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Abstract. Generalized Nash equilibrium problems (GNEPs) allow, in contrast to stan-
dard Nash equilibrium problems, a dependence of the strategy space of one player from
the decisions of the other players. In this paper, we consider jointly convex GNEPs which
form an important subclass of the general GNEPs. Based on a regularized Nikaido-Isoda
function, we present two (nonsmooth) reformulations of this class of GNEPs, one reformu-
lation being a constrained optimization problem and the other one being an unconstrained
optimization problem. While most approaches in the literature compute only a so-called
normalized Nash equilibrium, which is a subset of all solutions, our two approaches have
the property that their minima characterize the set of all solutions of a GNEP. We also in-
vestigate the smoothness properties of our two optimization problems and show that both
problems are continuous under a Slater-type condition and, in fact, piecewise continuously
differentiable under the constant rank constraint qualification. Finally, we present some
numerical results based on our unconstrained optimization reformulation.

Key Words: Generalized Nash equilibrium problem; jointly convex; optimization refor-
mulation; continuity; PC1 mapping; semismoothness; constant rank constraint qualifica-
tion.



1 Introduction

This paper considers the generalized Nash equilibrium problem, GNEP for short, with N
players ν = 1, . . . , N . Each player ν ∈ {1, . . . , N} controls the variables xν ∈ Rnν , and the
vector x = (x1, . . . , xN)T ∈ Rn with n = n1 + . . . + nN describes the decision vector of all
players. To emphasize the role of player ν’s variables within the vector x, we often write
(xν , x−ν) for this vector. Each player has a cost function θν : Rn → R and, in the most
general setting of a GNEP, its own strategy space Xν(x

−ν) ⊆ Rnν that depends on the
other players. Typically, these sets are defined explicitly via some constraint functions, say

Xν(x
−ν) := {xν ∈ Rnν | gν(xν , x−ν) ≤ 0} (1)

for suitable functions gν : Rn → Rmν , ν = 1, . . . , N . Let

Ω(x) := X1(x
−1)× . . .×XN(x−N) (2)

be the Cartesian product of these strategy spaces. Then a vector x∗ ∈ Ω(x∗) is called a
generalized Nash equilibrium, or simply a solution of the GNEP, if

θν(x
∗,ν , x∗,−ν) ≤ θν(x

ν , x∗,−ν) for all xν ∈ Xν(x
∗,−ν)

holds for all players ν = 1, . . . , N , i.e. if x∗,ν solves the optimization problem

min
xν

θν(x
ν , x∗,−ν) s.t. xν ∈ Xν(x

∗,−ν)

for all ν = 1, . . . , N . There are just a very few papers that deal with a GNEP in this
general setting (see, in particular, [4, 5, 7, 9, 22]) where the feasible sets (besides their
dependence on the rivals’ strategies) are allowed to be different for each player. Here we
consider the special case that is often called the jointly convex case where the (convex)
feasible sets of all players still depend on the rivals’ strategies, but are the same for all
players. More precisely, we assume that there is a common strategy space X ⊆ Rn such
that the feasible set of player ν is given by

Xν(x
−ν) = {xν ∈ Rnν | (xν , x−ν) ∈ X}.

Throughout this paper, we assume that the following standard requirements are satisfied.

Assumption 1.1 (a) The cost functions θν : Rn → R are continuous and, as a function
of xν alone, convex.

(b) The set X ⊆ Rn is nonempty, closed and convex, and can be represented as X =
{x ∈ Rn | g(x) ≤ 0} with a mapping g : Rn → Rm whose component functions gi are
convex for all i = 1, . . . ,m.
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Note that we do not require compactness of the set X. In view of Assumption 1.1, the
strategy space of player ν is given by

Xν(x
−ν) = {xν ∈ Rnν | g(xν , x−ν) ≤ 0}.

In the setting (1), this corresponds to the case where g1 = g2 = . . . = gN = g.
Note that this jointly convex case is still a very challenging problem. Although a

number of methods have been developed for this problem during the last few years (see, in
particular, [4] and references therein), most of these methods find a so-called normalized
Nash equilibrium of the GNEP. Each normalized Nash equilibrium is, in particular, a
solution of the GNEP, so these methods can be used to find a generalized Nash equilibrium,
but the converse is not true in general. In fact, typically a GNEP has many solutions, but
just one normalized Nash equilibrium. Unfortunately, this normalized Nash equilibrium is
often not the solution economists etc. are interested in. This observation is not new, and
there exists a very limited number of approaches which try to deal with this problem. One
is described in the book [21], but only for the standard Nash equilibrium problem where
the strategy spaces Xν(x

−ν) do not depend on the rivals’ strategies (making the entire
problem considerably easier), and the other approach for GNEPs is very recent, see [20],
and tries to use characterizations of all the solutions of a GNEP via certain parameterized
variational inequality problems. A complete characterization, however, is not given.

The approach we follow here was already settled in the paper [11], but not further
discussed there simply because the focus on that paper was on some other (differentiable)
formulations of a GNEP. The idea is to use a constrained optimization reformulation of
the GNEP whose minima characterize the entire set of generalized Nash equilibria, and
not only the normalized Nash equilibria. The price we have to pay is that this constrained
optimization reformulation is nonsmooth. The precise reformulation and its elementary
properties will be discussed in detail in Section 2. There, we also modify the constrained
optimization reformulation in a suitable way to obtain a new unconstrained optimization
reformulation of the GNEP whose solutions are, again, precisely the generalized Nash
equilibria of the GNEP. The exact smoothness properties of these two reformulations, the
constrained and the unconstrained optimization one, will be discussed in detail in Sections
3 and 4, respectively. It turns out that both formulations are continuous in those points
x where a Slater-condition for the sets Ω(x) holds. Moreover, it will be shown that the
objective functions are PC1 mappings under the additional assumption that the constant
rank constraint qualification holds. This, in particular, implies that the functions are
directionally differentiable, locally Lipschitz and semismooth. This paves the way for the
application of suitable nonsmooth optimization solvers in order to find generalized Nash
equilibria. Based on the unconstrained reformulation, we therefore present some numerical
results in Section 5 using a sampling method from [1] for nonsmooth optimization. We
then close with some final remarks in Section 6.

Notation: With ‖·‖ we denote the Euclidean norm. PX [x] is the (Euclidean) projection
of a vector x ∈ Rn onto the nonempty, closed and convex set X ⊆ Rn, i.e. it is the unique
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solution of

min
1

2
‖z − x‖2 s.t. z ∈ X.

A function G : Rn → Rm is called a PC1 function in a neighbourhood of a given point
x∗ if G is continuous and there exists a neighborhood U of x∗ and a finite number of
continuously differentiable functions G1, G2, . . . , Gk defined on U such that, for all x ∈ U ,
we have G(x) ∈ {G1(x), G2(x), . . . , Gk(x)}. For a locally Lipschitz function H : Rm×Rn →
Rn, (x, y) 7→ H(x, y), we denote by ∂H(x, y) the generalized Jacobian of H in the sense of
Clarke [3], and by πy∂H(x, y) the set of all matrices M ∈ Rn×n such that, for a matrix
N ∈ Rn×m, the matrix [N, M ] ∈ Rn×(m+n) is an element of ∂H(x, y).

2 Constrained and Unconstrained Optimization Re-

formulation

Here we first recall a constrained optimization reformulation of the GNEP as introduced in
[11] and then present a new reformulation of the GNEP as an unconstrained optimization
problem.

To this end, we first define the Nikaido-Isoda function (also called Ky Fan-function) by

Ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
.

Since θν is convex in xν , it follows that Ψ(x, .) is concave for any fixed x. Consequently,
the regularized Nikaido-Isoda-function

Ψα(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
,

originally introduced in [10] as a technical tool for the standard Nash equilibrium problem
and afterwards used in [11, 12, 13, 14] for the numerical solution of GNEPs, is uniformly
concave as a function of the second argument, where α > 0 denotes a fixed parameter.
Using this function, we define

Vα(x) := max
y∈Ω(x)

Ψα(x, y)

= max
y∈Ω(x)

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− α

2
‖xν − yν‖2

]
(3)

=
N∑

ν=1

[
θν(x

ν , x−ν)− min
yν∈Xν(x−ν)

(
θν(y

ν , x−ν) +
α

2
‖xν − yν‖2

)]
,

where the maximization is taken over the set Ω(x) defined in (2). Note that Assumption
1.1 implies that all sets Xν(x

−ν) are closed and convex, hence Ω(x) is also closed and
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convex. Therefore, Vα(x) is well-defined for all x ∈ Rn such that Ω(x) 6= ∅. According to
the following result, the latter condition holds at least for all x ∈ X.

As shown in [11], there is a reformulation of the jointly convex GNEP as a constrained
optimization problem based on the mapping Vα. The following is a summary of the corre-
sponding results from [11].

Theorem 2.1 Suppose that Assumption 1.1 holds. Then:

(a) x ∈ X if and only if x ∈ Ω(x).

(b) Vα(x) ≥ 0 for all x ∈ X.

(c) x∗ is a generalized Nash equilibrium if and only if x∗ ∈ X and Vα(x∗) = 0.

(d) For all x ∈ Rn with Ω(x) 6= ∅, there exists a unique vector yα(x) :=
(
y1

α(x), . . . , yN
α (x)

)
such that, for every ν = 1, . . . , N ,

arg minyν∈Xν(x−ν)

[
θν(y

ν , x−ν) +
α

2
‖xν − yν‖2

]
= yν

α(x).

(e) x∗ is a generalized Nash equilibrium if and only if x∗ is a fixed point of the mapping
x 7→ yα(x), i.e. if and only if x∗ = yα(x∗).

Basically, this result says that finding a solution (i.e., an arbitrary generalized Nash equi-
librium) of the GNEP is equivalent to solving the constrained optimization problem

min Vα(x) s.t. x ∈ X (4)

with Vα(x) = 0. Unfortunately, it turns out that this optimization problem has a nons-
mooth objective function even under very strong conditions. This observation was already
made in [11], so that this reformulation was not further investigated there. The following
example shows that Vα might even be discontinuous.

Example 2.2 Let the common strategy space of a two-player game be given by

X = {x ∈ R3 | x2
2 + (x3 − x1)

2 − x2
1 ≤ 0, 0 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10, 0 ≤ x3 ≤ 20}.

The variable x1 is controlled by the first player, and the two variables x2, x3 are the decision
variables of the second player. The cost functions are defined by

θ1(x) := (x1 + 10)2 and θ2(x) := x2
2 + x2

3,

respectively. The corresponding Nikaido-Isoda function is given by

Ψα(x, y) := (x1 + 10)2 + x2
2 + x2

3 − (y1 + 10)2 − y2
2 − y2

3 −
α

2
‖x− y‖2.
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Its unconstrained maximum is
(−20+αx1

2+α
, αx2

2+α
, αx3

2+α

)T
. Now consider the sequence

x(δ) := (10,
√

20δ − δ2, δ)T → (10, 0, 0)T := x∗

with δ ↓ 0 (note that x∗ belongs to X). Then an elementary calculation shows that, for all
α > 0 and all δ > 0 sufficiently small, we have

yα

(
x(δ)

)
=

(
10,

α
√

20δ − δ2

2 + α
,

αδ

2 + α

)T

→ (10, 0, 0) for δ ↓ 0.

On the other hand, for the parameter α = 2 or, more generally, for an arbitrary parameter
α ∈ (0, 2], it can be shown that yα(x∗) = (0, 0, 0)T , hence the function yα is not continuous
in (10, 0, 0)T . Furthermore, we have

Vα

(
x(δ)

)
= Ψα

(
x(δ), yα(x(δ))

)
= 20δ

(
1− α2

(2 + α)2
− α

2

(
1− α

2 + α

)2
)
→ 0,

whereas Vα(x∗) = 202−102− α
2
102 6= 0, which shows that Vα is not continuous in (10, 0, 0)T .

This example also shows that the Slater condition for the set X, i.e. the existence of an
interior point of X, is not sufficient for continuity of Vα, since for example x̂ := (2, 1, 2)T

is a Slater point. ♦

Besides this negative observation, it turns out that the function Vα is continuous and even
a PC1 mapping under fairly mild conditions. This will be discussed in more detail in
Section 3. Here, we now modify the previous approach and present a new unconstrained
optimization reformulation of the GNEP which also characterizes all solutions of the GNEP.

In order to present an unconstrained reformulation of the GNEP which is close to
the previous constrained one, we have to find a way to define the function Vα(x) :=
maxy∈Ω(x) Ψα(x, y) for those points x ∈ Rn where Ω(x) is empty. So far, we only know
that Ω(x) 6= ∅ for all x ∈ X. This fact will now be exploited in the following definition
where, for an arbitrary x ∈ Rn (not necessarily belonging to X), we maximize over the set
Ω(PX [x])) instead of Ω(x).

Definition 2.3 For all x ∈ Rn and α > 0, we define

ȳα(x) := arg maxy∈Ω(PX [x])Ψα(x, y) and

V̄α(x) := max
y∈Ω(PX [x])

Ψα(x, y) = Ψα(x, ȳα(x)).

Given two parameters 0 < α < β, we then define

V̄αβ(x) := V̄α(x)− V̄β(x)

for all x ∈ Rn (where ȳβ(x) and V̄β(x) are defined in an obvious way).
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For all x ∈ X, we obviously have ȳα(x) = yα(x) and V̄α(x) = Vα(x), so we leave the
functions unchanged on X. On the other hand, for x 6∈ X, all functions are still well-
defined since our previous discussion shows that, in particular, PX [x] ∈ Ω(PX [x]), hence
Ω(PX [x]) 6= ∅ and, therefore, ȳα(x) is well-defined and unique.

The next lemma will be crucial to prove that we get an unconstrained reformulation of
the GNEP by the function V̄αβ.

Lemma 2.4 For all x ∈ Rn, the following inequalities hold:

β − α

2
‖x− ȳβ(x)‖2 ≤ V̄αβ(x) ≤ β − α

2
‖x− ȳα(x)‖2.

Proof. We have ȳα(x) ∈ Ω(PX [x]) and ȳβ(x) ∈ Ω(PX [x]). Therefore

V̄β(x) = Ψβ(x, ȳβ(x)) = max
y∈Ω(PX [x])

Ψβ(x, y) ≥ Ψβ(x, ȳα(x)), (5)

V̄α(x) = Ψα(x, ȳα(x)) = max
y∈Ω(PX [x])

Ψα(x, y) ≥ Ψα(x, ȳβ(x)). (6)

On the one hand, this implies

V̄αβ(x) = V̄α(x)− V̄β(x)
(5)

≤ Ψα(x, ȳα(x))−Ψβ(x, ȳα(x)) =
β − α

2
‖x− ȳα(x)‖2,

and, on the other hand, we obtain

V̄αβ(x) = V̄α(x)− V̄β(x)
(6)

≥ Ψα(x, ȳβ(x))−Ψβ(x, ȳβ(x)) =
β − α

2
‖x− ȳβ(x)‖2

for all x ∈ Rn. �

We are now in a position to show that the function V̄αβ provides an unconstrained opti-
mization reformulation of the GNEP.

Theorem 2.5 The following statements hold:

(a) V̄αβ(x) ≥ 0 for all x ∈ Rn.

(b) x∗ is a generalized Nash equilibrium if and only if x∗ is a minimum of V̄αβ with
V̄αβ(x∗) = 0.

Proof. Lemma 2.4 (left inequality) shows that

V̄αβ(x) ≥ β − α

2
‖x− ȳβ(x)‖2 ≥ 0

for all x ∈ Rn, hence statement (a) holds.
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In order to verify the second statement, first assume that x∗ is a generalized Nash
equilibrium. Then x∗ ∈ Ω(x∗), and Theorem 2.1 (a) implies x∗ ∈ X. This, in turn, gives
PX [x∗] = x∗, and together with the fixed point characterization of Theorem 2.1 (e), we get

x∗ = yα(x∗) = ȳα(x∗).

Lemma 2.4 (right inequality) then implies V̄αβ(x∗) ≤ 0. In view of part (a), we therefore
have V̄αβ(x∗) = 0.

Conversely, assume that V̄αβ(x∗) = 0 for some x∗ ∈ Rn. Then we obtain

0 = V̄αβ(x∗) ≥ β − α

2
‖x∗ − ȳβ(x∗)‖2 ≥ 0

from Lemma 2.4. Consequently, we have x∗ = ȳβ(x∗) ∈ Ω(PX [x∗]), i.e.

x∗,ν ∈ Xν((PX [x∗])−ν) = {xν | (xν , (PX [x∗])−ν) ∈ X}

for all ν = 1, . . . , N . Let ν̄ ∈ {1, . . . , N} be arbitrarily given.
Then we have (x∗,ν̄ , (PX [x∗])−ν̄) ∈ X and

‖x∗ − (x∗,ν̄ , (PX [x∗])−ν̄)‖2 =
N∑

ν=1,ν 6=ν̄

‖x∗,ν − (PX [x∗])ν‖2

≤
N∑

ν=1

‖x∗,ν − (PX [x∗])ν‖2

= ‖x∗ − PX [x∗]‖2.

Since the projection PX [x∗] onto the nonempty, closed and convex set X is the unique
solution of the problem

min
1

2
‖x∗ − z‖2 s.t. z ∈ X,

we must have x∗,ν̄ = (PX [x∗])ν̄ . Since ν̄ ∈ {1, . . . , N} was arbitrarily chosen, this is true
for all components and hence x∗ = PX [x∗], i. e. x∗ ∈ X. Thus we get yβ(x∗) = ȳβ(x∗) = x∗.
Therefore, x∗ is a generalized Nash equilibrium by the fixed point characterization from
Theorem 2.1 (e). �

This theorem shows that the generalized Nash equilibria x∗ are exactly the minima of the
function V̄αβ satisfying V̄αβ(x∗) = 0. We therefore have the unconstrained optimization
reformulation

min V̄αβ(x), x ∈ Rn, (7)

in order to find solutions of a GNEP. Again, the minimia of this problem (with zero objec-
tive function value) characterize all solutions of the GNEP (not only the normalized Nash
equilibria). However, similar to the constrained reformulation, also this unconstrained one
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is nondifferentiable in general. The smoothness properties of this unconstrained problem
will be discussed in more detail in Section 4.

We close this section by noting that there is an alternative way to characterize the so-
lutions of a GNEP as the global minima of a suitable unconstrained optimization problem.
This alternative approach is similar to the previous one, and we do not further discuss its
properties in the following sections.

Remark 2.6 For an arbitrary parameter α > 0, let us define the functions

ỹα(x) := arg maxy∈Ω(PX [x])Ψα(PX [x], y), and

Ṽα(x) := max
y∈Ω(PX [x])

Ψα(PX [x], y) = Ψα(PX [x], ỹα(x))

for all x ∈ Rn. Then, given two parameters 0 < α < β and a positive constant c > 0, let
us define

Ṽαβ(x) := Ṽα(x)− Ṽβ(x) + c‖x− PX [x]‖2.

The difference to the previous reformulation is that the first argument of the function Ψα is
the projection PX [x] instead of x itself and that we use an additional term c‖x− PX [x]‖2.
In a way similar to the above approach, one can show that finding a generalized Nash
equilibrium is equivalent to solving the unconstrained optimization problem

min Ṽαβ(x), x ∈ Rn.

The details are left to the reader. Note that, in this reformulation, the additional term
c‖x−PX [x]‖2 is needed to guarantee that the solutions of our optimization problem belong
to X. ♦

This alternative unconstrained optimization formulation of the GNEP can be shown to have
similar smoothness properties as those that will now be shown for the other reformulations
in the next two sections.

3 Smoothness Properties of the Constrained Refor-

mulation

Here we come back to the constrained reformulation (4) of the GNEP with the objective
function Vα from (3). Knowing that this objective function is nondifferentiable, we take a
closer look at the smoothness properties of this mapping. Our aim is to show the following
statements:

• Vα is continuous at x ∈ X provided that Ω(x) satisfies a Slater condition;

• Vα is a PC1 function provided that g and θν are twice continuously differentiable
and, in addition to the Slater condition, also a constant rank constraint qualification
holds.
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In order to verify the continuity of Vα, we need some terminology and results from set-
valued analysis. Let us begin with the following definitions, see, e.g., [15].

Definition 3.1 Suppose X ⊆ Rn, Y ⊆ Rm, and Φ : X ⇒ Y is a point-to-set mapping.
Then Φ is called

(a) open in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all y∗ ∈ Φ(x∗),
there exists a number m ∈ N and a sequence {yk} ⊆ Y such that yk ∈ Φ(xk) for all
k ≥ m and yk → y∗;

(b) closed in x∗ ∈ X, if for all sequences {xk} ⊆ X with xk → x∗ and all sequences
yk → y∗ with yk ∈ Φ(xk) for all k ∈ N sufficiently large, we have y∗ ∈ Φ(x∗);

(c) open or closed on X if it is open or closed in every x ∈ X.

The definition of an open mapping is equivalent to the notion of a lower semicontinuous
set-valued mapping in the sense of Berge. A useful result for our subsequent analysis is
the following one which is an immediate consequence of [15, Corollaries 8.1 and 9.1].

Lemma 3.2 Let X ⊆ Rn arbitrary, Y ⊆ Rm convex, and f : X × Y → R be concave in y
for fixed x and continuous on X×Y . Let Φ : X ⇒ Y be a point-to-set map which is closed
in a neighborhood of x̄ and open in x̄, and Φ(x) convex in a neighbourhood of x̄. Define

Y (x) := {z ∈ Φ(x) | sup
y∈Φ(x)

f(x, y) = f(x, z)}

and assume that Y (x̄) has exactly one element. Then the point-to-set mapping x 7→ Y (x)
is open and closed in x̄.

We can use Lemma 3.2 to prove continuity of Vα.

Theorem 3.3 Suppose that Assumption 1.1 holds and that the point-to-set mapping x →
Ω(x) from (2) is closed on X and open in x ∈ X. Then the functions yα and Vα are
continuous at x ∈ X.

Proof. Assumption 1.1 implies that the function Ψα(x, .) is concave for fixed x and con-
tinuous on Rn × Rn. By Theorem 2.1 (a), Ω(x) is nonempty for all x ∈ X, and Theorem
2.1 (d) shows that the sets Yα(x) := {z ∈ Ω(x) | supy∈Ω(x) Ψα(x, y) = Ψα(x, z)} consist
of exactly one element for all x ∈ X, namely yα(x). Taking into account the convexity
of Ω(x), Lemma 3.2 therefore implies that x → {yα(x)}, viewed as a point-to-set map-
ping, is open and closed at x ∈ X. This implies that the single-valued function x 7→ yα(x)
is continuous at x. Hence, the composition Vα(x) = Ψα(x, yα(x)) is also continuous at x. �

Theorem 3.3 shows that the continuity of the functions yα and Vα follows immediately if
we can show that the set-valued mapping x 7→ Ω(x) is open and closed. The follwoing
result states that this mapping is always closed on X.
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Lemma 3.4 Suppose that Assumption 1.1 holds. Then the point-to-set mapping x 7→ Ω(x)
is closed on X.

Proof. Let x∗ ∈ X, a sequence {xk} ⊆ X with xk → x∗ and a sequence {yk} with
yk ∈ Ω(xk) for all k ∈ N and yk → y∗ be given. We have to show that y∗ ∈ Ω(x∗).

To this end, first recall that yk ∈ Ω(xk) means yk,ν ∈ Xν(x
k,−ν) for all ν = 1, . . . , N ,

and this is equivalent to

(yk,ν , xk,−ν) ∈ X for all ν = 1, . . . , N.

The convergence xk → x∗, yk → y∗ and the fact that X is closed imply

(yk,ν , xk,−ν) → (y∗,ν , x∗,−ν) ∈ X for all ν = 1, . . . , N.

Therefore, we have y∗,ν ∈ Xν(x
∗,−ν) for all ν = 1, . . . , N , which is equivalent to y∗ ∈ Ω(x∗).

This proves that the mapping x 7→ Ω(x) is closed on X. �

Next we want to show that the point-to-set mapping x 7→ Ω(x) is also open. To this end,
it will be useful to define the function

h : Rn × Rn → RmN by h(x, y) :=

 g(y1, x−1)
...

g(yN , x−N)

 ,

where g is the mapping from Assumption 1.1. The function h has the following obvious
properties:

• h is locally Lipschitz continuous (since all gi are convex);

• The component functions hi(x, ·) are convex in y for any given x;

• For any given x, we have y ∈ Ω(x) ⇐⇒ h(x, y) ≤ 0.

In view of Theorem 3.3 and (the Counter-) Example 2.2, it is clear that we cannot expect
openness of x 7→ Ω(x) without any further condition. The missing assumption is the Slater
condition for the set Ω(x) = {y ∈ Rn | h(x, y) ≤ 0} saying that, for the given vector x,
there exists a vector ŷ ∈ Rn with h(x, ŷ) < 0.

Lemma 3.5 Suppose that Assumption 1.1 holds. Then the point-to-set mapping x 7→ Ω(x)
is open in every x ∈ X where Ω(x) satisfies the Slater condition.

Proof. Let x∗ ∈ X be given, such that the Slater condition holds with ŷ ∈ Ω(x∗),
i.e. h(x∗, ŷ) < 0. Consider an arbitrary sequence {xk} ⊆ X converging to x∗, and let
y∗ ∈ Ω(x∗) and hence h(x∗, y∗) ≤ 0 be given. To prove openness of x 7→ Ω(x) in x = x∗,
we have to show the existence of a sequence {yk} converging to y∗ with yk ∈ Ω(xk) for k
sufficiently large. To this end, let us define yk := tkŷ + (1− tk)y

∗ with a suitable sequence
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{tk} ↓ 0. Then we obviously obtain yk → y∗. By convexity and the local Lipschitz property
of the function h, we obtain for all i = 1, . . . ,mN

hi(x
k, yk) =hi

(
xk, tkŷ + (1− tk)y

∗)
≤tkhi(x

k, ŷ) + (1− tk)hi(x
k, y∗)

=tk
(
hi(x

k, ŷ)− hi(x
∗, ŷ)

)
+ tkhi(x

∗, ŷ)

+ (1− tk)
(
hi(x

k, y∗)− hi(x
∗, y∗)

)
+ (1− tk)hi(x

∗, y∗)

≤tkL
1
i ‖xk − x∗‖+ tkhi(x

∗, ŷ) + (1− tk)L
2
i ‖xk − x∗‖+ (1− tk) hi(x

∗, y∗)︸ ︷︷ ︸
≤0

≤L‖xk − x∗‖+ tkhi(x
∗, ŷ),

where L1
i and L2

i are the two local Lipschitz constants of hi around (x∗, ŷ) and (x∗, y∗),
respectively, and L := max{max{L1

i , L
2
i } | i = 1, . . . ,mN}. Since xk → x∗ and h(x∗, ŷ) <

0, we have

tk := −2L
‖xk − x∗‖

maxi hi(x∗, ŷ)
↓ 0.

Using this particular sequence {tk} in the previous calculations, we get

hi(x
k, yk) ≤ −L‖xk − x∗‖ ≤ 0,

for all i = 1, . . . ,mN and, therefore, yk ∈ Ω(xk). This shows openness of the point-to-set
mapping x 7→ Ω(x) in x = x∗. �

Taking these two Lemmas and Theorem 3.3 together, we immediately get the following
continuity result.

Corollary 3.6 Suppose that Assumption 1.1 holds. Then the functions yα and Vα are
continuous in x∗ ∈ X provided the Slater condition holds for Ω(x∗).

Hence the optimization reformulation (4) of the GNEP is at least a continuous problem.
Continuity alone, however, is not sufficient for the application of suitable nonsmooth op-
timization solvers to this problem. What is typically needed is at least the local Lipschitz
continuity of the objective function and, if possible, the semismoothness of this mapping.
Our next aim is therefore to show that these additional properties hold under fairly mild
conditions. In fact, we will prove the stronger property that Vα is a PC1 mapping.

To this end, we need a stronger smoothness property in addition to Assumption 1.1.

Assumption 3.7 The functions θν : Rn → R and g : Rn → Rm are twice continuously
differentiable.

Note that Assumption 3.7 implies that the function h is twice continuously differentiable.
Hence yα(x) is the unique solution of the twice continuously differentiable optimization
problem

max
y

Ψα(x, y) s.t. h(x, y) ≤ 0. (8)
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Let
I(x) := {i ∈ {1, . . . ,mN} | hi(x, yα(x)) = 0}

be the set of active constraints. Consider, for a fixed subset I ⊆ I(x), the problem (which
has equality constraints only)

max
y

Ψα(x, y) s.t. hi(x, y) = 0 (i ∈ I). (9)

Let
LI

α(x, y, λ) := −Ψα(x, y) +
∑
i∈I

λihi(x, y)

be the Lagrangian of the optimization problem (9). Then the KKT-system of this problem
reads

∇yL
I
α(x, y, λ) = −∇yΨα(x, y) +

∑
i∈I

λi∇yhi(x, y) = 0, hi(x, y) = 0 ∀i ∈ I. (10)

This can be written as a nonlinear system of equations

ΦI
α(x, y, λ) = 0 with ΦI

α(x, y, λ) :=

(
∇yL

I
α(x, y, λ)

hI(x, y)

)
, (11)

where hI consists of all components hi of h with i ∈ I. The function ΦI
α is continuously

differentiable since Ψα and g are twice continuously differentiable, and we have

∇ΦI
α(x, y, λ) =

(
∇2

yxL
I
α(x, y, λ)T ∇2

yyL
I
α(x, y, λ) ∇yhI(x, y)T

∇xhI(x, y) ∇yhI(x, y) 0

)
.

Therefore, we obtain

∇(y,λ)Φ
I
α(x, y, λ) =

(
∇2

yyL
I
α(x, y, λ) ∇yhI(x, y)T

∇yhI(x, y) 0

)
.

Then we have the following result whose proof is standard so we skip it.

Lemma 3.8 Suppose that Assumption 3.7 holds, that ∇2
yyL

I
α(x, y, λ) is positive definite

and that the gradients ∇yhi(x, y) (i ∈ I) are linearly independent. Then ∇(y,λ)Φ
I
α(x, y, λ)

is nonsingular.

Note that the assumed positive definiteness of the Hessian ∇2
yyL

I(x, y, λ) is an assumption
that can easily be relaxed in Lemma 3.8, but that this condition automatically holds in
our situation, so we do not really need a weaker assumption here. Furthermore, we stress
that the assumed linear independence of the gradients ∇yhi(x, y) (i ∈ I) is a very strong
condition for certain index sets I, however, in our subsequent application of Lemma 3.8, we
will only consider index sets I where this assumption holds automatically, so this condition
is not really crucial in our context.

We next introduce another assumption that will be used in order to show that our
objective function Vα is a PC1 mapping.
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Assumption 3.9 The (feasible) constant rank constraint qualification (CRCQ) holds at
x∗ ∈ X if there exists a neighbourhood N of x∗ such that for every subset I ⊆ I(x∗) := {i |
hi(x

∗, yα(x∗)) = 0}, the set of gradient vectors

{∇yhi(x, yα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N ∩X.

Note that the previous definition requires the same rank only for those x ∈ N which also
belong to the common strategy space X; this is important in our case since for x 6∈ X, the
vector yα(x) is not necessarily defined. Moreover, this is the only difference compared to
the standard CRCQ as introduced in [16] and the reason why we call this assumption the
feasible CRCQ, although, in our subsequent discussion, we will often speak of the CRCQ
condition when we refer to Assumption 3.9. This feasible CRCQ has also been used before
in [6], for example, where the authors simply call this condition the CRCQ.

The following result is motivated by [24] (see also [14]) and states that both yα and Vα

are piecewise continuously differentiable functions.

Theorem 3.10 Suppose that Assumptions 1.1 and 3.7 hold, let x∗ ∈ X be given, and
suppose that the solution mapping yα : X → Rn of (8) is continuous in a neighbourhood
of x∗ (see Corollary 3.6 for a sufficient condition). Then there exists a neighbourhood N̂
of x∗ ∈ X such that yα is a PC1 function on N̂ ∩ X provided that the (feasible) CRCQ
condition from Assumption 3.9 holds at x∗.

Proof. We divide the proof into several steps.

Step 1: Here we introduce some notation and summarize some preliminary statements that
will be useful later on.

First let x∗ ∈ X be fixed such that Assumption 3.9 holds in a neighbourhood N of x∗.
Recall that

I(x) := {i | hi(x, yα(x)) = 0}

for all x ∈ N ∩X. Furthermore, for any such x ∈ N ∩X, let us denote by

M(x) := {λ ∈ RmN | (yα(x), λ) is a KKT point of (8)}

the set of all Lagrange multipliers of the optimization problem (8). Since CRCQ holds at
x∗, it is easy to see that CRCQ also holds for all x ∈ X sufficiently close to x∗. Without loss
of generality, let us say that CRCQ holds for all x ∈ N ∩X with the same neighbourhood
N as before. Then it follows from a result in [16] that the set M(x) is nonempty for all
x ∈ N ∩X. This, in turn, implies that the set

B(x) :=
{
I ⊆ I(x) | ∇yhi(x, yα(x)) (i ∈ I) are linearly independent and

supp(λ) ⊆ I for some λ ∈M(x)
}
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is also nonempty for all x in a sufficiently small neighbourhood of x∗, say, again, for
all x ∈ N ∩ X (see [14] for a formal proof), where supp(λ) denotes the support of the
nonnegative vector λ, i.e.

supp(λ) := {i | λi > 0}.

Furthermore, it can be shown that, in a suitable neighbourhood of x∗ (which we assume
to be N once again), we have B(x) ⊆ B(x∗), see, e.g., [24, 14].

Step 2: Here we show that, for every x ∈ N ∩ X and every I ∈ B(x), there is a unique
multiplier λI

α(x) ∈M(x) such that ΦI
α(x, yα(x), λI

α(x)) = 0, where N,M(x), and B(x) are
defined as in Step 1.

To this end, let x ∈ N ∩X and I ∈ B(x) be arbitrarily given. The definition of B(x)
implies that there is a Lagrange multiplier λI

α(x) ∈ M(x) with supp(λI
α(x)) ⊆ I. Since

(x, yα(x), λI
α(x)) satisfies the KKT conditions of the optimization problem (8), [λI

α(x)]i = 0
for all i 6∈ I, and hi(x, yα(x)) = 0 for all i ∈ I (since I ⊆ I(x)), it follows that
ΦI

α(x, yα(x), λI
α(x)) = 0. Moreover, the linear independence of the gradients ∇yhi(x, yα(x))

for i ∈ I shows that the multiplier λI
α(x) is unique.

Step 3: Here we claim that, for any given x∗ ∈ X satisfying Assumption 3.9 and an arbitrary
I ∈ B(x∗) with corresponding multiplier λ∗, there exist open neighbourhoods N I(x∗) and
N I(yα(x∗), λ∗) as well as a C1-diffeomorphism

(
yI(·), λI(·)

)
: N I(x∗) → N I(yα(x∗), λ∗)

such that yI(x∗) = yα(x∗), λI(x∗) = λ∗ and ΦI
α(x, yI(x), λI(x)) = 0 for all x ∈ N I(x∗).

To verify this statement, let x∗ ∈ X be given such that the CRCQ holds, choose
I ∈ B(x∗) arbitrarily, and let λ∗ ∈M(x∗) with supp(λ∗) ⊆ I be a corresponding multiplier
coming from the definition of the set B(x∗). Now, consider once again the nonlinear
system of equations ΦI

α(x, y, λ) = 0 with ΦI
α being defined in (11). The function ΦI

α

is continuously differentiable, and the triple (x∗, yα(x∗), λ∗) satisfies this system. The
convexity of θν with respect to xν implies that −ΨI

α(x∗, .) is strongly convex with respect
to the second argument and, therefore,∇2

yy(−ΨI
α(x∗, yα(x∗))) is positive definite. Moreover,

the convexity of hi(x
∗, .) in the second argument implies the positive semidefiniteness of

∇2
yyhi(x

∗, yα(x∗)). Since λ∗ ≥ 0, it follows that the Hessian of the Lagrangian LI
α evaluated

in (x∗, yα(x∗), λ∗), i.e. the matrix

∇2
yyL

I
α(x∗, yα(x∗), λ∗) = −∇2

yyΨα(x∗, yα(x∗)) +
∑
i∈I

λ∗i∇2
yyhi(x

∗, yα(x∗))

is positive definite. Since, in addition, ∇yhi(x
∗, yα(x∗)) (i ∈ I) are linearly independent

in view of our choice of I ∈ B(x∗), the matrix ∇(y,λ)Φ
I
α(x∗, yα(x∗), λ∗) is nonsingular by

Lemma 3.8. The statement therefore follows from the standard implicit function theorem,
where, without loss of generality, we can assume that N I(x∗) ⊆ N .

Step 4: Here we verify the statement of our theorem.
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Let x∗ ∈ X be given such that CRCQ holds in x∗. Define N̂ :=
⋂

I∈B(x∗) N I(x∗) with

the neighbourhoods N I(x∗) from Step 3. Since B(x∗) is a finite set, N̂ is a neighborhood
of x∗.

Choose x ∈ N̂ ∩ X arbitrarily. Step 2 shows that, for each I ∈ B(x), there exists a
unique multiplier λI

α(x) ∈ M(x) satisfying ΦI
α(x, yα(x), λI

α(x)) = 0. On the other hand,
Step 3 guarantees that there exists neighbourhoods N I(x∗) and N I(yα(x∗), λ∗) and a C1-
diffeomorphism yI(·), λI(·) : N I(x∗) → N I(yα(x∗), λ∗) such that ΦI

α(x, yI(x), λI(x)) = 0
for all x ∈ N I(x∗). In particular, yI(x), λI(x) is the locally unique solution of the system
of equations ΦI

α(x, y, λ) = 0 for all x ∈ N I(x∗). Hence, as soon as we can show that
(yα(x), λI

α(x)) belongs to the neighbourhood N I(yα(x∗), λ∗) for all x ∈ X sufficiently close
to x∗, the local uniqueness then implies yα(x) = yI(x) (for all I ∈ B(x) ⊆ B(x∗)).

Suppose this is not true in a sufficiently small neighbourhood. Then there is a sequence
{xk} ⊆ X with {xk} → x∗ and a corresponding sequence of index sets Ik ∈ B(xk) such
that (

yα(xk), λIk
α (xk)

)
6∈ N Ik(yα(x∗), λ∗) for all k ∈ N.

Since B(xk) ⊆ B(x∗) contains only finitely many index sets, we may assume that Ik is the
same index set for all k which we denote by I.

By the continuity of yα, we have yα(xk) → yα(x∗). On the other hand, for every xk

with associated yα(xk) and λI
α(xk) from Step 2, we have

−∇yΨα(xk, yα(xk)) +
∑
i∈I

[λI
α(xk)]i∇yhi(x

k, yα(xk)) = 0 (12)

for all k. The continuity of all functions involved, together with the linear independence of
the vectors∇yhi(x

∗, yα(x∗)) (which is a consequence of I ∈ B(xk) ⊆ B(x∗) and the assumed
CRCQ condition) implies that the sequence {λI

α(xk)} is convergent, say {λI
α(xk)} → λ̄I for

some limiting vector λ̄I . Taking the limit in (12) and using once again the continuity of
the solution mapping yα(·) then gives

−∇yΨα(x∗, yα(x∗)) +
∑
i∈I

λ̄I
i∇yhi(x

∗, yα(x∗)) = 0.

Note that the CRCQ condition implies that λ̄I is uniquely defined by this equation and
the fact that λ̄I

i = 0 for all i 6∈ I. However, by definition, the vector λ∗ also satisfies
this equation, hence we have λI

α(xk) → λ∗. But then it follows that (yα(xk), λI
α(xk)) ∈

N I(yα(x∗), λ∗), and this contradiction implies the desired statement. �

Thus we get the following corollary.

Corollary 3.11 Suppose that Assumptions 1.1 and 3.7 hold. Moreover, suppose that As-
sumption 3.9 holds in x∗ ∈ X and that the sets Ω(x) satisfy a Slater condition for all x ∈ X
sufficiently close to x∗. Then yα and Vα are PC1 functions in a neighbourhood of x∗.
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Proof. From Corollary 3.6, we obtain the continuity of yα, whereas Theorem 3.10 implies
the PC1 property of yα near x∗. Hence the composite mapping Vα(x) = Ψα(x, yα(x)) is
also continuous and a PC1 mapping in a neighbourhood of x∗. �

4 Smoothness Properties of the Unconstrained Re-

formulation

Here we consider the unconstrained reformulation (7) with the objective function V̄αβ from
Definition 2.3. We will show that the smoothness properties of the constrained reformu-
lation can be transfered to the unconstrained one. This means we can prove continuity
under a Slater-type condition and, moreover, that V̄αβ is a PC1 function provided g and
θν are twice continuously differentiable and a constant rank constraint qualification holds.
Although the proofs for these results are similar to the analysis from the previous section,
there are also some significant differences. In order to keep this section as short as possible,
we will, more or less, only stress those points where these differences occur.

For the unconstrained reformulation, we first define the function

h̄ : Rn × Rn → RmN by h̄(x, y) :=

 g(y1, (PX [x])−1)
...

g(yN , (PX [x])−N)


which is the analogue of the mapping h used in the previous section. Then we have

y ∈ Ω(PX [x]) ⇐⇒ h̄(x, y) ≤ 0

for any given x ∈ Rn. Note, however, that in contrast to the mapping h, the function h̄ is
nondifferentiable in general, even if g itself is differentiable, simply because the projection
mapping is nonsmooth. However, h̄ is continuously differentiable with respect to y, at least
under the smoothness condition from Assumption 3.7.

Our first aim is to show continuity of V̄αβ. Similar to the constrained reformulation, the
continuity of ȳα (hence of V̄αβ) follows directly from the point-to-set mapping x 7→ Ω(PX [x])
being open and closed. The proofs for this mapping being open and closed are along the
lines of the proofs of Lemmas 3.4 and 3.5 by using the continuity and Lipschitz property of
the projection mapping. Hence Corollary 3.6 transfers to the unconstrained reformulation
and shows continuity of ȳα and V̄αβ, i.e. we have the following result.

Corollary 4.1 Suppose that Assumption 1.1 holds. Then ȳα and V̄αβ are continuous in
every x∗ ∈ Rn where Ω(PX [x∗]) satisfies the Slater condition.

Hence the unconstrained reformulation (7) of the GNEP is also a continuous problem. Now
we want to show that the function V̄αβ is a PC1 mapping. To this end, recall that ȳα(x)

16



is the unique solution of

max
y

Ψα(x, y) s.t. h̄(x, y) ≤ 0. (13)

The function h̄ is not continuously differentiable, but it is a PC1 function if the projection
mapping itself is a PC1 mapping. This PC1 property of the projection mapping is shown
in [23] under the smoothness conditions of Assumption 3.7 and a constrant rank constraint
qualification. Hence, we first define the constant rank constraint qualification in a way it
will be used within this section.

Assumption 4.2 The constant rank constraint qualification (CRCQ) holds at x∗ ∈ Rn

if there exists a neighbourhood N of x∗ such that for every subset I ⊆ Ī(x∗) := {i |
h̄i(x

∗, ȳα(x∗)) = 0}, the set of gradient vectors

{∇yh̄i(x, ȳα(x)) | i ∈ I}

has the same rank (depending on I) for all x ∈ N .

Note that there are some minor differences between Assumptions 3.9 and 4.2: Here we use
h̄ and ȳα instead of h and yα, respectively. Furthermore, we assume the same rank for
all x ∈ N , whereas in Assumption 3.9 is was enough to consider a feasible neighbourhood
N ∩ X. The latter is not possible in our context now since we use an unconstrained
reformulation here, so x could be any vector from Rn.

To get an analogous result to Theorem 3.10, we need an implicit function theorem for
PC1 functions.

Theorem 4.3 Assume H : Rm × Rn → Rn is a PC1 function in a neighborhood of (x̄, ȳ)
with H(x̄, ȳ) = 0 and all matrices in πy∂H(x̄, ȳ) have the same nonzero orientation. Then
there exists an open neighborhood U of x̄ and a function g : U → Rn which is a PC1

function on U such that g(x̄) = ȳ and H(x, g(x)) = 0 for all x ∈ U .

Proof. We will derive this implicit function theorem from an inverse function theorem
in [6]. To do so, define

F : Rm × Rn → Rm × Rn by F (x, y) :=

(
x− x̄

H(x, y)

)
.

Then we have

∂F (x̄, ȳ) ⊆
(

Im 0
πx∂H(x̄, ȳ) πy∂H(x̄, ȳ)

)
,

and all elements in ∂F (x̄, ȳ) have the same nonzero orientation, because the matrices in
πy∂H(x̄, ȳ) have. With H also the function F is a PC1 function in a neighborhood of
(x̄, ȳ). By Lemma 2.2 in [17], we get for the index ind(F, (x̄, ȳ)) ∈ {+1,−1}. Now we
can use the inverse function theorem from [6, Theorem 4.6.5] which implies the existence

17



of open neighborhoods V of (x̄, ȳ) and W of (0, 0) = F (x̄, ȳ) such that F : V → W is a
homeomorphism and the local inverse G : W → V is a PC1 function. Define the set

U := {x ∈ Rn | (x− x̄, 0) ∈ W}.

U is nonempty and open (in Rn) since (0, 0) ∈ W and W is open. Let x ∈ U arbitrarily be
given. Then we have (x− x̄, 0) ∈ W and hence, by the definition of a homeomorphism, we
obtain the existence of a unique y with (x, y) ∈ V and F (x, y) = (x− x̄, 0). Thus we have
H(x, y) = 0. Since y depends on x, we write y =: g(x) which defines a function g : U → Rn

such that H(x, g(x)) = 0 for each x ∈ U . Therefore we have

F (x, g(x)) =

(
x− x̄

H(x, g(x))

)
=

(
x− x̄

0

)
for all x ∈ U . Applying the inverse function G on both sides, we obtain

(x, g(x)) = G(x− x̄, 0)

for all x ∈ U . Since g coincides with some component functions of the PC1 function G, it
is a PC1 function itself which completes the proof. �

Now we are able to show an analogous result to Theorem 3.10.

Theorem 4.4 Suppose that Assumptions 1.1 and 3.7 hold. Let x∗ ∈ Rn be given and
suppose that the solution mapping ȳα : Rn → Rn of (13) is continuous in a neighbourhood
of x∗ (see Corollary 4.1 for a sufficient condition). Then ȳα is a PC1 function in a
neighbourhood of x∗ provided that the CRCQ condition from Assumption 4.2 holds at x∗.

Proof. We follow the proof of Theorem 3.10 by dividing the proof into four steps. Rather
than giving all the details, however, we more or less only mention the differences.

Step 1: Similar to the discussion in Section 3, let us introduce the sets

Ī(x) := {i | h̄i(x, ȳα(x)) = 0},
M̄(x) := {λ ∈ RmN | (ȳα(x), λ) is a KKT point of (13)}

and

B̄(x) :=
{
I ⊆ Ī(x) | ∇yh̄i(x, ȳα(x)) (i ∈ I) are linearly independent and

supp(λ) ⊆ I for some λ ∈ M̄(x)
}
.

Then Assumption 4.2 implies that there is a neighbourhood N of x∗ such that M̄(x) 6=
∅, B̄(x) 6= ∅ and B̄(x) ⊆ B̄(x∗) for all x ∈ N .
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Step 2: For an arbitary vector x ∈ Rn and an index set I ⊆ Ī(x), consider the optimization
problem

max
y

Ψα(x, y) s.t. h̄i(x, y) = 0 (i ∈ I).

The corresponding Lagrangian is given by

L̄I
α(x, y, λ) := −Ψα(x, y) +

∑
i∈I

λih̄i(x, y),

so that the KKT conditions can be rewritten as

Φ̄I
α(x, y, λ) = 0 with Φ̄I

α(x, y, λ) :=

(
∇yL̄

I
α(x, y, λ)

h̄I(x, y)

)
.

Using this notation, it follows as in the proof of Theorem 3.10 that, for every x ∈ N and ev-
ery I ∈ B̄(x), there is a unique multiplier λI

α(x) ∈ M̄(x) such that Φ̄I
α(x, ȳα(x), λI

α(x)) = 0,
where N,M̄(x), and B̄(x) are the sets defined in Step 1.

Step 3: Here we have the main difference to the proof of Theorem 3.10 since the mapping
Φ̄I

α defined in Step 2 is only a PC1 function, but not continuously differentiable (in con-
strast to the mapping ΦI

α from the previous section which was continuously differentiable).
Therefore, we have to use an implicit function theorem for PC1 functions instead of the
standard implicit function theorem. Let any x∗ ∈ Rn satisfying Assumption 4.2 and an
arbitrary I ∈ B̄(x∗) with corresponding multiplier λ∗ be given. Since Φ̄I

α(x, y, λ) is contin-
uously differentiable with respect to y and λ, it follows that π(y,λ)∂ΦI

α(x∗, ȳα(x∗), λ∗) has
only one element, whose nonsingularity can be shown as in the proof of Theorem 3.10.
In particular, the same nonzero orientation of all the elements is guaranteed. Using the
PC1 implicit function theorem 4.3, we get the existence of open neighbourhoods N I(x∗)
and N I(ȳα(x∗), λ∗) as well as a PC1 function

(
yI(·), λI(·)

)
: N I(x∗) → N I(ȳα(x∗), λ∗) such

that yI(x∗) = ȳα(x∗), λI(x∗) = λ∗ and ΦI
α(x, yI(x), λI(x)) = 0 for all x ∈ N I(x∗).

Step 4: Repeating the arguments from Step 4 of the proof of Theorem 3.10, we obtain
ȳα(x) ∈ {yI(x) | I ∈ B̄(x∗)} for all x in a sufficiently small neighborhood of x∗. Since all
yI are PC1 functions, it follows that also ȳα is a PC1 mapping in a neighborhood of any
x∗ satisfying the CRCQ condition from Assumption 4.2. �

Thus we get the following corollary.

Corollary 4.5 Suppose that Assumptions 1.1 and 3.7 hold. Moreover, suppose that As-
sumption 4.2 holds in x∗ ∈ Rn and that the sets Ω(PX [x]) satisfy the Slater condition for
all x sufficiently close to x∗. Then ȳα and V̄α are PC1 functions in a neighbourhood of x∗.

Proof. From Corollary 4.1 we obtain the continuity of ȳα. Theorem 4.4 therefore im-
plies the PC1 property of ȳα near x∗ satisfying the CRCQ condition from Assumption
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3.9. Hence the composite mapping V̄α(x) = Ψα(x, ȳα(x)) and therfore also V̄αβ are PC1

mappings in a neighborhood of x∗. �

Thus we have shown that also the PC1 property transfers from the constrained to the
unconstrained reformulation. In particular, it follows that the objective function V̄αβ is
directionally differentiable, locally Lipschitz continuous, and semismooth under the as-
sumptions of Corollary 4.5, cf. [2].

5 Numerical Results

Here we present some numerical results that are obtained by applying the robust gradi-
ent sampling algorithm from [1] to our unconstrained optimization reformulation using
the objective function V̄αβ. The MATLAB R© implementation used for our numerical tests
is the one written by the authors of [1] which is available online at the following ad-
dress: http://www.cs.nyu.edu/overton/papers/gradsamp. The method involves a ran-
dom sampling strategy which implies that it (usually) generates different iterates (hence
possibly different solutions) even if we use the same starting point. The limit point of any
sequence generated by this method is a Clarke stationary point with probability 1. The
algorithm stops if the norm of the vector with the smallest Euclidian norm in the convex
hull of the sampled gradients is less than 10−6. Apart from using standard parameter set-
tings, we use the two values α = 0.02 and β = 0.05 which define our objective function. In
order to evaluate this objective function, we have to compute the vectors ȳα(x) and ȳβ(x).
This is done by using the fmincon solver from the MATLAB R© Optimization Toolbox. In
a similar way, projections onto the convex set X are computed by using suitable methods
from the same toolbox.

Regarding the examples that are used for our numerical tests, we only took problems
from the literature which are known to have multiple solutions since otherwise the examples
would be uninteresting for our method. A more detailed description of the examples and
some of the relevant properties can also be found in the appendix of the recent paper [5].

Example 5.1 This problem is a two player game from [8]. Each player has a one-
dimensional variable xν ∈ R. The problem is

min
x1

(x1 − 1)2 s.t. x1 + x2 ≤ 1,

min
x2

(x2 − 1

2
)2 s.t. x1 + x2 ≤ 1.

There are infinitely many solutions given by {(λ, 1− λ) | λ ∈ [0.5, 1]}. We tested different
starting points and made two runs for each. Table 1 contains the corresponding results.
The first column gives the starting point, the second column the number of iterations until
convergence, the third column gives the computed solution, and the final column shows
the value of the objective function V̄αβ at the computed solution x∗. Note that this value is
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always very small, indicating that the computed solution has a high accuracy, which is an
interesting observation since our optimization reformulation is a nonsmooth minimization
problem. It should be noted that this example has precisely one normalized solution, but
that our method really finds different Nash equilibria, as expected by our theory. ♦

x0 It. x∗ V̄αβ(x∗)
(0, 0) 11 (0.7004, 0.29996) 4.0 ∗ 10−13

(0, 0) 14 (0.7236, 0.2764) 4.0 ∗ 10−12

(1, 1) 15 (0.5010, 0.4991) 2.5 ∗ 10−12

(1, 1) 16 (0.5375, 0.4625) 4.4 ∗ 10−13

(−1, 0) 17 (0.5012, 0.4988) 5.6 ∗ 10−12

(−1, 0) 17 (0.8184, 0.1816) 2.1 ∗ 10−12

(−2,−2) 17 (0.7572, 0.2428) 2.7 ∗ 10−12

(−2,−2) 17 (0.7685, 0.2315) 3.3 ∗ 10−12

(0,−5) 20 (0.9202, 0.0798) 0
(0,−5) 23 (0.9355, 0.0645) 1.6 ∗ 10−13

(−5, 0) 30 (0.6064, 0.3936) 1.2 ∗ 10−12

(−5, 0) 27 (0.5104, 0.4896) 4.7 ∗ 10−13

(−6,−3) 24 (0.5643, 0.4357) 3.6 ∗ 10−12

(−6,−3) 21 (0.7144, 0.2857) 1.8 ∗ 10−11

Table 1: Results for Example 5.1

Example 5.2 This example is the river basin pollution game, also taken from [18]. There
are three players, each controlling a single variable xν ∈ R. The objective functions are

θν(x) := xν
(
c1ν + c2νx

ν − d1 + d2(x
1 + x2 + x3)

)
for ν = 1, 2, 3 with certain parameters specified in [18, 5]. The strategy space X is defined
by some linear constraints, see again [18, 5] for more details. We used different starting
vectors several times and found different equilibria, see Table 2 for the corresponding
numerical results. ♦

Example 5.3 This problem is an oligopoly model for N = 5 players, each player con-
trolling a single variable xν ∈ R. The objective functions are highly nonlinear and given
by

θν(x) := fν(x
ν)− 50001/γxν(x1 + . . . + xN)−1/γ

for all ν = 1, . . . , N with

fν(x
ν) := cνx

ν +
δν

1 + δν

K−1/δν
ν (xν)(1+δν)/δν

21



x0 It. x∗ V̄αβ(x∗)
(0, 0, 0) 34 (9.6424, 9.5651, 13.7469) 4.4 ∗ 10−13

(0, 0, 0) 34 (9.1568, 7.7046, 14.6932) 2.2 ∗ 10−12

(0, 0, 0) 38 (11.6080, 9.1545, 12.3226) 5.4 ∗ 10−13

(1, 1, 1) 33 (10.5010, 9.4778, 13.0969) 8.2 ∗ 10−13

(1, 1, 1) 38 (12.1166, 11.6582, 11.1633) 3.6 ∗ 10−13

(1, 1, 1) 31 (10.3501, 8.8811, 13.3966) 1.8 ∗ 10−12

(1, 2, 3) 29 (9.9927, 10.6657, 13.1374) 6.4 ∗ 10−14

(1, 2, 3) 35 (9.3339, 9.8344, 13.9084) 5.3 ∗ 10−14

(1, 2, 3) 33 (11.1988, 10.8160, 12.1415) 4.6 ∗ 10−13

Table 2: Results for Example 5.2

for all ν = 1, . . . , N . For the precise values of the parameters involved in these functions,
the reader is refered to [21, 5]. The constraints are linear:

x1 + . . . + xN ≤ P, xν ≥ 0 for all ν = 1, . . . , N.

We tested this problem with different total production parameters P and for each P we
tested two different starting vectors x0 = (10, . . . , 10)T and x0 = (0, 5, 10, 15, 20)T , see
Table 3 for the corresponding numerical results. ♦

P It. x∗ V̄αβ(x∗)
75 59 (13.8905, 14.5065, 15.1038, 15.3253, 16.1811) 1.5 ∗ 10−7

75 25 (7.9908, 11.5942, 15.1505, 18.5750, 21.6896) 1.4 ∗ 10−10

100 116 (18.4518, 19.5977, 20.4044, 20.6551, 20.8941) 2.8 ∗ 10−8

100 36 (13.8988, 17.2366, 20.3282, 23.1469, 25.3894) 6.9 ∗ 10−13

150 108 (27.3865, 30.2110, 31.5907, 31.1618, 29.6528) 2.3 ∗ 10−8

150 60 (23.7846, 28.2614, 31.6395, 33.3193, 32.9956) 5.5 ∗ 10−10

200 78 (35.7400, 40.4412, 42.7681, 42.1063, 38.9446) 2.7 ∗ 10−10

200 82 (34.7850, 40.2821, 43.0930, 42.6119, 39.2279) 7.1 ∗ 10−12

Table 3: Results for Example 5.3

Example 5.4 This GNEP from [19] is a 2-player game, where player 1 controls a two-
dimensional variable x1 =: (x1, x2)

T ∈ R2 and player 2 controls a single one x2 =: x3 ∈ R.
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The problem is described by the following:

minx1,x2 x2
1 + x1x2 + x2

2 + (x1 + x2)x3 − 25x1 − 38x2 s.t. x1, x2 ≥ 0,
x1 + 2x2 − x3 ≤ 14,
3x1 + 2x2 + x3 ≤ 30,

minx3 x2
3 + (x1 + x2)x3 − 25x3 s.t. x3 ≥ 0,

x1 + 2x2 − x3 ≤ 14,
3x1 + 2x2 + x3 ≤ 30.

The solution set is
{(λ, 11− λ, 2− λ)T | λ ∈ [0, 2]}.

The algorithm is used with different starting points and finds different equilibria, see Table
4. ♦

x0 It. x∗ V̄αβ(x∗)
(0, 0, 0) 51 (1.1616, 9.8384, 6.8384) 1.7 ∗ 10−11

(1, 1, 1) 41 (1.1597, 9.8408, 6.8405) 1.6 ∗ 10−9

(2, 2, 2) 54 (0.8156, 10.1801, 7.1825) 8.1 ∗ 10−7

(1, 2, 3) 28 (0.9405, 10.0616, 7.0599) 4.0 ∗ 10−8

(3, 2, 1) 49 (1.1217, 9.8783, 6.8783) 6.4 ∗ 10−12

(0, 4, 0) 54 (1.9044, 9.0942, 6.0958) 1.2 ∗ 10−7

Table 4: Results for Example 5.4

Example 5.5 Here we consider an electricity market model which is originally proposed
in [22] and further discussed in [20]. The details of the problem are from the latter ref-
erence. It is a two player game where each player has six variables, (x1, . . . , x6)

T for
player 1 and (x7, . . . , x12)

T for player 2. All constraints are linear and the objective func-
tions are quadratic. Table 5 shows the results of four test runs with the starting vec-
tors x0 = (0, . . . , 0)T , x0 = (10, . . . , 10)T , x0 = (100, 0, 0, 50, 0, 0, 100, 0, 0, 50, 0, 0)T , and
x0 = (50, 25, 25, 25, 12.5, 12.5, 50, 25, 25, 25, 12.5, 12.5)T , respectively. ♦

The previous examples show that the method finds different solutions, in particular, it
computes non-normalized solutions. Moreover, using the standard termination criterion
for the software from [1], the accuracy is surprisingly high for all test runs (or, to be more
precise, the function value Vα at termination is always relatively close to zero) which is an
interesting observation since the software itself is, in general, not a fast converging method.

6 Final Remarks

This paper discusses the smoothness properties of a known (see [11]) constrained reformu-
lation of a jointly convex GNEP as well as of a new unconstrained reformulation. Both
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It. x∗ V̄αβ(x∗)
118 (43.5360, 28.1386, 28.3254, 26.8682, 11.4708, 11.6609, 3.3 ∗ 10−12

43.5378, 28.1384, 28.3238, 26.8704, 11.4711, 11.6584)
87 (43.5370, 28.1381, 28.3250, 26.8703, 11.4714, 11.6583, 1.7 ∗ 10−12

43.5359, 28.1381, 28.3260, 26.8692, 11.4714, 11.6594)
120 (60.2031, 19.8048, 19.9921, 10.2031, 19.8048, 19.9921 6.3 ∗ 10−13

60.2031, 19.8047, 19.9922, 10.2031, 19.8047, 19.9922)
41 (47.7031, 26.0547, 26.2422, 22.7031, 13.5547, 13.7422, 2.9 ∗ 10−12

47.7031, 26.0548, 26.2421, 22.7031, 13.5548, 13.7421)

Table 5: Results for Example 5.5

reformulations have the properties that they characterize all solutions of the GNEP (and
not just the normalized ones) and that their objective functions are continuous under
a Slater-type condition. Under an additional constant rank constraint qualification, the
objective functions are, in fact, piecewise continuously differentiable. This allows the ap-
plication of suitable nonsmooth optimization software in order to get a solution of GNEPs.
So far, the investigations were restricted to the jointly convex class of GNEPs. An inter-
esting future research topic is to see whether these results can be extended to a general
(not necessarily jointly convex) GNEP.

Acknowledgement: The authors would like to thank Defeng Sun for several helpful
comments regarding the smoothness properties of the projection operator.
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