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Abstract. An algorithm for the solution of a semismooth system of equations with box
constraints is described. The method is an affine-scaling trust-region method. All iterates
generated by this method are strictly feasible. In this way, possible domain violations
outside or on the boundary of the box are avoided. The method is shown to have strong
global and local convergence properties under suitable assumptions, in particular, when
the method is used with a special scaling matrix. Numerical results are presented for a
number of problems arising from different areas.
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1 Introduction

We consider the nonlinear system of equations with bound constraints

F (x) = 0, x ∈ Ω :=
{
x ∈ Rn

∣∣ li ≤ xi ≤ ui ∀i = 1, . . . , n
}
, (1)

where F : O −→ Rn is at least semismooth on the open set O containing the box Ω
and where the lower and upper bounds satisfy the relation −∞ ≤ li < ui ≤ +∞ for all
i = 1, . . . , n.

The corresponding unconstrained problem with Ω = Rn and F continuously differen-
tiable is discussed in several books including [1, 16, 18, 31, 32, 40]. Extensions of the
classical Newton method for the solution of the unconstrained problem with F being semi-
smooth may be found in [43, 42, 41, 22]. Despite the popularity of the unconstrained
system of nonlinear equations, the number of references dealing with the box constrained
problem (1) (and with F being either smooth or nonsmooth) is still very limited. Currently,
we are only aware of the papers [2, 3, 4, 5, 28, 29, 33, 44, 47].

Most of these papers, however, appeared during the last few years, and we believe that
the box constrained problem (1) is of increasing interest and quite important for several
reasons. In fact, in a number of applications, the mapping F is not defined outside the box
F . In some other situations, the unconstrained problem F (x) = 0 might have solutions
outside the box Ω which have no physical meaning, e.g., negative concentrations in chemical
equilibrium problems are completely useless. Furthermore, if one has a good idea that a
solution should exist in a certain area, this kind of information can be used by putting
suitable bounds on the variables.

The main motivation for the current work is a series of papers by Bellavia et al. [2, 3, 4].
These authors consider a class of affine-scaling interior-point methods for the solution of
problem (1) which seem to have very good numerical properties. In particular, in our
experience, the practical performance of these methods is better than the behaviour of the
active-set type methods discussed in [28, 29, 44]. However, Bellavia et al. consider smooth
equations only, and in order to show that a certain inner iteration is finite, they assume
that the Jacobian F ′(x) is nonsingular. Our aim is therefore to generalize their method to
the class of semismooth equations (which is important if we want to apply our method to
complementarity problems, for example) and to get rid of the nonsingularity assumption.
We also try to simplify their method and the corresponding convergence analysis by using
a simple rule for the transition from global to local fast convergence.

The method suggested by Ulbrich [47] is also able to deal with semismooth equations
and has similar global and local convergence properties. However, it is not an interior-point
method. The iterates in Ulbrich’s method belong to Ω, but not to the interior of this set.
This causes some practical problems in those applications where the mapping F is not
defined on certain parts of the boundary of Ω due to some logarithmic terms, for example.
Difficulties of this kind occur quite frequently in some economic equilibrium problems, cf.
[24]. Therefore, although we assume for our theoretical analysis that F is defined on the
open neighbourhood O of Ω, we feel that it is quite important from a practical point of
view that all iterates stay in the interior of the box Ω.
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While there are not so many papers dealing with problem (1), there is a huge literature
with different methods for the solution of box constrained optimization problems, and we
refer the reader to [6, 7, 10, 11, 12, 13, 17, 20, 21, 26, 27, 30, 34, 35, 36, 45, 48, 49, 50], for
example. These references include active set-type methods, projected Newton methods,
penalty methods, pattern search, and affine-scaling interior-point methods. The latter
class of methods is of particular interest for our work and is the subject of the papers
[10, 11, 17, 27, 48, 49]. They play an important role for the construction of our algorithm
because we will use a certain bound constrained optimization problem in order to globalize
our local method for the solution of the box constrained system of nonlinear equations (1).

We stress, however, that there is a significant difference in applying affine-scaling meth-
ods to either bound constrained optimization problems or to nonlinear equations with box
constraints. In the former case, the affine-scaling approach is used in order to get good local
convergence properties, while in the latter the local convergence is, more or less, guaran-
teed by a suitable modification of the standard Newton step for the unconstrained problem
F (x) = 0, whereas the affine-scaling approach is used in order to get suitable global con-
vergence properties. Therefore, we either use different assumptions on the affine-scaling
matrices depending on the kind of problem we want to solve, or we use the same assump-
tions, but then they play a different role.

The paper is organized as follows: We derive our affine-scaling trust-region method for
the solution of (1) in Section 2. The global and local convergence properties of this method
are investigated in Sections 3 and 4, respectively. Implementation details and numerical
results for different classes of problems are given in Section 5, and we close with some final
remarks in Section 6.

A few words regarding our notation: The symbol ‖·‖ denotes the Euclidean vector norm
or the induced (spectral) matrix norm, whereas ‖ · ‖∞ is the maximum norm in Rn. The
Euclidean projection of a vector x ∈ Rn onto the box Ω is denoted by PΩ(x). The symbol
Bε(x

∗) stands for the Euclidean ball of radius ε > 0 around the point x∗ ∈ Rn. Given a
positive semidefinite matrix A ∈ Rn×n, we write A1/2 for its positive semidefinite square
root. Furthermore, given a mapping G : Rn → Rm, we write G′(x) for the Jacobian of G at
x (if G is differentiable), and ∂G(x) for the generalized Jacobian of G at x (if G is locally
Lipschitz), see Clarke [9]. Note, in particular, that ∂G(x) = {G′(x)} if G is continuously
differentiable in x. We often use the short-hand notation Gk for the mapping G evaluated
at a point xk ∈ Rn. Finally, several properties of (strongly) semismooth functions will be
exploited in our proofs. Although we give precise references in all cases, the reader not
familiar with this class of functions may consult the original works [43, 42] or have a look
at the corresponding section in the book [22] for further details.

2 Description of the Method

This section gives a detailed description of our trust-region-type method for the solution
of problem (1). To this end, we first note that (1) is closely related to the box constrained
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optimization problem

minimize f(x) :=
1

2
‖F (x)‖2 s.t. x ∈ Ω. (2)

In fact, every solution x∗ of (1) is a global minimum of (2). Conversely, if x∗ is a minimum
of (2) such that f(x∗) = 0, then x∗ is also a solution of (1).

Regarding the mapping f defined in (2), we make the following assumption which we
assume to hold throughout the remaining part of this paper.

(A) The mapping f from (2) is continuously differentiable.

Assumption (A) obviously holds if F itself is continuously differentiable. However, there
are also some interesting situations where f is continuously differentiable although F is
not differentiable (but semismooth), see, e.g., [23, 15, 8] for some examples in the context
of complementarity problems.

We exploit the relation between the two problems (1) and (2) and follow an idea by
Coleman and Li [10, 11] who observed that the first order optimality conditions of (2) are
equivalent to the nonlinear system of equations

D(x)∇f(x) = 0, x ∈ Ω, (3)

with a suitable scaling matrix

D(x) = diag
(
d1(x), . . . , dn(x)

)
.

Originally, Coleman and Li [10, 11] consider only one particular choice of the scaling matrix
D(x). However, it was noted by Heinkenschloss et al. [27], for example, that the equivalence
between (3) and the optimality conditions of (2) holds for a rather general class of scaling
matrices satisfying the conditions

di(x)


= 0, if xi = li and [∇f(x)]i > 0,
= 0, if xi = ui and [∇f(x)]i < 0,
≥ 0, if xi ∈ {li, ui} and [∇f(x)]i = 0,
> 0, else

(4)

for all i = 1, . . . , n and all x ∈ Ω. In fact, the reader may find some other scaling matrices
(satisfying these conditions and sometimes having better convergence properties than the
original Coleman-Li-scaling) in [27, 30, 49].

In this work, we allow the scaling matrix satisfying (4) to be from a rather general class,
see Assumption (C) below. Several existing scaling matrices from the literature satisfy our
assumptions, for example, we may take the Coleman-Li-scaling [10, 11], defined by

dCL
i (x) :=


xi − li, if [∇f(x)]i > 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui <∞,
min{xi − li, ui − xi}, if [∇f(x)]i = 0 and (li > −∞ or ui <∞),
1, else,

(5)
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for x ∈ Ω (more precisely, this is the modified Coleman-Li-scaling suggested by Heinken-
schloss et al. [27]), or the minimum-scaling

dMIN
i (x) :=

{
1, if li = −∞ and ui = +∞,
min

{
xi − li + γ max{0,−[∇f(x)]i}, ui − xi + γ max{0, [∇f(x)]i}

}
, else,

(6)
where γ > 0 is a given constant, cf. [30]. Both scaling matrices may be used in order
to prove suitable global and local convergence results. Nevertheless, we stress that the
minimum-scaling has some additional properties (see Assumption (D) below) that allows us
to prove stronger global convergence results than for the Coleman-Li-scaling (see Theorem
3.4 below).

In order to construct a suitable method for the solution of problem (1), we follow an
interior-point trust-region approach for (2) similar to those in [11, 17, 49]. Given an iterate
xk ∈ int Ω, we consider the quadratic model

mk(p) :=
1

2
‖F (xk) + Hkp‖2 ≈

1

2
‖F (xk + p)‖2

on the scaled trust-region {
p ∈ Rn

∣∣ ‖D(xk)−1/2p‖ ≤ ∆k

}
,

where ∆k > 0 denotes the trust-region radius, and where Hk ∈ ∂F (xk) is an element of
the generalized Jacobian of F at xk. In order to get the next iterate xk+1 ∈ int Ω, we first
compute an approximate solution pk ∈ Rn of the subproblem

minimize mk(p) s.t. xk + p ∈ int Ω, ‖D(xk)−1/2p‖ ≤ ∆k. (7)

Following the standard trust-region philosophy, we then define the predicted and actual
reductions by

aredk (pk) := f(xk)− f(xk + pk) and

predk (pk) := mk(0)−mk(p
k) = f(xk)−mk(p

k),

respectively. If the quotient

rk :=
aredk (pk)

predk (pk)
(8)

is sufficiently large, we accept the quadratic model, compute xk+1 := xk + pk, and possibly
increase the trust-region radius ∆k. Otherwise we reject the step, set xk+1 := xk again and
decrease the radius ∆k.

Hence it remains to specify the computation of our approximate solution pk. To this
end, we first define the modified Cauchy-step

pk
CP := −τCP Dk∇f(xk),

6



where Dk := D(xk) and τCP = τ k
CP ∈ R is a solution of the one-dimensional problem

minimize mk(p(τ)) s.t. p(τ) = −τDk∇f(xk), ‖D−1/2
k p(τ)‖ ≤ ∆k

θ(l − xk) ≤ p(τ) ≤ θ(u− xk), τ ≥ 0,
(9)

where θ ∈ (0, 1) is a given constant which guarantees that xk + pk
CP ∈ int Ω, see also

Dennis and Vicente [17]. We then compute a vector pk ∈ Rn satisfying the fraction of
Cauchy-decrease condition

mk(p
k) ≤ mk(p

k
CP ), xk + pk ∈ int Ω, ‖D−1/2

k pk‖ ≤ ∆k; (10)

in particular, we may take pk = pk
CP . With such a choice of pk, it is possible to prove a

global convergence result. In order to get fast local convergence, we also use a projected
interior-point Newton-type step. Since the (generalized) Newton direction

pk
N := −H−1

k F (xk) (where Hk ∈ ∂F (xk)) (11)

for the unconstrained problem F (x) = 0 does, in general, not satisfy the condition xk+pk
N ∈

int Ω, we use the projected and truncated Newton direction

pk
PN := σk

(
PΩ(xk + pk

N)− xk
)
, (12)

with
σk := max

{
σ, 1− ‖PΩ(xk + pk

N)− xk‖
}

(13)

for some constant σ ∈ (0, 1). We then have xk+1 := xk + pk
PN ∈ int Ω, and we will see in

our convergence analysis that this choice guarantees local fast convergence under suitable
conditions.

In order to get a simple transition from the global method with a direction pk satisfying
(10) to the local method with the direction pk

PN from (12), we also incorporate the test

‖F (xk + pk
PN)‖ ≤ η‖F (xk)‖ (14)

in our method, where η ∈ (0, 1) denotes another constant. We will see that (14) holds
automatically in a neighbourhood of a solution of (1) under suitable assumptions.

We are now in a position to give a precise statement of the overall method.

Algorithm 2.1 (Interior-Point Trust-Region Method)

(S.0) Choose x0 ∈ int Ω, ∆0 > 0, ε > 0, η, σ, θ ∈ (0, 1), 0 < ρ1 < ρ2 < 1, and 0 < ω1 < 1 <
ω2, set k := 0.

(S.1) If ‖D1/2
k ∇f(xk)‖ ≤ ε: STOP.

(S.2) Choose a matrix Hk ∈ ∂F (xk) and compute (if possible) pk
PN using (12). If (14)

holds, set xk+1 := xk + pk
PN , ∆k+1 := ω2∆k, and go to (S.5); otherwise go to (S.3).
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(S.3) Compute pk ∈ Rn satisfying (10), and define rk by (8). If rk ≥ ρ1, we call iteration
k ”successful” and set xk+1 := xk + pk; otherwise, we set xk+1 := xk.

(S.4) Update the trust-region radius according to the following rules:
If rk < ρ1, set ∆k+1 := ω1∆k.
If rk ∈ [ρ1, ρ2), set ∆k+1 := ∆k.
If rk ≥ ρ2, set ∆k+1 := ω2∆k.

(S.5) Set k ← k + 1, and go to (S.1).

We give a number of comments with some simple properties of Algorithm 2.1.

Remark 2.2 (a) The termination criterion in step (S.1) checks whether the current
iterate xk is an approximate stationary point of the box constrained optimization
problem (2).

(b) All iterates xk belong to the interior of the box Ω. Hence the inverse diagonal matrices

D
−1/2
k occurring, e.g., in (9), (10), always exist since the elements di(x

k) are positive
according to (4).

(c) The computation of pk
PN in step (S.2) requires the (generalized) Jacobian Hk from

(11) to be nonsingular. If this matrix turns out to be singular, we immediately switch
to step (S.3).

(d) Taking into account the previous comments, Algorithm 2.1 is well-defined in the
sense that all steps can actually be carried out without any additional assumptions
on problem (1).

(e) The entire sequence {f(xk)} is monotonically decreasing. Equivalently, this means
that we have ‖F (xk+1)‖ ≤ ‖F (xk)‖ for all k ∈ N. In fact, this is obvious if the test
(14) gets accepted in step (S.2) of Algorithm 2.1. Otherwise, we compute pk satisfying
(10) in step (S.3). If the iteration is not successful, we have ‖F (xk+1)‖ = ‖F (xk)‖,
otherwise we have

rk ≥ ρ1 ⇐⇒ f(xk)− f(xk + pk) ≥ ρ1

(
f(xk)−mk(p

k)
)
.

Here, the expression on the right-hand side is nonnegative because we have

mk(p
k) ≤ mk(p

k
CP ) ≤ mk(0) = f(xk)

in view of (10) and the definition of the Cauchy step pk
CP . Hence, the inequality

f(xk) ≥ f(xk + pk) = f(xk+1) also holds for all successful iterations in step (S.3).

In our subsequent convergence analysis, we assume throughout that ε = 0 and that Algo-
rithm 2.1 generates an infinite sequence, i.e., it does not terminate after a finite number of
iterations satisfying the first order optimality conditions of problem (2).
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3 Global Convergence

The aim of this section is to prove a global convergence result for Algorithm 2.1. To
this end, we need two more assumptions. The first is a boundedness assumption which is
rather standard in trust-region methods (see, e.g., [14]), and the second one is a condition
regarding the choice of the diagonal scaling matrix D(x).

(B) The sequence {Hk} generated by Algorithm 2.1 is bounded.

(C) The scaling matrix D(x) satisfies (4) and is bounded on Ω. Furthermore, there exists
a constant α > 0 such that

αdi(x) ≤
{

xi − li, if [∇f(x)]i > 0 and li > −∞,
ui − xi, if [∇f(x)]i < 0 and ui < +∞

for all i = 1, . . . , n and all x ∈ int Ω.

Note that the last part of (C) is satisfied both by the modified Coleman-Li-scaling (5)
and the minimum-scaling (6) with α = 1. Furthermore, all remaining conditions hold
automatically if Ω itself is bounded, i.e., if all lower and upper bounds li and ui are finite
(this follows, e.g., from the upper semicontinuity of the generalized Jacobian, see [9]). This
assumption is quite realistic in many cases since otherwise one may replace infinite bounds
by sufficiently large bounds.

There is a simple consequence of Assumption (B) that will play a crucial role in our
subsequent analysis and that is therefore stated explicitly in the following remark.

Remark 3.1 Suppose that Assumptions (A) and (B) hold. Then the sequence {∇f(xk)}
is bounded. To see this, note that Assumption (A) and [9, Proposition 2.2.4 and Theorem
2.6.6] together imply that we can write the gradient as ∇f(xk) = HT

k F (xk) with Hk being
the matrix from step (S.2) of Algorithm 2.1. Now {Hk} is bounded in view of Assumption
(B). Moreover, {‖F (xk)‖} is also bounded because of Remark 2.2 (e), so that {∇f(xk)}
must indeed be bounded.

We now state a technical lemma that leads to a lower bound for the predicted reduction.
Results of this kind are standard for trust-region methods, see, in particular, [49, Lemma
6.1] and [17, Lemma 4.1].

Lemma 3.2 Suppose that Assumptions (A) and (C) hold, and let pk ∈ Rn satisfy the
fraction of Cauchy-decrease condition (10). Then

predk (pk) ≥ 1

2
‖D1/2

k gk‖min
{

∆k,
‖D1/2

k gk‖
‖D1/2

k HT
k HkD

1/2
k ‖

, θα
‖D1/2

k gk‖
‖gk‖∞

}
(15)

where gk := ∇f(xk) denotes the gradient of f at xk. If, in addition, Assumption (B) holds,
then there exists a constant C > 0 such that

predk (pk) ≥ C‖D1/2
k gk‖2 min{∆k, 1}. (16)
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Proof. The proof is essentially the same as in [49, 17], except that we have a different
quadratic model since we deal with box constrained nonlinear equations instead of bound
constrained optimization problems. For the sake of completeness, however, we include the
full proof here.

Consider a fixed iterate xk ∈ int Ω, and recall that the stepsize τ ≥ 0 in (9) has to
satisfy the two feasibility requirements

‖D−1/2
k p(τ)‖ ≤ ∆k (17)

and
θ(l − xk) ≤ p(τ) ≤ θ(u− xk). (18)

Let τ∆ and τΩ denote the two maximum stepsizes such that (17) and (18) hold, respectively.
Since p(τ) = −τDkg

k, an elementary calculation shows that

τ∆ =
∆k

‖D1/2
k gk‖

and

τΩ = θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

−[Dkgk]i

}
, min
i:[Dkgk]i>0

{ li − xk
i

−[Dkgk]i

}}
.

Hence the solution τCP = τ k
CP of the one-dimensional problem (9) has to belong to the

interval [0, τ+], where
τ+ := min{τ∆, τΩ}.

(Note that τ∆, τΩ and, therefore, τ+ are well-defined because Dkg
k 6= 0 since otherwise we

would have stopped in step (S.1) of Algorithm 2.1.) From the Cauchy-decrease condition
(10), we therefore obtain

mk(p
k) ≤ mk(p

k
CP ) = min

τ∈[0,τ+]
φ(τ)

with
φ(τ) := mk(−τDkg

k).

Let τ ∗(= τCP ) be a solution of

minimize φ(τ) s.t. τ ∈ [0, τ+].

Using the notation

Fk := F (xk), ĝk := D
1/2
k gk, and M̂k := D

1/2
k HT

k HkD
1/2
k ,

and recalling that gk = HT
k Fk (see Remark 3.1), the function φ may be rewritten as

φ(τ) =
1

2
‖Fk‖2 − τF T

k HkDkg
k +

1

2
τ 2(gk)T DkH

T
k HkDkg

k
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=
1

2
‖Fk‖2 − τ‖ĝk‖2 +

1

2
τ 2(ĝk)T M̂kĝ

k.

Note that M̂k is always positive semidefinite. We now distinguish four cases.

Case 1 : Suppose that τ ∗ ∈ (0, τ+). Then τ ∗ is an unconstrained minimum of φ, and we
therefore get

0 = φ′(τ ∗) = −‖ĝk‖2 + τ ∗(ĝk)T M̂kĝ
k. (19)

This gives the explicit formula

τ ∗ =
‖ĝk‖2

(ĝk)T M̂kĝk
.

(Note that the denominator is nonzero, because otherwise (19) would lead to D
1/2
k gk = 0

and we would have stopped in step (S.1) of Algorithm 2.1.) This implies

φ(τ ∗) =
1

2
‖Fk‖2 −

1

2

‖ĝk‖4

(ĝk)T M̂kĝk
≤ 1

2
‖Fk‖2 −

1

2

‖ĝk‖2

‖M̂k‖
.

Case 2 : Assume that τ ∗ = τ+ and τ+ = τ∆. If, in addition, we have (ĝk)T M̂kĝ
k > 0, the

necessary optimality condition φ′(τ ∗) ≤ 0 implies

τ ∗ ≤ ‖ĝk‖2

(ĝk)T M̂kĝk
. (20)

We therefore get

φ(τ ∗) ≤ 1

2
‖Fk‖2 − τ∆‖ĝk‖2 +

1

2
τ∆

(
‖ĝk‖2

(ĝk)T M̂kĝk

)
(ĝk)T M̂kĝ

k

=
1

2
‖Fk‖2 −

1

2
τ∆‖ĝk‖2

=
1

2
‖Fk‖2 −

1

2
∆k‖ĝk‖

from the definition of τ∆. On the other hand, if we have (ĝk)T M̂kĝ
k = 0, we also obtain

φ(τ ∗) =
1

2
‖Fk‖2 − τ∆‖ĝk‖2 =

1

2
‖Fk‖2 −

1

2
∆k‖ĝk‖.

Case 3 : Suppose that τ ∗ = τ+ and τ+ = τΩ. Here we first take a closer look at τΩ. Using
Assumption (C), we get the following lower bound for the maximum stepsize τΩ:

τΩ = θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

−[Dkgk]i

}
, min
i:[Dkgk]i>0

{ li − xk
i

−[Dkgk]i

}}
= θ min

{
min

i:[Dkgk]i<0

{ ui − xk
i

di(xk)|gk
i |

}
, min
i:[Dkgk]i>0

{ xk
i − li

di(xk)|gk
i |

}}
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≥ θ min
{

min
i:[Dkgk]i<0

{ ui − xk
i

di(xk)‖gk‖∞

}
, min
i:[Dkgk]i>0

{ xk
i − li

di(xk)‖gk‖∞

}}
≥ θα

‖gk‖∞
.

Therefore, if we have (ĝk)T M̂kĝ
k > 0, then φ′(τ ∗) ≤ 0, hence (20) holds, and we get

φ(τ ∗) ≤ 1

2
‖Fk‖2 −

1

2
τΩ‖ĝk‖2 ≤ 1

2
‖Fk‖2 −

θα

2

‖ĝk‖2

‖gk‖∞
.

On the other hand, if (ĝk)T M̂kĝ
k = 0, we also obtain

φ(τ ∗) =
1

2
‖Fk‖2 − τ ∗‖ĝk‖2 =

1

2
‖Fk‖2 −

1

2
τΩ‖ĝk‖2 ≤ 1

2
‖Fk‖2 −

θα

2

‖ĝk‖2

‖gk‖∞
.

Case 4 : Suppose that τ ∗ = 0. Then the necessary optimality condition −‖ĝk‖2 = φ′(τ ∗) ≥
0 implies ĝk = 0, a contradiction to D

1/2
k gk 6= 0. Hence this case does not occur.

Taking all cases together, we get

mk(p
k) ≤ φ(τ ∗) ≤ 1

2
‖Fk‖2 −

1

2
min

{
∆k‖ĝk‖, ‖ĝ

k‖2

‖M̂k‖
, θα
‖ĝk‖2

‖gk‖∞

}
.

Consequently, we obtain the lower bound

predk (pk) = mk(0)−mk(p
k) ≥ 1

2
‖ĝk‖min

{
∆k,

‖ĝk‖
‖M̂k‖

, θα
‖ĝk‖
‖gk‖∞

}
(21)

for the predicted reduction, which is precisely the statement from (15).
Now suppose that Assumptions (A)–(C) hold. Then the sequences ‖Hk‖, ‖gk‖∞ and

‖D1/2
k ‖ are bounded, cf. Remark 3.1. Hence ‖M̂k‖ and ‖ĝk‖ are bounded as well. Therefore,

(21) yields the existence of a constant C > 0 such that

predk (pk) ≥ 1

2
‖ĝk‖min

{∆k‖ĝk‖
‖ĝk‖

,
‖ĝk‖
‖M̂k‖

, θα
‖ĝk‖
‖gk‖∞

}
=

1

2
‖ĝk‖2 min

{ ∆k

‖ĝk‖
,

1

‖M̂k‖
,

θα

‖gk‖∞

}
≥ C‖ĝk‖2 min{∆k, 1}

for all k ∈ N, and this proves the second statement. �

Note that the proof of Lemma 3.2 shows, in particular, how the Cauchy step pk
CP can be

computed in practice.
We are now in the position to state the first main global convergence result for Algo-

rithm 2.1. To this end, note that we are dealing with two different search directions pk
PN
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(the projected Newton-like step) and pk (the Cauchy-like step). While the former will play
a central role for the local rate of convergence, the Cauchy-like step is the main tool for
showing global convergence. This is similar to some existing results stated in [11, 17, 49],
for example. Note that the local direction pk

PN does not destroy the global convergence of
the overall method.

Theorem 3.3 Suppose that Assumptions (A)–(C) hold. Then

lim inf
k→∞

‖D1/2
k ∇f(xk)‖ = 0. (22)

Moreover, if the direction pk
PN is accepted an infinite number of times in step (S.2) of

Algorithm 2.1, we have
lim
k→∞
‖F (xk)‖ = 0. (23)

Proof. First recall from Remark 2.2 (e) that the entire sequence {‖F (xk)‖} is monotoni-
cally decreasing. Hence, if the test (14) in step (S.2) of Algorithm 2.1 is satisfied an infinite
number of times, we immediately obtain (23). In particular, this implies ‖∇f(xk)‖ → 0
and therefore (22) since the sequence {Dk} stays bounded in view of Assumption (C).

It remains to consider the case where the direction pk
PN is accepted only a finite number

of times. Without loss of generality, we may assume that this never happens, so we always
compute the direction pk. Suppose that (22) does not hold. Then there is a constant δ > 0
such that

‖ĝk‖ ≥ δ ∀k ∈ N, (24)

where, again, we write ĝk := D
1/2
k ∇f(xk).

In the first part of this proof, we show that this implies

∞∑
k=0

∆k <∞. (25)

In fact, if there is only a finite number of successful iterations, we have ∆k+1 = ω1∆k for
all k ∈ N sufficiently large, and (25) follows from ω1 ∈ (0, 1) and the convergence of the
geometric series. Otherwise, there is an infinite number of successful iterations. Let ki

denote the indices of the successful iterations. Since {f(xk)} is monotonically decreasing
and bounded from below, the entire sequence {f(xk)} converges. In particular, we have

∞∑
k=0

(
f(xk)− f(xk+1)

)
<∞. (26)

From (16) and (24), we obtain

f(xki)− f(xki+1) = aredki
(pki) ≥ ρ1predki

(pki) ≥ ρ1Cδ2 min{∆ki
, 1} > 0 (27)

13



for all successful iterations. Since the expression on the left-hand side of (27) converges
to zero, it follows that min{∆ki

, 1} = ∆ki
for all sufficiently large ki. Consequently, (27)

implies

∆ki
≤ 1

ρ1Cδ2

(
f(xki)− f(xki+1)

)
.

Since {f(xk)} is monotonically decreasing, it therefore follows from (26) that

∞∑
i=0

∆ki
≤ 1

ρ1Cδ2

∞∑
i=0

(
f(xki)− f(xki+1)

)
≤

∞∑
k=0

(
f(xk)− f(xk+1)

)
<∞. (28)

If there are unsuccessful iterations between two successful ones, say ki and ki+1, we have

∆ki+1 ≤ ω2∆ki
and ∆l+1 = ω1∆l ∀l ∈ {ki + 1, . . . , ki+1 − 1}.

This implies
ki+1−1∑
l=ki+1

∆l ≤ ∆ki+1

∞∑
j=0

ωj
1 =

1

1− ω1

∆ki+1 ≤
ω2

1− ω1

∆ki
.

Together, we obtain from (28) that

∞∑
k=0

∆k =
∑

k∈{ki}

∆k +
∑

k/∈{ki}

∆k

≤
∞∑
i=0

∆ki
+

ω2

1− ω1

∞∑
i=0

∆ki

=

(
1 +

ω2

1− ω1

) ∞∑
i=0

∆ki
<∞,

and the proof of (25) is complete.
As a consequence of (25), it follows that

min{∆k, 1} = ∆k for all k ∈ N sufficiently large, (29)

and
‖pk‖ ≤ ‖D1/2

k ‖ ‖D
−1/2
k pk‖ ≤ ‖D1/2

k ‖∆k ≤ C1∆k −→ 0 (30)

since there is a constant C1 > 0 such that ‖D1/2
k ‖ ≤ C1 for all k ∈ N in view of Assumption

(C). Moreover, we obtain from (30) that

‖xk+p − xk‖ ≤
p−1∑
j=0

‖xk+j+1 − xk+j‖ ≤
p−1∑
j=0

‖pk+j‖ ≤ C1

p−1∑
j=0

∆k+j.

Consequently, (25) implies that {xk} is a Cauchy sequence and therefore convergent.

14



In the next part of the proof, we show that limk→∞ rk = 1. To this end, first note that

∣∣predk (pk)
∣∣ |rk − 1| =

∣∣predk (pk)
∣∣ ∣∣∣∣aredk (pk)

predk (pk)
− 1

∣∣∣∣
=
∣∣aredk (pk)− predk (pk)

∣∣
=
∣∣f(xk + pk)− f(xk) + mk(0)−mk(p

k)
∣∣.

From the mean-value theorem, we therefore get the existence of a vector ξk between xk

and xk + pk such that∣∣predk (pk)
∣∣ |rk − 1| =

∣∣∇f(ξk)T pk −∇f(xk)T pk − 1

2
(pk)T HT

k Hkp
k
∣∣

≤ ‖∇f(ξk)−∇f(xk)‖‖pk‖+
1

2
‖Hkp

k‖2

≤ ‖∇f(ξk)−∇f(xk)‖C1∆k +
1

2
‖Hk‖2C2

1∆2
k,

where the last inequality follows from (30). Dividing this expression by ∆k > 0, using
Assumption (B), noting that ∆k → 0 and ‖∇f(ξk)−∇f(xk)‖ → 0 since ∇f is continuous
and both sequences {xk}, {ξk} converge to the same point (see (30)), we obtain∣∣predk (pk)

∣∣
∆k

|rk − 1| → 0. (31)

However, using (16), (24), and (29), we have

predk (pk)

∆k

≥ C‖D1/2
k gk‖2 ≥ Cδ2

for all k ∈ N sufficiently large. This implies |rk − 1| → 0 because of (31). This, in turn,
gives ∆k+1 ≥ ∆k for all these k, a contradiction to (25). �

Note that, if the entire sequence {xk} remains bounded, then (22) guarantees that at
least one accumulation point of this sequence is a stationary point of the optimization
problem (2), whereas (23) guarantees that every accumulation point is a solution of the
box constrained system of equations (1).

In order to prove a stronger convergence result than Theorem 3.3 with the limes inferior
in (22) being replaced by the limes, we need to introduce another assumption, see also [49,
Assumption (A.6)].

(D) The scaled gradient D(x)1/2∇f(x) is uniformly continuous.

Note that Assumption (D) is satisfied automatically on compact sets if D(x) denotes the
minimum-scaling from (6). This follows from the fact that both ∇f and D(x)1/2 are
continuous and therefore uniformly continuous on compact sets. This is in contrast to the
scaling from (5) which is not continuous.
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Theorem 3.4 Suppose that Assumptions (A)–(D) hold. Then

lim
k→∞
‖D1/2

k ∇f(xk)‖ = 0.

Proof. Similar to the proof of Theorem 3.3, we may assume that the test (14) in step
(S.2) of Algorithm 2.1 is never accepted, so we always compute the direction pk in step
(S.3).

Suppose our statement is not true. Then there exists a constant δ > 0 and a subsequence
{xk}K such that

‖D1/2
k ∇f(xk)‖ ≥ 2δ ∀k ∈ K. (32)

In view of Theorem 3.3, we have lim infk→∞ ‖D1/2
k ∇f(xk)‖ = 0. Therefore, we can find for

each k ∈ K an iteration index `(k) > k such that

‖D1/2
` ∇f(x`)‖ ≥ δ ∀k ≤ ` < `(k) (33)

and
‖D1/2

`(k)∇f(x`(k))‖ < δ, k ∈ K.

Using Assumptions (B), (C), there exist constants C1 > 0 and C2 > 0 such that ‖D1/2
k ‖ ≤

C1 and ‖Hk‖ ≤ C2 for all k ∈ N.
Now, let k ∈ K be fixed for the moment, take an arbitrary ` with k ≤ ` < `(k), and

assume that the `-th iteration is successful. Then we obtain from Lemma 3.2 that

f(x`)− f(x`+1) ≥ ρ1

(
f(x`)−m`(p

`)
)
≥ ρ1C‖D1/2

` ∇f(x`)‖2 min{∆`, 1}.

Since the left-hand side converges to zero and since

‖x`+1 − x`‖ = ‖p`‖ ≤ ‖D1/2
` ‖ ‖D

−1/2
` p`‖ ≤ ‖D1/2

` ‖∆` ≤ C1∆`,

we obtain

f(x`)− f(x`+1) ≥ ρ1C‖D1/2
` ∇f(x`)‖2∆` ≥

δ2ρ1C

C1

‖x`+1 − x`‖.

Trivially, this inequality also holds if the `-th iteration is not successful. Consequently, we
get

δ2ρ1C

C1

‖x`(k) − xk‖ ≤ δ2ρ1C

C1

`(k)−1∑
`=k

‖x`+1 − x`‖

≤
`(k)−1∑

`=k

(
f(x`)− f(x`+1)

)
= f(xk)− f(x`(k))
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for all k ∈ K. Since {f(xk)} converges, this implies{
‖x`(k) − xk‖

}
k∈K
→ 0.

In view of Assumption (D), we therefore have{
‖D1/2

`(k)∇f(x`(k))−D
1/2
k ∇f(xk)‖

}
k∈K
→ 0.

On the other hand, it follows from (32) and (33) that∥∥D1/2
`(k)∇f(x`(k))−D

1/2
k ∇f(xk)

∥∥ ≥ ∥∥D1/2
k ∇f(xk)

∥∥− ∥∥D1/2
`(k)∇f(x`(k))

∥∥ ≥ 2δ − δ = δ.

This contradiction completes the proof. �

4 Local Convergence

In this section, we consider the local convergence properties of Algorithm 2.1. More pre-
cisely, we show in the following result that, locally, the projected and truncated Newton-
direction is always accepted in step (S.2), and that this direction guarantees superlinear
and even quadratic convergence under suitable assumptions.

Theorem 4.1 Let {xk} be a sequence generated by Algorithm 2.1, and let x∗ be an ac-
cumulation point of this sequence such that F (x∗) = 0 and all elements H∗ ∈ ∂F (x∗) are
nonsingular. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) The rate of convergence is Q-superlinear.

(c) If F is strongly semismooth, the rate of convergence is Q-quadratic.

Proof. Since all elements H∗ ∈ ∂F (x∗) are nonsingular, it follows from [43, Proposition
3.1] that there exist constants ε1 > 0 and c > 0 such that

‖H(x)−1‖ ≤ c ∀x ∈ Bε1(x
∗), ∀H(x) ∈ ∂F (x). (34)

Moreover, being semismooth, F is locally Lipschitz continuous. Hence there exist constants
ε2 > 0 and L1 > 0 with

‖F (x)− F (y)‖ ≤ L1‖x− y‖ ∀x, y ∈ Bε2(x
∗). (35)

Furthermore, the nonsingularity assumption and [9, Theorem 7.1.1] implies that the inverse
function F−1 exists in a sufficiently small neighbourhood of F (x∗), and this function is also
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locally Lipschitz. Consequently, we get the existence of two constants ε3 > 0 and L2 > 0
such that ∥∥F−1(F (x))− F−1(F (y))

∥∥ ≤ L2‖F (x)− F (y)‖ ∀x, y ∈ Bε3(x
∗). (36)

Using [41, Proposition 1] and the semismoothness of F , we see that there is another
constant ε4 > 0 such that

‖F (x)− F (x∗)−H(x)(x− x∗)‖ ≤ min

{
η

2cL1L2

,
1

4c

}
‖x− x∗‖ (37)

for all x ∈ Bε4(x
∗) and all H(x) ∈ ∂F (x), where η denotes the constant from (14). More-

over, by continuity, there is a constant ε5 > 0 with

‖F (x)‖ ≤ min

{
η

2cL1L2

,
1− σ

c

}
∀x ∈ Bε5(x

∗), (38)

where σ ∈ (0, 1) denotes the constant from Algorithm 2.1. Finally, the nonsingularity
assumption implies that there is another constant ε6 > 0 such that σk from (13) satisfies

σk = 1−
∥∥PΩ(xk + pk

N)− xk
∥∥ ≥ 3

4
∀xk ∈ Bε6(x

∗). (39)

Now define ε := min{εi | i = 1, . . . , 6}. Since x∗ is an accumulation point of the sequence
{xk}, we can choose an iterate xk (the index k is fixed for the moment) such that xk ∈
Bε(x

∗)∩ int Ω. We will show that the next iterate also belongs to this neighbourhood and,
in fact, is actually much closer to x∗ than xk is. The proof of statement (a) then follows
by a simple induction argument.

To this end, we first note that Hk is nonsingular in view of (34), and we therefore
obtain from (37) that

‖xk + pk
N − x∗‖ = ‖xk −H−1

k F (xk)− x∗‖
= ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ (40)

≤ min
{ η

2L1L2

,
1

4

}
‖xk − x∗‖,

in particular, xk + pk
N also belongs to the neighbourhood Bε(x

∗) of the solution x∗. Since
we can write

xk + pk
PN − x∗ = σk

(
PΩ(xk + pk

N)− x∗
)

+ (1− σk)(x
k − x∗), (41)

it is easy to see that this also implies that the vector xk + pk
PN is in the neighbourhood

Bε(x
∗) of x∗. Using xk ∈ int Ω, (34), (38), and the nonexpansiveness of the projection

operator, we get

‖PΩ(xk + pk
N)− xk‖ = ‖PΩ(xk + pk

N)− PΩ(xk)‖ ≤ ‖pk
N‖ ≤ ‖H−1

k ‖‖F (xk)‖ ≤ 1− σ.
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In view of (13), (39), this yields

1− σk = ‖PΩ(xk + pk
N)− xk‖ ≤ ‖H−1

k ‖‖F (xk)‖ ≤ c‖F (xk)‖. (42)

Using (35), (41), (40), (42), (38), (36), σk ≤ 1, and the nonexpansiveness of the projection
operator, we get

‖F (xk + pk
PN)‖ = ‖F (xk + pk

PN)− F (x∗)‖
≤ L1‖xk + pk

PN − x∗‖
≤ L1σk‖xk + pk

N − x∗‖+ L1(1− σk)‖xk − x∗‖
≤ η

2L2

‖xk − x∗‖+ L1c‖F (xk)‖ ‖xk − x∗‖

≤ η

2L2

‖xk − x∗‖+
η

2L2

‖xk − x∗‖

=
η

L2

∥∥F−1(F (xk))− F−1(F (x∗))
∥∥

≤ η‖F (xk)− F (x∗)‖
= η‖F (xk)‖.

Hence the projected Newton direction is accepted in step (S.2), and the next iterate is
given by xk+1 = xk + pk

PN . Together with (39), (40), and (41), this implies

‖xk+1 − x∗‖ = ‖xk + pk
PN − x∗‖

≤ σk‖xk + pk
N − x∗‖+ (1− σk)‖xk − x∗‖

≤ ‖xk + pk
N − x∗‖+

1

4
‖xk − x∗‖

≤ 1

2
‖xk − x∗‖.

Therefore, we also have xk+1 ∈ Bε(x
∗). Using an induction argument, it follows that the

test ‖F (xk + pk
PN)‖ ≤ η‖F (xk)‖ is satisfied for all sufficiently large k ∈ N, so that we have

xk+1 = xk + pk
PN and

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ (43)

for all k ∈ N large enough. In particular, the sequence {xk} is well-defined and converges
(at least) linearly to x∗.

To prove superlinear convergence, we consider the inequality

‖xk+1 − x∗‖ ≤ σk‖xk + pk
N − x∗‖+ (1− σk)‖xk − x∗‖ (44)

again, cf. (41). For sufficiently large k ∈ N, it follows from (42) and (35) that

1− σk ≤ c‖F (xk)‖ = c‖F (xk)− F (x∗)‖ = O(‖xk − x∗‖).
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Using [41, Proposition 1] and the semismoothness of F , we get

‖xk + pk
N − x∗‖ ≤ ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ = o(‖xk − x∗‖).

Since σk → 1, we therefore obtain from (44) that ‖xk+1 − x∗‖ = o(‖xk − x∗‖). Hence the
local rate of convergence is superlinear.

If F is strongly semismooth, it follows from [22, Theorem 7.4.3] that

‖xk + pk
N − x∗‖ ≤ ‖H−1

k ‖‖F (xk)− F (x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2).

Since 1 − σk = O(‖xk − x∗‖), we therefore get ‖xk+1 − x∗‖ = O(‖xk − x∗‖2) from (44).
Hence the rate of convergence is locally quadratic in the strongly semismooth case. �

The assumptions for local quadratic convergence in Theorem 4.1 are satisfied, e.g., if F
is continuously differentiable with F ′ being locally Lipschitz continuous and F ′(x∗) being
nonsingular. However, in some applications the assumptions of Theorem 4.1 also hold
for nonsmooth F , especially in the context of complementarity problems and variational
inequalities, see, for example, [15, 22].

5 Numerical Experiments

In this section, we apply Algorithm 2.1 to several test problems of different types. Some
of these problems are originally not given in the form of a nonlinear system of equations
with box constraints, but can be reformulated in this way. We implemented Algorithm 2.1
in MATLAB using the scaling matrix from (6) and the following constants:

σ = 0.995, θ = 0.95, η = 0.9, γ = 1, ω1 = 0.25, ω2 = 2, ρ1 = 0.1, ρ2 = 0.75, ∆0 = 1.

We terminate the iteration

‖D1/2
k ∇f(xk)‖ ≤ 10−6 or ‖F (xk)‖∞ ≤ 10−6 or k ≥ kmax := 500 or ∆k ≤ ∆min := 10−8.

The last two criteria are used as a safeguard. The search direction pk satisfying (10) in step
(S.3) is computed in the following way: We first check whether a truncated or a projected
and truncated Newton direction satisfies (10). If this is not the case, we use a dogleg
strategy from the Cauchy point to the Newton direction such that strict feasibility of the
iterates is guaranteed.

We next give a summary of the test problems that are used in our numerical experi-
ments:

1. The Chandrasekhar H-equation. A discretization of Chandrasekhar’s H-equation
leads to a nonlinear system of equations that depends on a parameter c ∈ [0, 1], see
[31, p. 87] for more details. Since this system has two solutions and only one has a
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physical meaning, we use the bounds li := 0 and ui := ∞ for all i = 1, . . . , n. We
choose x0 ∈ Rn with x0

i := 1 for all i and consider the cases c = 0.99, c = 0.9999,
and c = 1 with n = 1000.

2. The seven-diagonal problem. This is a nonlinear system of equations of variable
dimension that can be found in [37]. The Jacobians have the structure of band
matrices, which allows us to consider high dimensional cases. The system has several
solutions, so we use the bounds li := 0 and ui := ∞, i = 1, . . . , n, to avoid negative
ones. We choose n = 100000 and x0

i := 1 for all i = 1, . . . , n.

3. A countercurrent reactor problem. This problem can be found in [37] as well.
Again the problem has variable dimension, several solutions, and the Jacobians are
band matrices. We consider n = 10000, n = 100000 and set li := −1, ui := ∞ and
x0

i := 1 for i = 1, . . . , n.

4. A chemical equilibrium problem. In [38, system 1], a nonlinear system of 11
equations and variables is described. A solution of this system is only physically
meaningful if all components of the solution are real and positive. Following [4] we
augment the system given in [38] to the size of n = 11000 and use li := 0, ui := ∞
and x0

i := 1 for i = 1, . . . , n.

5. Boundary value problems. Discretizing a boundary value problem leads to a
nonlinear system of equations. If this problem has several solutions, the use of bound
constraints is quite helpful to avoid, for example, negative solutions. We use three
different boundary value problems for our numerical test runs, called BVP1, BVP2,
and BVP3 in the following. BVP1 is a two-point boundary value problem from [32,
Example 2.7.4] which has at least two solutions. We use the discretization given in
[32] (n = 800) to approximate the function and the first derivative. In order to get
positive function values, we set li := 0 for all odd i, li := −∞ for all even i and
ui = ∞ for i = 1, . . . , n. BVP2 is taken from [39]. The discretization given in [39]
leads to a nonlinear system that has a unique solution in the box defined by li = −0.5
and ui = 0 for i = 1, . . . , n. We set n = 500, use the given bounds and start with
x0

i := −0.25 for all i = 1, . . . , n. Finally, BVP3 is taken from [46, p. 504]. The
problem has two solutions, but only one is positive. We use the same discretization
as for BVP2 and approximate the positive solution by setting li := 0, ui :=∞. The
dimension of this problem is n = 500, and we take x0

i := 1 for all i = 1, . . . , n.

6. The Floudas et al. collection. In [25, Section 14.1], Floudas et al. present a
collection of box constrained nonlinear systems of equations. This collection contains
nine examples. The dimension of these examples is small, nevertheless, some of these
problems are challenging. All examples have finite lower and upper bounds. We
choose x0 := l + 0.25(u− l) as initial iterate for all test problems.
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7. Complementarity problems. Here one tries to find a solution of the system

x ≥ 0, G(x) ≥ 0, xT G(x) = 0,

where G : Rn
+ → Rn is a given function that is sometimes not defined outside the

nonnegative orthant. This complementarity problem can be reformulated as a square
system of equations with box constraints in the following way:

x ≥ 0, y ≥ 0, G(x)− y = 0, xiyi = 0 ∀i = 1, . . . , n.

Similar reformulations are possible for the slightly more general class of mixed com-
plementarity problems, and a large number of (often very difficult) test problems of
this class is given in the MCPLIB collection, see [19]. Since the standard starting
points for these examples are sometimes on the boundary of the feasible region, we
use the strategy from [47] and project the standard starting vector x0 of the MCPLIB
on the smaller box [l̂, û] with l̂i = li +0.01 and ûi = ui−0.01 for i = 1, . . . , n, whereas
we use y0

i := 1 for the slack variables.

In the following tables, we present our numerical results. For each test problem, the size of
the problem (n), the number of iterations (iter), the evaluations of the function F (eval),
the norm of this function in the last iterate (‖F (x)‖), and the norm of the stopping cri-
terion in the last iterate (‖D1/2(x)g(x)‖) are given. Moreover, the number of iterations
needed by the STRSCNE code described in [3] is presented. If a method fails to solve a
problem, this is denoted by ”–”. Table 1 contains the results obtained for all examples not
taken from the MCPLIB collection.

problem n iter eval ‖F (x)‖ ‖D1/2(x)g(x)‖ strscne

H-equation, c = 0.99 1000 8 15 9.253655e-07 1.618650e-05 9
H-equation, c = 0.9999 1000 11 21 4.805774e-08 9.663247e-07 11
H-equation, c = 1 1000 14 29 3.564824e-07 7.302551e-06 16
7-diagonal 100000 6 7 1.079756e-07 1.265867e-06 6
reactor 10000 20 37 1.351386e-09 4.016356e-09 17
reactor 100000 33 63 1.328888e-08 4.195698e-08 24
chemical-eq. 11000 14 26 1.024321e-08 1.840348e-08 27
BVP1 800 7 12 4.219342e-10 6.250179e-10 6
BVP2 500 2 3 6.250000e-06 2.210701e-08 4
BVP3 500 3 4 3.750000e-07 7.526758e-07 6
Floudas no. 1 2 5 7 9.663381e-13 1.249890e-10 5
Floudas no. 2 5 12 13 2.790805e-10 1.348797e-09 12
Floudas no. 3 2 46 86 4.794279e-07 6.008817e-03 20
Floudas no. 4 2 4 6 1.040490e-07 1.158006e-07 5
Floudas no. 5 5 9 12 2.387465e-09 5.338527e-09 9
Floudas no. 6 8 6 9 1.466922e-07 1.214811e-07 9
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Floudas no. 7 9 – – – – –
Floudas no. 8 2 7 12 1.151719e-07 9.103543e-08 5
Floudas no. 9 1 3 4 1.163838e-05 4.852898e-07 4

Table 1: Results for problem classes 1–8

Both our method and the related algorithm from [3] are able to solve all test examples with
the exception of one example from the Floudas et al. collection. However, this problem
is regarded as very challenging, even the solution given in [25] seems to be wrong. The
behaviour of the two methods on the other examples is more or less similar, and there is
no clear winner on this set of test problems.

We next present our numerical results for all test examples of dimension n ≥ 1000 from
the MCPLIB. The corresponding numerical results are contained in Table 2. The columns
have the same meaning as in Table 1, in particular, we also compare our results with those
obtained by using the STRSCNE code from [3].

problem n iter eval ‖Φ(x)‖ ‖D1/2(x)g(x)‖ strscne

bert oc 5000 12 21 8.800055e-07 8.056348e-09 17
bishop 1645 – – – – –
bratu 5625 17 35 9.147845e-06 5.653325e-07 21
obstacle 2500 22 45 7.392367e-06 6.180783e-07 20
opt cont31 1024 19 35 6.710511e-07 6.422693e-07 –
opt cont127 4096 14 25 1.265241e-10 7.121115e-10 –
opt cont255 8192 83 162 2.967351e-09 6.492866e-09 –
opt cont511 16384 84 165 5.339209e-07 3.712466e-06 –
trafelas 2904 68 136 9.407251e-07 7.632607e-06 79

Table 2: Results for large-scale mixed complementarity
problems

Algorithm 2.1 is able to solve all example with the exception of the bishop problem. In
this case, our method compares very favourably with the STRSCNE code from [3] which
produces five error messages and is able to solve only four test examples.

We stress, however, that the reformulation of the complementarity problems used for
our test runs is not necessarily the best formulation. For example, if a solution x∗ of the
complementarity problem is degenerate, i.e., if there is at least one index such that both
x∗i = 0 and Gi(x

∗) = 0, then it is easy to see that the Jacobian F ′ of our reformulated
system is singular at the solution, hence we cannot expect quadratic convergence.

We illustrate this point using the Kojima-Shindo example. This is a complementarity
problem with four variables which has two solutions, one is nondegenerate and one is
degenerate. Using the standard starting point, our method converges to the degenerate
solution. The iteration history is given in Table 3.
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k ‖F (xk)‖ ‖D1/2
k g(xk)‖ eval ∆k direction

0 2.475100e+00 1.952834e+01 2 2 proj. Newton
1 5.716714e-02 7.597381e-01 3 4 proj. Newton
2 1.918792e-02 2.054685e-01 4 8 proj. Newton
3 1.849870e-04 1.230285e-03 5 16 proj. Newton
4 8.646631e-05 8.838446e-04 6 32 proj. Newton
5 1.025541e-07 1.001342e-06 7 64 proj. Newton
6 7.995851e-09 8.182092e-08 8 128 proj. Newton

Table 3: Iteration history for the smooth reformulation
of the Kojima-Shindo problem

Clearly, Table 3 shows that we do not have quadratic convergence, although the rate of
convergence is still relatively fast. If we would require higher accuracy, however, we would
run into singularity problems. In fact, if we iterate a bit further, we see that we get very
slow convergence using Cauchy points all the time from iteration 8 on.

There exist other reformulations of the complementarity problem as a semismooth sys-
tem of equations such that the corresponding merit function is continuously differentiable
and such that quadratic convergence can still be expected even in the case of degenerate
solutions. We refer to [15, 8] for the corresponding background. In particular, using the
semismooth reformulation from [8] and applying our code to this reformulation using the
Kojima-Shindo example once again, we get the iteration history from Table 4.

k ‖Φ(xk)‖ ‖D1/2
k g(xk)‖ eval ∆k direction

0 1.789473e-01 1.296482e+00 2 2 proj. Newton
1 3.737455e-02 1.221021e+00 3 4 proj. Newton
2 1.581268e-04 1.211466e-03 4 8 proj. Newton
3 1.506474e-08 1.147681e-07 6 2 trunc. Newton

Table 4: Iteration history for the semismooth reformula-
tion of the Kojima-Shindo problem

Obviously, the method is quadratically convergent in this case. Note that we cannot
apply the STRSCNE code from [3] to this semismooth reformulation since this method
requires smooth functions F .

6 Final Remarks

We have introduced an interior-point trust region method for box constrained nonlinear
systems of equations. The method follows the so called affine-scaling approach and gen-
erates strictly feasible iterates. It differs from other methods of this type in the choice
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of the scaling matrix and the transition from the global to the local method. Moreover,
the method can be applied to both continuously differentiable and semismooth systems of
equations. Hence the method is applicable to a wider class of problems than, for example,
the related algorithms from [2, 3, 4, 5], and this was illustrated for the class of complemen-
tarity problems. Compared to the method from the previous references, we also avoid a
nonsingularity assumption that was used in these references in order to get a well-defined
method.

Acknowledgement. The authors would like to thank Stefania Bellavia for pointing out
some large-scale test problems.
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