
THE PRICE OF INEXACTNESS:
CONVERGENCE PROPERTIES OF RELAXATION
METHODS FOR MATHEMATICAL PROGRAMS

WITH EQUILIBRIUM CONSTRAINTS REVISITED

Christian Kanzow and Alexandra Schwartz

Preprint 315 March 2013

University of Würzburg
Institute of Mathematics
Am Hubland
97074 Würzburg
Germany

e-mail: kanzow@mathematik.uni-wuerzburg.de
schwartz@mathematik.uni-wuerzburg.de

March 11, 2013



Abstract. Mathematical programs with equilibrium (or complementarity) con-
straints, MPECs for short, form a difficult class of optimization problems. The
feasible set has a very special structure and violates most of the standard constraint
qualifications. Therefore, one typically applies specialized algorithms in order to
solve MPECs. One prominent class of specialized algorithms are the relaxation (or
regularization) methods. The first relaxation method for MPECs is due to Scholtes
[SIAM Journal on Optimization 11, 2001, pp. 918–936 ], but in the meantime, there
exist a number of different regularization schemes which try to relax the difficult
constraints in different ways. Among the most recent examples for such methods are
the ones from Kadrani, Dussault, and Benchakroun [SIAM Journal on Optimization
20, 2009, pp. 78–103 ] and Kanzow and Schwartz [SIAM Journal on Optimization, to
appear ]. Surprisingly, although these recent methods have better theoretical proper-
ties than Scholtes’ relaxation, numerical comparisons show that this method is still
among the fastest and most reliable ones, see for example Hoheisel et al. [Mathe-
matical Programming 137, 2013, pp. 257–288 ]. To give a possible explanation for
this, we consider the fact that, numerically, the regularized subproblems are not
solved exactly. In this light, we analyze the convergence properties of a number of
relaxation schemes and study the impact of inexactly solved subproblems on the
kind of stationarity we can expect in a limit point.

Key Words: Mathematical programs with complementarity constraints; Mathe-
matical programs with equilibrium constraints; Global convergence; KKT-points;
Stationary points; Strong stationarity; M-stationarity; C-stationarity; Weak sta-
tionarity; Inexact relaxation methods; Inexact regularization methods.



1 Introduction

In this paper, we consider mathematical programs with complementarity (or equilib-
rium) constraints, MPECs for short. These are constrained optimization problems
of the form

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
0 ≤ Gi(x) ⊥ Hi(x) ≥ 0 ∀ i = 1, . . . , q,

(1)

where f, gi, hi, Gi, Hi : Rn → R are assumed to be continuously differentiable, and
where the notation 0 ≤ x ⊥ y ≥ 0 for two vectors x, y ∈ Rq is a shorthand for the
conditions x ≥ 0, y ≥ 0, xTy = 0. For several applications and theoretical issues of
MPECs, we refer to the two monographs [25, 29] as well as the related book [7] on
bilevel programming.

In principle, MPECs may be viewed as standard nonlinear optimization problems
(NLPs), but they have a special structure since, apart from the usual equality and
inequality constraints, they have the additional complementarity constraints given
by the functions Gi, Hi which may equivalently be rewritten as

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , q,

a formulation that has been exploited, e.g., in [12]. Whatever formulation is used
for the complementarity constraints, however, these constraints cause some troubles
both from a theoretical and a numerical point of view, especially because it is easy
to see that most standard constraint qualifications are violated at any feasible point
of the MPEC, cf. [25, 42].

On the other hand, the special structure of the complementarity constraints can
also be exploited in order to develop a number of specialized algorithms for the
solution of MPECs. In fact, during the last 15 years, a number of different methods
have been suggested in order to deal with the inherent difficulty of an MPEC,
including penalty, smoothing, interior-point, lifting, and relaxation methods. We
refer the reader to [1, 2, 6, 8, 12, 17, 18, 19, 21, 23, 24, 31, 32, 34, 35, 36] and
references therein for more details.

This manuscript deals with the class of relaxation (often also called regulariza-
tion) methods for MPECs. In particular, the focus will be on the following relaxation
methods:

• the global relaxation method by Scholtes [34]

• the smooth relaxation method by Lin and Fukushima [24]

• the local relaxation method by Steffensen and Ulbrich [35]

• the nonsmooth relaxation method by Kadrani et al. [19]

• the L-shaped relaxation method by the authors from [21].

More precisely, the method by Lin and Fukushima [24] is treated in a separate
paper [22], hence the corresponding results will only be summarized here, whereas
a detailed analysis and discussion for the other four methods are included in this
paper. The basic idea of all these methods is to replace the original MPEC by a
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sequence of potentially simpler NLPs depending on a certain parameter t such that,
for t → 0, the relaxed problems approach the original one. Algorithmically, one
therefore tries to solve the sequence of NLPs by standard software, and hopes that
this sequence converges to a solution of the MPEC for t→ 0.

Of course, it is usually not possible to “solve” the relaxed NLPs, hence most of
the previous papers assume that a KKT-point can be found, and then consider the
behaviour of the corresponding sequence of KKT-points. Under suitable assump-
tions, the first three methods from [34, 24, 35] show convergence to C-stationary
points, whereas the last two methods from [19, 21] have the stronger and interesting
property that they converge to M-stationary points (for precise definitions of C-, M-
and related stationarities, we refer to Section 2).

However, in the majority of the papers on relaxation methods, the authors sup-
pose that they can compute the KKT-points of the relaxed NLPs exactly. This
assumption is unrealistic from a numerical point of view and does not coincide with
the usual termination criteria used in standard NLP software. The best one can
hope for is that a suitable solver is able to find an approximate KKT-point of the
relaxed NLPs. But then the question is whether the above-mentioned convergence
results still hold if we consider a sequence of approximate KKT-points only. The
answer is obviously negative, since we lose the sign structure of certain multipliers if
we do not consider exact KKT-points, hence one has to expect weaker convergence
results.

More precisely, this paper shows that, without any additional assumptions, three
of the above relaxation methods converge to weakly stationary points only, whereas
two of them converge to C-stationary points. The result is, however, quite sur-
prising, since, in particular, the two best methods from [19, 21], where we obtain
M-stationarity as a limit of exact KKT-points, converge to weakly stationary points
only, whereas the method by Scholtes [34], for example, still converges to a C-
stationary point, i.e. for this method, we do not lose anything by replacing exact
KKT-points by approximate KKT-points. At least for the authors, this result was
quite astonishing, since originally we thought that the limit points were only weakly
stationary also for this method. However, since, in contrast to most of the other
relaxation schemes, we were not able to find a corresponding example, we tried
to prove convergence to C-stationary points and eventually succeeded. This con-
vergence property may partially explain the results from [16], where, among other
results, the authors provided a numerical comparison of the five relaxation meth-
ods considered here based on a collection of test problems. And although some of
the other methods have better theoretical properties, the relaxation introduced by
Scholtes was the best with respect to the criteria number of solved problems, func-
tion value in the solution, and elapsed time. Apart from this, however, we also give
additional conditions for the methods from [19, 21, 35] under which they converge
to C-, M-, or strongly stationary points.

The paper is organized in the following way: Section 2 contains some basic
definitions like suitable constraint qualifications, stationarity concepts as well as our
notion of an approximate KKT-point. The subsequent sections then consider the
convergence behaviour of the different inexact relaxation methods. We begin with
the global relaxation by Scholtes in Section 3 and proceed with a summary of the
results for the smooth relaxation by Lin and Fukushima in Section 4 which also
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converges to C-stationary points when approximate KKT-points are considered.
Section 5 then considers the local relaxation by Steffensen and Ulbrich, and the
subsequent two Sections 6 and 7 deal with the nonsmooth and L-shaped relaxation
by Kadrani et al. and by the authors, respectively. We close this paper with some
final remarks in Section 8.

A few words concerning the notation: For a smooth function f : Rn → R, we
denote the gradient of f at a point x by∇f(x) and assume that it is a column vector.
The support of a vector x ∈ Rn is abbreviated as supp(x) := {i ∈ {1, . . . , n} | xi 6=
0}.

2 Preliminaries

2.1 Standard Nonlinear Programs

As mentioned previously, the idea of a relaxation method is to relax the comple-
mentarity constraints and thus obtain a sequence of standard nonlinear programs.
For this reason, we need some notation and a few basic facts about NLPs. Consider
the following nonlinear program

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,

(2)

where f, gi, hi : Rn → R are assumed to be continuously differentiable. We denote
the feasible set by X ⊆ Rn and define the set of active inequalities Ig(x

∗) := {i ∈
{1, . . . ,m} | gi(x∗) = 0} for an x∗ ∈ X.

Now let x∗ ∈ X be a local minimum of (2) and assume that a suitable constraint
qualification holds in x∗. Under these assumptions, it is well known that x∗ is a
stationary point, i.e. there exist multipliers λ ∈ Rm, µ ∈ Rp such that (x∗, λ, µ) is a
KKT-point. This means that the triple (x∗, λ, µ) satisfies the equation

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗) = 0

and the conditions λ ≥ 0, supp(λ) ⊆ Ig(x
∗), see, e.g., [3, 26] for more details.

Unfortunately, when NLPs are solved numerically, one rarely ends up in a KKT-
point. The termination criteria used in standard software like IPOPT [38], SNOPT
[13], KNITRO [4, 5], or filterSQP [11] checks whether an approximate KKT-point
has been found (in addition to other stopping criteria). If we neglect performance
improving details such as slack variables and scaling, these methods produce ap-
proximate solutions (x∗, λ, µ) satisfying the following conditions.

Definition 2.1 Let x∗ ∈ Rn and ε > 0 be given. If there exist vectors λ ∈ Rm, µ ∈
Rp such that∥∥∥∥∇f(x) +

m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)
∥∥∥∥
∞
≤ ε,

gi(x
∗) ≤ ε, λi ≥ −ε, |gi(x∗)λi| ≤ ε ∀i = 1, . . . ,m,

|hi(x∗)| ≤ ε ∀ i = 1, . . . , p,

(3)

x∗ is called an ε-stationary point of the NLP (2).
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It is clear that the single ε used in the previous definition can be replaced by different
ones for the different parts of the KKT-conditions. In order to keep the notation
simple, we decided to take the same ε for all parts. Furthermore, it is also clear that
an appropriate definition of an ε-stationary point depends on the particular class
of methods or even on the particular solver. For example, interior-point methods
generate iterates where nonnegativity constraints (on multipliers or slack variables)
automatically hold, hence the condition λi ≥ −ε could be replaced by the stronger
condition λi ≥ 0 in this case. SQP-type methods typically also guarantee that
nonnegativity constraints are satisfied, but due to numerical inaccuracies, there is
usually no guarantee for this. Finally, semismooth Newton methods applied to a
suitable reformulation of the KKT-conditions do not take into account any box
constraints (in general). Since our subsequent analysis should be independent of a
particular solver, we use the framework from Definition 2.1 that we believe is general
enough to cover all situations of interest.

2.2 Mathematical Programs with Complementarity Con-
straints

Now let us return to the MPEC (1). Again, we denote the set of feasible points by
X ⊆ Rn and define the following index sets for an x∗ ∈ X:

Ig(x
∗) := {i ∈ {1, . . . ,m} | gi(x∗) = 0},

I0+(x∗) := {i ∈ {1, . . . , q} | Gi(x
∗) = 0, Hi(x

∗) > 0},
I00(x

∗) := {i ∈ {1, . . . , q} | Gi(x
∗) = 0, Hi(x

∗) = 0},
I+0(x

∗) := {i ∈ {1, . . . , q} | Gi(x
∗) > 0, Hi(x

∗) = 0}.

Obviously, Ig(x
∗) is the set of active inequalities as defined for NLPs and the sets

I0+(x∗), I00(x
∗), and I+0(x

∗) form a partition of the set of complementarity con-
straints. If the point x∗ is clear from the context, we sometimes abbreviate the
index sets by Ig, I0+, I00, and I+0, respectively.

In contrast to NLPs, where KKT-points are the most common stationarity con-
cept, a number of different stationarity definitions for MPECs have emerged over the
last few years. Here, we will restrict ourselves to those important for our analysis.

Definition 2.2 Let x∗ be feasible for the MPEC (1). Then x∗ is said to be

(a) weakly stationary, if there are multipliers λ ∈ Rm, µ ∈ Rp, γ, ν ∈ Rq such that
the equation

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
q∑

i=1

γi∇Gi(x
∗)−

q∑
i=1

νi∇Hi(x
∗) = 0

and the conditions

λi ≥ 0, (i ∈ Ig), λi = 0 (i /∈ Ig), γi = 0 (i ∈ I+0), νi = 0 (i ∈ I0+)

are satisfied;

(b) C-stationary, if it is weakly stationary and γiνi ≥ 0 for all i ∈ I00;
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(c) M-stationary, if it is weakly stationary and either γi > 0, νi > 0 or γiνi = 0
for all i ∈ I00;

(d) strongly (S-) stationary, if it is weakly stationary and γi ≥ 0, νi ≥ 0 for all
i ∈ I00.

γi

νi

(a) weak stationarity

γi

νi

(b) C-stationarity

γi

νi

(c) M-stationarity

γi

νi

(d) S-stationarity

Figure 1: Geometric illustration of weak, C-, M-, and strong stationarity for an
index i from the bi-active set I00(x

∗)

The different conditions on the multipliers γi, νi with i ∈ I00(x∗) are illustrated in
Figure 1. Obviously, the stationarity concepts differ only in the conditions on these
multipliers and thus coincide when the biactive set I00(x

∗) is empty. Otherwise, the
following implications hold:

strong stationarity M-stationarity C-stationarity weak stationarity

The notion of weak and C-stationarity comes from the seminal paper [33], whereas
M-stationarity was introduced independently in [41, 27, 28, 39], and the concept
of strong stationarity may already be found in [25]. As pointed out in [9], strong
stationarity is equivalent to the standard KKT conditions of an MPEC.

In order to guarantee that a local minimum x∗ of (1) is a stationary point in
any of the previous senses, one needs to assume that a constraint qualification is
satisfied in x∗. Since most standard CQs are violated in feasible points of (1), many
MPEC-analogues of these CQs have been developed. Here, we mention only those
needed later.

Definition 2.3 A feasible point x∗ of the MPEC (1) is said to satisfy the

(a) MPEC-linear independence CQ (MPEC-LICQ), if the gradients

{∇gi(x∗) | i ∈ Ig} ∪ {∇hi(x∗) | i = 1, . . . , p}
∪ {∇Gi(x

∗) | i ∈ I00 ∪ I0+} ∪ {∇Hi(x
∗) | i ∈ I00 ∪ I+0}

are linearly independent;

(b) MPEC-Mangasarian Fromovitz CQ (MPEC-MFCQ), if the gradients

{∇gi(x∗) | i ∈ Ig} ∪
{
{∇hi(x∗) | i = 1, . . . , p}

∪ {∇Gi(x
∗) | i ∈ I00 ∪ I0+} ∪ {∇Hi(x

∗) | i ∈ I00 ∪ I+0}
}

are positively linearly independent;
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(c) MPEC-constant rank CQ (MPEC-CRCQ), if for any subsets I1 ⊆ Ig, I2 ⊆
{1, . . . , p}, I3 ⊆ I00 ∪ I0+ and I4 ⊆ I00 ∪ I+0 such that the gradients

{∇gi(x∗) | i ∈ I1}∪{∇hi(x∗) | i ∈ I2}∪{∇Gi(x
∗) | i ∈ I3}∪{∇Hi(x

∗) | i ∈ I4}

are linearly dependent, there exists a neighborhood N(x∗) of x∗ such that the
gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

remain linearly dependent for all x ∈ N(x∗);

(d) MPEC-constant positive linear dependence CQ (MPEC-CPLD), if for any
subsets I1 ⊆ Ig, I2 ⊆ {1, . . . , p}, I3 ⊆ I00 ∪ I0+ and I4 ⊆ I00 ∪ I+0 such that
the gradients

{∇gi(x∗) | i ∈ I1}∪
{
{∇hi(x∗) | i ∈ I2}∪{∇Gi(x

∗) | i ∈ I3}∪{∇Hi(x
∗) | i ∈ I4}

}
are positively linearly dependent, there exists a neighborhood N(x∗) of x∗ such
that the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

are linearly dependent for all x ∈ N(x∗).

In the definition of MPEC-MFCQ and MPEC-CPLD, we use the notion of positive
linear dependent vectors. A set of vectors ai, bj ∈ Rn, i ∈ I, j ∈ J is called positively
linearly dependent, if there exist scalars {αi}i∈I and {βj}j∈J with αi ≥ 0 for all i ∈ I,
not all of them being zero, such that∑

i∈I

αiai +
∑
j∈J

βjbj = 0.

Otherwise, the set of vectors is called positively linearly independent.
Obviously, linear independence implies positive linear independence. Hence, the

following implications hold between the MPEC-CQs:

MPEC-LICQ

MPEC-MFCQ

MPEC-CRCQ

MPEC-CPLD

Note that each of these CQs imply that a local minimum is M-stationary, see,
e.g., [10, 40], but only MPEC-LICQ is sufficient to guarantee strong stationarity
of a local minimum, cf. [9, 25, 30] and references therein. The MPEC-LICQ is
among the first MPEC-tailored constraint qualifications and may already be found
in [25, 33], the MPEC-MFCQ was introduced in [33], MPEC-CRCQ arises for the
first time in [35], and MPEC-CPLD is a more recent conditions from [15, 16]. Note
that MPEC-MFCQ is typically defined in a different way, but can easily be seen to
be equivalent to the above condition.
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3 The Global Relaxation by Scholtes

In [34], Scholtes suggested to replace the complementarity conditions by the inequal-
ities

Gi(x) ≥ 0, Hi(x) ≥ 0, ΦS
i (x; t) := Gi(x)Hi(x)− t ≤ 0 ∀i = 1, . . . , q

with a relaxation parameter t > 0. This transforms the feasible set of the comple-
mentarity constraints to the shape depicted in Figure 2.

√
t

Gi(x)

√
t

Hi(x)

Figure 2: Geometric interpretation of the relaxation by Scholtes

The relaxation leads to a sequence of relaxed nonlinear programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
Gi(x) ≥ 0 ∀ i = 1, . . . , q,
Hi(x) ≥ 0 ∀ i = 1, . . . , q,
ΦS

i (x; t) = Gi(x)Hi(x)− t ≤ 0 ∀ i = 1, . . . , q

(4)

with t ↓ 0, which we will denote by NLPS(t). From the original paper [34], the
following convergence result is known.

Theorem 3.1 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-
points of NLPS(tk). If xk → x∗ and MPEC-LICQ holds in x∗, then x∗ is a C-
stationary point of the MPEC (1).

In [16], it was shown that MPEC-MFCQ is in fact enough to guarantee C-stationarity
of a limit point. But what happens, if we consider εk-stationary points of NLP(tk)
instead of stationary points? In the case of Scholtes’ relaxation, the following result
shows that this does not have any effect as long as we take care about the speed of
convergence of εk ↓ 0.

Theorem 3.2 Let {tk} ↓ 0, εk = o(tk), {xk} be a sequence of εk-stationary points of
NLPS(tk) with multipliers (λk, µk, γk, νk, δk), and assume that xk → x∗. If MPEC-
MFCQ holds in x∗, then x∗ is a C-stationary point of the MPEC.

Proof: Since all xk are εk-stationary points of NLP(tk), we have∥∥∥∥∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)

−
q∑

i=1

γki∇Gi(x
k)−

q∑
i=1

νki ∇Hi(x
k) +

q∑
i=1

δki∇ΦS
i (xk; tk)

∥∥∥∥
∞
≤ εk
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with

gi(x
k) ≤ εk, λki ≥ −εk, |λki gi(xk)| ≤ εk ∀i = 1, . . . ,m,

|hi(xk)| ≤ εk ∀i = 1, . . . , p,
Gi(x

k) ≥ −εk, γki ≥ −εk, |γki Gi(x
k)| ≤ εk ∀i = 1, . . . , q,

Hi(x
k) ≥ −εk, νki ≥ −εk, |νki Hi(x

k)| ≤ εk ∀i = 1, . . . , q,
ΦS

i (xk; tk) ≤ εk, δki ≥ −εk, |δki ΦS
i (xk; tk)| ≤ εk ∀i = 1, . . . , q,

where ∇ΦS
i (xk; tk) = Hi(x

k)∇Gi(x
k) + Gi(x

k)∇Hi(x
k). Obviously, the limit x∗ is

feasible for the MPEC (1). We define the multipliers

δG,k
i :=

{
δkiHi(x

k) if i ∈ I00(x∗) ∪ I0+(x∗),

0 if i ∈ I+0(x
∗),

δH,k
i :=

{
δkiGi(x

k) if i ∈ I00(x∗) ∪ I+0(x
∗),

0 if i ∈ I0+(x∗).

Then we have∥∥∥∥∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)

−
q∑

i=1

γki∇Gi(x
k) +

q∑
i=1

δG,k
i ∇Gi(x

k) +
∑
i∈I+0

δkiHi(x
k)∇Gi(x

k)

−
q∑

i=1

νki ∇Hi(x
k) +

q∑
i=1

δH,k
i ∇Hi(x

k) +
∑
i∈I0+

δkiGi(x
k)∇Hi(x

k)

∥∥∥∥
∞
≤ εk.

We claim that the multipliers (λk, µk, γk, νk, δG,k, δH,k, δkI+0∪I0+) are bounded. If the
sequence were unbounded, we could assume without loss of generality convergence
of the sequence

(λk, µk, γk, νk, δG,k, δH,k, δkI+0∪I0+)

‖(λk, µk, γk, νk, δG,k, δH,k, δkI+0∪I0+)‖
→ (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H , δ̄I+0∪I0+) 6= 0.

Then the εk-stationarity of xk yields

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
q∑

i=1

γ̄i∇Gi(x
∗)−

q∑
i=1

ν̄i∇Hi(x
∗)

+

q∑
i=1

δ̄Gi ∇Gi(x
∗) +

q∑
i=1

δ̄Hi ∇Hi(x
∗) = 0,

(5)

where we took into account that Hi(x
k) → 0 (i ∈ I+0(x

∗)) and Gi(x
k) → 0 (i ∈

I0+(x∗)). For all i = 1, . . . ,m, the εk-stationarity implies λ̄i ≥ 0. If λ̄i > 0, we have
λki > c for some constant c > 0 and all k sufficiently large. This yields

0 ≤ |gi(x
k)|

tk
≤ εk
tk|λki |

≤ εk
tkc
→ 0
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due to εk = o(tk) and thus i ∈ Ig(x∗). Analogously, we have γ̄i ≥ 0 for all i = 1, . . . , q

and γ̄i > 0 implies Gi(x
k)

tk
→ 0 and thus i ∈ I00(x∗) ∪ I0+(x∗), and also ν̄i ≥ 0 for all

i = 1, . . . , q with ν̄i > 0 implying Hi(x
k)

tk
→ 0 and thus i ∈ I00(x∗) ∪ I+0(x

∗).

Now assume δ̄Gi < 0 for some i. This implies i ∈ I00(x∗) ∪ I0+(x∗) and δG,k
i =

δkiHi(x
k) < −c for some constant c > 0 and all k sufficiently large. If i ∈ I0+(x∗)

it would follow that δki < − c
2Hi(x∗)

< 0 for all k sufficiently large, a contradiction

to the εk-stationarity of xk. Hence, we know i ∈ I00(x∗), which implies |δki | → ∞.
Therefore, we can find a constant c > 0 such that |δki | > c for all k sufficiently large.
Using this, we get

0 ≤ |Gi(x
k)Hi(x

k)− tk|
tk

≤ εk
tk|δki |

≤ εk
tkc
→ 0. (6)

Similarly, if we assume δ̄Gi > 0 for some i, we know i ∈ I00(x∗) ∪ I0+(x∗) and δG,k
i =

δkiHi(x
k) > c for some constant c > 0 and all k sufficiently large. If i ∈ I00(x∗), this

implies |δki | → ∞, whereas for i ∈ I0+(x∗) we get |δki | > c
2Hi(x∗)

for all k sufficiently

large. In any case, we can find a constant c > 0 with |δki | > c for all k sufficiently
large and proceed as we did in the previous case in order to see that (6) holds.

Consequently, δ̄Gi 6= 0 implies Gi(x
k)Hi(x

k)
tk

→ 1 and thus Gi(x
k)

tk
9 0 and Hi(x

k)
tk

9
0. Using a completely symmetric argument, the same holds for all indices i with
δ̄Hi 6= 0. From these observations, we can conclude that

supp(γ̄) ∩ supp(δ̄G) = ∅ and supp(ν̄) ∩ supp(δ̄H) = ∅

Furthermore, we have

supp(γ̄) ∪ supp(δ̄G) ⊆ I00 ∪ I0+ and supp(ν̄) ∪ supp(δ̄H) ⊆ I00 ∪ I+0.

Hence, if (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H) 6= 0, (5) yields a contradiction to MPEC-MFCQ.
If, on the other hand, (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H) = 0, there has to be an i ∈ I0+(x∗) ∪

I+0(x
∗) with δ̄i 6= 0. First consider the case i ∈ I0+(x∗). Then by definition

δ̄Gi = lim
k→∞

δkiHi(x)

‖(λk, µk, γk, νk, δG,k, δH,k, δkI+0∪I0+)‖
= δ̄iHi(x

∗)︸ ︷︷ ︸
>0

6= 0,

a contradiction to the assumption δ̄Gi = 0. In an analogous way, we obtain a con-
tradiction in the case i ∈ I+0(x

∗).
Consequently, the sequence {(λk, µk, γk, νk, δG,k, δH,k, δkI+0∪I0+)} is bounded and

therefore converges to some limit (λ∗, µ∗, γ̃, ν̃, δ̃G, δ̃H , δ̃I+0∪I0+) at least on a subse-
quence. By passing to this subsequence, we can assume convergence on the whole
sequence. It is easy to see that the support of this limit has the same properties
we derived before for (λ̄, µ̄, γ̄, ν̄, δ̄G, δ̄H , δ̄I+0∪I0+). Thus, the following multipliers are
well defined:

γ∗i =


γ̃i if i ∈ supp(γ̃),

−δ̃Gi if i ∈ supp(δ̃G),

0 else

and ν∗i =


ν̃i if i ∈ supp(ν̃),

−δ̃Hi if i ∈ supp(δ̃H),

0 else

9



and x∗ together with the multipliers (λ∗, µ∗, γ∗, ν∗) is a weakly stationary point of
the MPEC (1).

In order to prove C-stationarity of x∗, assume that there were an i ∈ I00(x∗) such
that γ∗i ν

∗
i < 0. We consider without loss of generality only the case γ∗i < 0, ν∗i > 0,

the other one can be treated the same way. Since we know that γ̃i ≥ 0, this im-
plies i ∈ supp(δ̃G) and consequently δG,k

i = δkiHi(x
k) > 0 for all k sufficiently large.

Since i ∈ supp(δ̃G) also implies Gi(x
k)Hi(x

k)
tk

→ 1 (by a similar argument leading to

(6)), we can conclude i ∈ supp(δ̃H) because i ∈ supp(ν̃) would imply Hi(x
k)

tk
→ 0

in view of the εk-stationarity. Thus, we also have δH,k
i = δkiGi(x

k) < 0 for all k
sufficiently large. Hence, Gi(x

k) and Hi(x
k) have different signs, a contradiction to

Gi(x
k)Hi(x

k)
tk

→ 1. Thus, x∗ with the multipliers (λ∗, µ∗, γ∗, ν∗) is a C-stationary point

of the MPEC (1). �

4 The Smooth Relaxation by Lin and Fukushima

In contrast to the previous approach, Lin and Fukushima suggest in [24] to replace
the complementarity conditions by only two inequalities

ΦLF
i (x; t) := (Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀i = 1, . . . , q

and
ΦS

i (x; t2) := Gi(x)Hi(x)− t2 ≤ 0 ∀i = 1, . . . , q

with a relaxation parameter t > 0. This transforms the feasible set of the comple-
mentarity constraints to the shape depicted in Figure 3.

t

Gi(x)
t

Hi(x)

Figure 3: Geometric interpretation of the relaxation by Lin and Fukushima

Note that ΦS
i is the function from Scholtes but here the parameter t is replaced

by t2, whereas the potentially simple nonnegativity conditions are replaced by the
new function ΦLF

i . This relaxation leads to a different sequence of relaxed nonlinear
programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
ΦLF

i (x; t) = (Gi(x) + t)(Hi(x) + t)− t2 ≥ 0 ∀ i = 1, . . . , q,
ΦS

i (x; t2) = Gi(x)Hi(x)− t2 ≤ 0 ∀ i = 1, . . . , q
(7)
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with t ↓ 0, which we will denote by NLPLF (t). From the original paper [24], the
following convergence result is known.

Theorem 4.1 Let {tk} ↓ 0 and {(xk, λk, µk, τ k, δk)} be a sequence of KKT-points
of NLPLF (tk). If xk → x∗ and MPEC-LICQ holds in x∗, then x∗ is a C-stationary
point of the MPEC (1).

Reference [14] shows that the above result remains true under the weaker MPEC-
MFCQ condition. The next result shows that we still get C-stationary points in the
limit if we compute only εk-stationary points of the nonlinear programs NLPLF (tk)
provided that εk goes to zero sufficiently fast. A proof of this result is given in the
accompanying paper [22].

Theorem 4.2 Let {tk} ↓ 0, εk = o(t2k), {xk} be a sequence of εk-stationary points
of NLPLF (tk), and assume that xk → x∗. If MPEC-MFCQ holds in x∗, then x∗ is a
C-stationary point of the MPEC.

The assumptions in Theorem 4.2 are essentially identical to those from Theorem 3.2
for the Scholtes approach. Formally, the condition εk = o(t2k) looks stronger than
εk = o(tk), but recall that the Scholtes function ΦS

i is parameterized by t2 instead
of t in the Lin-Fukushima-regularization, hence these conditions coincide.

Since the proof of Theorem 4.2 is not given here, let us add some comments
why a result of this kind had to be expected, taking into account that we already
know from the previous section that the Scholtes-approach converges to C-stationary
points: The complementarity conditions Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 con-
sist of two parts, namely the two nonnegativity constraints and the pure comple-
mentarity relation. What makes the MPEC a complicated problem are these pure
complementarity relations. But these pure complementarity conditions are treated
by essentially the same function ΦS

i as in the approach by Scholtes, whereas the
less complicated nonnegativity constraints are replaced by the new function ΦLF

i .
Hence one can expect that the latter does not cause severe troubles, whereas the
former can be dealt with as in the Scholtes approach. In principle, these heuristics
justify the convergence to C-stationary points for the inexact Lin-Fukuhima relax-
ation method. Nevertheless, the detailed analysis is quite involved and needs some
extra techniques, hence we decided to treat this method in a separate paper [22],
also taking into account that the current one is already quite long.

5 The Local Relaxation by Steffensen and Ulbrich

In contrast to the previous two methods, Steffensen and Ulbrich suggest in [35] to
relax the feasible area for the complementarity constraints only around the kink in
the origin. To this end, they use a relaxation function ΦSU

i defined by

ΦSU
i (x; t) := Gi(x) +Hi(x)− ϕ

(
Gi(x)−Hi(x); t

)
for a function ϕ(.; t) : R −→ R given by

ϕ(a; t) :=

{
|a|, if |a| ≥ t,
tθ
(
a
t

)
, if |a| < t,
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where θ denotes a regularization function as defined in [15, 35]. In particular, θ has
the following properties:

– θ is twice continuously differentiable,

– θ(−1) = θ(1) = 1,

– θ′(−1) = −1 and θ′(1) = 1,

– θ(a) > |a| for all a ∈ (−1,+1),

– |θ′(a)| < 1 for all a ∈ (−1,+1).

This function ΦSU is used to relax the complementarity constraints by

Gi(x) ≥ 0, Hi(x) ≥ 0, ΦSU
i (x; t) ≤ 0 ∀i = 1, . . . , q.

The resulting shape of the feasible set of the complementarity constraints is depicted
in Figure 4.

t
Gi(x)

t

Hi(x)

Figure 4: Geometric interpretation of the relaxation by Steffensen and Ulbrich

Hence, we consider the following sequence of nonlinear programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
Gi(x) ≥ 0 ∀ i = 1, . . . , q,
Hi(x) ≥ 0 ∀ i = 1, . . . , q,
ΦSU

i (x; t) ≤ 0 ∀ i = 1, . . . , q,

with t ↓ 0, which we will denote by NLPSU(t). From [35], the following result is
known.

Theorem 5.1 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-
points of NLPSU(tk). If xk → x∗ and MPEC-CRCQ holds in x∗, then x∗ is a
C-stationary point of the MPEC (1).

In [15] this result was proven to hold under the weaker assumption of MPEC-CPLD
in the limit point; in particular, the statement therefore holds under MPEC-MFCQ.
Again, we want to analyze the price we have to pay if we replace the sequence of
KKT-points by a sequence of εk-stationary points. To do so, we need the following
auxiliary result, which is a direct consequence of the definition of Φi, see also [15, 35].

Lemma 5.2 The function ΦSU
i is continuously differentiable with gradient

∇ΦSU
i (xk; tk) = αk

i∇Gi(x
k) + βk

i∇Hi(x
k),
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where

(
αk
i

βk
i

)
:=



(
2
0

)
, if Gi(x

k)−Hi(x
k) ≤ −tk,(

0
2

)
, if Gi(x

k)−Hi(x
k) ≥ tk, 1− θ′

(
Gi(x

k)−Hi(x
k)

tk

)
1 + θ′

(
Gi(x

k)−Hi(x
k)

tk

)
 , if

∣∣Gi(x
k)−Hi(x

k)
∣∣ < tk.

Throughout this section, the scalars αk
i , β

k
i will always denote the numbers defined

in Lemma 5.2.
The following is the first main convergence result for the inexact local regular-

ization method from [35].

Theorem 5.3 Let {tk} ↓ 0, {εk} ↓ 0, {xk} be a sequence of εk-stationary points of
NLPSU(tk), and assume that xk → x∗. Then x∗ is a weakly stationary point of the
MPEC provided that MPEC-MFCQ holds at x∗.

Proof: Since all xk are εk-stationary points of NLPSU(tk), there exist multipliers
(λk, µk, γk, νk, δk) such that∥∥∥∇f(xk) +

m∑
i=1

λki∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)−

q∑
i=1

γki∇Gi(x
k)−

q∑
i=1

νki ∇Hi(x
k)

+

q∑
i=1

δki∇ΦSU
i (xk; tk)

∥∥∥
∞
≤ εk

with

gi(x
k) ≤ εk, λki ≥ −εk, |λki gi(xk)| ≤ εk ∀ i = 1, . . . ,m,

|hi(xk)| ≤ εk ∀ i = 1, . . . , p,
Gi(x

k) ≥ −εk, γki ≥ −εk, |γki Gi(x
k)| ≤ εk ∀ i = 1, . . . , q,

Hi(x
k) ≥ −εk, νki ≥ −εk, |νki Hi(x

k)| ≤ εk ∀ i = 1, . . . , q,
ΦSU

i (xk; tk) ≤ εk, δki ≥ −εk, |δki ΦSU
i (xk; tk)| ≤ εk ∀ i = 1, . . . , q.

This obviously implies that the limit x∗ is feasible for the MPEC (1). Taking into
account the expression for the gradient ∇Φi(x

k; tk) from Lemma 5.2 and using the
abbreviations

γ̃ki := γki − δki αk
i , ν̃ki := νki − δki βk

i ∀ i = 1, . . . , q,

we can rewrite the sum as∥∥∥∇f(xk)+
m∑
i=1

λki∇gi(xk)+

p∑
i=1

µk
i∇hi(xk)−

q∑
i=1

γ̃ki∇Gi(x
k)−

q∑
i=1

ν̃ki ∇Hi(x
k)
∥∥∥
∞
≤ εk.

We claim that the sequence
{

(λk, µk, γ̃k, ν̃k)
}

stays bounded. Otherwise, we may
assume without loss of generality that

(λk, µk, γ̃k, ν̃k)∥∥(λk, µk, γ̃k, ν̃k)
∥∥ → (λ̄, µ̄, γ̄, ν̄) 6= 0.
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Dividing the previous inequality by
∥∥(λk, µk, γ̃k, ν̃k)

∥∥ and taking the limit k → ∞,
we then obtain

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
q∑

i=1

γ̄i∇Gi(x
∗)−

q∑
i=1

ν̄i∇Hi(x
∗) = 0.

From the εk-stationarity, we can infer λ̄i ≥ 0 for all i = 1, . . . ,m, and λ̄i > 0 implies
gi(x

k)→ 0 and, consequently, i ∈ Ig(x∗).
We next claim that supp(γ̄) ⊆ I00(

∗) ∪ I0+(x∗). Suppose this is not true, i.e.,
there exists an index i with γ̄i 6= 0 and i ∈ I+0(x

∗). Then we have Gi(x
∗) > 0

and Hi(x
∗) = 0. In particular, the inequality Gi(x

k) − Hi(x
k) ≥ tk then holds for

all k sufficiently large. Hence Lemma 5.2 gives αk
i = 0 and, therefore, γ̃ki = γki .

Consequently, γ̄i 6= 0 yields |γki | = |γ̃ki | 9 0. It therefore follows from the εk-
stationarity that Gi(x

k) → 0, a contradiction to Gi(x
∗) > 0 and the continuity of

Gi. By a symmetric argument, we get supp(ν̄) ⊆ I00(x
∗) ∪ I+0(x

∗).
Hence, our equation reduces to

∑
i∈Ig

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
∑

i∈I0+∪I00

γ̄i∇Gi(x
∗)−

∑
i∈I+0∪I00

ν̄i∇Hi(x
∗) = 0.

Since λ̄i ≥ 0 for all i ∈ Ig(x
∗), the assumed MPEC-MFCQ therefore gives λ̄i =

0 (i ∈ Ig), µ̄i = 0 (i = 1, . . . , p), γ̄i = 0 (i ∈ I0+ ∪ I00), ν̄i = 0 (i ∈ I+0 ∪ I00). Since
the remaining multipliers were already shown to be zero, we get a contradiction to
(λ̄, µ̄, γ̄, ν̄) 6= 0. This shows that the sequence

{
(λk, µk, γ̃k, ν̃k)

}
is indeed bounded.

Subsequencing if necessary, we may therefore assume that

(λk, µk, γ̃k, ν̃k)→ (λ∗, µ∗, γ∗, ν∗).

By the same arguments used above, this implies λ∗i ≥ 0 for all i = 1, . . . ,m
and supp(λ∗) ⊆ Ig(x

∗), as well as supp(γ∗) ⊆ I00(x
∗) ∪ I0+(x∗) and supp(ν∗) ⊆

I00(x
∗) ∪ I+0(x

∗). This shows that x∗, together with the multipliers (λ∗, µ∗, γ∗, ν∗),
is a weakly stationary point of the MPEC. �

In order to verify C-stationarity, we need a stronger assumption regarding the choice
of the sequence {εk} and, more importantly, a condition regarding the way the
sequence {xk} is computed as an inexact solution of NLP(tk). The second main
convergence result is now formulated in the following theorem, where we recall that
the numbers αk

i , β
k
i are those defined in Lemma 5.2.

Theorem 5.4 Let {tk} ↓ 0, εk = o(tk), {xk} be a sequence of εk-stationary points
of NLPSU(tk), and assume that xk → x∗. Suppose further that there is a constant
c > 0 such that, for all i ∈ I00(x∗), we have

αk
i ≥ c and βk

i ≥ c for all sufficiently large k with
∣∣Gi(x

k)−Hi(x
k)
∣∣ < tk. (8)

Then x∗ is a C-stationary point of the MPEC provided that MPEC-MFCQ holds at
x∗.
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Proof: We know from Theorem 5.3 that the limit point x∗, together with the multi-
pliers

(
λ∗, µ∗, γ∗, ν∗

)
constructed in the previous proof, is at least weakly stationary.

In order to verify C-stationarity, assume that there exists an index i ∈ I00(x∗) such
that γ∗i ν

∗
i < 0. By symmetry, and subsequencing if necessary, we may assume

without loss of generality that

γ∗i = lim
k→∞

(γki − αk
i δ

k
i ) < 0 and ν∗i = lim

k→∞
(νki − βk

i δ
k
i ) > 0.

From the εk-stationarity of xk and the properties of θ, we know

lim inf
k→∞

γki ≥ 0, lim inf
k→∞

νki ≥ 0, lim inf
k→∞

δki ≥ 0 and αk
i , β

k
i ∈ [0, 2] ∀k ∈ N.

Hence, γ∗i < 0 and ν∗i > 0 implies αk
i δ

k
i > C and νki > C for some constant C > 0 and

all k sufficiently large. As in the proof of Theorem 3.2, the latter yields Hi(x
k)

tk
→ 0

from the εk-stationarity. We now distinguish three cases and derive a contradiction
for each of these cases.

Case 1: There is a subsequence such that Gi(x
k)−Hi(x

k) ≤ −tk holds for all k ∈ K
with some index set K ⊆ N. Division by tk shows that

−1 ≥ Gi(x
k)

tk
− Hi(x

k)

tk
≥ −εk

tk
− Hi(x

k)

tk
→K 0,

a contradiction.

Case 2: There is a subsequence such that Gi(x
k)−Hi(x

k) ≥ tk holds for all k ∈ K
for some K ⊆ N. Then Lemma 5.2 implies αk

i = 0 for all k ∈ K, a contradiction to
αk
i δ

k
i > C for all k sufficiently large.

Case 3: There is a subsequence such that
∣∣Gi(x

k)−Hi(x
k)
∣∣ < tk for all k ∈ K and

some index set K ⊆ N. Due to Hi(x
k)

tk
→ 0, this implies Gi(x

k)
tk
→K ρ∗ ∈ [−1, 1], at

least on a subsequence. More precisely, ρ∗ ∈ [0, 1] because, for negative Gi(x
k), the

εk-stationarity implies Gi(x
k) ∈ [−εk, 0) and thus Gi(x

k)
tk
→ 0. Due to αk

i δ
k
i > C for

all k sufficiently large and the boundedness of αk
i , we also know δki 9 0. Hence, the

εk-stationarity together with εk = o(tk) implies

0 = lim
k→K∞

|δki ||ΦSU
i (xk; tk)|
tk

= lim
k→K∞

|δki |
∣∣∣Gi(x

k) +Hi(x
k)− tkθ

(
Gi(x

k)−Hi(x
k)

tk

) ∣∣∣
tk

= lim
k→K∞

|δki | ·
(∣∣∣Gi(x

k)

tk
+
Hi(x

k)

tk
− θ
(Gi(x

k)

tk
− Hi(x

k)

tk

)∣∣∣),
i.e. ρ∗ − θ(ρ∗) = 0. According to the properties of θ, for ρ∗ ∈ [0, 1], this is only true
for ρ∗ = 1. Consequently, we know θ′(ρ∗) = 1. However, by Lemma 5.2, this implies
αk
i →K 0, a contradiction to the assumption (8).

Since one of these three cases must occur, it follows that the limit point x∗,
together with the multipliers (λ∗, µ∗, γ∗, ν∗), is a C-stationary point. �
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Let us take a closer look at condition (8). By Lemma 5.2, the coefficients αk
i and βk

i

are given by

αk
i = 1− θ′

(Gi(x
k)−Hi(x

k)

tk

)
and βk

i = 1 + θ′
(Gi(x

k)−Hi(x
k)

tk

)
if |Gi(x

k)−Hi(x
k)| < tk. Due to the properties of θ, we have αk

i , β
k
i ∈ (0, 2) with αk

i

going to zero if and only if Gi(x
k)−Hi(x

k)
tk

→ 1, and βk
i approaching zero if and only

if Gi(x
k)−Hi(x

k)
tk

→ −1. Hence, condition (8) is equivalent to the following condition:

There is a constant c̃ ∈ (0, 1) such that, for all i ∈ I00(x∗), we have

|Gi(x
k)−Hi(x

k)|
tk

≤ c̃ for all sufficiently large k with
∣∣Gi(x

k)−Hi(x
k)
∣∣ < tk.

A look at the proof of Theorem 5.4 (Case 3) reveals that it is necessary to keep αk
i

bounded away from zero only when Hi(x
k)

tk
→ 0, in which case we eventually have

Hi(x
k) ∈ (−c̃tk, c̃tk). A symmetrical argument shows that we only need to take care

of βk
i in case Gi(x

k)
tk
→ 0. From a geometrical point of view, this means that, for all

i ∈ I00(x∗), the pairs (Gi(x
k), Hi(x

k)) must, at least for k sufficiently large, not lie
in any of the two areas marked in Figure 5.

Gi(x)

Hi(x)

c̃t t

c̃t
t

Figure 5: Geometric interpretation of condition (8)

The following examples show that the two additional assumptions (namely εk =
o(tk) and condition (8)) are, in general, necessary in order to obtain a C-stationary
point. The first counterexample shows that the condition εk = o(tk) had to be
imposed in Theorem 5.4 (whereas this condition is not needed in Theorem 5.3 to
prove weak stationarity of a limit point).

Example 5.5 Consider the simple MPEC

minx2 − x1 s.t. x1 ≥ 0, x2 ≥ 0, x1x2 = 0. (9)

Furthermore, consider the particular regularization function

θ(y) :=
1

8

(
− y4 + 6y2 + 3

)
(10)

suggested in [37]. Note that it satisfies θ′(0) = 0. Now, the conditions for εt-
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stationarity of NLPSU(t) read as follows:∥∥∥∥(−1

1

)
− γt

(
1

0

)
− νt

(
0

1

)
+ δtαt

(
1

0

)
+ δtβt

(
0

1

)∥∥∥∥
∞
≤ εt,

xt1 ≥ −εt, γt ≥ −εt, |γtxt1| ≤ εt,

xt2 ≥ −εt, νt ≥ −εt, |νtxt2| ≤ εt,

ΦSU(xt; t) ≤ εt, δ
t ≥ −εt, |δkΦSU(xt; t)| ≤ εt.

Let us choose an abritrary t > 0 and let xt = (xt1, x
t
2) be the unique point in the

positive orthant satisfying xt1 = xt2 and ΦSU(xt; t) = 0. Then it is easy to see
that xt ≥ 0, xt → 0 for t ↓ 0, and xt1, x

t
2 ≤ t. Furthermore, taking into account

that θ′(0) = 0, it follows that αt = βt = 1 for all t > 0. Therefore, if we take
δt := 1, γt := 0, νt := 2, and εt := 2t for all t > 0, it is easy to see that the tuple
(xt, γt, νt, δt) satisfies all εt-stationarity conditions. Furthermore, assumption (8)
also holds at the origin x∗ := (0, 0). We have xt → x∗ as t ↓ 0 and x∗ is easily seen
to be weakly stationary, but not C-stationary. The only assumption that is violated
from Theorem 5.4 is the condition εt = o(t) since here we only have εt = O(t). ♦

The following counterexample shows that we also have to use an additional require-
ment like (8) in order to obtain convergence to C-stationary points.

Example 5.6 Let us consider once again the MPEC from (9). To define NLPSU(t),
we take once again the regularization function θ from (10). The construction of this
counterexample is a bit more tricky, and we therefore begin with some preliminary
observations. To this end, let us define the mapping

h(y) :=
y − θ(y)

1− θ′(y)
for y ∈ [0, 1].

Formally, this mapping is not well defined for y = 1 since θ′(1) = 1. However, an
easy calculation shows that we have

h(y) =
(y + 3)(y − 1)

4(y + 2)
,

so that the zero of the denominator cancels out. The last expression of h implies
that

h′(y) =
1

4
+

3

4(y + 2)2
> 0 ∀y ∈ [0, 1].

Hence h : [0, 1]→ [−3/8, 0] is strictly increasing. Consequently, for each t ∈ (0, 3/8),
there exists exactly one yt ∈ (0, 1) such that h(yt) = −t, and it follows that
limt↓0 y

t = 1.
Now, let us come back to the example from (9). For any t ∈ (0, 3/8) and the

corresponding yt constructed as above, we define

xt := (xt1, x
t
2) := (tyt, 0), γt := 0, νt := 1 +

1 + θ′(yt)

1− θ′(yt)
, δt :=

1

1− θ′(yt)
, εt := t2.
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Then we always have |xt1 − xt2| = tyt < t and, therefore

xt1 ≥ 0, γt ≥ 0, xt1γ
t ≤ εt,

xt2 ≥ 0, νt ≥ 1 ≥ 0, xt2ν
t ≤ εt,

ΦSU(xt; t) = xt1 + xt2 − tθ
(xt1 − xt2

t

)
= t
(
yt − θ(yt)

)
≤ 0,

δt ≥ 0,∣∣δtΦSU(xt; t)
∣∣ =

∣∣∣∣δt(xt1 + xt2 − tθ
(xt1 − xt2

t

))∣∣∣∣
=

∣∣∣∣t(yt − θ(yt))1− θ′(yt)

∣∣∣∣ =
∣∣th(yt)

∣∣ = t2 ≤ εt,∣∣∣∣− 1− γt + δt
(

1− θ′
(xt1 − xt2

t

))∣∣∣∣ =

∣∣∣∣− 1 +
1− θ′(yt)
1− θ′(yt)

∣∣∣∣ ≤ εt,∣∣∣∣1− νt + δt
(

1 + θ′
(xt1 − xt2

t

))∣∣∣∣ =

∣∣∣∣1− 1− 1 + θ′(yt)

1− θ′(yt)
+

1 + θ′(yt)

1− θ′(yt)

∣∣∣∣ ≤ εt.

In particular, all εt-stationarity conditions are satisfied. Furthermore, we have εt =
t2 = o(t). Nevertheless, limt↓0(x

t
1, x

t
2) = (0, 0) is not a C-stationary point. This does

not contradict Theorem 5.4 since condition (8) is violated for the particular sequence
{xt} constructed in this example: It is easy to verify that αt → 0 for t→ 0. ♦

6 The Nonsmooth Relaxation by Kadrani et al.

While the previous approaches all proposed to smooth the kink in the feasbile set,
Kadrani et al. [19] suggest to replace the complementarity conditions by the inequal-
ities

Gi(x)+t ≥ 0, Hi(x)+t ≥ 0, ΦKDB
i (x; t) := (Gi(x)−t)(Hi(x)−t) ≤ 0 ∀i = 1, . . . , q

with a relaxation parameter t > 0. Note that ΦKDB
i is continuously differentiable

with gradient

∇ΦKDB
i (x; t) :=

(
Gi(x)− t

)
∇Hi(x) +

(
Hi(x)− t

)
∇Gi(x) ∀ i = 1, . . . , q.

This relaxation transforms the feasible set of the complementarity constraints to the
nonsmooth shape depicted in Figure 6.
The relaxation leads to the following sequence of relaxed nonlinear programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
Gi(x) + t ≥ 0 ∀ i = 1, . . . , q,
Hi(x) + t ≥ 0 ∀ i = 1, . . . , q,
ΦKDB

i (x; t) = (Gi(x)− t)(Hi(x)− t) ≤ 0 ∀ i = 1, . . . , q

(11)

with t ↓ 0, which we will denote by NLPKDB(t). The following convergence result
is known from reference [19].
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Gi(x)
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Hi(x)

Figure 6: Geometric interpretation of the relaxation by Kadrani et al.

Theorem 6.1 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-
points of NLPKDB(tk). If xk → x∗ and MPEC-LICQ holds in x∗, then x∗ is an
M-stationary point of the MPEC (1).

The same result was subsequently shown to hold under the much weaker MPEC-
CPLD condition in [16]. Hence, this relaxation method is among those with the
strongest convergence properties known so far: All limit points are M-stationary,
whereas all previously discussed relaxation methods are guaranteed to converge to
C-stationary points only. However, when we replace KKT-points with ε-stationary
points, we lose most of this advantage. Strictly speaking, this is in contrast to
the statement in [19] where the authors claim that each limit point of certain εk-
stationary points (εk-stationarity in [19] is defined in a slightly different way, requir-
ing stronger conditions than in our setting) are M-stationary. However, as already
observed in [21], the proof is erroneous, and a counterexample given in [21] shows
that the statement itself is indeed not true even under the stronger εk-stationarity
conditions from [19]. In fact, without any additional assumptions, we only get con-
vergence to weakly stationary points, as shown in the following result.

Theorem 6.2 Let {tk} ↓ 0, {εk} ↓ 0, {xk} be a sequence of εk-stationary points of
NLPKDB(tk), and assume that xk → x∗. Then x∗ is a weakly stationary point of the
MPEC provided that MPEC-MFCQ holds at x∗.

Proof: Since xk is an εk-stationary point of NLPKDB(tk), there exist multipliers
(λk, µk, γk, νk, δk) such that∥∥∥∥∇f(xk) +

m∑
i=1

λki∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)−

q∑
i=1

γki∇Gi(x
k)−

q∑
i=1

νki ∇Hi(x
k)

+

q∑
i=1

δki∇ΦKDB
i (xk; tk)

∥∥∥∥
∞
≤ εk

with

gi(x
k) ≤ εk, λki ≥ −εk, |λki gi(xk)| ≤ εk ∀ i = 1, . . . ,m,

|hi(xk)| ≤ εk ∀ i = 1, . . . , p,
Gi(x

k) + tk ≥ −εk, γki ≥ −εk, |γki
(
Gi(x

k) + tk
)
| ≤ εk ∀ i = 1, . . . , q,

Hi(x
k) + tk ≥ −εk, νki ≥ −εk, |νki

(
Hi(x

k) + tk
)
| ≤ εk ∀ i = 1, . . . , q,

ΦKDB
i (xk; tk) ≤ εk, δki ≥ −εk, |δki ΦKDB

i (xk; tk)| ≤ εk ∀ i = 1, . . . , q.
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Hence, the limit x∗ is at least feasible for the MPEC. Taking into account the
expression for the gradient of ΦKDB

i and setting

γ̃ki := γki − δki
(
Hi(x

k)− tk
)
, ν̃ki := νki − δki

(
Gi(x

k)− tk
)
∀ i = 1, . . . , q,

we can rewrite the first inequality as∥∥∥∇f(xk)+
m∑
i=1

λki∇gi(xk)+

p∑
i=1

µk
i∇hi(xk)−

q∑
i=1

γ̃ki∇Gi(x
k)−

q∑
i=1

ν̃kk∇Hi(x
k)
∥∥∥
∞
≤ εk.

We claim that the sequence
{

(λk, µk, γ̃k, ν̃k)
}

stays bounded. Otherwise, we may
assume without loss of generality that

(λk, µk, γ̃k, ν̃k)∥∥(λk, µk, γ̃k, ν̃k)
∥∥ → (λ̄, µ̄, γ̄, ν̄) 6= 0.

Dividing the inequality by
∥∥(λk, µk, γ̃k, ν̃k)

∥∥ and taking k →∞ then yields

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
q∑

i=1

γ̄i∇Gi(x
∗)−

q∑
i=1

ν̄i∇Hi(x
∗) = 0.

From the εk-stationarity, we obtain λ̄i ≥ 0 for all i = 1, . . . ,m, and λ̄i > 0 implies
gi(x

∗) = 0, hence supp(λ̄) ⊆ Ig(x
∗).

We next want to show that supp(γ̄) ⊆ I00(x
∗) ∪ I0+(x∗). Suppose that there

exists an index i such that γ̄i 6= 0 and i ∈ I+0(x
∗). Then we have Gi(x

∗) > 0 and
Hi(x

∗) = 0. This implies Gi(x
k)± tk → Gi(x

∗) > 0 and thus, by the εk-stationarity,
γki → 0. At the same time, the εk-stationarity implies∣∣δki ΦKDB

i (xk; tk)
∣∣ =

∣∣δki (Hi(x
k)− tk)(Gi(x

k)− tk)
∣∣→ 0

and consequently δki (Hi(x
k) − tk) → 0. Combined, this gives us γ̃ki → 0. Conse-

quently, we have γ̄i = 0 in contrast to our choice of the index i.
By a symmetric argument, we can show supp(ν̄) ⊆ I00(x

∗)∪ I+0(x
∗). The above

equation therefore reduces to∑
i∈Ig

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
∑

i∈I00∪I0+

γ̄i∇Gi(x
∗)−

∑
i∈I00∪I+0

ν̄i∇Hi(x
∗) = 0.

MPEC-MFCQ now implies λ̄i = 0 (i ∈ Ig), µ̄i = 0 (i = 1, . . . , p), γ̄i = 0 (i ∈ I00 ∪
I0+), and ν̄i = 0 (i ∈ I00 ∪ I+0). Since all the other components were already shown
to be zero, we get a contradiction to the fact that (λ̄, µ̄, γ̄, ν̄) 6= 0.

Hence the sequence
{

(λk, µk, γ̃k, ν̃k)
}

is bounded. Without loss of generality,
we may assume that the entire sequence

{
(λk, µk, γ̃k, ν̃k)

}
converges to a limit

(λ∗, µ∗, γ∗, ν∗). But this limit is weakly stationary since it is easy to see that the
multipliers λ∗, µ∗, γ∗, ν∗ have the same properties as λ̄, µ̄, γ̄, ν̄. �

As pointed out in [21], it is indeed possible to provide examples where a sequence of
εk-stationary points generated by the relaxation method by Kadrani et al. converges
to a weakly stationary point which is not even C-stationary. Hence it is not possible
to expect more than what is shown in the previous proof.

We next want to verify that one may get stronger stationarity of the limit under
additional assumptions regarding the way the sequence {xk} is computed.

20



Theorem 6.3 Let {tk} ↓ 0, εk = o(tk), {xk} be a sequence of εk-stationary points
of NLPKDB(tk), and assume that xk → x∗ with MPEC-MFCQ holding in x∗. Sup-
pose further that there is a constant c > 0 such that, for all i ∈ I00(x∗) and all k
sufficiently large,

(a) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ (tk, (1 + c)tk)× ((1− c)tk, tk)
∪((1− c)tk, tk)× (tk, (1 + c)tk).

(12)

Then x∗ is a C-stationary point of the MPEC.

(b) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ (tk, (1 + c)tk)× ((1− c)tk, tk)
∪((1− c)tk, tk)× (tk, (1 + c)tk)
∪(tk, (1 + c)tk)2.

(13)

Then x∗ is an M-stationary point of the MPEC.

(c) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ ((1− c)tk, (1 + c)tk)× (tk,∞)
∪(tk,∞)× ((1− c)tk, (1 + c)tk).

(14)

Then x∗ is an S-stationary point of the MPEC.

Proof: We know from Theorem 6.2 that x∗, together with suitable multipliers
(λ∗, µ∗, γ∗, ν∗), is at least weakly stationary.

(a) In order to verify C-stationarity, it remains to show that γ∗i ν
∗
i ≥ 0 holds for all

i ∈ I00(x∗). By contradiction, without loss of generality, let us assume that there is
an index i ∈ I00(x∗) such that γ∗i < 0 and ν∗i > 0. From the previous proof, it then
follows that

γ∗i = lim
k→∞

(
γki − δki (Hi(x

k)− tk)
)
< 0

(possibly on a subsequence). Since lim infk γ
k
i ≥ 0 due to the εk-stationarity, it

follows that there is a constant C > 0 with δki (Hi(x
k)− tk) ≥ C for all k sufficiently

large. Due to Hi(x
k)− tk → 0, this implies |δki | → ∞. From the εk-stationarity, we

know that only δki →∞ is possible and hence Hi(x
k) > tk holds for all k sufficiently

large. From this and εk = o(tk), we can infer

νki

(Hi(x
k)

tk
+ 1
)

= νki

(Hi(x
k) + tk
tk

)
→ 0 =⇒ νki → 0.

The same reasoning combined with δki (Hi(x
k)− tk) ≥ C gives us

δki
(
Hi(x

k)− tk
)(Gi(x

k)

tk
− 1
)

=
δki ΦKDB

i (xk; tk)

tk
→ 0 =⇒ Gi(x

k)

tk
→ 1,

i.e. Gi(x
k) ∈ ((1− c)tk, (1 + c)tk) for all k sufficiently large. If we take a look at the

same limit from a different angle, we also get

δki (Gi(x
k)− tk)

(Hi(x
k)

tk
− 1
)

=
δki ΦKDB

i (xk; tk)

tk
→ 0.

21



Now, let us use assumption (12). Due to Hi(x
k) > tk and Gi(x

k) ∈ ((1− c)tk, (1 +
c)tk) for all k sufficiently large, either Hi(x

k) ≥ (1 + c)tk or Gi(x
k) ≥ tk or both

has to hold for all k sufficiently large. At least one of the two possibilities has
to be satisfied on a whole subsequence K ⊆ N. In the first case, it follows that
δki (Gi(x

k)− tk)→K 0 and thus

ν∗i = lim
k→K∞

(
νki − δki (Gi(x

k)− tk)
)

= 0.

In the second case, we get at least ν∗i ≤ 0. In both cases, we therefore get a con-
tradiction to the assumption ν∗i > 0. Hence x∗ is a C-stationary point of the MPEC.

(b) Since (13) implies (12), it follows from statement (a) that x∗ is at least C-
stationary. To see that x∗ is M-stationary, it remains to show that the following two
implications hold for every index i ∈ I00(x∗):(

γ∗i < 0 =⇒ ν∗i = 0
)

and
(
ν∗i < 0 =⇒ γ∗i = 0

)
.

Without loss of generality, let us only consider the first case γ∗i < 0 for some index
i ∈ I00(x∗). Following the proof of part (a), we can deduce that

Hi(x
k) > tk, νki → 0, δki

(
Gi(x

k)− tk
)(Hi(x

k)

tk
− 1
)
→ 0,

Gi(x
k) ∈

(
(1− c)tk, (1 + c)tk

)
for all k sufficiently large.

Now, using assumption (13), there are only two possibilities left, namely Hi(x
k) ≥

(1 + c)tk, which implies ν∗i = 0 in the same way as in the proof of part (a), and
Gi(x

k) = tk, which also gives ν∗i = 0. Thus, in each of these two cases, x∗ is an
M-stationary point of the MPEC.

(c) Here we have to show that γ∗i ≥ 0 and ν∗i ≥ 0 holds for all i ∈ I00(x∗). Assume,
again without loss of generality, that we have γ∗i < 0 for some index i ∈ I00(x

∗).
Following the proof of part (a), this implies Hi(x

k) > tk for all k sufficiently large

and Gi(x
k)

tk
→ 1. This, however, contradicts assumption (14). Consequently, x∗ is an

S-stationary point of the MPEC. �

Figure 7 illustrates the additional conditions from Theorem 6.3, which require that
the iterates (Gi(x

k), Hi(x
k)) do not lie in any of the marked areas for all i ∈ I00(x∗)

and all k sufficiently large.

7 The L-Shaped Relaxation from [21]

To keep the strong convergence properties of the relaxation by Kadrani et al. but
obtain a more favorable feasible set, the authors suggested in [21] to replace the
complementarity conditions by the inequalities

Gi(x
k) ≥ 0, Hi(x

k) ≥ 0, ΦKS
i (x; t) ≤ 0 ∀i = 1, . . . , q
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(b) Condition (13)
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(c) Condition (14)

Figure 7: Geometric interpretation of the conditions from Theorem 6.3

with a relaxation parameter t > 0. The function ΦKS
i is defined piecewise as follows

ΦKS
i (x; t) =

{
(Gi(x)− t)(Hi(x)− t) if Gi(x) +Hi(x) ≥ 2t,

−1
2

(
(Gi(x)− t)2 + (Hi(x)− t)2

)
if Gi(x) +Hi(x) < 2t.

This transforms the feasible set of the complementarity constraints to the shape
depicted in Figure 8.

t
Gi(x)

t

Hi(x)

Figure 8: Geometric interpretation of the relaxation by Kanzow and Schwartz

The relaxation leads to the following sequence of relaxed nonlinear programs

min f(x) s.t. gi(x) ≤ 0 ∀ i = 1, . . . ,m,
hi(x) = 0 ∀ i = 1, . . . , p,
Gi(x) ≥ 0 ∀ i = 1, . . . , q,
Hi(x) ≥ 0 ∀ i = 1, . . . , q,
ΦKS

i (x; t) ≤ 0 ∀ i = 1, . . . , q

(15)

with t ↓ 0, which we will denote by NLPKS(t). From the report version [20] of the
paper [21], the following convergence result is known.

Theorem 7.1 Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-
points of NLPKS(tk). If xk → x∗ and MPEC-CPLD holds in x∗, then x∗ is an
M-stationary point of the MPEC (1).

Additionally, the following result for inexactly solved subproblems was derived in
[21]. Note, however, that this paper uses a slightly stronger definition of ε-stationary
points than the one applied here.
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Theorem 7.2 Let {tk} ↓ 0, εk = o(tk), {xk} be a sequence of εk-stationary points
of NLPKS(tk), and assume that xk → x∗. If MPEC-LICQ holds in x∗, then x∗ is a
weakly stationary point of the MPEC.
If, additionally, there is a subsequence K ⊆ N such that

Gi(x
k) ≤ tk, Hi(x

k) ≤ tk ∀k ∈ K, ∀i ∈ I00(x∗) (16)

holds, then x∗ is a C-stationary point of the MPEC.

Now, we will improve this result by proving it for the more general definition of
ε-stationary points used here and by refining the additional assumption needed to
guarantee that the limit point is more than weakly stationary.

Theorem 7.3 Let {tk} ↓ 0, {εk} ↓ 0, {xk} be a sequence of εk-stationary points of
NLPKS(tk), and assume that xk → x∗ with MPEC-MFCQ holding in x∗. Then x∗

is a weakly stationary point of the MPEC.
Suppose further that εk = o(tk) and there is a constant c > 0 such that, for all
i ∈ I00(x∗) and all k sufficiently large,

(a) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ (tk, (1 + c)tk)× ((1− c)tk, tk)
∪((1− c)tk, tk)× (tk, (1 + c)tk).

(17)

Then x∗ is a C-stationary point of the MPEC.

(b) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈ (tk, (1 + c)tk)× ((1− c)tk, tk)
∪((1− c)tk, tk)× (tk, (1 + c)tk)
∪(tk, (1 + c)tk)2 ∪ ((1− c)tk, tk)2.

(18)

Then x∗ is an M-stationary point of the MPEC.

(c) the iterates (Gi(x
k), Hi(x

k)) satisfy

(Gi(x
k), Hi(x

k)) /∈
(
((1− c)tk, (1 + c)tk)× ((1− c)tk,∞)
∪((1− c)tk,∞)× ((1− c)tk, (1 + c)tk)

)
\ {(tk, tk)}.

(19)
Then x∗ is an S-stationary point of the MPEC.

Proof: Since all xk are εk-stationary points of NLP(tk), we have∥∥∥∥∇f(xk) +
m∑
i=1

λki∇gi(xk) +

p∑
i=1

µk
i∇hi(xk)

−
q∑

i=1

γki∇Gi(x
k)−

q∑
i=1

νki ∇Hi(x
k) +

q∑
i=1

δki∇ΦKS
i (xk; tk)

∥∥∥∥
∞
≤ εk

with

gi(x
k) ≤ εk, λki ≥ −εk, |λki gi(xk)| ≤ εk ∀i = 1, . . . ,m,

|hi(xk)| ≤ εk ∀i = 1, . . . , p,
Gi(x

k) ≥ −εk, γki ≥ −εk, |γki Gi(x
k)| ≤ εk ∀i = 1, . . . , q,

Hi(x
k) ≥ −εk, νki ≥ −εk, |νki Hi(x

k)| ≤ εk ∀i = 1, . . . , q,
ΦKS

i (xk; tk) ≤ εk, δki ≥ −εk, |δki ΦKS
i (xk; tk)| ≤ εk ∀i = 1, . . . , q,
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where we ΦKS
i (xk; tk) is defined as before with the gradient

∇ΦKS
i (xk; tk)=

{
(Hi(x

k)− tk)∇Gi(x
k) + (Gi(x

k)− tk)∇Hi(x
k) if Gi(x

k) +Hi(x
k) ≥ 2tk,

−(Gi(x
k)− tk)∇Gi(x

k)− (Hi(x
k)− tk)∇Hi(x

k) else.

Hence, the limit x∗ is obviously feasible for the MPEC (1). We define the multipliers

γ̃ki :=

{
γki − δki (Hi(x

k)− tk) if Gi(x
k) +Hi(x

k) ≥ 2tk,

γki + δki (Gi(x
k)− tk) else,

ν̃ki :=

{
νki − δki (Gi(x

k)− tk) if Gi(x
k) +Hi(x

k) ≥ 2tk,

νki + δki (Hi(x
k)− tk) else.

Then we have∥∥∥∇f(xk)+
m∑
i=1

λki∇gi(xk)+

p∑
i=1

µk
i∇hi(xk)−

q∑
i=1

γ̃ki∇Gi(x
k)−

q∑
i=1

ν̃ki ∇Hi(x
k)
∥∥∥
∞
≤ εk.

We claim that the multipliers (λk, µk, γ̃k, ν̃k) are bounded. If the sequence were
unbounded, we could assume without loss of generality convergence of the sequence

(λk, µk, γ̃k, ν̃k)

‖(λk, µk, γ̃k, ν̃k‖
→ (λ̄, µ̄, γ̄, ν̄) 6= 0.

Then the εk-stationarity of xk yields

m∑
i=1

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
q∑

i=1

γ̄i∇Gi(x
∗)−

q∑
i=1

ν̄i∇Hi(x
∗) = 0.

Additionally, the εk-stationarity yields λ̄i ≥ 0 for all i = 1, . . . ,m, and λ̄i > 0 implies
gi(x

∗) = 0, hence supp(λ̄) ⊆ Ig(x
∗).

Now consider an i ∈ I+0(x
∗). This implies Gi(x

k) + Hi(x
k) ≥ 2tk for all k

sufficiently large and thus γ̃ki = γki − δki (Hi(x
k) − tk). The εk-stationarity yields

γki Gi(x
k)→ 0, hence γki → 0, and

δki ΦKS
i (xk; tk) = δki (Hi(x

k)− tk)(Gi(x
k)− tk)→ 0,

thus δki (Hi(x
k)−tk)→ 0. Consequently, we have γ̄i = 0. This shows that supp(γ̄) ⊆

I00(x
∗)∪ I0+(x∗). By a symmetric argument, we obtain supp(ν̄) ⊆ I00(x

∗)∪ I+0(x
∗).

Thus, the equation above reduces to

∑
i∈Ig

λ̄i∇gi(x∗) +

p∑
i=1

µ̄i∇hi(x∗)−
∑

i∈I00∪I0+

γ̄i∇Gi(x
∗)−

∑
i∈I00∪I+0

ν̄i∇Hi(x
∗) = 0

with λ̄i ≥ 0 for all i ∈ Ig(x∗). Hence MPEC-MFCQ implies λ̄i = 0 (i ∈ Ig), µ̄i =
0 (i = 1, . . . , p), γ̄i = 0 (i ∈ I00 ∪ I0+), and ν̄i = 0 (i ∈ I00 ∪ I+0). Altogether, we get
a contradiction to the fact that (λ̄, µ̄, γ̄, ν̄) 6= 0.

Hence the sequence
{

(λk, µk, γ̃k, ν̃k)
}

is bounded. Without loss of general-
ity, we can assume that the entire sequence

{
(λk, µk, γ̃k, ν̃k)

}
converges to a limit
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(λ∗, µ∗, γ∗, ν∗). The limit is then weakly stationary since the multipliers λ∗, µ∗, γ∗, ν∗

have the same properties as λ̄, µ̄, γ̄, ν̄.

(a) To show that x∗ is C-stationary under the additional assumption from (a), it
suffices to show that γ∗i ν

∗
i ≥ 0 for all i ∈ I00(x∗). To this end, it is enough to consider

the case where γ∗i < 0 or ν∗i < 0. Without loss of generality, let us consider the case
where γ∗i < 0 for some index i ∈ I00(x∗). We will show that this implies ν∗i ≤ 0 by
considering the following two possible cases separately.

Case 1: There is a subsequence K ⊆ N with Gi(x
k) + Hi(x

k) ≥ 2tk for all
k ∈ K. Then we have γ∗i = limk→K∞

(
γki − δki (Hi(x

k) − tk)
)
< 0, which, due to

lim infk→∞ γ
k
i ≥ 0, implies δki (Hi(x

k)− tk) ≥ C for a constant C > 0 and all k ∈ K
sufficiently large. Because of Hi(x

k) − tk → 0, it follows that |δki | →K ∞. Thanks
to the εk-stationarity, only δki →K ∞ and thus Hi(x

k) > tk for all k ∈ K sufficiently
large is possible. Using this, the εk-stationarity, and εk = o(tk), we get

νki
Hi(x

k)

tk
→ 0 =⇒ νki →K 0

and

δki
(
Hi(x

k)− tk
)(Gi(x

k)

tk
− 1
)

=
δki ΦKS

i (xk; tk)

tk
→ 0 =⇒ Gi(x

k)

tk
→K 1.

By assumption (17), Hi(x
k) > tk and Gi(x

k)
tk
→K 1 is possible only if Hi(x

k) ≥
(1 + c)tk or Gi(x

k) ≥ tk. In the first case, the εk-stationarity implies

δki
(
Gi(x

k)− tk
)(Hi(x

k)

tk
− 1
)
→ 0 =⇒ δki

(
Gi(x

k)− tk
)
→K 0

and thus
ν∗i = lim

k→K∞

(
νki − δki (Gi(x

k)− tk)
)

= 0.

In the second case, we get at least ν∗i ≤ 0.

Case 2: There is a subsequence K ⊆ N with Gi(x
k) + Hi(x

k) < 2tk for all
k ∈ K. Then we have γ∗i = limk→K∞

(
γki + δki (Gi(x

k) − tk)
)
< 0, which, due to

lim infk→∞ γ
k
i ≥ 0, implies δki (Gi(x

k) − tk) ≤ −C for a constant C > 0 and all
k ∈ K sufficiently large. Analogously to the previous case, this implies δki →K ∞
and Gi(x

k) < tk for all k ∈ K sufficiently large. Furthermore, we note that the
εk-stationarity and εk = o(tk) implies, in this case,∣∣∣∣δki (Gi(x

k)− tk
)(Gi(x

k)

tk
− 1

)∣∣∣∣ =

∣∣∣∣δki (Gi(x
k)− tk)2

tk

∣∣∣∣
≤

∣∣∣∣δki (Gi(x
k)− tk)2 + (Hi(x

k)− tk)2

tk

∣∣∣∣
= 2

∣∣∣∣δki ΦKS
i (xk; tk)

tk

∣∣∣∣→ 0,

(20)
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so that the previous discussion immediately yields Gi(x
k)

tk
→K 1. We claim that this

implies Hi(x
k)

tk
→K 1. Due to Gi(x

k) +Hi(x
k) < 2tk for all k ∈ K, we know already

Hi(x
k)

tk
≤ 2− Gi(x

k)

tk
→K 2− 1 = 1

and from the εk-stationarity and εk = o(tk) we get

Hi(x
k)

tk
≥ −εk

tk
→ 0.

Now assume that there was a subsequence K ′ ⊆ K with Hi(x
k)

tk
→K′ C

′ with C ′ ∈
[0, 1). This would imply Hi(x

k) ≤ Gi(x
k) for all k ∈ K ′ sufficiently large. Since we

can also deduce

δki
(
Hi(x

k)− tk
)(Hi(x

k)

tk
− 1

)
→ 0

in a way analogous to (20), it then follows that δki (Hi(x
k)−tk)→K′ 0. By combining

these facts and δki →K ∞, we would get

−C ≥ δki
(
Gi(x

k)− tk
)
≥ δki

(
Hi(x

k)− tk
)
→K′ 0,

a contradiction. Thus, we have proven Hi(x
k)

tk
→K 1. Next, let us consider ν∗i =

limk→∞
(
νki +δki (Hi(x

k)−tk)
)
. From the εk-stationarity, εk = o(tk), and Hi(x

k)
tk
→K 1,

we can infer νki →K 0. Due to assumption (17) and Gi(x
k) < tk, Gi(x

k)
tk
→K 1, we

know Hi(x
k) ≤ tk for all k ∈ K sufficiently large. Together, this implies

ν∗i = lim
k→∞

(
νki + δki (Hi(x

k)− tk)
)
≤ 0.

Thus, both cases guarantee ν∗i ≤ 0, hence γ∗i ν
∗
i ≥ 0 holds, i.e. x∗ is a C-stationary

point of the MPEC.

(b) To prove M-stationarity, it suffices to show that γ∗i < 0 implies ν∗i = 0 for any
index i ∈ I00(x∗), since a similar argument can be used to see that ν∗i < 0 implies
γ∗i = 0. To verify this statement, we can follow the proof of part (a) and therefore
only state the differences.

Case 1: Under assumption (18), Hi(x
k) > tk and Gi(x

k)
tk
→K 1 is possible only if

either Hi(x
k) ≥ (1 + c)tk, which immediately gives ν∗i = 0, or Gi(x

k) = tk, which
also implies ν∗i = limk→K∞

(
νki − δki (Gi(x

k)− tk)
)

= 0.

Case 2: Under assumption (18), Gi(x
k) < tk, Gi(x

k)
tk
→K 1, and Hi(x

k)
tk
→K 1 is

possible only if Hi(x
k) = tk, which implies

ν∗i = lim
k→∞

(
νki + δki (Hi(x

k)− tk)
)

= 0.

Thus, both cases guarantee ν∗i = 0, i.e. x∗ is an M-stationary point of the MPEC.

27



(c) Finally, to prove S-stationarity, we show that assumption (19) contradicts γ∗i < 0
in both cases (as well as ν∗i < 0 by a symmetric argument).

Case 1: In the first case, γ∗i < 0 implies Hi(x
k) > tk and Gi(x

k)
tk
→K 1, a contradic-

tion to (19).

Case 2: Here, γ∗i < 0 implies Gi(x
k) < tk, Gi(x

k)
tk
→K 1, and Hi(x

k)
tk
→K 1, a contra-

diction to (19). �

Figure 9 illustrates the additional conditions from Theorem 7.3, which require that
the iterates (Gi(x

k), Hi(x
k)) do not lie in any of the marked areas for all i ∈ I00(x∗)

and all k sufficiently large.

t
Gi(x)

t

Hi(x)

(a) Condition (17)

t
Gi(x)

t

Hi(x)

(b) Condition (18)

t
Gi(x)

t

Hi(x)

(c) Condition (19)

Figure 9: Geometric interpretation of the conditions from Theorem 7.3

Obviously, the assumptions needed here for M- and S-stationarity differ slightly
from those used in Theorem 6.3. The necessity of this is illustrated in the following
example.

Example 7.4 Consider the two-dimensional MPEC

min−x1 − x2 s.t. 0 ≤ x1 ⊥ x2 ≥ 0

and sequences t ↓ 0, εt = t2. Then it is easy to verify that the points xt =
(
(1 −

t)t, (1− t)t
)T

are εt-stationary points of NLPKS(t) with the multipliers γt = 0, νt =
0, δt = 1

εt
. On the other hand xt → (0, 0)T , which is a C-stationary point of the

MPEC and satisfies even MPEC-LICQ, but is not an M-stationary point. ♦

8 Final Remarks

This paper shows that the relaxation methods by Scholtes [34] and by Lin and
Fukushima [24] (the latter is formally treated in the accompanying paper [22]) con-
verge to C-stationary points even if the corresponding NLP-subproblems are only
solved inexactly in the sense that an ε-stationary point is computed, whereas a cor-
responding analysis for the other relaxation methods from [19, 21, 35] yields weakly
stationary points only. This is surprising since some of the other relaxation meth-
ods, namely [19, 21], have stronger convergence properties than the ones from [34]
and [24] when exact KKT-points are computed for the NLP-subproblems.
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Of course, the kind of stationarity that one can obtain depends very much on
the notion of ε-stationarity. In this paper, we use a rather weak formulation of
ε-stationarity since this seems to cover all interesting termination criteria used in
existing NLP software, therefore making our results independent of any particular
NLP-solver. Hence one might expect to get better convergence results for some
inexact relaxation methods if a stronger notion of ε-stationarity is employed. We
believe, however, that this is not true as long as this stronger notion of ε-stationarity
is still a realistic one that can be implemented by a suitable solver as an inexact
termination criterion. To this end, we note that the definition of ε-stationarity used
in the two previous papers [19, 21] is, in fact, stronger, but that counterexample
given in [21] indicates that both the nonsmooth relaxation scheme by Kadrani et
al. and the the L-shaped relaxation method by the authors converge to weakly
stationary points only even under this stronger notion of ε-stationarity. Moreover,
we stress that the other counterexamples provided in this paper also satisfy much
stronger conditions than those required by the definition of ε-stationarity here.
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