
ON THE SOLUTION OF LINEAR PROGRAMS
BY JACOBIAN SMOOTHING METHODS1

Stephan Engelke and Christian Kanzow

University of Hamburg
Institute of Applied Mathematics
Bundesstrasse 55
20146 Hamburg
Germany
e-mail: engelke@math.uni-hamburg.de

kanzow@math.uni-hamburg.de

November 30, 1999 (revised February 7, 2000)

Abstract. We introduce a class of algorithms for the solution of linear programs. This class
is motivated by some recent methods suggested for the solution of complementarity prob-
lems. It reformulates the optimality conditions of a linear program as a nonlinear system of
equations and applies a Newton-type method to this system of equations. We investigate the
global and local convergence properties and present some numerical results. The algorithms
introduced here are somewhat related to the class of primal-dual interior-point methods. Al-
though, at this stage of our research, the theoretical results and the numerical performance
of our method are not as good as for interior-point methods, our approach seems to have
some advantages which will also be discussed in detail.

Key Words. Linear programs, Newton-type method, smoothing method, interior-point
method, global convergence, quadratic convergence.

1This research was supported by the DFG (Deutsche Forschungsgemeinschaft).

1 Introduction

Consider the linear program in standard form

min cTx subject to Ax = b, x ≥ 0, (1)

where A ∈ IRm×n has full rank, c ∈ IRn, and b ∈ IRm. As usual, we will call (1) the primal
problem. The corresponding dual problem is given by

max bTλ subject to ATλ + s = c, s ≥ 0, (2)

where λ ∈ IRm denotes the dual variable, and s ∈ IRn is a nonnegative slack variable. Both
the primal and the dual linear programs have the same optimality conditions, namely

ATλ + s = c,
Ax = b,

xi ≥ 0, si ≥ 0, xisi = 0 ∀i = 1, . . . , n.
(3)

Consequently, the primal problem (1) has an optimal solution x∗ ∈ IRn if and only if the dual
problem (2) has an optimal solution. Moreover, any of these two conditions is equivalent
to the solvability of the optimality conditions (3). Hence solving the optimality conditions
(3) is completely equivalent to solving the original linear program (1). This well-known
observation is the basis of our approach.

In this approach, we use some recent ideas from the field of complementarity problems
(see, e.g., [7] for an algorithmic survey) in order to reformulate the optimality conditions (3)
as a nonlinear system of equations

Φ(x, λ, s) = 0. (4)

(The precise definition of Φ will be given in Section 2.) We then try to solve this system
by a Newton-type method in order to get a solution of the linear program (1). However,
since Φ is nonsmooth in general, we cannot use the classical Newton method for the solution
of (4). Furthermore, the Jacobian matrices Φ′(x, λ, s) turn out to be singular even at some
differentiable points (x, λ, s). Consequently, it is also not advisable to apply a nonsmooth
Newton method (see [13, 15, 14]) to (4) since these nonsmooth Newton methods coincide
with the classical one at all continuously differentiable points and, therefore, would also have
to deal with singular Jacobian matrices.

On the other hand, a closer look at the structure of these singular Jacobian matrices
shows that one can avoid the singularity by an arbitrarily small perturbation of certain
matrix entries. This motivates the use of some perturbed nonsmooth Newton methods, see,
e.g., Fischer [9] as well as Yamashita and Fukushima [19] for two examples in the context
of complementarity problems. A slightly different and quite elegant form of a perturbed
nonsmooth Newton method was recently introduced by Chen, Qi, and Sun [5], see also
Kanzow and Pieper [12]. In fact, the method to be discussed in this manuscript is precisely
the method from [5], but specialized to linear programs.

The details of this method are given in Section 2. The global and local convergence
properties are presented in Sections 3 and 4, respectively. We stress that our analysis is

2

quite similar to the one from [5], but that one has to be a bit more careful here. In fact, the
assumptions used in [5] in order to establish global convergence are not satisfied for linear
programs; moreover, in the local convergence part, we can exploit special properties of linear
programs to get a complete characterization of the situation where the optimality conditions
(3) have a unique solution. Section 5 then contains some numerical results for our method
applied to the netlib test problem collection. Finally, we compare our method with the class
of primal-dual interior-point methods in Section 6.

The notation used in this manuscript is rather standard: The Euclidean vector norm and
its associated matrix norm are denoted by ‖ · ‖, whereas ‖ · ‖F stands for the Frobenius norm
of matrices. Furthermore, in order to simplify our notation, we write (x, λ, s) instead of the
more correct (xT , λT , sT)T , where x ∈ IRn, λ ∈ IRm, and s ∈ IRn are given vectors.

2 Jacobian Smoothing Method

The aim of this section is to give a detailed description of our method for the solution
of the linear program (1) via its optimality conditions (3). To this end, the notion of an
NCP-function turns out to be very helpful.

Definition 2.1 A function ϕ : IR2 → IR is called an NCP-function if

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Let ϕ be any NCP-function and define the operator Φ : IRn × IRm × IRn → IRn × IRm × IRn

by

Φ(x, λ, s) :=

 ATλ + s− c
Ax− b
φ(x, s)

 , (5)

where
φ(x, s) := (ϕ(x1, s1), . . . , ϕ(xn, sn))T ∈ IRn.

Then the following equivalence is obvious:

(x∗, λ∗, s∗) solves (3)⇐⇒ (x∗, λ∗, s∗) solves Φ(x, λ, s) = 0.

The solution of the optimality conditions (3) can therefore be reduced to the solution of a
nonlinear system of equations. This system of equations depends heavily on the choice of
the NCP-function ϕ.

Two important examples of an NCP-function are the minimum function

ϕ(a, b) := 2 min{a, b} (6)

(the factor 2 is used here only for cosmetical reasons) and the Fischer-Burmeister function
[8]

ϕ(a, b) := a + b−
√

a2 + b2. (7)

3

Both functions are nonsmooth, but can easily be approximated by smooth functions. For
example, let ϕ denote the minimum function. This function can be rewritten in the form

ϕ(a, b) = 2 min{a, b} = a + b− |a− b| = a + b−
√

(a− b)2.

Although the expression on the right-hand side looks more complicated, it clearly indicates
that the minimum function can be approximated by the so-called Chen-Harker-Kanzow-
Smale smoothing function [4, 10, 16]

ϕτ (a, b) := a + b−
√

(a− b)2 + 4τ 2, (8)

where τ ≥ 0 denotes the smoothing parameter. Note that we have ϕ = ϕτ for τ = 0, and
that ϕτ is continuously differentiable for any τ > 0. Similarly, we can approximate the
Fischer-Burmeister function (7) by

ϕτ (a, b) := a + b−
√

a2 + b2 + 2τ 2, (9)

see [10]. Throughout this manuscript, ϕ always denotes either the minimum function (6)
or the Fischer-Burmeister function (7), while ϕτ always denotes the corresponding smooth
approximation given in (8) or (9), respectively.

Next, let us define the operator Φτ : IRn × IRm × IRn → IRn × IRm × IRn by

Φτ (x, λ, s) :=

 ATλ + s− c
Ax− b
φτ (x, s)

 , (10)

where
φτ (x, s) := (ϕτ (x1, s1), . . . , ϕτ (xn, sn))T ∈ IRn.

Obviously, Φτ may be viewed as a continuously differentiable approximation of the nons-
mooth operator Φ.

The next result states that the smoothed functions ϕτ are indeed good approximations
of the nonsmooth functions ϕ (see also [11]).

Lemma 2.2 There exists a constant c > 0 (independent of τ and (a, b)) such that

|ϕ(a, b)− ϕτ (a, b)| ≤ cτ

for all (a, b) ∈ IR2 and all τ > 0.

Proof. It is easy to verify that the stated inquality holds with c := 2 for the minimum
function, and with c :=

√
2 for the Fischer-Burmeister function. 2

As a direct consequence, we obtain the following result, where Φ and Φτ denote the mappings
defined in (5) and (10), respectively.

Lemma 2.3 There exists a constant κ > 0 (independent of τ and w) such that

‖Φ(w)− Φτ (w)‖ ≤ κτ

for all w = (x, λ, s) ∈ IRn × IRm × IRn and all τ > 0.

4

Proof. The statement follows immediately from Lemma 2.2 with κ := c
√

n, where c denotes
the constant from Lemma 2.2. 2

Note that the constant κ introduced in Lemma 2.3 is actually known. In fact, this will play
an important role in the design of our algorithm where this constant will be used explicitly.

We are now in the position to state our algorithm for the solution of (3). Basically, this
method is a Newton-type method for the solution of the system Φ(x, λ, s) = 0. However,
instead of solving the corresponding Newton equation

Φ′(xk, λk, sk)

 ∆x
∆λ
∆s

 = −Φ(xk, λk, sk)

at each iteration with a possibly singular or not existing Jacobian Φ′(xk, λk, sk), we solve a
linear system of the form

Φ′
τk

(xk, λk, sk)

 ∆x
∆λ
∆s

 = −Φ(xk, λk, sk)

for some τk > 0. This guarantees that the Jacobian of Φτk
exists; moreover, as we will see

later, this matrix is always nonsingular. However, the search direction computed in this way
is, in general, not a descent direction for the natural merit function

Ψ(x, λ, s) :=
1

2
Φ(x, λ, s)TΦ(x, λ, s) =

1

2
‖Φ(x, λ, s)‖2,

but it turns out to be a descent direction for the smoothed merit function

Ψτ (x, λ, s) :=
1

2
Φτ (x, λ, s)TΦτ (x, λ, s) =

1

2
‖Φτ (x, λ, s)‖2

with τ = τk. The precise algorithm is as follows, see also [5].

Algorithm 2.4 (Jacobian Smoothing Method)

(S.0) Choose ρ, α, η ∈ (0, 1), ε > 0, σ ∈ (0, 1 − α) and w0 := (x0, λ0, s0) ∈ IRn × IRm × IRn.
Set β0 := ‖Φ(w0)‖, τ0 := α

2κ
β0 and k := 0.

(S.1) If ‖Φ(wk)‖ ≤ ε: STOP.

(S.2) Compute a solution ∆wk = (∆xk, ∆λk, ∆sk) ∈ IRn × IRm × IRn of the linear system

Φ′
τk

(wk)∆w = −Φ(wk). (11)

(S.3) Compute tk = max{ρ` | ` = 0, 1, 2, . . .} such that

Ψτk
(wk + tk∆wk) ≤ Ψτk

(wk)− 2σtkΨ(wk) (12)

and set wk+1 := wk + tk∆wk.

5

(S.4) If
‖Φ(wk+1)‖ ≤ max{ηβk, ‖Φ(wk+1)− Φτk

(wk+1)‖/α}, (13)

then set
βk+1 := ‖Φ(wk+1)‖ (14)

and choose τk+1 such that

τk+1 ∈
(
0, min

{ α

2κ
βk+1,

τk

2

})
. (15)

Otherwise (i.e., if (13) is not satisfied) set βk+1 := βk and τk+1 := τk.

(S.5) Set k ← k + 1 and go to Step (S.1).

Step (S.0) of Algorithm 2.4 is the initialization (with κ being the constant from Lemma 2.3),
while Step (S.1) contains the termination criterion. Step (S.2) computes the Newton-type
search direction which is the main computational effort of Algorithm 2.4. Step (S.3) then
calculates a stepsize by using an Armijo-type condition for the smoothed merit function Ψτk

.
Step (S.4) contains the updating rule for the smoothing parameter τk. This updating rule
looks somewhat complicated, however, it is exactly the rule that is needed in the theoretical
analysis. More precisely, the current updating rule for τk will be used in order to establish
a global convergence result for Algorithm 2.4, see the next section for further details. To
guarantee local fast convergence, however, one has to impose some further conditions on
the choice of τk. Loosely speaking, τk has to go to zero sufficiently fast. This issue will be
discussed in more detail in Section 4.

3 Global Convergence

Throughout this section, we assume that the termination parameter ε is equal to zero and
that Algorithm 2.4 does not terminate in a finite number of iterations. Under this assump-
tion, we will show that Algorithm 2.4 is well-defined and globally convergent in the sense
that any accumulation point of a sequence generated by the Jacobian smoothing method is
a solution of the optimality conditions (3).

Our first result states that the linear systems (11) can always be solved uniquely.

Proposition 3.1 The Jacobian matrices Φ′
τ (w) are nonsingular for all w = (x, λ, s) ∈

IRn × IRm × IRn and all τ > 0.

Proof. It is easy to see that Φτ is differentiable with

Φ′
τ (x, λ, s) =

 0 AT I
A 0 0

Da,τ 0 Db,τ

 (16)

with diagonal matrices

Da,τ := diag

(
. . . ,

∂ϕτ

∂a
(xi, si), . . .

)
∈ IRn×n

6

and

Db,τ := diag

(
. . . ,

∂ϕτ

∂b
(xi, si), . . .

)
∈ IRn×n.

Since
∂ϕτ

∂a
(a, b) ∈ (0, 2) and

∂ϕτ

∂b
(a, b) ∈ (0, 2)

for all (a, b) ∈ IR2 and both functions ϕτ defined in (8) and (9), it follows that the diagonal
matrices Da,τ and Db,τ are positive definite. Now let q = (q(1), q(2), q(3)) ∈ IRn × IRm × IRn

be an appropriately partitioned vector with Φ′
τ (w)q = 0. Then (16) implies

ATq(2) + q(3) = 0, (17)

Aq(1) = 0, (18)

Da,τq
(1) + Db,τq

(3) = 0. (19)

Premultiplying (17) by (q(1))T and taking into account (18) gives

(q(1))Tq(3) = 0. (20)

On the other hand, solving (19) for q(1) and substituting into (20) yield that

(q(3))TD−1
a,τDb,τq

(3) = 0. (21)

Since Da,τ , Db,τ are positive definite, we obtain q(3) = 0 from (21). This implies q(1) = 0
because of (19). Hence we also get q(2) = 0 from (17) and the full rank assumption of A. 2

We next state a technical inequality which, however, will turn out to be very helpful in our
subsequent analysis. Its simple proof can be found in [5] or [12].

Lemma 3.2 Let {wk} be a sequence generated by Algorithm 2.4. Then

‖Φ(wk)− Φτk
(wk)‖ ≤ α‖Φ(wk)‖

holds for all k ∈ IN.

The following result guarantees that the line search in Step (S.3) of Algorithm 2.4 is well-
defined. Its proof can be found in [5, 12] and is based on Lemma 3.2.

Proposition 3.3 At each iteration k, there exists a finite exponent `k such that the stepsize
tk = ρ`k satisfies the line search criterion (12).

Propositions 3.1 and 3.3 together imply that Algorithm 2.4 is at least well-defined. In the
remaining part of this section, we will show that it is also globally convergent in the sense
that any accumulation point of a sequence generated by Algorithm 2.4 is a solution of the
optimality conditions (3). To this end, it will be convenient to use the index set

K := {0} ∪ {k ∈ IN | ‖Φ(wk)‖ ≤ max{ηβk−1, ‖Φτk−1
(wk)− Φ(wk)‖/α}. (22)

Our next result says that, although ‖Φ(wk)‖ does not necessarily decrease monotonically
(since our line search is based on ‖Φτk

(·)‖), a possible increase cannot be too dramatic.

7

Proposition 3.4 All iterates wk generated by Algorithm 2.4 belong to the level set

L := {w | ‖Φ(w)‖ ≤ (1 + α)‖Φ(w0)‖}.

Proof. The proof is essentially the same as the ones given in [5, 12] for the corresponding
results in that papers. Nevertheless, we include it here not only for the sake of completeness,
but also since we will derive an important inequality which will be used in our subsequent
analysis.

Let us partition the index set K from (22) into K = {0} ∪K1 ∪K2, where

K1 := {k ∈ K | ηβk−1 ≥ ‖Φτk−1
(wk)− Φ(wk)‖/α}

and
K2 := {k ∈ K | ηβk−1 < ‖Φτk−1

(wk)− Φ(wk)‖/α}.

Assume that K consists of k0 = 0 < k1 < k2 < . . . (note that K might be finite or infinite).
Let k ∈ IN be arbitrarily given and kj be the largest number in K such that kj ≤ k. Then
we have

τk = τkj
and βk = βkj

= ‖Φ(wkj)‖

in view of our updating rules in Step (S.4) of Algorithm 2.4. Using the line search criterion
(12), we have

‖Φτkj
(wk)‖ ≤ ‖Φτkj

(wkj)‖.

Hence we obtain from Lemma 2.3

‖Φ(wk)‖ ≤ ‖Φτk
(wk)‖+ ‖Φ(wk)− Φτk

(wk)‖
= ‖Φτkj

(wk)‖+ ‖Φ(wk)− Φτkj
(wk)‖

≤ ‖Φτkj
(wk)‖+ κτkj

≤ ‖Φτkj
(wkj)‖+ κτkj

≤ ‖Φ(wkj)‖+ ‖Φτkj
(wkj)− Φ(wkj)‖+ κτkj

≤ ‖Φ(wkj)‖+ κτkj
+ κτkj

= βkj
+ 2κτkj

.

(23)

Now, if j = 0, we have βkj
= β0, τkj

= τ0 and therefore

‖Φ(wk)‖ ≤ β0 + 2κτ0 = (1 + α)‖Φ(w0)‖

from (23) and Step (S.0) of Algorithm 2.4. On the other hand, if j ≥ 1, we get from Step
(S.4) of Algorithm 2.4 that

τkj
≤ 1

2
τkj−1 =

1

2
τkj−1

and either
βkj
≤ ηβkj−1 = ηβkj−1

if kj ∈ K1

or, using Lemma 2.3 again,

βkj
≤ ‖Φτkj−1

(wkj)− Φ(wkj)‖/α ≤ κ

α
τkj−1 =

κ

α
τkj−1

≤ 1

2
βkj−1

if kj ∈ K2.

8

Let us define
r := max{1/2, η}.

Then it follows from the definitions of τ0 and β0 that, for j ≥ 1, we have

τkj
≤ 1

2j−1
τ0 =

1

2j

α

κ
‖Φ(w0)‖ (24)

and
βkj
≤ rj−1β0 = rj−1‖Φ(w0)‖. (25)

Therefore, using (23) and r ≥ 1/2, we obtain for j ≥ 1

‖Φ(wk)‖ ≤
(
rj−1 +

α

2j−1

)
‖Φ(w0)‖ ≤ rj−1(1 + α)‖Φ(w0)‖. (26)

This shows that the inequality

‖Φ(wk)‖ ≤ (1 + α)‖Φ(w0)‖

holds in any case. 2

We are now in the position to prove our main global convergence result.

Theorem 3.5 Every accumulation point of a sequence {wk} generated by Algorithm 2.4 is
a solution of the optimality conditions (3).

Proof. If the index set K is infinite, then the statement follows immediately from (26). So
consider the case where K is finite. Let k̂ be the largest number in K. Then it follows from
our updating rules in Step (S.4) of Algorithm 2.4 that the following relations hold for all
k ≥ k̂:

τk = τk̂, (27)

βk = βk̂ = ‖Φ(wk̂)‖, (28)

‖Φ(wk)‖ > ηβk = η‖Φ(wk̂)‖ > 0, (29)

α‖Φ(wk)‖ > η‖Φτk̂
(wk)− Φ(wk)‖. (30)

Let w∗ be an accumulation point of {wk} and {wk}L be a subsequence converging to w∗.
Without loss of generality, we assume that k ≥ k̂ for all k ∈ L. Let

t∗ := lim inf
k∈L

tk

(note that we take the limes inferior on the subset L only). We now distinguish two cases.

Case 1: t∗ > 0.
Since tk ≥ t∗/2 for all k ∈ L sufficiently large, we then get from our line search rule that

Ψτk̂
(wk+1)−Ψτk̂

(wk) ≤ −2σtkΨ(wk) ≤ −σt∗Ψ(wk) < 0. (31)

9

On the other hand (since τk̂ is fixed), the merit function Ψτk̂
is bounded from below (by zero)

and {Ψτk̂
(wk)}k∈IN is a monotonically decreasing sequence. Hence {Ψτk̂

(wk)} is convergent.
In particular, we therefore have

Ψτk̂
(wk+1)−Ψτk̂

(wk)→ 0 for k →∞.

Hence, taking the limit k →∞ for k ∈ L in (31), we get

0 ≤ −σt∗Ψ(w∗) ≤ 0

and therefore Ψ(w∗) = 0.

Case 2: t∗ = 0.
Since τk = τk̂ > 0 for all k ∈ L, Φ′

τk̂
(w∗) is nonsingular by Proposition 3.1, and {wk}k∈L → w∗,

it follows from a standard perturbation result that Φ′
τk

(wk) is nonsingular with

‖Φ′
τk

(wk)−1‖ ≤ κ1

for all k ∈ L sufficiently large and a suitable constant κ1 > 0. This implies

‖∆wk‖ ≤ ‖Φ′
τk

(wk)−1Φ(wk)‖
≤ κ1‖Φ(wk)‖
≤ κ1(1 + α)‖Φ(w0)‖
=: κ2

for all large enough k ∈ L by Step (S.2) of Algorithm 2.4 and Proposition 3.4. Hence we can
assume without loss of generality that

{∆wk}k∈L → ∆w∗

for some vector ∆w∗ ∈ IRn × IRm × IRn. On the other hand, subsequencing if necessary,
we have {tk}k∈L → 0. Therefore the stepsize tk/ρ does not satisfy the Armijo-like condition
(12), i.e., we have

−2σ
tk
ρ

Ψ(wk) < Ψτk̂
(wk +

tk
ρ

∆wk)−Ψτk̂
(wk)

for all k ∈ L sufficiently large. Using the Cauchy-Schwarz inequality and Lemma 3.2, this

10

implies

−2σΨ(wk)

<
Ψτk̂

(wk + tk
ρ
∆wk)−Ψτk̂

(wk)
tk
ρ

= ∇Ψτk̂
(wk)T∆wk +

(
Ψτk̂

(wk + tk
ρ
∆wk)−Ψτk̂

(wk)
tk
ρ

−∇Ψτk̂
(wk)T∆wk

)

= −Φτk̂
(wk)TΦ(wk) +

(
Ψτk̂

(wk + tk
ρ
∆wk)−Ψτk̂

(wk)
tk
ρ

−∇Ψτk̂
(wk)T∆wk

)
= −2Ψ(wk) + Φ(wk)T

(
Φ(wk)− Φτk̂

(wk)
)

+

(
Ψτk̂

(wk + tk
ρ
∆wk)−Ψτk̂

(wk)
tk
ρ

−∇Ψτk̂
(wk)T∆wk

)
≤ −2Ψ(wk) + 2αΨ(wk)

+

(
Ψτk̂

(wk + tk
ρ
∆wk)−Ψτk̂

(wk)
tk
ρ

−∇Ψτk̂
(wk)T∆wk

)
.

Taking the limit k → ∞ for k ∈ L and using wk → w∗, ∆wk → ∆w∗, and tk → 0 on this
subsequence, we obtain from the continuous differentiability of Ψτk̂

that

−2σΨ(w∗) ≤ −2Ψ(w∗) + 2αΨ(w∗) +∇Ψτk̂
(w∗)T∆w∗ −∇Ψτk̂

(w∗)T∆w∗

and therefore
σΨ(w∗) ≥ (1− α)Ψ(w∗).

By our choice of σ in Step (S.0) of Algorithm 2.4, this implies Ψ(w∗) = 0.

We therefore obtain in both cases that Ψ(w∗) = 0 and therefore also Φ(w∗) = 0. However,
by (29) and continuity, we have ‖Φ(w∗)‖ > 0. This contradiction shows that K is infinite,
so the proof is complete. 2

Note that the previous proof showed the following: Whenever the sequence {wk} generated
by Algorithm 2.4 has an accumulation point, then the index set K is infinite. Hence K can
be finite only if {wk} is unbounded.

4 Rate of Convergence

The aim of this section is to prove local quadratic convergence of our Jacobian smoothing
method from Algorithm 2.4 under suitable assumptions. To this end, we first establish the
following result which is also of interest by its own.

Theorem 4.1 Let (x∗, λ∗, s∗) be a solution of the optimality conditions (3). Then the fol-
lowing statements are equivalent:

11

(a) Φ is continuously differentiable at (x∗, λ∗, s∗), and the Jacobian Φ′(x∗, λ∗, s∗) is non-
singular.

(b) (x∗, λ∗, s∗) is the unique solution of the optimality conditions (3).

Proof. (a) =⇒ (b): Let Φ be continuously differentiable at (x∗, λ∗, s∗) with Φ′(x∗, λ∗, s∗)
being nonsingular. Then, by standard results [6], there exists a constant c > 0 with

‖Φ(x, λ, s)‖ ≥ c‖(x∗, λ∗, s∗)− (x, λ, s)‖

for all (x, λ, s) sufficiently close to (x∗, λ∗, s∗). This inequality shows that, locally, (x∗, λ∗, s∗)
is the unique solution of the optimality conditions (3). However, since it is easy to see that
the solution set of (3) is convex, it follows that (x∗, λ∗, s∗) is the unique solution of (3) also
from a global point of view.

(b) =⇒ (a): By the Goldman-Tucker Theorem (see, e.g., [18]), the unique solution (x∗, λ∗, s∗)
of the optimality conditions (3) satisfies the strict complementarity condition

x∗i + s∗i > 0 ∀i = 1, . . . , n.

This implies that Φ is continuously differentiable at (x∗, λ∗, s∗).
In order to see that the Jacobian of Φ is nonsingular at the point (x∗, λ∗, s∗), we assume

throughout this proof that ϕ denotes the Fischer-Burmeister function from (7). The proof
for the minimum function from (6) is very similar and therefore omitted here.

Define the two index sets

B := {i ∈ {1, . . . , n} |x∗i > 0},
N := {i ∈ {1, . . . , n} | s∗i > 0}.

By strict complementarity, we have

N = {1, . . . , n} \ B.

Note that

Φ′(x∗, λ∗, s∗) =

 0 AT I
A 0 0
Da 0 Db

with

Da := diag

(
. . . ,

∂ϕ

∂a
(x∗i , s

∗
i), . . .

)
,

Db := diag

(
. . . ,

∂ϕ

∂b
(x∗i , s

∗
i), . . .

)
.

The definitions of the index sets B and N together with the definition of the Fischer-
Burmeister function shows that

∂ϕ

∂a
(x∗i , s

∗
i) = 1− x∗i√

(x∗i)
2 + (s∗i)

2
=

{
0 if i ∈ B,
1 if i ∈ N ,

(32)

∂ϕ

∂b
(x∗i , s

∗
i) = 1− s∗i√

(x∗i)
2 + (s∗i)

2
=

{
1 if i ∈ B,
0 if i ∈ N .

(33)

12

Then Φ′(x∗, λ∗, s∗)q = 0 for an appropriately partitioned vector q = (q(1), q(2), q(3)) implies

ATq(2) + q(3) = 0, (34)

Aq(1) = 0, (35)

(Da)Bq
(1)
B + (Db)Bq

(3)
B = 0, (36)

(Da)N q
(1)
N + (Db)N q

(3)
N = 0, (37)

where q
(1)
B denotes the |B|-dimensional subvector of q(1) consisting of the components q

(1)
i (i ∈

B); similarly, (Da)B denotes the |B| × |B|-diagonal matrix containing the diagonal entries
aii (i ∈ B) from the matrix Da. The other subvectors and submatrices occuring in the above
formulars are defined in an analogous way.

Using (32), (33), (36), and (37), we obtain

q
(3)
B = 0 and q

(1)
N = 0. (38)

We will use (38) in order to show that the vector

(x∗(t), λ∗(t), s∗(t)) := (x∗, λ∗, s∗) + t(q(1), q(2), q(3))

is also a solution of the optimality conditions (3) for all t > 0 sufficiently small. This then
implies that q = (q(1), q(2), q(3)) = (0, 0, 0) since (x∗, λ∗, s∗) was assumed to be the only
solution of (3).

Obviously, the equations Ax∗(t) = b and ATλ∗(t) + s∗(t) = c are satisfied for any t > 0
in view of (34) and (35), respectively. Moreover, x∗(t) ≥ 0 and s∗(t) ≥ 0 for all t > 0
sufficiently small follows from the definitions of the index sets B and N together with (38).
Finally, we also have

x∗(t)Ts∗(t) =
(
x∗B + tq

(1)
B

)T (
s∗B + tq

(3)
B

)
+
(
x∗N + tq

(1)
N

)T (
s∗N + tq

(3)
N

)
= 0

since (x∗, λ∗, s∗) satisfies the optimality conditions (3), x∗N = 0, s∗B = 0 and because of (38).
This completes the proof. 2

A result similar to Theorem 4.1 was also presented by Burke and Xu [2] on a recent confer-
ence; in fact, it was pointed out by Burke that Theorem 4.1 can be derived from a similar
result by Burke and Xu [3], where the authors consider a smoothing-type method for linear
complementarity problems based on the minimum function.

Theorem 4.1 allows the following interpretation: Assume that a sequence {(xk, λk, sk)}
generated by Algorithm 2.4 converges to a solution (x∗, λ∗, s∗) satisfying the strict comple-
mentarity condition x∗i + s∗i > 0 for all i = 1, . . . , n, so that Φ is continuously differentiable
around this solution point. Then Theorem 4.1 states that the sequence of Jacobian matrices
{Φ′(xk, λk, sk)} converges to a singular matrix whenever (x∗, λ∗, s∗) is not the unique solution
of (3).

In the remaining part of this section, we want to show that Algorithm 2.4 is locally
quadratically convergent if one of the two equivalent conditions from Theorem 4.1 is satisfied

13

and if the smoothing parameter τk is updated in an appropriate way. The latter is made
more precise in our next two results.

In order to motivate this result, assume that Φ is continuously differentiable at a point
(x, λ, s). Then Φ′

τ (x, λ, s) → Φ′(x, λ, s) for τ → 0. Hence, for any δ > 0, there exists a
constant τ̄ > 0 such that

‖Φ′
τ (x, λ, s)− Φ′(x, λ, s)‖ ≤ δ

for all τ ∈ [0, τ̄]. However, the existence of such a constant τ̄ does not guarantee that this τ̄
can be computed easily. On the other hand, our local rate of convergence result assumes that
such a constant is computable. Therefore, our next two results give explicit values of this τ̄
provided that the difference between the matrices Φ′

τ (x, λ, s) and Φ′(x, λ, s) is measured in
the Frobenius norm.

The first of these two results deals with the case where Φ and Φτ are defined via the
Fischer-Burmeister function (7) and its smooth counterpart (9).

Lemma 4.2 Let Φ and Φτ be defined using the Fischer-Burmeister-type functions (7) and
(9), respectively. Furthermore, let (x, λ, s) ∈ IRn × IRm × IRn be any vector with x2

i + s2
i > 0

for all i = 1, . . . , n, and let δ > 0 be arbitrarily given. Then we have

‖Φ′
τ (x, λ, s)− Φ′(x, λ, s)‖F ≤ δ

for all τ ∈ [0, τ̄], where τ̄ = τ̄(x, s, δ) > 0 is given by

τ̄(x, s, δ) :=
δ mini=1,...,n{x2

i + s2
i }

2
√

n maxi=1,...,n{x2
i + s2

i }
.

Proof. Since x2
i + s2

i > 0 for all i = 1, . . . , n, the mapping Φ is continuously differentiable
at (x, λ, s). Hence its Jacobian Φ′(x, λ, s) exists at (x, λ, s), and an elementary calculation
shows that

‖Φ′
τ (x, λ, s)− Φ′(x, λ, s)‖2F =

∑n
i=1

(
∂ϕτ

∂a
(xi, si)− ∂ϕ

∂a
(xi, si)

)2
+∑n

i=1

(
∂ϕτ

∂b
(xi, si)− ∂ϕ

∂b
(xi, si)

)2
.

(39)

Throughout this proof, let us use the notation

αxs := min
i=1,...,n

{x2
i + s2

i } > 0.

Then we obtain∣∣∣∣∂ϕτ

∂a
(xi, si)−

∂ϕ

∂a
(xi, si)

∣∣∣∣ =

∣∣∣∣∣ xi√
x2

i + s2
i + 2τ 2

− xi√
x2

i + s2
i

∣∣∣∣∣
= |xi|

(
1√

x2
i + s2

i

− 1√
x2

i + s2
i + 2τ 2

)

≤ |xi|
(

1
√

αxs

− 1√
αxs + 2τ 2

)
= |xi|

√
αxs + 2τ 2 −√αxs√
αxs

√
αxs + 2τ 2

≤ |xi|
√

2τ

αxs

14

for i = 1, . . . , n, where the first inequality follows from the fact that the function

f(a) :=
1√
a
− 1√

a + 2τ 2

is strictly decreasing for a > 0 (since f ′(a) < 0 for a > 0), and the second inequality follows
from √

a + b ≤
√

a +
√

b

for all a, b ≥ 0. In a similar way, we get∣∣∣∣∂ϕτ

∂b
(xi, si)−

∂ϕ

∂b
(xi, si)

∣∣∣∣ ≤ |si|
√

2τ

αxs

for i = 1, . . . , n. Using the definition of τ̄ , we therefore obtain for any τ ∈ [0, τ̄] and any
i ∈ {1, . . . , n}: (

∂ϕτ

∂a
(xi, si)−

∂ϕ

∂a
(xi, si)

)2

≤ x2
i 2τ

2

α2
xs

≤ 2x2
i τ̄

2

α2
xs

≤ 2x2
i δ

2α2
xs

4nα2
xs maxi=1,...,n{x2

i + s2
i }

≤ δ2

2n

and, similarly, (
∂ϕτ

∂b
(xi, si)−

∂ϕ

∂b
(xi, si)

)2

≤ δ2

2n
.

Using (39), this implies

‖Φ′
τ (x, λ, s)− Φ′(x, λ, s)‖F

=

√√√√ n∑
i=1

(
∂ϕτ

∂a
(xi, si)−

∂ϕ

∂a
(xi, si)

)2

+
n∑

i=1

(
∂ϕτ

∂b
(xi, si)−

∂ϕ

∂b
(xi, si)

)2

≤
√

nδ2

2n
+

nδ2

2n
= δ.

This completes the proof. 2

The next result deals with the case where Φ and Φτ are defined by the minimum function
(6) and its smooth counterpart (8).

15

Lemma 4.3 Let Φ and Φτ be defined using the minimum-type functions (6) and (8), re-
spectively. Furthermore, let (x, λ, s) ∈ IRn × IRm × IRn be any vector with xi 6= si for all
i = 1, . . . , n, and let δ > 0 be arbitrarily given. Then we have

‖Φ′
τ (x, λ, s)− Φ′(x, λ, s)‖F ≤ δ

for all τ ∈ [0, τ̄], where τ̄ = τ̄(x, s, δ) > 0 is given by

τ̄(x, s, δ) :=
δ mini=1,...,n{(xi − si)

2}
2
√

2n maxi=1,...,n{(xi − si)2}
.

Proof. The proof is essentially the same as the one given for Lemma 4.2. In fact, if we
define

αxs := min
i=1,...,n

{(xi − si)
2} > 0,

then the previous proof goes through with some minor modifications. 2

Lemmas 4.2 and 4.3 enable us to state the following local convergence result for Algorithm
2.4 if the smoothing parameter τk gets updated sufficiently fast in Step (S.4) of Algorithm
2.4.

Theorem 4.4 Let (x∗, λ∗, s∗) be the unique solution of the optimality conditions (3), and
assume that (x∗, λ∗, s∗) is an accumulation point of a sequence {(xk, λk, sk)} generated by
Algorithm 2.4. Then the entire sequence {(xk, λk, sk)} converges to (x∗, λ∗, s∗). Moreover, if
τk gets updated such that

τk+1 ∈
(
0, min

{ α

2κ
βk+1,

τk

2
, τ̄k

})
for all k sufficiently large, where τ̄k := τ̄(xk+1, sk+1, βk+1) denotes the constant defined in
Lemma 4.2 or Lemma 4.3 (depending on whether we choose the Fischer-Burmeister or the
minimum function), then {(xk, λk, sk)} converges quadratically to (x∗, λ∗, s∗).

Proof. First note that, since the solution (x∗, λ∗, s∗) of the optimality conditions (3) sat-
isfies strict complementarity in view of our assumptions, it follows that the two conditions
x2

i + s2
i > 0 and xi 6= si for all i = 1, . . . , n used in Lemmas 4.2 and 4.3, respectively, are

satisfied in a sufficiently small neighbourhood of (x∗, λ∗, s∗). Hence we can apply these two
results in our situation. Doing this and taking into account Theorem 4.1, it is possible to
verify the statement in exactly the same way as this is done in [5, 12] for the methods pre-
sented there. We therefore skip the proof here. 2

There is a recent result by Tseng [17] which indicates that the search direction used in our
Jacobian smoothing method has very good local properties. In fact, Tseng [17] shows that
it gives a superlinear rate of convergence even if the solution set of the optimality conditions
(3) is not a singleton. Unfortunately, however, it is currently not possible to apply the result
by Tseng [17] to our framework.

16

5 Numerical Results

When implementing the Jacobian smoothing method from Algorithm 2.4, it is quite helpful
to observe that the linear systems we have to solve at each iteration have exactly the same
structure as those in primal-dual interior-point methods, see also the discussion in the next
section. Hence it is possible to take the linear algebra subroutines from existing interior-
point codes. In particular, for our preliminary testing, we took the LIPSOL solver by Zhang
[20, 21]. This is a MATLAB program which, however, calls a FORTRAN sparse Cholesky
code in order to solve the linear system of equations at each iteration (note that it is not
necessary to solve the linear system (11) directly; instead, one can easily use the special
structure of this system in order to see that one has to solve only a positive definite system
of dimension m at each iteration). Obviously, we had to change the main program in LIPSOL
completely in order to implement the Jacobian smoothing method. The implementation of
Algorithm 2.4 uses the following parameters:

α = 0.99995, η = 0.31, ρ = 0.9, σ = 10−4,

and the definitions of Φ and Φτ are based on the minimum function (6) and its smooth
counterpart (8), respectively. The termination criterion used in our code is

‖Φ(wk)‖ ≤ ε with ε = 10−3.

This is a much weaker condition than what is typically used in corresponding complemen-
tarity software. However, due to possible singularity problems (cf. the discussion in Section
4), it seems that one should not use a too strong termination criterion. Moreover, according
to our experience, the approximate solutions found by using the above stopping rule seem to
have the same accuracy as those provided by interior-point solvers. Nevertheless, we stress
that a suitable stopping criterion for the Jacobian smoothing method is a nontrivial task
since the iterates are no longer guaranteed to be feasible.

On the other hand, since we choose the starting point (x0, λ0, s0) in such a way that at
least the linear equations

Ax = b and ATλ + s = c

are satisfied at (x, λ, s) = (x0, λ0, s0), it follows that these linear equations are satisfied at
all iterates (x, λ, s) = (xk, λk, sk). Consequently, the only infeasibility which can occur is in
the complementarity conditions

xi ≥ 0, si ≥ 0, xisi = 0 (i = 1, . . . , n).

The precise way we choose our starting point is as follows:

(a) Solve AATy = b using a sparse Cholesky code in order to compute y0 ∈ IRm.

(b) Set x0 := ATy0 (hence we have Ax0 = b).

(c) Define λ0 := 0 and s0 := c (so that we also have ATλ0 + s0 = c).

17

Table 1: Numerical results for the Jacobian smoothing method

Problem k ‖Φ(wf)‖ primal objective
adlittle 18 1.1090e-05 2.2549496316e+05
afiro 8 4.8102e-07 -4.6475314311e+02
agg 56 4.0555e-04 -3.5991767287e+07
agg2 33 7.7409e-04 -2.0239252356e+07
agg3 31 2.1183e-07 1.0312115935e+07
bandm 60 7.6182e-04 -1.5862797925e+02
beaconfd 31 1.8352e-06 3.3592485807e+04
blend 27 4.9101e-05 -3.0812150098e+01
boeing1 81 1.1542e-04 -3.3521356138e+02
boeing2 37 4.1229e-05 -3.1501872799e+02
bore3d 43 6.4748e-05 1.3730803943e+03
brandy 47 3.0906e-04 1.5185098971e+03
capri 43 1.2333e-04 2.6900129008e+03
degen2 27 6.0299e-05 -1.4351780000e+03
e226 69 4.7034e-04 -1.8751928767e+01
etamacro 79 5.5534e-04 -7.5571519859e+02
finnis 52 3.0823e-04 1.7279106560e+05
forplan 44 5.0031e-04 -6.6421884104e+02
israel 162 1.8494e-04 -8.9664482186e+05
lotfi 185 9.2147e-05 -2.5264706074e+01
recipe 13 9.8645e-05 -2.6661599983e+02
sc105 39 5.7189e-04 -5.2202061282e+01
sc205 82 3.4097e-04 -5.2202061208e+01

This may not be the best choice for a starting point to be used within our Jacobian smoothing
method, but it seems to be a reasonable and relatively simple choice.

We tested our method on all problems from the netlib collection with less than m = 600
rows (in the original formulation; the program automatically reformulates all problems in a
certain standard form by, e.g., introducing nonnegative slack variables for all upper bound
constraints, and this procedure can increase the dimension of some problems dramatically).
Table 1 presents the corresponding results:

• Column 1 contains the name of the test example.

• Column 2 gives the number of iterations until termination.

• Column 3 provides the value of ‖Φ(wf)‖ at the final iterate wf .

• Column 4 shows the value of the primal objective function at the final iterate wf .

We think that the results in Table 1 are not too bad. Although interior-point software
has a better behaviour on most of these problems, the reader should take into account that,

18

Table 1 (continued): Numerical results for the Jacobian smoothing method

Problem k ‖Φ(wf)‖ primal objective
sc50a 20 8.3305e-05 -6.4575077292e+01
sc50b 27 9.4160e-09 -7.0000000000e+01
scagr25 99 2.5476e-04 -1.4753433061e+07
scagr7 37 9.5727e-07 -2.3313898243e+06
scfxm1 50 4.6251e-04 1.8416759030e+04
scorpion 87 7.8545e-04 1.8781248227e+03
scrs8 139 2.4730e-04 9.0429695385e+02
scsd1 10 3.4190e-04 8.6666666747e+00
scsd6 13 4.2885e-04 5.0500000078e+01
scsd8 20 9.4377e-04 9.0500000003e+02
sctap1 39 3.9728e-04 1.4122500002e+03
share1b 162 1.2334e-04 -7.6589318579e+04
share2b 34 2.7101e-05 -4.1573224073e+02
shell 48 9.7677e-07 1.2088253460e+09
ship04l 47 6.3126e-07 1.7933245380e+06
ship04s 43 2.6374e-06 1.7987147004e+06
stair 92 2.0571e-04 -2.5126695120e+02
standata 12 1.7527e-04 1.2576994995e+03
standgub 23 3.5092e-06 1.2576995000e+03
standmps 36 2.4049e-04 1.4060175000e+03
stocfor1 51 8.2467e-10 -4.1131976219e+04
tuff 40 5.8251e-04 2.9549410844e-01
vtpbase 38 1.1010e-05 1.2983146246e+05
wood1p 16 6.7710e-05 1.4429024111e+00

basically, all implementations of interior-point methods for linear programs are predictor-
corrector methods, whereas here we solve only one linear system of equations at each itera-
tion. Moreover, the best choice for the parameters in Algorithm 2.4 (especially the values for
α and η) are currently not clear to us, whereas interior-point methods are well-understood
in the meantime. Some of these things will actually be part of our future research.

Finally, we mention that there are three more test problems with less than m = 600 rows
which are not listed in Table 1. These are kb2, pilot4, and seba. On these three problems,
our method failed either because the maximum number of iterations was reached (like in
kb2 and in pilot4) or because the stepsize tk became too small (like in seba). We stress,
however, that all problems can be solved by different parameter settings.

6 Comparison with Interior-Point Methods

Our Jacobian smoothing method turns out to be closely related to interior-point meth-
ods (primal-dual path-following methods, to be more precise). To see this, we recall that

19

interior-point methods typically perturb the complementarity conditions within the optimal-
ity conditions (3) in order to deal with a system of the form

ATλ + s = c,
Ax = b,

xi > 0, si > 0, xisi = τ 2 ∀i = 1, . . . , n
(40)

(here we use τ 2 instead of τ just for technical reasons). Interior-point methods then apply
some kind of Newton method to the equations within these perturbed optimality condi-
tions and deal with the nonnegativity of the x- and s-variables separately by a suitable line
search. By reducing τ in an appropriate way, interior-point methods have a strong theoreti-
cal background and an outstanding numerical performance, see, e.g., the excellent book [18]
by Wright for further details.

The relation to our Jacobian smoothing method comes from an observation made in [10]:
The perturbed optimality conditions (40) can be rewritten as

ATλ + s = c,
Ax = b,

ϕτ (xi, si) = 0 ∀i = 1, . . . , n,

where ϕτ still denotes one of the two smoothing functions defined in (8) and (9). Hence the
system (40) is completely equivalent to the nonlinear system of equations

Φτ (x, λ, s) = 0 (41)

which does not contain any nonnegativity constraints (at least not explicitly) and which is
the basis of our Algorithm 2.4.

As we already said in the abstract, both the theoretical background and the numerical
performance of interior-point methods are currently stronger than for our Jacobian smooth-
ing method. However, interior-point methods were not born in just one day, and we are in
the starting phase of our research. In fact, we believe that Jacobian smoothing methods
have some definite advantages if compared with interior-point methods which should turn
out to be helpful in the near future. In particular, we think that the following points are
worth being mentioned:

• The Newton-type search direction computed by using the system of equations (41) in-
cludes explicitly the information that the x- and s-variables should stay nonnegative,
whereas the Newton-type direction computed by interior-point methods completely
disregard this point. We therefore believe that our search direction is actually the
better direction, at least from a local point of view. In fact, in view of our prelimi-
nary numerical experience, the Jacobian smoothing method seems to converge locally
somewhat faster than interior-point methods.

• The system (41) is an unconstrained reformulation of the perturbed optimality con-
ditions (40). Hence we can allow negative components in our iterates. In particular,
there is no further restriction on the length of the stepsize, in contrast to interior-point

20

methods. Therefore, we hope to accept larger steps than those used in interior-point
methods. However, our feeling is that this point has not been exploited completely by
our Jacobian smoothing method, and we plan to elaborate on this as part of our future
research.

• Since, as mentioned in our previous point, our iterates are not required to belong to
the positive orthant, it is relatively easy to combine Jacobian smoothing methods with
an active set strategy. This cannot be done in an easy way by interior-point methods
since, basically, any active set method will project at least some components on the
boundary of the positive orthant. If this procedure does not give the solution of the
linear program, interior-point methods cannot do much with the information provided
by such a strategy, whereas Jacobian smoothing methods can start easily from this
projected point (even if the projected point is not a solution of the linear program, it
might be much closer to a solution and therefore be an attractive point).

• Finally, if one solves a sequence of similar linear programs (like in branch-and-bound
techniques for the solution of integer or mixed integer programs), one typically wants
to use the solution of the previous problem as a starting point for the next one. This,
however, is usually not possible for interior-point methods because the solution of the
previous problem does, in general, not belong to the positive orthant of the next prob-
lem, whereas we can easily deal with this situation since we can start at an arbitrary
point. In fact, this might even be an advantage if compared with simplex-type schemes.
We will certainly work on this topic as part of our future research.

Acknowledgement. The authors would like to thank Jim Burke and Paul Tseng for some
discussions on the topic of this paper, and for pointing out some relevant references.

References

[1] D. Bertsimas and J.N. Tsitsiklis: Introduction to Linear Optimization. Athena
Scientific, Belmont, MA, 1997.

[2] J.V. Burke and S. Xu: Preliminary numerical experience with non-interior path
following methods for LCP. Talk presented at the International Conference on Nonlinear
Programming and Variational Inequalities, Hongkong, December 1998.

[3] J.V. Burke and S. Xu: A non-interior-predictor-corrector path following algorithm
for the monotone linear complementarity problem. Mathematical Programming 87, 2000,
pp. 113–130.

[4] B. Chen and P.T. Harker: A non-interior-point continuation method for linear
complementarity problems. SIAM Journal on Matrix Analysis and Applications 14, 1993,
pp. 1168–1190.

[5] X. Chen, L. Qi and D. Sun: Global and superlinear convergence of the smoothing
Newton method and its application to general box constrained variational inequalities.
Mathematics of Computation 67, 1998, pp. 519–540.

21

[6] J.E. Dennis, Jr., and R.B. Schnabel: Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ, 1983 (reprinted
by SIAM, Philadelphia, PA, 1996).

[7] M.C. Ferris and C. Kanzow: Complementarity and related problems. In:
P.M. Pardalos and M.G.C. Resende (eds.): Handbook on Applied Optimization.
Oxford University Press, to appear.

[8] A. Fischer: A special Newton-type optimization method. Optimization 24, 1992, pp.
269–284.

[9] A. Fischer: A Newton-type method for positive semidefinite linear complementarity
problems. Journal of Optimization Theory and Applications 86, 1995, pp. 585–608.

[10] C. Kanzow: Some noninterior continuation methods for linear complementarity prob-
lems. SIAM Journal on Matrix Analysis and Applications 17, 1996, pp. 851–868.

[11] C. Kanzow: A new approach to continuation methods for complementarity problems
with uniform P -functions. Operations Research Letters 20, 1997, pp. 85–92.

[12] C. Kanzow and H. Pieper: Jacobian smoothing methods for nonlinear complemen-
tarity problems. SIAM Journal on Optimization 9, 1999, pp. 342–373.

[13] B. Kummer: Newton’s method for nondifferentiable functions. In: J. Guddat et al.
(eds.): Advances in Mathematical Optimization. Akademie–Verlag, Berlin, Germany,
1988, pp. 114–125.

[14] L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math-
ematics of Operations Research 18, 1993, pp. 227–244.

[15] L. Qi and J. Sun: A nonsmooth version of Newton’s method. Mathematical Program-
ming 58, 1993, pp. 353–367.

[16] S. Smale: Algorithms for solving equations. In Proceedings of the International
Congress of Mathematicians. AMS, Providence, 1987, pp. 172–195.

[17] P. Tseng: Error bounds and superlinear convergence analysis of some Newton-type
methods in optimization. In: G. Di Pillo and F. Giannessi (eds.): Nonlinear Opti-
mization and Related Topics. Kluwer Academic Publishers, to appear.

[18] S.J. Wright: Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA, 1997.

[19] N. Yamashita and M. Fukushima: Modified Newton methods for solving a semis-
mooth reformulation of monotone complementarity problems. Mathematical Program-
ming 76, 1997, pp. 469–491.

[20] Y. Zhang: User’s guide to LIPSOL: Linear programming interior point solver v0.4.
Optimization Methods and Software 11 & 12, 1999, pp. 385–396.

22

[21] Y. Zhang: Solving large-scale linear programs by interior-point methods under the
MATLAB environment. Optimization Methods and Software 10, 1998, pp. 1–31.

23

