, Hi : Rn → R are assumed to be continuously differentiable. The
MPEC has received a lot of attention during the last 15 years since it provides a
useful model for several applications coming from different areas like economics,
game theory, mechanics etc. For more details, we refer the interested reader to the
two monographs [19, 24] and to the book [6] on bilevel programming, a subject that
is closely related to MPECs.

In principle, the MPEC may be viewed as a standard nonlinear program, NLP
for short. However, the feasible set has a very special structure since, apart from
the usual equality and inequality constraints, there are additional complementarity
constraints. The existence of the complementarity constraints cause some troubles
since they imply that most constraint qualifications, typically used in the context
of NLPs, are violated at any feasible point, see [19, 35]. This, in turn, means that
one has to expect difficulties when solving MPECs by standard software.

For this reason, a number of MPEC-tailored solution methods have been devised
that try to take into account the special structure of the additional complementarity
constraints. Among the different approaches are penalty, smoothing, interior-point,
lifting, and relaxation methods. The interested reader is refered to [1, 2, 5, 7, 9, 12,
13, 14, 15, 17, 18, 26, 27, 29, 30, 31] and references therein for more details.

Here our focus is on the class of relaxation (or regularization) methods for the
solution of MPECs. The first relaxation method is due to Scholtes [29]. In the
meantime, a number of other relaxation methods exist, among them are the smooth
relaxation method by Lin and Fukushima [18], the local relaxation method by Stef-
fensen and Ulbrich [30], the so-called nonsmooth relaxation method by Kadrani et
al. [14], and the L-shaped relaxation method by the authors [15]. The basic idea
of all these relaxation methods is the same: They approximate (usually enlarge)
the feasible set of the MPEC in a suitable way to get a nonlinear program NLP(t)
depending on a certain parameter t such that the relaxed programs NLP(t) converge
to the original MPEC when t→ 0.

Algorithmically, one then considers a sequence tk → 0 and computes a sequence
of KKT-points of the nonlinear programs NLP(tk), hoping that this sequence then
converges to a suitable stationary point of the underlying MPEC. Since different
stationarity concepts exist for MPECs, one has to expect that different relaxation
methods may converge to different kind of stationarities. This is indeed the case,
since one can show (technical assumptions ahead) that the three methods by Scholtes
[29], by Lin and Fukushima [18], and by Steffensen and Ulbrich [30] converge to so-
called C-stationary points, whereas the two methods by Kadrani et al. [14] and by
the authors [15] were designed in such a way that they converge to M-stationary
points, a concept that is stronger than C-stationary. Hence these two methods have
better convergence properties than the other three methods.
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But the convergence to C- and M-stationary points depends on the assumption
that exact KKT-points can be computed for each NLP(tk). This assumption is, of
course, unrealistic. Hence, a practically more important question is: What happens
if we compute only approximate KKT-points of NLP(tk)? Doing this means that the
precise sign structure of the multipliers within the KKT-conditions of the relaxed
problems NLP(tk) is lost, so one has to expect a weaker stationarity in the limit
tk → 0.

Most of the previous papers on relaxation methods for the solution of MPECs
are dealing with exact KKT-conditions. An exception are the two papers [14] by
Kadrani et al. and [15] by the authors. The former claims to get M-stationarity
also in the case when only approximate KKT-points are computed, but the proof is
erroneous, and a counterexample in [15] shows that one gets only weakly stationary
points. The same happens for the inexact version of the L-shaped method from [15].

Though this result had to be expected, it is somewhat disappointing. We there-
fore took a closer look at all relaxation methods mentioned previously and investi-
gated their limiting behaviour when only inexact KKT-points are computed. The
overall result is quite surprising: The two best (for the case of exact KKT-points)
methods from [14, 15] as well as the local relaxation method from Steffensen and Ul-
brich [30] converge to weakly stationary points only, whereas for the original method
from Scholtes [29] and the Lin-Fukushima relaxation method [18] one still obtains C-
stationary points in the limit. Hence the three methods from [14, 15, 18] lose quite a
bit of their convergence properties when moving from exact to inexact KKT-points,
while nothing is lost by the two methods from [18, 29]. The proofs for most of these
statements, together with some additional results on the two methods from [14, 15],
can be found in the accompanying paper [16]. Since that paper is already quite long,
and since, in any case, the treatment of the Lin-Fukushima relaxation needs some
extra work, we decided to separate this method from the other ones and present the
corresponding convergence result in this paper.

The organization is as follows: Section 2 presents some basic definitions like
suitable constraint qualifications, stationarity concepts as well as our notion of an
approximate KKT-point. Section 3 investigates the convergence behaviour of an
inexact version of the smooth relaxation method by Lin and Fukushima [18] and
proves that C-stationary points are obtained in the limit. Extensive numerical re-
sults for this method may already be found in [11] and are therefore not part of this
paper. We then close with some final remarks in Section 4.

Notation: For a smooth function f : Rn → R, we denote the gradient of f at a
point x by ∇f(x) and assume that it is a column vector. The support of a vector
x ∈ Rn is abbreviated as supp(x) := {i ∈ {1, . . . , n} | xi 6= 0}.

2 Preliminaries

This section contains some background material from standard NLPs and MPECs.
Let us begin with standard NLPs. As mentioned previously, the idea of any relax-
ation method is to relax the complementarity constraints and thus obtain a sequence
of standard NLPs. For this reason, we need some notation and a few basic facts

4



about NLPs. Therefore, let us consider the following nonlinear program

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,

(2)

where f, gi, hi : Rn → R are assumed to be continuously differentiable. We denote
the feasible set by X ⊆ Rn and define the set of active inequalities Ig(x) := {i ∈
{1, . . . ,m} | gi(x) = 0} for any x ∈ X.

Now let x∗ ∈ X be a local minimum of (2) and assume that a suitable constraint
qualification holds in x∗. Under these assumptions, it is well known that x∗ is a
stationary point, i.e. there exist multipliers λ ∈ Rm, µ ∈ Rp such that (x∗, λ, µ) is a
KKT-point. This means that the triple (x∗, λ, µ) satisfies the equation

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) = 0

and the conditions λ ≥ 0, supp(λ) ⊆ Ig(x
∗), see, e.g., [3, 21] for more details.

Unfortunately, when NLPs are solved numerically, one rarely ends up in a KKT-
point. The termination criteria used in standard software checks (in addition to
other things) whether the KKT-conditions are satisfied approximately. The precise
way this is done might depend on the class of methods and also on the particular
solver used. However, the following definition should be sufficiently general in order
to cover all situations that occur in practice.

Definition 2.1 Let x∗ ∈ Rn be given. If there exist vectors λ ∈ Rm, µ ∈ Rp such
that ∥∥∥∥∇f(x) +

m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)
∥∥∥∥
∞
≤ ε,

gi(x
∗) ≤ ε, λi ≥ −ε, |gi(x∗)λi| ≤ ε ∀i = 1, . . . ,m,

|hi(x∗)| ≤ ε ∀ i = 1, . . . , p,

(3)

x∗ is called an ε-stationary point of the NLP (2).

It is clear that the single ε in the previous definition can be replaced by different
ones for different constraints, but to keep the notation as simple as possible, we
decided to take the same ε everywhere. It is not difficult to see, however, that our
main result still holds with different ε provided that the corresponding assumption
is adapted in a suitable (straightforward) way.

We further stress that our definition of ε-stationarity is rather general and, in
particular, less restrictive than the corresponding ε-stationarity concepts used in
the related papers [14, 15]. Despite its generality, however, we will be able to get
C-stationarity in the limit of the Lin-Fukushima-relaxation method, in particular,
this convergence result then also holds under any other ε-stationarity condition that
is stronger than ours.

We next introduce some notation and basic definitions for the MPEC (1). Again,
we denote the set of feasible points by X ⊆ Rn and define the following index sets
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for any x ∈ X:

Ig(x) := {i ∈ {1, . . . ,m} | gi(x) = 0},
I0+(x) := {i ∈ {1, . . . , q} | Gi(x) = 0, Hi(x) > 0},
I00(x) := {i ∈ {1, . . . , q} | Gi(x) = 0, Hi(x) = 0},
I+0(x) := {i ∈ {1, . . . , q} | Gi(x) > 0, Hi(x) = 0}.

Obviously, Ig(x) is the set of active inequalities as defined for NLPs and the sets
I0+(x), I00(x) and I+0(x) form a partition of the set of complementarity constraints.
If x = x∗ for some point x∗ that will be clear from the context, we sometimes
abbreviate the index sets Ig(x

∗), I0+(x∗), I00(x∗), and I+0(x∗) by Ig, I0+, I00, and
I+0, respectively.

In contrast to NLPs, where KKT-points are the most common stationarity con-
cept, a number of different stationarity definitions for MPECs have emerged over
the last few years. Here, we will restrict ourselves to those that are important in
our context.

Definition 2.2 Let x∗ be feasible for the MPEC (1). Then x∗ is said to be

(a) weakly stationary, if there are multipliers λ ∈ Rm, µ ∈ Rp, γ, ν ∈ Rq such that
the equation

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
q∑
i=1

γi∇Gi(x
∗)−

q∑
i=1

νi∇Hi(x
∗) = 0

and the conditions

λi ≥ 0, (i ∈ Ig), λi = 0 (i /∈ Ig), γi = 0 (i ∈ I+0), νi = 0 (i ∈ I0+)

are satisfied;

(b) C-stationary, if it is weakly stationary and γiνi ≥ 0 for all i ∈ I00(x∗);

(c) M-stationary, if it is weakly stationary and either γi > 0, νi > 0 or γiνi = 0
for all i ∈ I00(x∗).

γi

νi

(a) weak stationarity

γi

νi

(b) C-stationarity

γi

νi

(c) M-stationarity

Figure 1: Geometric illustration of weak, C-, and M-stationarity for an index i from
the bi-active set I00(x∗)

The different conditions on the multipliers γi, νi with i ∈ I00(x∗) are illustrated in
Figure 1. Obviously, the stationarity concepts differ only in the conditions on these
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multipliers and thus coincide when the biactive set I00(x∗) is empty. Otherwise, it
is clear that weak stationarity is the weakest concept, while M -stationarity is the
strongest concept within these three stationarity conditions. For our analysis, only
weak and C-stationarity will be used, the definition of M-stationarity is included only
for the sake of completeness since it has been mentioned in the introduction. The
notion of weak and C-stationarity comes from the paper [28], whereas M-stationarity
was introduced independently in [22, 23, 32, 34].

In order to guarantee that a local minimum x∗ of (1) is a stationary point in
any of the previous senses, one needs to assume, similar to standard NLPs, that
a suitable constraint qualification is satisfied in x∗. Since most standard CQs are
violated in feasible points of (1), many MPEC-analogues of these CQs have been
developed. Here, we mention only those needed later.

Definition 2.3 A feasible point x∗ of the MPEC (1) is said to satisfy the

(a) MPEC-linear independence CQ (MPEC-LICQ), if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {∇hi(x∗) | i = 1, . . . , p}
∪ {∇Gi(x

∗) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x
∗) | i ∈ I00(x∗) ∪ I+0(x∗)}

are linearly independent;

(b) MPEC-Mangasarian Fromovitz CQ (MPEC-MFCQ), if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪
{
{∇hi(x∗) | i = 1, . . . , p}

∪ {∇Gi(x
∗) | i ∈ I00(x∗) ∪ I0+(x∗)} ∪ {∇Hi(x

∗) | i ∈ I00(x∗) ∪ I+0(x∗)}
}

are positively linearly independent;

In the definition of MPEC-MFCQ, we use the notion of positively linearly indepen-
dent vectors. Here, a set {ai | i ∈ I} ∪ {bj | j ∈ J} of vectors ai, bj ∈ Rn is called
positively linearly dependent, if there exist scalars {αi}i∈I and {βj}j∈J with αi ≥ 0
for all i ∈ I, not all of them being zero, such that∑

i∈I

αiai +
∑
j∈J

βjbj = 0.

Otherwise, the set of vectors is called positively linearly independent. Note that
MPEC-MFCQ is typically defined in a different way, but can easily be seen, by a
theorem of the alternative, cf. [20], to be equivalent to the above condition.

It is clear that MPEC-LICQ is stronger than MPEC-MFCQ. Further note that
MPEC-MFCQ imply that a local minimum is M-stationary, see, e.g., [8, 33], whereas
MPEC-LICQ implies even a stronger stationarity concept, see [8, 19, 25] and refer-
ences therein for more details.

3 The Inexact Smooth Relaxation Method

The relaxation method suggested by Lin and Fukushima [18] replaces the comple-
mentarity conditions Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 by only two inequalities

ΦLF
i (x; t) := (Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀i = 1, . . . , q
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and
ΦS
i (x; t2) := Gi(x)Hi(x)− t2 ≤ 0 ∀i = 1, . . . , q

with a relaxation parameter t > 0. This transforms the feasible set of the comple-
mentarity constraints to the shape depicted in Figure 2. Here the superscript in
ΦS
i is used to remind the reader that this function is essentially identical to the one

used by Scholtes [29], whereas the superscript in ΦLF
i is used as an abbreviation for

Lin and Fukushima since this is the new function introduced in [18].

Gi(x)

Hi(x)

Figure 2: Geometric interpretation of the relaxation by Lin and Fukushima

The Lin-Fukushima-relaxation leads to a sequence of relaxed nonlinear programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
ΦLF
i (x; t) = (Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀ i = 1, . . . , q,

ΦS
i (x; t2) = Gi(x)Hi(x)− t2 ≤ 0 ∀ i = 1, . . . , q

(4)
with t ↓ 0, which we will denote by NLPLF (t). From the original paper [18], the
following convergence result is known.

Theorem 3.1 Let {tk} ↓ 0 and {(xk, λk, µk, τ k, δk)} be a sequence of KKT-points
of NLPLF (tk). If xk → x∗ and MPEC-LICQ holds in x∗, then x∗ is a C-stationary
point of the MPEC (1).

Reference [10] shows that the above result remains true under the weaker MPEC-
MFCQ condition. The next result shows that we still get C-stationary points in the
limit if we compute only εk-stationary points of the nonlinear programs NLPLF (tk)
provided that εk goes to zero sufficiently fast.

Theorem 3.2 Let {tk} ↓ 0, εk = o(t2k), {xk} be a sequence of εk-stationary points
of NLPLF (tk), and assume that xk → x∗. If MPEC-MFCQ holds in x∗, then x∗ is a
C-stationary point of the MPEC.

Proof: Since xk is an εk-stationary point of NLPLF (tk), there exist multipliers
λk, µk, τ k, and δk such that∥∥∥∥∇f(xk) +

m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk)

−
q∑
i=1

τ ki ∇ΦLF
i (xk; tk) +

q∑
i=1

δki∇ΦS
i (xk; t2k)

∥∥∥∥
∞
≤ εk

8



and

gi(x
k) ≤ εk, λki ≥ −εk, |λki gi(xk)| ≤ εk, ∀i = 1, . . . ,m,

|hi(xk)| ≤ εk ∀i = 1, . . . , p,
ΦLF
i (xk; tk) ≥ −εk, τ ki ≥ −εk,

∣∣τ ki ΦLF
i (xk; tk)

∣∣ ≤ εk ∀i = 1, . . . , q,
ΦS
i (xk; t2k) ≤ εk, δki ≥ −εk,

∣∣δki ΦS
i (xk; t2k)

∣∣ ≤ εk ∀i = 1, . . . q.

It is easy to see that the limit point x∗ is feasible for the MPEC. Furthermore, we
have

∇ΦLF
i (xk; tk) =

(
Hi(x

k) + tk
)
∇Gi(x

k) +
(
Gi(x

k) + tk
)
∇Hi(x

k),

∇ΦS
i (xk; t2k) = Hi(x

k)∇Gi(x
k) +Gi(x

k)∇Hi(x
k).

From the εk-stationarity of xk, we therefore obtain∥∥∥∥∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk)

−
q∑
i=1

τ ki
(
(Hi(x

k) + tk)∇Gi(x
k) + (Gi(x

k) + tk)∇Hi(x
k)
)

+

q∑
i=1

δki
(
Hi(x

k)∇Gi(x
k) +Gi(x

k)∇Hi(x
k)
)∥∥∥∥
∞
≤ εk.

Defining the new multipliers

γki :=

{
τ ki
(
Hi(x

k) + tk
)
− δkiHi(x

k) if i ∈ I00(x∗) ∪ I0+(x∗),

0 if i ∈ I+0(x∗),

νki :=

{
τ ki
(
Gi(x

k) + tk
)
− δkiGi(x

k) if i ∈ I00(x∗) ∪ I+0(x∗),

0 if i ∈ I0+(x∗).

this can be rewritten as∥∥∥∥∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µki∇hi(xk)−
∑

i∈I00∪I0+

γki∇Gi(x
k)

−
∑

i∈I00∪I+0

νki ∇Hi(x
k)−

∑
i∈I+0

[
τ ki
(
Hi(x

k) + tk
)
− δkiHi(x

k)
]
∇Gi(x

k)

−
∑
i∈I0+

[
τ ki
(
Gi(x

k) + tk
)
− δkiGi(x

k)
]
∇Hi(x

k)

∥∥∥∥
∞
≤ εk.

We claim that the sequence of multipliers
{

(λk, µk, γk, νk, τ kI+0∪I0+ , δ
k
I+0∪I0+)

}
is bounded.

Suppose this sequence is unbounded. Then we may assume without loss of generality
that

(λk, µk, γk, νk, τ kI+0∪I0+ , δ
k
I+0∪I0+)

‖(λk, µk, γk, νk, τ kI+0∪I0+ , δ
k
I+0∪I0+)‖

→ (λ̄, µ̄, γ̄, ν̄, τ̄I+0∪I0+ , δ̄I+0∪I0+) 6= 0. (5)

Using the εk-stationarity, we would obtain

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
q∑
i=1

γ̄∇Gi(x
∗)−

q∑
i=1

ν̄∇Hi(x
∗) = 0, (6)
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where we used the fact that tk → 0, Gi(x
k) → 0 for all i ∈ I0+(x∗), Hi(x

k) →
0 for all i ∈ I+0(x∗), and {∇Gi(x

k)}, {∇Hi(x
k)} are bounded by the continuous

differentiability of the mappings Gi, Hi. Note that supp(γ̄) ⊆ I00(x∗) ∪ I0+(x∗),
and supp(ν̄) ⊆ I00(x∗) ∪ I+0(x∗) holds. The εk-stationarity also implies λ̄ ≥ 0, and
gi(x

∗) = 0 for all i with λ̄i 6= 0: If λ̄i > 0, we have λki > c for some constant c > 0
and all k sufficiently large. This yields

0 ≤ |gi(xk)| ≤
εk
λki
≤ εk

c
→ 0

due to εk ↓ 0 and thus we have supp(λ̄) ⊆ Ig(x
∗). But then (6) and the assumed

MPEC-MFCQ implies that (λ̄, µ̄, γ̄, ν̄) = 0 which, in turn, gives
(
τ̄I+0∪I0+ , δ̄I+0∪I0+

)
6=

0. Hence τ̄I+0∪I0+ 6= 0 or δ̄I+0∪I0+ 6= 0.
We claim that this is not possible. To this end, first consider the subvector

τ̄I+0∪I0+ and suppose that τ̄i 6= 0 for some index i ∈ I+0 (a similar argument can be
used for an index i ∈ I0+). The εk-stationarity yields τ̄i > 0, and using εk = o(t2k)
gives

τ ki

(
(Gi(x

k) + tk)(Hi(x
k) + tk)

t2k
− 1

)
→ 0.

Consequently, we have

(Gi(x
k) + tk)(Hi(x

k) + tk)

t2k
→ 1. (7)

On the other hand, we have

0 = ν̄i = lim
k→∞

[
τ ki

‖(· · · )‖︸ ︷︷ ︸
→τ̄>0

(
Gi(x

k) + tk
)︸ ︷︷ ︸

→Gi(x∗)>0

− δki
‖(· · · )‖︸ ︷︷ ︸
→δ̄i

Gi(x
k)︸ ︷︷ ︸

→Gi(x∗)>0

]
,

where ‖(· · · )‖ stands for the denominator from (5). Hence we necessarily have
δ̄i > 0. Therefore, using once more the εk-stationarity together with the assumption
εk = o(t2k), we obtain

δki

[
Gi(x

k)Hi(x
k)

t2k
− 1

]
→ 0 =⇒ Gi(x

k)Hi(x
k)

t2k
→ 1.

Combining both limits yields

Gi(x
k)Hi(x

k)

t2k︸ ︷︷ ︸
→1

+
Gi(x

k)

tk︸ ︷︷ ︸
→∞ since i∈I+0

+
Hi(x

k)

tk
+ 1 =

(
Gi(x

k) + tk
)(
Hi(x

k) + tk
)

t2k
→ 1, (8)

hence it follows that Hi(x
k)/tk → −∞, whereas Gi(x

k) + tk → Gi(x
∗) > 0 yields

Hi(x
k) + tk > 0 for all k sufficiently large in view of (7), which means that Hi(x

k) >

−tk and therefore gives the contradiction Hi(x
k)

tk
> −1 for all k sufficiently large.

In a similar way, we obtain a contradiction to the assumption δ̄i 6= 0 for some
index i ∈ I0+(x∗) ∪ I+0(x∗). Altogether, we therefore have (τ̄I+0∪I0+ , δ̄I+0∪I0+) = 0,
but this contradicts (5).
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Consequently, the sequence {(λk, µk, γk, νk, τ kI+0∪I0+ , δ
k
I+0∪I0+)} is bounded and

can therefore be assumed, without loss of generality, to converge to some limit point
(λ∗, µ∗, γ∗, ν∗, τ ∗I+0∪I0+ , δ

∗
I+0∪I0+). The εk-stationarity then implies

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
i=1

µ∗i∇hi(x∗)−
q∑
i=1

γ∗i∇Gi(x
∗)−

q∑
i=1

ν∗i∇Hi(x
∗) = 0

as well as λ∗ ≥ 0, supp(λ∗) ⊆ Ig(x
∗), and

supp(γ∗) ⊆ I00(x∗) ∪ I0+(x∗), supp(ν∗) ⊆ I00(x∗) ∪ I+0(x∗).

This shows that x∗ is a weakly stationary point.
To verify C-stationarity, it remains to prove that γ∗i ν

∗
i ≥ 0 for all i ∈ I00(x∗).

Assume that there exists an index i ∈ I00(x∗) such that γ∗i ν
∗
i < 0. Without loss of

generality, we may assume that γ∗i < 0 and ν∗i > 0. Since γ∗i = limk→∞
(
τ ki (Hi(x

k)+
tk) − δkiHi(x

k)
)
< 0, it follows that there is a suitable constant c > 0 and a sub-

sequence such that either τ ki (Hi(x
k) + tk) < −c < 0 or δkiHi(x

k) > c > 0 for
all sufficiently large k on this subsequence. Using Hi(x

k) → 0 and tk → 0, we
have either |τ ki | → ∞ or |δki | → ∞, and the εk-stationarity therefore yields either
τ ki → ∞, Hi(x

k) + tk < 0 or δki → ∞, Hi(x
k) > 0 for all k sufficiently large on a

suitable subsequence. Using the εk-stationarity and εk = o(t2k) once more, we obtain
from τ ki →∞ resp. δki →∞ that either

τ ki

[
(Gi(x

k) + tk)(Hi(x
k) + tk)

t2k
− 1

]
→ 0 =⇒ (Gi(x

k) + tk)(Hi(x
k) + tk)

t2k
→ 1

or

δki

[
Gi(x

k)Hi(x
k)

t2k
− 1

]
→ 0 =⇒ Gi(x

k)Hi(x
k)

t2k
→ 1

on a suitable subsequence.
This implies that, on the subsequence, only one of the multipliers τ ki , δ

k
i can be

unbounded. In fact, if both were unbounded, we would have

(Gi(x
k) + tk)(Hi(x

k) + tk)

t2k
→ 1 and

Gi(x
k)Hi(x

k)

t2k
→ 1

for some index i ∈ I00(x∗). Then, we obtain a contradiction in the following way: If,
in addition, we have Hi(x

k) + tk < 0, then (Gi(x
k) + tk)(Hi(x

k) + tk)/t
2
k → 1 yields

Gi(x
k) + tk < 0 and thus (Gi(x

k) + Hi(x
k))/tk < −2tk/tk = −2 < −1, whereas, on

the other hand, we have (Gi(x
k)+Hi(x

k))/tk → −1 (see (8)), which gives the desired
contradiction in this case. On the other hand, if, in addition, we have Hi(x

k) > 0, we
obtain from (Gi(x

k)Hi(x
k))/t2k → 1 that Gi(x

k) > 0 and thus (Gi(x
k)+Hi(x

k))/tk >
(0 + 0)/tk = 0 > −1, a contradiction to (Gi(x

k) +Hi(x
k))/tk → −1 (see again (8)).

First, consider the case τ ki (Hi(x
k) + tk) < −c on the subsequence. Since this

implies that δki is bounded on the subsequence, it follows that

γ∗i = lim
k

τ ki︸︷︷︸
→∞

(
Hi(x

k) + tk
)︸ ︷︷ ︸

<0

< 0 and ν∗i = lim
k

τ ki︸︷︷︸
→∞

(
Gi(x

k) + tk
)
> 0.
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Hence Gi(x
k) + tk > 0 and thus all entries of the sequence

(
Gi(x

k) + tk
)(
Hi(x

k) +
tk
)
/t2k are negative, a contradiction to the fact that this subsequence converges to

1.
Next, consider the case δkiHi(x

k) > c on the subsequence, implying that the
corresponding subsequence of {τ ki } is bounded. Then

γ∗i = lim
k

(
− δki︸︷︷︸
→∞

Hi(x
k)︸ ︷︷ ︸

>0

)
< 0 and ν∗i = lim

k

(
− δki︸︷︷︸
→∞

Gi(x
k)
)
> 0.

Consequently, we have Gi(x
∗) < 0, but then the entries of the corresponding subse-

quence
(
Gi(x

k)Hi(x
k)
)
/t2k are negative, a contradiction to the fact that this subse-

quence converges to 1. �

The following example shows that it is necessary to adjust the speed of εk ↓ 0 with
respect to tk ↓ 0, for example by εk = o(t2k), in order to obtain C-stationary points
in the limit.

Example 3.3 Consider the two-dimensional MPEC

min
x
−x1 + x2 s.t. x1 ≥ 0, x2 ≥ 0, x1x2 = 0.

Let t ↓ 0 arbitrarily given, and consider the corresponding sequences

εt := 6t, xt :=
(
xt1, x

t
2

)
:=
(1

2
t, 2t

)
, τ t :=

5

3t
, δt :=

3

t
.

Then xt is an εt-stationary point of NLPLF (t) since an elementary calculation shows
that ∥∥∥∥∇f(xt)− τ t∇ΦLF (xt; t) + δt∇ΦS(xt; t2)

∥∥∥∥
∞

=∥∥∥∥(−1

1

)
− 5

3t

(
3t

1.5t

)
+

3

t

(
2t

0.5t

)∥∥∥∥ =

∥∥∥∥(0

0

)∥∥∥∥ = 0 ≤ εt,

ΦLF (xt; t) =
7

2
t2 ≥ 0 ≥ −εt,

τ t =
5

3t
≥ 0 ≥ −εt∣∣τ tΦLF (xt; t)

∣∣ =
35

6
t ≤ 6t = εt,

ΦS(xt; t2) = t2 − t2 = 0 ≤ εt,

δt =
3

t
≥ 0 ≥ −εt∣∣δtΦS(xt; t2)

∣∣ = 0 ≤ εt.

Furthermore, we have xt → (0, 0), but the origin is only weakly stationary. Since
this example satisfies MPEC-LICQ, hence also MPEC-MFCQ, the only assumption
that is violated in Theorem 3.2 is the condition ε = o(t2). ♦
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4 Final Remarks

This paper shows that the relaxation method by Lin and Fukushima [18] converges
to C-stationary points even if the corresponding relaxed nonlinear programs are
solved only inexactly in the sense that ε-stationary points are computed. This
property is in contrast to most of the other existing relaxation schemes whose inexact
versions converge to weakly stationary points only, see the corresponding results and
discussion in the accompanying paper [16].

Compared to the other relaxation schemes, the numerical behaviour of the Lin-
Fukushima-approach was less favourable in the comparison given in [11]. However,
in view of the theoretical results stated here, one might get re-interested into this
approach, possibly by using an NLP-solver that is able to deal with the particular
constraints arising in this context in a better way. To this end, let us note that the
ε-stationary condition used in our framework should be sufficiently general in order
to deal with essentially all kinds of NLP-solvers and corresponding NLP-termination
criteria to cover also this more specialized subproblem-solver.
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