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Abstract. The Karush-Kuhn-Tucker (KKT) conditions can be regarded as optimality
conditions for both variational inequalities and constrained optimization problems. In or-
der to overcome some drawbacks of recently proposed reformulations of KKT systems, we
propose to cast KKT systems as a minimization problem with nonnegativity constraints
on some of the variables. We prove that, under fairly mild assumptions, every station-
ary point of this constrained minimization problem is a solution of the KKT conditions.
Based on this reformulation, a new algorithm for the solution of the KKT conditions is
suggested and shown to have some strong global and local convergence properties.

Key words. KKT conditions, variational inequalities, constrained optimization prob-
lems, global convergence, quadratic convergence, semismoothness, strong regularity.

Running title. Optimization Reformulation of KKT Systems.

AMS (MOS) subject classification. 90C33, 90C30.

2



1 Introduction

Let F : IRn → IRn be once and h : IRn → IRp, g : IRn → IRm be twice continuously
differentiable. Define the Lagrangian L : IRn+p+m → IRn by

L(x, y, z) := F (x) +∇h(x)y −∇g(x)z,

and consider the following Karush-Kuhn-Tucker (KKT) system:

L(x, y, z) = 0,
h(x) = 0,

g(x) ≥ 0, z ≥ 0, zTg(x) = 0.
(1)

Systems of this type arise in several situations. For example, under any standard con-
straint qualification, system (1) represents the KKT necessary conditions for a vector
x∗ ∈ X to be a solution of the variational inequality problem VIP(X, F )

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ X,

where
X := {x ∈ IRn|h(x) = 0, g(x) ≥ 0},

see [18]. In particular, if F = ∇f for a function f : IRn → IR, then the KKT conditions
represent, again under a constraint qualification, the first order necessary optimality
conditions for the minimization problem

min f(x) subject to h(x) = 0, g(x) ≥ 0,

see, e.g., [17].
In this paper we focus on the problem of finding a KKT point w∗ = (x∗, y∗, z∗) ∈

IRn+p+m, i.e., a triple satisfying the KKT system (1). This is actually the aim of most
algorithms for the solution of variational inequality and nonlinear programming problems.

The method we will describe in this paper is related to the recent proposal [9], where
system (1) is transformed into a differentiable unconstrained minimization problem. The
reformulation considered in [9] is based on the simple convex function ϕ : IR2 → IR
defined by

ϕ(a, b) :=
√

a2 + b2 − a− b (2)

and introduced in [14]. It is easy to check that

ϕ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (3)

Hence we can reformulate system (1) as a nonlinear system of equations Φ(w) = 0, where
the nonsmooth mapping Φ : IRn+p+m → IRn+p+m is defined by

Φ(w) := Φ(x, y, z) :=

 L(x, y, z)
h(x)

φ(g(x), z)


3



and
φ(g(x), z) := (ϕ(g1(x), z1), . . . , ϕ(gm(x), zm))T ∈ IRm.

We can now associate to this system its natural merit function, i.e.

Ψ(w) :=
1

2
Φ(w)TΦ(w) =

1

2
‖Φ(w)‖2,

so that solving system (1) is equivalent to finding a global solution of the problem

min Ψ(w). (4)

This approach was studied both from the theoretical and algorithmic point of view in
[9, 10] to which we refer the interested reader for a detailed motivation and for a com-
parison to other methods. We remark that, in order to find a solution of system (1), one
has to seek global solutions of the minimization problem (4), while usual unconstrained
minimization algorithms can only provide stationary points of (4). One of the central
questions dealt with in [9] is therefore the study of conditions implying that a stationary
point of Ψ is a global minimum of Ψ. The conditions given in [9], although relatively
weak, all include the assumption that the Jacobian of the Lagrangian with respect to the
x-variables,

∇xL(x, y, z) = ∇F (x)T +
p∑

j=1

yj∇2hj(x)−
m∑

i=1

zi∇2gi(x),

is positive semidefinite. This condition is satisfied, e.g., if F is monotone and the con-
straints are affine so that ∇F (x) is positive semidefinite and the Hessians ∇2hj(x) and
∇2gi(x) all vanish. However, if one considers the most natural extension of this case, i.e.,
F monotone, h linear, and g nonlinear and concave, it is easy to see that, since the ma-
trices ∇2gi(x) are negative semidefinite, if zi is negative and large enough, ∇xL(x, y, z)
cannot be positive semidefinite. Note also that this conclusion is independent of the
structure of F or h. We illustrate this point by the following example, taken from [26].
Let n = m = 1, and p = 0 and set

F (x) :=
1

2
x− 5, g(x) := −1

2
x2 + x,

so that F is strongly monotone and g is (strongly) concave. Then∇Ψ(w) = ∇Ψ(x, z) = 0
both for (x, z) = (0,−1) and for (x, z) = (2, 4). But while the latter stationary point
satisfies the KKT conditions (1), the first one does not. In fact, it is easy to check that
Ψ(0,−1) > Ψ(2, 4) = 0, so that (2, 4) is a global solution of (4) but (0,−1) is not.

This feature is somewhat disturbing, since it implies that, even if we solve a strongly
monotone variational inequality over a convex set defined by nonlinear inequalities, we
cannot ensure convergence to the unique solution of the variational inequality. Since the
problem clearly arises because of negative values of the variables zi that we know a priori
have to be nonnegative at a solution of system (1), we are naturally led to consider the
following variant of problem (4):

min Ψ(w) s.t. z ≥ 0. (5)
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Therefore, this paper is devoted to the study of this reformulation of the KKT system (1).
In particular we shall give conditions which ensure that every stationary point of problem
(5) is a solution of system (1). We shall also propose a specific algorithm for the solution
of problem (5) which fully exploits its characteristics (note that, as we shall discuss more
in detail in the next section, the operator Φ is not differentiable, while Ψ is not twice
differentiable, so that standard methods are not appropriate). Some preliminary results
on the issues dealt with in this paper can be found in [26]. A related approach was
proposed in the context of nonlinear complementarity problems in [16].

This paper is structured in the following way. In the next section we recall some known
facts about the functions Ψ and Φ and about a nonsmooth Newton method. Then, in
Section 3, we give conditions ensuring that every stationary point of problem (5) is a
solution of the KKT system (1). In Section 4, we introduce an algorithm for the solution
of (1). This algorithm reduces the merit function Ψ in each step while maintaining the
variable z nonnegative. We prove global and local convergence results for this algorithm
in Section 5.

Notation. The index sets {1, . . . , p} and {1, . . . ,m} will be abbreviated by the capital
letters J and I, respectively. If w∗ = (x∗, y∗, z∗) ∈ IRn+p+m is a KKT point, we will
denote by I0 the set of active inequality constraints and by I+ the set of strongly active
inequality constraints, i.e.,

I0 = {i ∈ I| gi(x
∗) = 0}, I+ = {i ∈ I0| z∗i > 0}.

To denote the transposed Jacobian of a function we will use the symbol ∇. If the
function is real-valued the transposed Jacobian coincides with the gradient, i.e., we view
the gradient as a column vector. Moreover, ∇2 is used as a symbol for the Hessian. All
vector norms are Euclidean norms, whereas matrix norms are assumed to be consistent
with the Euclidean norm.

2 Preliminaries

In this section we recall results on the differentiability of the functions Φ and Ψ which
are at the heart of this paper.

By the differentiability assumptions we made on the functions F , h, and g, and by the
convexity of ϕ, it is obvious that the mapping Φ is locally Lipschitzian and thus almost
everywhere differentiable by Rademacher’s theorem. Let us denote by DΦ the set of points
w ∈ IRn+p+m at which Φ is differentiable. Then, we can consider the B-subdifferential (or
pre-generalized Jacobian matrix in Clarke’s sense) of Φ at w,

∂BΦ(w) := {H|H = lim
wk→w,wk∈DΦ

∇Φ(wk)T}

which is a nonempty and compact set whose convex hull

∂Φ(w) := conv ∂BΦ(w)

is Clarke’s [3] generalized Jacobian of Φ at w. Related to the notion of B-subdifferential
is the BD-regularity condition, see [27], which will play an important role in the analysis
of the convergence rate of our method.
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Definition 2.1 The vector w∗ is called BD-regular for Φ if all elements H ∈ ∂BΦ(w∗)
are nonsingular.

The following result gives an overestimate of the generalized Jacobian of Φ. It basically
follows from known rules on the calculation of the generalized Jacobian [3]. For a precise
proof, we refer to [9, Proposition 3.2].

Proposition 2.2 Let w = (x, y, z) ∈ IRn+p+m. Then

∂Φ(w)T ⊆

 ∇xL(w) ∇h(x) ∇g(x)Da(w)
∇h(x)T 0 0
−∇g(x)T 0 Db(w)

 ,

where Da(w) = diag (a1(w), . . . , am(w)) , Db(w) = diag (b1(w), . . . , bm(w)) ∈ IRm×m are
diagonal matrices whose ith diagonal elements are given by

ai(w) =
gi(x)√

gi(x)2 + z2
i

− 1, bi(w) =
zi√

gi(x)2 + z2
i

− 1

if (gi(x), zi) 6= 0, and by

ai(w) = ξi − 1, bi(w) = ζi − 1 for any (ξi, ζi) with ‖(ξi, ζi)‖ ≤ 1

if (gi(x), zi) = 0.

In the following result, we make use of Robinson’s strong regularity condition without
restating it’s definition here. We refer the interested reader to Robinson [29] and Liu [21]
for several characterizations of a strongly regular KKT point. In the discussion of Sub-
section 5.2 we will also give some more details about the relationship of Robinson’s strong
regularity condition to some other well known concepts in the optimization literature.

Proposition 2.3 A solution w∗ = (x∗, y∗, z∗) ∈ IRn+p+m of system (1) is strongly regular
if and only if all matrices in Clarke’s generalized Jacobian ∂Φ(w∗) are nonsingular. In
particular, the strong regularity of w∗ is sufficient for w∗ to be a BD-regular solution of
the system Φ(w) = 0.

Proof. See [9, Corollary 4.7]. 2

Besides the notion of BD-regularity, the concept of (strong) semismoothness [22, 28]
will be of importance. (Strong) semismoothness can be used to establish superlinear
(quadratic) convergence of a class of nonsmooth Newton-type methods [27, 28]. We shall
not need here the exact definition of (strong) semismoothness, for which we refer to [22,
28]. However we note that it can be shown that both differentiable and convex functions
are semismooth [22]. Moreover, it is known that the composition of (strongly) semismooth
functions is again (strongly) semismooth [15, 22]. With regard to the differentiability
assumptions on the functions F , g, and h as stated in Section 1, and to the fact that ϕ
is strongly semismooth [15], we therefore get the following result [9, Proposition 3.1].
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Proposition 2.4 The following statements hold:

(a) The mapping Φ is semismooth.

(b) If ∇F , ∇2hj (j ∈ J), and ∇2gi (i ∈ I) are locally Lipschitzian, then Φ is strongly
semismooth.

As a direct consequence of the (strong) semismoothness of Φ and known results about
(strongly) semismooth functions (see, in particular, [24, Proposition 1], [11, Proposition
2] and [15, Lemma 2.8]), we obtain the following proposition.

Proposition 2.5 The following statements hold:

(a) It holds that

‖Φ(w + h)− Φ(w)−Hh‖ = o(‖h‖) for h → 0 and H ∈ ∂Φ(w + h).

(b) If Φ is strongly semismooth, then

‖Φ(w + h)− Φ(w)−Hh‖ = O(‖h‖2) for h → 0 and H ∈ ∂Φ(w + h).

The first part of the next result follows, basically, from the upper semicontinuity of the
generalized Jacobian [3, Proposition 2.6.2 (c)] and the assumed BD-regularity; the second
part is a standard result which is also a consequence of the BD-regularity assumption. For
the precise proofs, we refer the interested reader to [27, Lemma 2.6] and [24, Proposition
3].

Proposition 2.6 Let w∗ be a BD-regular solution of Φ(w) = 0. Then the following
statements hold:

(a) There exist numbers c1 > 0 and δ1 > 0 such that the matrices H ∈ ∂BΦ(w) are
nonsingular and satisfy

‖H−1‖ ≤ c1

for all w with ‖w − w∗‖ ≤ δ1.

(b) There exist numbers c2 > 0 and δ2 > 0 such that

‖Φ(w)‖ ≥ c2‖w − w∗‖

for all w with ‖w − w∗‖ ≤ δ2.

We conclude this section by recalling a not obvious, but simple result from [9] which will
play a crucial role in the design and analysis of our algorithm.

Proposition 2.7 Ψ is continuously differentiable, and ∇Ψ(w) = HTΦ(w) for every H
in ∂Φ(w).
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3 A Simply Constrained Reformulation of KKT Sys-

tems

In this section we consider stationary points of problem (5) and its relation to the solutions
of system (1). For convenience we restate here problem (5):

min Ψ(w) s.t. z ≥ 0.

We recall that a point w∗ = (x∗, y∗, z∗) ∈ IRn+p+m with z∗ ≥ 0 is a stationary point of
problem (5) if ∇xΨ(w∗) = 0, ∇yΨ(w∗) = 0, and

z∗i > 0 =⇒ ∂Ψ(w∗)
∂zi

= 0,

z∗i = 0 =⇒ ∂Ψ(w∗)
∂zi

≥ 0.

In the sequel we shall indicate by I> the set of those indices for which z∗i > 0.
In the next theorem we give conditions ensuring that a stationary point of problem

(5) is a global solution and, therefore, a solution of system (1).

Theorem 3.1 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a stationary point of (5). Assume that

(a) ∇xL(w∗) is positive semidefinite on IRn;

(b) ∇xL(w∗) is positive definite on the cone

C(x∗) := {v ∈ IRn|∇h(x∗)Tv = 0,∇gi(x
∗)Tv = 0 (i ∈ I>),∇gi(x

∗)Tv ≤ 0 (i 6∈ I>)};

and either of the following two conditions holds:

(c1) ∇h(x∗) has full column rank;

(c2) h is an affine function, and the system h(x) = 0 is consistent.

Then w∗ is a solution of the KKT system (1).

Proof. Suppose that w∗ = (x∗, y∗, z∗) ∈ IRn+p+m is a stationary point of (5). Using
Propositions 2.7 and 2.2, this can be written as

∇xL(w∗)L +∇h(x∗)h +∇g(x∗)Daφ = 0, (6)

∇h(x∗)TL = 0, (7)

z∗ ≥ 0, (z∗)T (−∇g(x∗)TL + Dbφ) = 0, −∇g(x∗)TL + Dbφ ≥ 0, (8)

where L, h, φ, Da, and Db are used as abbreviations for L(w∗), h(x∗), φ(g(x∗), z∗),
Da(w

∗), and Db(w
∗), respectively. Note that it follows immediately from Proposition 2.2

and property (3) of the function ϕ that both Da and Db are negative semidefinite and
that a diagonal element can be 0 only if the corresponding element in φ is 0. Therefore
and since these diagonal matrices are always postmultiplied by the vector φ in the system
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(6)–(8), we can assume without loss of generality that Da and Db are negative definite
diagonal matrices.

Multiplying (6) by LT , and taking into account (7), we obtain

LT∇xL(w∗)L + LT∇g(x∗)Daφ = 0. (9)

Now, using (9) and (8), it is possible to show that

LT∇xL(w∗)L + φTDbDaφ ≤ 0. (10)

To this end we consider three cases.
1) z∗i > 0. From (8) it follows that −(∇g(x∗)T L)i + (Dbφ)i = 0, so that

(∇g(x∗)TL)i = (Dbφ)i. (11)

2) z∗i = 0 and gi(x
∗) ≥ 0. In this case, by the property (3) of the function ϕ, we have

φi = 0. (12)

3) z∗i = 0 and gi(x
∗) < 0. From (8) it follows that −(∇g(x∗)TL)i + (Dbφ)i ≥ 0, so that

(∇g(x∗)TL)i ≤ (Dbφ)i. Furthermore, since in this case (Daφ)i < 0, we have that

(Dbφ)i(Daφ)i ≤ (LT∇g(x∗))i(Daφ)i. (13)

From (11), (12) and (13) we see that

φTDbDaφ ≤ LT∇g(x∗)Daφ,

which, in turn, recalling (9), implies (10). Assume now, by contradiction, that φ 6= 0.
Then, by Assumption (a) and the positive definiteness of the matrix DbDa, we get a
contradiction to (10), so that we have

φ = 0. (14)

From (8) we therefore obtain

∇gi(x
∗)TL ≤ 0 (i ∈ I).

For i ∈ I>, we actually have
∇gi(x

∗)TL = 0,

cf. (11). Taking into account (7), we see that L ∈ C(x∗). Hence

L = 0 (15)

follows from Assumption (b), (14), and (9). Using (6), (14) and (15), we can conclude
that

∇h(x∗)h = 0.
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Hence we immediately get
h = 0 (16)

from Assumption (c1). If, instead, condition (c2) holds, we can reason as in the proof of
Theorem 5.2 in [9] in order to see that (16) still holds. Hence we have, by (14), (15) and
(16), that w∗ satisfies the KKT conditions (1). 2

The next corollary easily follows from Theorem 3.1.

Corollary 3.2 Let w∗ = (x∗, y∗, z∗) ∈ IRn+p+m be a stationary point of (5). Assume that

(a) F is monotone, h is affine and g is concave (i.e., each component function of g is
concave);

(b) ∇xL(w∗) is positive definite on the cone C(x∗)

(c) the system h(x) = 0 is consistent.

Then w∗ is a solution of the KKT system (1).

We note that condition (b) of Theorem 3.1 as well as of Corollary 3.2 weakens the
assumption used in [26] for the case of monotone variational inequalities. There, ∇F (x∗)
is required to be positive definite. Furthermore, we stress that assumption (a) of Corollary
3.2 is satisfied, in particular, for monotone variational inequalities as well as for convex
optimization problems. We also note that the assumptions of Corollary 3.2 are obviously
satisfied by the example of the introduction. Finally, it may be interesting to remark
that condition (b) is certainly satisfied if F is strongly monotone.

4 Algorithm

In this section we describe an algorithm for the solution of problem (5) that takes into
account its particular structure.

Before stating our algorithm formally, we begin with some motivational remarks. We
first recall that we want to solve the constrained nonsmooth system of equations

Φ(w) = 0, z ≥ 0. (17)

One simple idea for solving (17) would be to iteratively solve the linearized system

Hk∆w = −Φ(wk), zk + ∆z ≥ 0, (18)

where wk is the current iteration vector, Hk ∈ ∂BΦ(wk) and ∆w = (∆x, ∆y, ∆z) ∈
IRn+p+m. However, even if the matrix Hk is nonsingular, the system (18) is usually not
solvable. Hence it seems reasonable to solve (18) in a linear least squares sense, i.e.,
to replace the constrained linear system (18) by the following constrained linear least
squares problem:

min
1

2
‖Φ(wk) + Hk∆w‖2 s.t. zk + ∆z ≥ 0. (19)
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Now, taking into account Proposition 2.7, it is easy to see that the merit function of (19)
can be rewritten as

1

2
‖Φ(wk) + Hk∆w‖2 =

1

2

(
Φ(wk) + Hk∆w

)T (
Φ(wk) + Hk∆w

)
= Ψ(wk) +∇Ψ(wk)T∆w +

1

2
∆wTHT

k Hk∆w.

Since Ψ(wk) is just a constant, problem (19) is therefore equivalent to

min ∇Ψ(wk)T∆w +
1

2
∆wTHT

k Hk∆w s.t. zk + ∆z ≥ 0. (20)

If the system Φ(w) = 0 were differentiable this would simply be a constrained version
of the usual Gauss-Newton method, which is known to have some drawbacks [7]; in
particular (20) might not have a unique solution. Then, on the basis of analogous results
in the smooth case, it seems advisable to consider some kind of modification of the search
direction subproblem (20), see e.g. [7]. In this paper we consider a Levenberg-Marquardt-
type modification. To this end, let ρ : IR → IR+ be a forcing function, i.e., a continuous
function which takes nonnegative values and is 0 if and only if its argument is 0. The
subproblem actually used in our algorithm is the following regularized version of (20):

min ∇Ψ(wk)T∆w +
1

2
∆wT

(
HT

k Hk + ρ(Ψ(wk))I
)

∆w s.t. zk + ∆z ≥ 0. (21)

Note that the matrix HT
k Hk + ρ(Ψ(wk))I is positive definite as long as wk is not a

solution of (17). Since, on the other hand, the feasible set of the quadratic program (21)
is obviously nonempty, problem (21) always admits a unique solution.

We can now give a formal description of our algorithm. It basically solves the KKT
system by solving a sequence of problems (21). This procedure is globalized by using a
simple line search procedure based on the merit function Ψ.

Algorithm 4.1 (Nonsmooth QP-based Algorithm)

(S.0) (Initial Data)
Choose w0 = (x0, y0, z0) ∈ IRn+p+m with z0 ≥ 0, σ ∈ (0, 1), β ∈ (0, 1), and set
k := 0.

(S.1) (Termination Criterion)
If wk is a stationary point of (5): Stop.

(S.2) (Quadratic Programming Subproblem)
Select an element Hk ∈ ∂BΦ(wk). Let ∆wk = (∆xk, ∆yk, ∆zk) ∈ IRn+p+m be the
unique solution of the quadratic programming problem (QPk):

min ∇Ψ(wk)T∆w +
1

2
∆wT

(
HT

k Hk + ρ(Ψ(wk))I
)

∆w s.t. zk + ∆z ≥ 0.
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(S.3) (Line Search)
Let tk := max{β`| ` = 0, 1, 2, . . .} such that

Ψ(wk + tk∆wk) ≤ (1− σt2k)Ψ(wk) (22)

(S.4) (Update)
Set wk+1 := wk + tk∆wk, k := k + 1, and go to (S.1).

It is easy to see that any sequence {wk} = {(xk, yk, zk)} ⊂ IRn+p+m generated by Algo-
rithm 4.1 remains feasible for problem (5), i.e., zk ≥ 0 for all k. We also note that the
stepsize tk on the right-hand side of (22) is squared in contrast to usual stepsize selection
rules.

The following theorem shows that the algorithm is well-defined.

Theorem 4.2 Let wk = (xk, yk, zk) ∈ IRn+p+m with zk ≥ 0 be an arbitrary vector and
∆wk ∈ IRn+p+m be a solution of (QPk). Then we have

∇Ψ(wk)T∆wk ≤ 0.

If wk is not a stationary point of problem (5), then

∇Ψ(wk)T∆wk < 0.

Moreover, Algorithm 4.1 is well-defined, in the sense that a positive tk can always be
found at Step (S.3).

Proof. Since ∆wk ∈ IRn+p+m is a solution of (QPk) and ∆w = 0 is feasible for (QPk),
we have

∇Ψ(wk)T∆wk +
1

2
(∆wk)T

(
HT

k Hk + ρ(Ψ(wk))I
)

∆wk ≤ 0. (23)

Since the matrix HT
k Hk + ρ(Ψ(wk))I is always positive semidefinite, (23) implies

∇Ψ(wk)T∆wk ≤ 0.

Now assume that ∇Ψ(wk)T∆wk = 0 and that wk is not a stationary point of problem
(5). Then (23) becomes

1

2
(∆wk)T

(
HT

k Hk + ρ(Ψ(wk))I
)

∆wk ≤ 0

which, since ρ(Ψ(wk)) > 0, is only possible if ∆wk = 0. Note that ∆wk, as a solution
of (QPk), satisfies in particular the stationary conditions of (QPk). Writing down these
conditions and taking into account the fact that ∆wk = 0, it can easily be seen that
wk = (xk, yk, zk) satisfies the following conditions:

∇xΨ(wk) = 0,

∇yΨ(wk) = 0,

∇zΨ(wk) ≥ 0, zk ≥ 0,∇zΨ(wk)Tzk = 0,
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i.e., wk is a stationary point of (5), a contradiction to our assumption. We therefore have

∇Ψ(wk)T∆wk < 0. (24)

Assume finally that an iterate wk exists such that

Ψ(wk + β`∆wk) > (1− σβ2`)Ψ(wk)

for all ` ≥ 0. Then
Ψ(wk + β`∆wk)−Ψ(wk)

β`
> −σβ`Ψ(wk)

follows. Hence, for ` →∞, we obtain ∇Ψ(wk)T ∆wk ≥ 0 which contradicts (24). There-
fore it is always possible to find a steplength tk > 0 satisfying the line search condition
(22), i.e., Algorithm 4.1 is well-defined. 2

5 Convergence Analysis

In this section we first investigate the global convergence properties of the algorithm
introduced in the previous section and then analyze its convergence rate.

In order to put these results in the right perspective, however, some preliminary con-
siderations are in order. We reformulated the KKT system (1) as a nonsmooth system
of equations, and this may seem unnecessarily cumbersome. In fact, it is not difficult to
give smooth reformulations of (1). Nevertheless, recent research has clearly established
that it is preferable to consider nonsmooth reformulations of systems like (1) since they
are usually numerically more stable and guarantee superlinear convergence under weaker
assumptions (see, e.g., [6, 14, 20, 23] and references therein). However, the use of nons-
mooth reformulations is not without drawbacks: global convergence results are harder to
establish and require the use of assumptions that are not needed in the analysis of similar
algorithms for the solution of smooth systems of equations. In our view, it is remarkable
that we can establish global convergence results under assumptions that exactly parallel
those used in the smooth case. More in particular, we shall establish, without any as-
sumption besides those already made, that the nonsmooth QP-based method introduced
in the previous section generates a sequence such that every limit point is a stationary
point of (5); these limit points will be solutions of (1) under the assumptions of Theorem
3.1. Furthermore, we shall establish a superlinear/quadratic convergence rate under a
condition weaker that Robinson’s strong regularity. A comparison with results for similar
algorithms, see, e.g., [23, 25], show that our results are stronger than already known ones.

5.1 Global Convergence

The aim of this subsection is to prove a global convergence result for Algorithm 4.1
towards stationary points of (5).

The proof of our global convergence result is based on the following stability result for
positive definite quadratic programs with lower bound constraints which easily follows
from a more general theorem by Daniel [5, Theorem 4.4].
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Lemma 5.1 Consider the quadratic programs

min
1

2
xTQx + qTx s.t. xi ≥ li, i ∈ L (25)

and

min
1

2
xT Q̃x + q̃Tx s.t. xi ≥ l̃i, i ∈ L (26)

where Q, Q̃ ∈ IRn×n with Q positive definite, q, q̃ ∈ IRn and L ⊆ I. Let us write

ε := max
i∈L

{‖Q− Q̃‖, ‖q − q̃‖, |li − l̃i|}.

Then there exist constants c > 0 and ε̄ > 0 such that

‖x∗ − x̃∗‖ ≤ εc

whenever ε ≤ ε̄, where x∗ and x̃∗ denote solutions of (25) and (26), respectively.

We are now in the position to state our global convergence result.

Theorem 5.2 Every limit point of the sequence generated by Algorithm 4.1 is a station-
ary point of (5).

Proof. The sequence {Ψ(wk)} is obviously decreasing and bounded from below by zero,
so that it converges to a nonnegative value Ψ∗. If Ψ∗ = 0, then, by continuity, every
limit point is a global solution and hence a stationary point of (5). So consider the case

Ψ∗ > 0. The fact that limk→∞
(
Ψ(wk+1)−Ψ(wk)

)
= 0 and (22) gives

lim
k→∞

t2kΨ(wk) = 0. (27)

Assume now that w∗ is an accumulation point of {wk} and that {wk}K1 is a subsequence
converging to w∗. In view of the upper semicontinuity of the B-subdifferential (see [3]),
it follows that the sequence {Hk}K1 remains bounded. Hence there is a subsubsequence
{Hk}K2 , K2 ⊆ K1, such that {Hk}K2 converges to some matrix H∗ ∈ ∂BΦ(w∗). Let us
denote by ∆w∗ the (unique) solution of the quadratic program

min ∇Ψ(w∗)T∆w +
1

2
∆wT (HT

∗H∗ + ρ(Ψ∗)I)∆w s.t. z∗ + ∆z ≥ 0. (28)

Since ∆wk is a solution of (QPk) and wk → w∗, Hk → H∗,∇Ψ(wk) → ∇Ψ(w∗) and
ρ(Ψ(wk)) → ρ(Ψ∗) > 0 by the continuity of the forcing function ρ (all limits being taken
on a subsequence), it follows immediately from Lemma 5.1 that {∆wk}K2 → ∆w∗. We
now show that (27) implies

∇Ψ(w∗)T∆w∗ = 0. (29)

Since Ψ∗ > 0, (27) and (22) yield tk → 0. Let `k be the unique integer taken in Step (S.3)
of Algorithm 4.1 such that tk = β`k . Then it follows from (22) that

Ψ(wk + β`k−1∆wk)−Ψ(wk)

β`k−1
> −σβ`k−1Ψ(wk). (30)
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In view of `k →∞, we therefore obtain, taking the limit k →∞ (k ∈ K2) in (30):

∇Ψ(w∗)T∆w∗ ≥ 0.

Hence, by Theorem 4.2, w∗ is a stationary point of (5). 2

Theorem 5.2 guarantees a subsequential convergence to stationary points of problem (5).
Conditions for such a stationary point to be a solution of the original KKT system (1)
were given in Section 3.

5.2 Local Convergence

In this section we want to show that Algorithm 4.1 is locally fast convergent under suitable
assumptions. The probably most famous conditions for establishing local superlinear and
quadratic convergence of an algorithm that locates a solution of (1) are the following
three: A KKT triple w∗ = (x∗, y∗, z∗) ∈ IRn+p+m of (1) satisfies the

(A1): nondegeneracy condition, i.e., gi(x
∗) + z∗i > 0 for all i ∈ I,

(A2): linear independence constraint qualification, i.e., the gradients ∇hj(x
∗) (j ∈ J) and

∇gi(x
∗) (i ∈ I0) are linearly independent,

(A3): second order condition, i.e., the Jacobian ∇xL(w∗) is positive definite on the sub-
space {v ∈ IRn|∇h(x∗)Tv = 0, ∇gi(x

∗)Tv = 0 (i ∈ I0)}.

Note, however, that even a nondegenerate solution of (1) is in general a degenerate
solution of our reformulation (5). This can be seen by observing first that, with regard to
Proposition 2.7, ∇Ψ(w∗) = 0 for any solution of (1). Then, the stationary conditions of
problem (5) show that w∗ is a degenerate solution of (5) if z∗i = 0 for at least one index
i.

In order to avoid the nondegeneracy condition (A1), Assumption (A3) is usually
replaced by

(A3’): strong second order condition, i.e., the Jacobian ∇xL(w∗) is positive definite on the
subspace {v ∈ IRn|∇h(x∗)Tv = 0, ∇gi(x

∗)Tv = 0 (i ∈ I+)}.

Obviously, if (A1) holds, then (A3) and (A3’) are equivalent, so that (A1)–(A3) imply
(A2) and (A3’), whereas in general (A3’) is a stronger condition than (A3). On the
other hand, it is known that (A2) and (A3’) together imply Robinson’s strong regularity
condition, see [29]. As far as we are aware of, there are only two algorithms for the
solution of constrained optimization or variational inequality problems which are known
to be fast convergent under Robinson’s strong regularity condition: Josephy’s method [19]
and Bonnans’ one [2]. Besides beeing purely local, both this methods require, at each
iteration, the solution of a (possibly) non symmetric linear complementarity problem.
The only assumption we will use in this section is that a KKT triple w∗ = (x∗, y∗, z∗)
of (1) is a BD-regular solution of the system Φ(w) = 0. In view of Proposition 2.3, a
strongly regular KKT point is, in particular, BD-regular.

In order to prove our local convergence theorem, we will need some lemmas.
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Lemma 5.3 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn+p+m is a BD-regular solution of Φ(w) =
0. Then there exists a constant c > 0 such that

‖∆wk‖ ≤ c‖Φ(wk)‖

for all wk = (xk, yk, zk) with zk ≥ 0 sufficiently close to w∗, where ∆wk denotes a solution
of (QPk).

Proof. Since w∗ is a BD-regular KKT point, the matrices Hk ∈ ∂BΦ(wk) are uniformly
nonsingular for all wk sufficiently close to w∗ by Proposition 2.6 (a), i.e., there exists a
constant c1 > 0 such that

‖∆wk‖ ≤ ‖H−1
k ‖ ‖Hk∆wk‖ ≤ c1‖Hk∆wk‖. (31)

On the other hand, since ∆wk is a solution of (QPk) and ∆w = 0 is feasible for (QPk),
it follows from Proposition 2.7 and the Cauchy-Schwarz inequality that

0 ≥ ∇Ψ(wk)T∆wk +
1

2
(∆wk)T

(
HT

k Hk + ρ(Ψ(wk))I
)

∆wk

≥ ∇Ψ(wk)T∆wk +
1

2
(∆wk)THT

k Hk∆wk

= Φ(wk)THk∆wk +
1

2
‖Hk∆wk‖2

≥ 1

2
‖Hk∆wk‖2 − ‖Φ(wk)‖ ‖Hk∆wk‖,

so that

‖Hk∆wk‖ ≤ 2‖Φ(wk)‖. (32)

Combining (31) and (32) yields

‖∆wk‖ ≤ c‖Φ(wk)‖

with c := 2c1. 2

Lemma 5.4 Suppose that w∗ = (x∗, y∗, z∗) ∈ IRn+p+m is a BD-regular solution of
Φ(w) = 0. Let {wk} = {(xk, yk, zk)} ⊂ IRn+p+m denote any sequence that converges
to w∗ and that satisfies zk ≥ 0 for all k. For each wk let ∆wk denote a solution of (QPk).
Then

‖wk + ∆wk − w∗‖ = o(‖wk − w∗‖).

Moreover, if ∇F , ∇2hj (j ∈ J), and ∇2gi (i ∈ I) are locally Lipschitzian, and if
ρ(Ψ(wk)) = O(Ψ(wk)), we have

‖wk + ∆wk − w∗‖ = O(‖wk − w∗‖2).
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Proof. By the BD-regularity of w∗ we have for wk sufficiently close to w∗ and Hk ∈
∂BΦ(wk) :

‖wk + ∆wk − w∗‖ ≤ ‖H−1
k ‖ ‖Hk(w

k + ∆wk − w∗)‖ ≤ c1‖Hk∆wk + Hk(w
k − w∗)‖, (33)

where c1 denotes the constant from Proposition 2.6 (a). Since the mapping Φ is semis-
mooth by Proposition 2.4 (a), we obtain

‖Φ(wk)− Φ(w∗)−Hk(w
k − w∗)‖ = o(‖wk − w∗‖) (34)

by Proposition 2.5 (a). Moreover, if ∇F , ∇2h and ∇2g are locally Lipschitzian, Φ is
strongly semismooth (see Proposition 2.4 (b)), so that

‖Φ(wk)− Φ(w∗)−Hk(w
k − w∗)‖ = O(‖wk − w∗‖2) (35)

by Proposition 2.5 (b) follows. Since ∆wk is a solution of (QPk) and ∆ŵk := w∗ − wk is
obviously feasible for (QPk), we obtain, using Proposition 2.7,

1

2
‖Φ(wk) + Hk∆wk‖2 = Ψ(wk) +∇Ψ(wk)T∆wk +

1

2
(∆wk)THT

k Hk∆wk

≤ Ψ(wk) +∇Ψ(wk)T∆wk +
1

2
(∆wk)T

(
HT

k Hk + ρ(Ψ(wk))I
)

∆wk

≤ Ψ(wk) +∇Ψ(wk)T∆ŵk +
1

2
(∆ŵk)T

(
HT

k Hk + ρ(Ψ(wk))I
)

∆ŵk

=
1

2
‖Φ(wk) + Hk∆ŵk‖2 +

1

2
ρ(Ψ(wk))‖∆ŵk‖2

=
1

2
‖Φ(wk)−Hk(w

k − w∗)‖2 +
1

2
ρ(Ψ(wk))‖wk − w∗‖2

=
1

2
‖Φ(wk)− Φ(w∗)−Hk(w

k − w∗)‖2 +

1

2

(√
ρ(Ψ(wk))‖wk − w∗‖

)2

.

Hence, we obtain from (34) and from ρ(Ψ(wk)) → 0 that

‖Φ(wk) + Hk∆wk‖ = o(‖wk − w∗‖). (36)

Therefore, using (33), (34) and (36), we get

‖wk + ∆wk − w∗‖ ≤ c1‖Hk∆wk + Hk(w
k − w∗)‖

≤ c1

(
‖Φ(wk) + Hk∆wk‖+ ‖Φ(wk)−Hk(w

k − w∗)‖
)

= o(‖wk − w∗‖),

so that the first statement of the lemma follows. In order to prove the second part, first
note that since Φ is locally Lipschitzian there is a constant L > 0 such that

‖Φ(wk)‖ = ‖Φ(wk)− Φ(w∗)‖ ≤ L‖wk − w∗‖
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for all k sufficiently large. Hence we have

Ψ(wk) = O(‖wk − w∗‖2)

and therefore, by our assumption,√
ρ(Ψ(wk)) = O(‖wk − w∗‖). (37)

The second part can now be shown in a similar way as the first part by using (35) instead
of (34) and by taking into account (37). 2

An immediate consequence of the proof of Lemma 5.4 is the following corollary.

Corollary 5.5 Suppose that w∗ is a BD-regular solution of Φ(w) = 0. Then, for every
ε > 0, there exists a δ > 0 such that, whenever ‖wk − w∗‖ ≤ δ with zk ≥ 0,

‖wk + ∆wk − w∗‖ ≤ ε‖wk − w∗‖.

We now state the local convergence result.

Theorem 5.6 Let {wk} be an infinite sequence generated by Algorithm 4.1, and let w∗

be an accumulation point of this sequence. If w∗ is a BD-regular solution of the system
Φ(w) = 0, then the following statements hold:

(a) The whole sequence {wk} converges to w∗.

(b) There is an index k0 such that tk = 1 for all k ≥ k0.

(c) The rate of convergence is Q-superlinear.

(d) The rate of convergence is Q-quadratic if, in addition, the assumptions of the second
part of Lemma 5.4 are satisfied.

Proof. Let {wk}K denote a subsequence converging to w∗. Choose ε > 0 such that

ε ≤ min{1, c2(1− σ)

L
}, (38)

where c2 > 0 is the constant from Proposition 2.6 (b) and L > 0 is the local Lipschitz-
constant of Φ in the ball around w∗ with radius δ2, where δ2 is also taken from Proposition
2.6 (b). For ε according to (38) we take δ > 0 as given by Corollary 5.5. Then, using
Corollary 5.5 and Proposition 2.6 (b), we get, for wk with ‖wk − w∗‖ ≤ min{δ, δ2} and
zk ≥ 0:
√

2
(
Ψ(wk + ∆wk)

1
2 − (1− σ)

1
2 Ψ(wk)

1
2

)
≤

√
2

(
Ψ(wk + ∆wk)

1
2 − (1− σ)Ψ(wk)

1
2

)
= ‖Φ(wk + ∆wk)− Φ(w∗)‖−

(1− σ)‖Φ(wk)‖
≤ L‖wk + ∆wk − w∗‖−

c2(1− σ)‖wk − w∗‖
≤ (Lε− c2(1− σ))‖wk − w∗‖
≤ 0.
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Therefore,
Ψ(wk + ∆wk) ≤ (1− σ)Ψ(wk) (39)

follows and Algorithm 4.1 takes the stepsize tk = 1, i.e., wk+1 = wk +∆wk. On the other
hand, Corollary 5.5 yields

‖wk + ∆wk − w∗‖ ≤ ε‖wk − w∗‖ ≤ ε min{δ, δ2}.

Hence, by induction, we see that tk = 1 and wk+1 = wk + ∆wk holds for all k sufficiently
large. In particular, we have ‖wk−w∗‖ ≤ δ2 for all k sufficiently large. This together with
‖Φ(wk)‖ → 0 (due to (39)) and with Proposition 2.6 implies that the whole sequence
{wk} converges to w∗.

The rate of convergence now directly follows from Lemma 5.4. 2
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