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Abstract. Mathematical programs with equilibrium or vanishing constraints (MPECs
or MPVCs) are both known to be difficult optimization problems which typically violate
all standard constraint qualifications. A number of methods try to exploit the particular
structure of MPECs and MPVCs in order to overcome these difficulties. In a recent paper
by Ulbrich and Veelken [37], this was done for MPECs by a local regularization idea that
may be viewed as a modification of the popular global regularization technique by Scholtes
[33]. The aim of this paper is twofold: First, we improve the convergence theory from [37]
in the MPEC setting, and second we translate this local regularization idea to MPVCs
and obtain a new solution method for this class of optimization problems for which several
convergence results are given.

Key Words: Mathematical programs with equilibrium constraints, Mathematical pro-
grams with vanishing constraints, Regularization method, Global convergence.



1 Introduction

We consider two classes of constrained optimization problems. The first one is of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , l,

(1)

and is called a mathematical program with equilibrium (or complementarity) constraints,
MPEC for short, whereas the second one has a similar structure given by

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l

(2)

and is called a mathematical program with vanishing constraints, abbreviavted by MPVC.
Throughout this paper, we assume that all functions f, gi, hi, Hi, Gi : R

n → R are at least
once continuously differentiable.

While the MPEC is well-known in the community, see, for example, the two mono-
graphs [25, 28], the MPVC has been formally introduced in [1] only recently. The main
motivation for studying the theoretical and numerical properties of MPVCs comes from
their background in topology optimization where important applications can be formulated
as MPVCs.

Both problems, the MPEC and the MPVC, are viewed as difficult optimization prob-
lems due to the fact that they typically violate all standard constraint qualifications. Hence,
standard KKT theory cannot be applied in general to get suitable optimality conditions.
For this reason, there is a vast literature on new problem-dependent constraint qualifica-
tions, see, in particular, [10, 11, 12, 13, 22, 26, 27, 29, 34, 38, 39, 40] for the case of MPECs,
and [15, 16, 17] for the case of MPVCs.

Moreover, these MPEC- and MPVC-tailored constraint qualifications are also the basis
for the convergence of several specialized algorithms for the solution of these two difficult
optimization problems. Here, we refer the reader to [5, 6, 8, 9, 14, 18, 20, 24, 31, 32, 33, 35,
37], where a large number of different algorithmic approaches for the solution of MPECs
are studied, as well as to [2, 3, 19] for some related methods being applied to MPVCs.

One of the most popular methods for the solution of MPECs is the regularization
approach by Scholtes [33] which replaces the original MPEC by a sequence of regularized
optimization problems given by

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) ≤ t ∀i = 1, . . . , l,
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for some t ↓ 0. In order to distinguish this approach from the subsequent one, we call
this the global regularization method for MPECs, since the kink in the complementarity
condition a ≥ 0, b ≥ 0, ab = 0 is replaced by the set a ≥ 0, b ≥ 0, ab ≤ t which may be
viewed as a relaxation that changes the feasible set not only around the kink at the origin,
but globally in the whole space.

This observation has been exploited recently by Ulbrich and Veelken [37] who suggest
a new local regularization approach for MPECs where the central idea is to relax the kink
only locally, whereas further away from the origin, the feasible set is not changed. Hence
their method changes the feasible set only in a small part, namely exactly in those points
which typically cause trouble from a theoretical (violation of constraint qualifications) and
numerical point of view.

Another difference between the global and local regularization approach is that Scholtes
[33], among other things, proves convergence of his global method to so-called C-stationary
points under the MPEC-LICQ assumption, whereas Ulbrich and Veelken [37] are able to
show convergence of their local method under the weaker MPEC-CRCQ condition. For
the precise definitions of MPEC-LICQ, MPEC-CRCQ, and C-stationarity, we refer the
reader to the subsequent sections. Furthermore, Ulbrich and Veelken [37] present extensive
numerical results for their local regularization approach being applied to the MacMPEC
test problem library [23] which indicate that their method is quite competitive.

The aim of this paper is twofold: First, we will show that the local regularization
method for MPECs converges to C-stationary points even under weaker conditions than
those given in [37]. In particular, it follows that this method converges to C-stationary
points also under the MPEC-MFCQ condition, a result that is not covered by [37]. Second,
we will adapt the idea of the local regularization approach to MPVCs and state several
convergence results for this class of optimization problems. Numerical results are not the
scope of this paper, especially since [37] already shows that the method is quite successful
at least in the MPEC context.

The organization of the paper is as follows: We begin with some preliminaries in Sec-
tion 2 where we recall several (more or less) known constraint qualifications from standard
optimization as well as the basic idea of the local regularization approach from [37]. In
Section 3, we then consider MPECs and show that the local regularization method from
[37] convergences to C-stationary points under a very weak assumption. Section 4 con-
siders MPVCs, presents the adaptation of the local regularization method to this class
of mathematical programs which results in a new solution scheme for MPVCs, and gives
several convergence results. We close with some final remarks in Section 5.

Most of the notation used in this paper is standard. For a function f : R
n → R, we

write ∇f(x) for the gradient of f at x ∈ R
n, where this gradient is interpreted as a column

vector. For a differentiable function f : R
2 → R, the partial derivatives are denoted by

D1f and D2f , respectively. Similarly, for f being twice continuously differentiable, the
symbols D11f, D12f, D22f are used for the corresponding second-order derivatives. Given
a vector a ∈ R

n and an index set I ⊆ {1, . . . , n}, we denote by aI the vector given by
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aI := (ai)i∈I ∈ R
|I|. The support of a vector a ∈ R

n is defined by

supp(a) := {i ∈ {1, . . . , n} | ai 6= 0}.

2 Preliminaries

2.1 Constraint Qualifications for Standard Problems

Let us consider the standard nonlinear program

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p
(3)

with continuously differentiable functions f, gi, hi : R
n → R. Furthermore, let X denote

the feasible set of (3), and let x∗ ∈ X be an arbitrary feasible point. Recall that the
(Bouligand) tangent cone of X at x∗ is defined by

TX(x∗) :=
{
d ∈ R

n | ∃{xk} ⊆ X, ∃{tk} ↓ 0 such that xk → x∗ and
xk − x∗

tk
→ d

}
,

whereas the linearized cone of X at x∗ is given by

LX(x∗) :=
{
d ∈ R

n | ∇gi(x
∗)T d ≤ 0 (i ∈ Ig), ∇hi(x

∗)T d = 0 (i = 1, . . . , p)
}
,

where
Ig :=

{
i | gi(x

∗) = 0
}

denotes the set of active inequality constraints. Then x∗ satisfies the

• linear independence constraint qualification (LICQ) if the gradients

∇gi(x
∗) (i ∈ Ig), ∇hi(x

∗) (i = 1, . . . , p)

are linearly independent;

• Mangasarian-Fromovitz constraint qualification (MFCQ) if the gradients ∇hi(x
∗) (i =

1, . . . , p) are linearly independent, and there exists a vector d ∈ R
n such that

∇gi(x
∗)T d < 0 (i ∈ Ig), ∇hi(x

∗)T d = 0 (i = 1, . . . , p);

• constant rank constraint qualification (CRCQ) if there is a neighbourhood N(x∗) of
x∗ such that for all subsets I1 ⊆ Ig and I2 ⊆ {1, . . . , p}, the gradient vectors

{
∇gi(x) | i ∈ I1

}
∪

{
∇hi(x) | i ∈ I2

}

have the same rank (which depends on I1, I2) for all x ∈ N(x∗);
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• Abadie constraint qualification (ACQ) if TX(x∗) = LX(x∗).

The reader might be less familiar with the CRCQ condition that was introduced in [21]
and subsequently used successfully to weaken the assumptions (especially LICQ) in several
theoretical results.

In order to formulate another, much more recent, constraint qualification that will play
a fundamental role in our analysis, we have to introduce the notion of positive-linearly
dependent vectors.

Definition 2.1 Let x∗ be feasible for (3) and I1 ⊆ Ig, I2 ⊆ {1, . . . , p} be arbitrarily given.
Then the set of gradients

{
∇gi(x

∗) | i ∈ I1

}
∪

{
∇hi(x

∗) | i ∈ I2

}

is called positive-linearly dependent if there exist scalars {αi}i∈I1 and {βi}i∈I2 with αi ≥ 0
for all i ∈ I1, not all of them being zero, such that

∑

i∈I1

αi∇gi(x
∗) +

∑

i∈I2

βi∇hi(x
∗) = 0.

Otherwise, we say that this set of gradient vectors is positive-linearly independent.

Note that positive-linearly dependent vectors are, in particular, linearly dependent. This
notion allows us to formulate the following condition from [30]: The feasible point x∗

satisfies the

• constant positive linear dependence condition (CPLD) if, for any subsets I1 ⊆ Ig and
I2 ⊆ {1, . . . , p} such that the gradients

{
∇gi(x

∗) | i ∈ I1

}
∪

{
∇hi(x

∗) | i ∈ I2

}

are positive-linearly dependent, there exists a neighbourhood N(x∗) of x∗ such that
the gradients

{
∇gi(x) | i ∈ I1

}
∪

{
∇hi(x) | i ∈ I2

}

are linearly dependent for all x ∈ N(x∗).

Then the following implications hold between these different constraint qualifications:

MFCQ

#+
OOOOOOOOOOO

OOOOOOOOOOO

#+
OOOOOOOOOOO

OOOOOOOOOOO

LICQ

#+
OOOOOOOOOO

OOOOOOOOOO

3;oooooooooo

oooooooooo

CPLD +3 ACQ

CRCQ

3;
ooooooooooo

ooooooooooo
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The fact that LICQ implies both MFCQ and CRCQ is obvious. Furthermore, it is not
difficult to see that CPLD is implied by MFCQ and CRCQ, whereas MFCQ and CRCQ are
not related to each other and are therefore independent constraint qualifications. Finally,
the fact that CPLD implies ACQ follows from results in [4, 7]. In particular, this means
that CPLD is a constraint qualification for (3), which was not clear when this condition
was introduced originally in [30].

Now, let
L(x, λ, µ) := f(x) + λT g(x) + µT h(x)

be the Lagrangian of the optimization probem (3). Then, given a local minimum x∗ of
(3) such that a suitable constraint qualification holds at x∗, there exist multipliers λ ∈ R

m

and µ ∈ R
p such that (x∗, λ, µ) satisfies the corresponding KKT conditions

∇xL(x, λ, µ) = 0,

h(x) = 0,

g(x) ≤ 0, λ ≥ 0, λT g(x) = 0.

Every triple (x∗, λ, µ) satisfying these KKT conditions is called a KKT point, whereas the
x-part itself is called a stationary point. Furthermore, for twice continuously differentiable
functions f, g, h, we say that a KKT point (x∗, λ, µ) satisfies the strong second-order suf-
ficiency condition (SSOSC) for problem (3) if dT∇2

xxL(x∗, λ, µ)d > 0 holds for all nonzero
elements d from the set

C(x∗) :=
{
d ∈ R

n | ∇gi(x
∗)T d = 0 (i : λi > 0), ∇hi(x

∗)Td = 0 (i = 1, . . . , p)
}

that we call the critical cone.

2.2 Regularization Functions

The central idea for both MPECs and MPVCs is to relax the feasible set in a suitable way.
For both problems, it will be enough to relax the complementarity conditions a ≥ 0, b ≥
0, ab = 0. The idea that is used here is due to [37] and will be the basis for the subsequent
methods. Geometrically, the complementarity conditons are given by the two nonnegative
half-axes in the two-dimensional space. If we rotate this set by 45 degrees to the left, we
obtain the absolute value function which is nondifferentiable in the origin. The idea is to
approximate this absolute value function locally (say, within the interval [−1, 1] though
this will later be scaled to smaller neighbourhoods) by a suitable smooth function in such
a way that it coincides with the absolute value function outside this local neighbourhood.
This is made more precise in the following definition going back to [37].

Definition 2.2 θ : [−1, 1] → R is called a regularization function if it satisfies the follow-
ing conditions:

(a) θ is twice continuously differentiable on [−1, 1];
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(b) θ(−1) = θ(1) = 1;

(c) θ′(−1) = −1 and θ′(1) = 1;

(d) θ′′(−1) = θ′′(1) = 0;

(e) θ′′(x) > 0 for all x ∈ (−1, 1).

Note that condition (e) implies that θ is strictly convex on [−1, 1]. The following result
taken from [37, Lemma 3.1] reveals an immediate but crucial property of all regularization
functions.

Lemma 2.3 Let θ : [−1, 1] → R be a regularization function. Then it holds that θ(x) > |x|
for all x ∈ (−1, 1).

Two simple examples of suitable regularization functions are

θ(x) :=
2

π
sin

(
π

2
x +

3π

2

)

+ 1 and θ(x) :=
1

8

(
−x4 + 6x2 + 3

)
,

cf. [37, 36]. The second function is the Hermite interpolation polynomial satisfying the
requirements from Definition 2.2.

3 Convergence of Local Regularization for MPECs

3.1 Preliminaries on MPECs

Here we first recall some standard terminology for MPECs and then present the details of
the local regularization method from [37].

Let us consider the MPEC from (1), and let x∗ be a feasible point for (1). Recall that
Ig = {i = 1, . . . , m | gi(x

∗) = 0}, and let us define the following additional index sets:

I00 := {i = 1, . . . , l | Hi(x
∗) = Gi(x

∗) = 0},

I0+ := {i = 1, . . . , l | Hi(x
∗) = 0, Gi(x

∗) > 0},

I+0 := {i = 1, . . . , l | Hi(x
∗) > 0, Gi(x

∗) = 0}.

Note that the first (second) subscript indicates whether Hi(x
∗) (Gi(x

∗)) is positive or
zero (and not vice versa to keep the notation consistent with the corresponding standard
notation for MPVCs, see Section 4).

Next, we recall some well-known stationarity concepts for MPECs.

Definition 3.1 Let x∗ be feasible for the MPEC (1). Then x∗ is said to be
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(a) weakly stationary, if there are multipliers λ ∈ R
m, µ ∈ R

p, γ, ν ∈ R
l such that

∇f(x∗) +

m∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µihi(x
∗) −

l∑

i=1

γi∇Gi(x
∗) −

l∑

i=1

νi∇Hi(x
∗) = 0

and

λi ≥ 0, λigi(x
∗) = 0 (i = 1, . . . , l)

γi = 0 (i ∈ I0+), νi = 0 (i ∈ I+0);

(b) C-stationary, if it is weakly stationary and γiνi ≥ 0 for all i ∈ I00;

(c) M-stationary, if it is weakly stationary and γi, νi > 0 or γiνi = 0 for all i ∈ I00.

For these stationary concepts to hold, we need some constraint qualifications which are
modifications of some standard constraint qualifications. More precisely, in order to define
suitable MPEC-tailored constraint qualifications, one often uses the auxiliary problem

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0, Gi(x) = 0 ∀i ∈ I+0,
Hi(x) = 0, Gi(x) ≥ 0 ∀i ∈ I0+,
Hi(x) = 0, Gi(x) = 0 ∀i ∈ I00,

which is called the tightened nonlinear program TNLP(x∗) for MPECs. Note that TNLP(x∗)
substantially depends on the chosen point x∗. We now use this tightened nonlinear program
in order to define suitable MPEC-tailored constraint qualifications.

Definition 3.2 We say that MPEC-LICQ (MPEC-MFCQ, MPEC-CRCQ, MPEC-CPLD)
is satisfied in a feasible point x∗ of (1) if standard LICQ (MFCQ, CRCQ, CPLD) is sat-
isfied for the corresponding tightened nonlinear program TNLP(x∗).

Let us write down at least the MPEC-CPLD explicitly: The feasible point x∗ of (1) satisfies
MPEC-CPLD if, for all subsets I1 ⊆ Ig, I2 ⊆ {1, . . . , p}, I3 ⊆ I00 ∪ I+0, and I4 ⊆ I00 ∪ I0+,
the following implication is true: If the gradients

{∇gi(x) | i ∈ I1} ∪
{

{∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}
}

(4)

are positive-linearly dependent in x∗, they remain linearly dependent in a whole neigh-
bourhood of x∗. Note that we use double curly brackets in (4) in order to group together
those gradients for which there are no sign constraints in the definition of positive linear
dependence.

We next show that MPEC-CPLD implies MPEC-ACQ and, therefore, is a constraint
qualification for MPECs. Since MPEC-ACQ will not be used elsewhere in this paper, we
do not give the precise definition here and refer the interested reader to [10].
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Lemma 3.3 MPEC-CPLD implies MPEC-ACQ, hence every local minimizer x∗ of (1)
satisfying MPEC-CPLD is M-stationary.

Proof. In [11], it was shown that MPEC-ACQ is a sufficient condition for M-stationarity
of local optima. Consequently, it suffices to prove that MPEC-CPLD implies MPEC-
ACQ. To do so, let x∗ be a feasible point for (1) satisfying MPEC-CPLD and consider the
nonlinear programs NLP(J1, J2)

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0, Gi(x) = 0 ∀i ∈ I+0 ∪ J1,
Hi(x) = 0, Gi(x) ≥ 0 ∀i ∈ I0+ ∪ J2,

where (J1, J2) is an arbitrary partition of I00. It is easy to see that MPEC-CPLD, which
was defined as standard CPLD for TNLP(x∗), implies standard CPLD for all NLP(J1, J2).
However, according to our discussion in Section 2.1, CPLD implies ACQ. Hence, we know
that standard ACQ holds for all NLP(J1, J2), where (J1, J2) is a partition of I00. This is a
sufficient condition for MPEC-ACQ, cf. [10] for a proof. �

Lemma 3.3 together with the fact that the the MPEC variants of LICQ, MFCQ, CRCQ,
and CPLD are defined via the corresponding standard constraint qualifications for the
tightened nonlinear program TNLP(x∗), we obtain from Section 2.1 that the following
implications hold:

MPEC-MFCQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

MPEC-LICQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

MPEC-CPLD +3 MPEC-ACQ

MPEC-CRCQ

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

3.2 Convergence Analysis of Local Regularization for MPECs

In order to solve the MPEC (1), Ulbrich and Veelken [37] propose to solve a series of
relaxed problems NLP(t), t > 0, defined by

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,

Gi(x) ≥ 0 ∀i = 1, . . . , l,

Hi(x) ≥ 0 ∀i = 1, . . . , l,

Φi(Gi(x), Hi(x); t) ≤ 0 ∀i = 1, . . . , l,
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with
Φ : R

2 → R, Φ(x1, x2; t) := x1 + x2 − ϕ(x1 − x2; t),

and

ϕ(·; t) : R → R, ϕ(a; t) :=

{
|a|, if |a| ≥ t,
tθ(a

t
), if |a| < t.

One of the main results in [37] states that, given a sequence {tk} ↓ 0 and a corresponding
sequence {xk} of stationary points of NLP(tk) with xk → x∗ such that MPEC-CRCQ holds
in x∗, then this limit point x∗ is a C-stationary point of (1). The following result shows that
this statement actually holds under the weaker MPEC-CPLD assumption. In particular,
this result therefore also holds under the MPEC-MFCQ condition in view of our previous
discussion.

Theorem 3.4 Let {tk} be a sequence with tk ↓ 0 and let {xk} be a sequence of stationary
points of NLP(tk) with xk → x∗ and such that MPEC-CPLD holds in x∗. Then x∗ is a
C-stationary point of (1).

Here we skip the proof of this result since it can be obtained by a simple modification of
the one from [37], taking into account that MPEC-CPLD is indeed sufficient to verify the
statement. Alternatively, we refer the reader to the corresponding proof of Theorem 4.12
in the MPVC setting.

Recall that our result is slightly more general than the one given in [37] as both MPEC-
CRCQ and MPEC-MFCQ imply MPEC-CPLD, whereas MPEC-MFCQ does not imply
MPEC-CRCQ. However, in the absence of standard inequality constraints gi(x) ≤ 0,
MPEC-LICQ and MPEC-MFCQ coincide and so do MPEC-CRCQ and MPEC-CPLD.
Hence, the difference between MPEC-CRCQ and MPEC-CPLD is not too big in the MPEC
setting. Interestingly enough, this is not the case for MPVCs as we will see in the following
section.

We close this section with a simple example illustrating the previous theory.

Example 3.5 Consider the following two-dimensional MPEC:

min f(x) = 2x2 s.t. g1(x) = x2
1 + x2 ≤ 0,

g2(x) = x1 ≤ 0,

G(x) = x2 ≥ 0, (5)

H(x) = x1 + x2 ≥ 0,

G(x)H(x) = x2(x1 + x2) = 0.

It is easy to see that the feasible region is X = {x ∈ R
2 | x1 ∈ [−1, 0], x2 = −x1} and the

strict global minimum is x∗ = (0, 0). All constraints are active in x∗ and the gradients are

∇g1(x
∗) =

(
1

0

)

,∇g2(x
∗) =

(
1

0

)

,∇G(x∗) =

(
0

1

)

,∇H(x∗) =

(
1

1

)

.

9



For MPEC-MFCQ to hold, one would have to find a vector d ∈ R
2 with ∇G(x∗)T d =

0,∇H(x∗)T d = 0 and ∇gi(x
∗)T d < 0 for i = 1, 2. This is obviously impossible, hence

MPEC-MFCQ does not hold in x∗. MPEC-CRCQ also is violated in x∗ because the
gradients ∇g1(x),∇g2(x) are linearly dependent in x∗ but linearly independent everywhere
else. On the other hand, the weaker constraint qualification MPEC-CPLD is satisfied in
x∗. To see this, note first that every subset of gradients that does not include ∇g1(x), is
independent of x. Thus, we only have to consider those subsets of gradients that include
∇g1(x). Now, it is easy to see that there are only two subsets such that the included
gradients are positive-linearly dependent in x∗, namely {∇g1(x)} ∪ {∇G(x),∇H(x)} and
{∇g1(x),∇g2(x)}∪{∇G(x),∇H(x)}, and that those remain linearly dependent in a whole
neighbourhood.

Now consider a sequence of the corresponding relaxed problems NLP(tk), tk ↓ 0, where
the condition G(x)H(x) = 0 is replaced by Φ(G(x), H(x); tk) ≤ 0. One can easily verify
that x∗ is also the global minimum of NLP(tk) and that standard CPLD holds in x∗ for
all k ∈ N. Thus, {xk} with xk := x∗ for all k ∈ N is a sequence of stationary points of
NLP(tk) that trivially converges to x∗. Hence, (5) is an example for an MPEC where the
relaxation method converges although only MPEC-CPLD is satisfied. ♦

4 Convergence of Local Regularization for MPVCs

4.1 MPVCs and a New Local Regularization Approach

Let us consider the MPVC from (2), and let x∗ be an arbitrary feasible point of (2). Then
let Ig = {i | gi(x

∗) = 0} be defined as before, and consider the additional index sets

I+ :=
{
i
∣
∣Hi(x

∗) > 0
}
, I0 :=

{
i
∣
∣ Hi(x

∗) = 0
}
. (6)

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{
i
∣
∣ Hi(x

∗) > 0, Gi(x
∗) = 0

}
,

I+− :=
{
i
∣
∣ Hi(x

∗) > 0, Gi(x
∗) < 0

}
.

(7)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣
∣Hi(x

∗) = 0, Gi(x
∗) > 0

}
,

I00 :=
{
i
∣
∣Hi(x

∗) = 0, Gi(x
∗) = 0

}
,

I0− :=
{
i
∣
∣Hi(x

∗) = 0, Gi(x
∗) < 0

}
.

(8)

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second subscript

stands for the sign of Gi(x
∗). We would also like to point out that the above index sets

substantially depend on the chosen point x∗. Throughout this section, it will always be
clear from the context which point these index sets refer to.

Definition 4.1 Let x∗ be feasible for the MPVC (2). Then x∗ is called

10



(a) weakly stationary if there exist multipliers λ ∈ R
m, µ ∈ R

p, ηH , ηG ∈ R
l such that

∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗) −

l∑

i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0

and
λi ≥ 0, λigi(x

∗) = 0 (i = 1, . . . , m),
ηH

i = 0 (i ∈ I+), ηH
i ≥ 0 (i ∈ I0−), ηH

i free (i ∈ I0+ ∪ I00),

ηG
i = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηG

i ≥ 0 (i ∈ I+0 ∪ I00).

(b) M-stationary if x∗ is weakly stationary and ηG
i ηH

i = 0 for all i ∈ I00.

The notion of weak stationarity for MPVCs was introduced in [19], whereas M-stationarity
for MPVCs is due to [16]. We note that, in contrast to MPECs, there is currently no con-
cept like C-stationarity available for MPVCs. We stress, however, that the terminology is
somewhat misleading: While there are no sign constraints for the multipliers correspond-
ing to the biactive constraints in a weakly stationary point of an MPEC, we have such
constraints in a weakly stationary point of an MPVC. Hence weak stationarity for MPVCs
is, in comparison, a much stronger concept than weak stationarity for MPECs, i.e., weak
stationarity for MPVCs corresponds to something like C-stationarity in the MPEC setting.

Similar to the exposition of the previous section, we now introduce a number of MPVC-
tailored constraint qualifications via a tightened nonlinear program. To this end, let x∗ be
any feasible point of the MPVC. Then the auxiliary problem

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) = 0 ∀i ∈ I0+ ∪ I00,
Hi(x) ≥ 0 ∀i ∈ I0− ∪ I+,
Gi(x) ≤ 0 ∀i = 1, . . . , l,

is called the tightened nonlinear program of the MPVC and denoted by TNLP(x∗) (note
that we use the same symbol here as for the tightened nonlinear program for MPECs,
but this should not cause any troubles since, throughout this section, TNLP(x∗) always
denotes the tightened nonlinear program of the MPVC from (2)).

Definition 4.2 We say that MPVC-LICQ (MPVC-MFCQ, MPVC-CRCQ, MPVC-CPLD)
is satisfied in a feasible point x∗ of (1) if standard LICQ (MFCQ, CRCQ, CPLD) is sat-
isfied for the corresponding tightened nonlinear program TNLP(x∗).

Let us write down at least MPVC-LICQ and MPVC-CPLD explicitly: The MPVC-LICQ
holds at x∗ if the gradients

∇gi(x
∗) (i ∈ Ig), ∇hi(x

∗) (i = 1, . . . , p), ∇Hi(x
∗) (i ∈ I0), ∇Gi(x

∗) (i ∈ I00 ∪ I+0)

11



are linearly independent, whereas the MPVC-CPLD holds at x∗ if for all subsets I1 ⊆ Ig,
I2 ⊆ I0−, I3 ⊆ I+0 ∪ I00, I4 ⊆ {1, . . . , p}, I5 ⊆ I0+ ∪ I00, the following implication holds
true: If the gradients

{

{∇gi(x) | i ∈ I1} ∪ {−∇Hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3}
}

∪
{

{∇hi(x) | i ∈ I4} ∪ {∇Hi(x) | i ∈ I5}
}

are positive-linearly dependent in x∗, they remain linearly dependent in a whole neigh-
bourhood of x∗. Here, again, we use double face brackets to separate the gradients from
the inequalities from those of the equality constraints.

Note that, in contrast to MPECs, there is also a difference between MPVC-CRCQ and
MPVC-CPLD in the nonstandard constraints defined by Gi and Hi.

Similar to the proof of Lemma 3.3, we can also verify the following result by exploiting
some techniques from [16], where the reader can also find the precise definition of MPVC-
ACQ.

Lemma 4.3 MPVC-CPLD implies MPVC-ACQ, hence every local minimizer x∗ of (2)
satisfying MPVC-CPLD is M-stationary.

Similar to Section 3.1, the previous definitions and Lemma 4.3 together show that the
following implications hold:

MPVC-MFCQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

MPVC-LICQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

MPVC-CPLD +3 MPVC-ACQ

MPVC-CRCQ

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

A keystone for our approach is the fact that the constraints of the MPVC (2) can be
equivalently reformulated using the absolute-value function. In fact, it is easy to see that,
for all x1, x2 ∈ R, we have

x1x2 ≤ 0, x2 ≥ 0 ⇐⇒ x1 + x2 ≤ |x1 − x2|, x2 ≥ 0 . (9)

This observation implies that the MPVC (2) is equivalent to the following program:

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x) + Hi(x) − |Gi(x) − Hi(x)| ≤ 0 ∀i = 1, . . . , l.

12



Note, however, that this is a nonsmooth reformulation of the problem, due to the absolute-
value function.

Now, the idea of the new local regularization approach for MPVCs is to approximate
the abolute-value function by a regularization function, cf. Definition 2.2. In the sequel, let
θ always denote such a regularization function. We then define the parameter-dependent
function ϕ(·; t) : R → R given by

ϕ(a; t) :=

{
|a|, if |a| ≥ t,
tθ(a

t
), if |a| < t,

(10)

where t > 0. Some properties of ϕ are given below.

Lemma 4.4 Let ϕ be defined as in (10). Then we have

(a) ϕ(a; t) > |a| for all a ∈ (−t, t) and for all t > 0;

(b) ϕ(a; t) = |a| for |a| ≥ t and for all t > 0;

(c) limt→0 ϕ(a; t) = |a| for all a ∈ R;

(d) ϕ(·; t) is twice continuously differentiable for all t > 0.

Proof. (a) Let a ∈ (−t, t) for some t > 0. Then |a|
t

< 1, and the definition of ϕ therefore
implies

ϕ(a; t) = tθ

(
a

t

)

> t
|a|

t
= |a|,

where the (strict) inequality comes from Lemma 2.3.

(b), (d) These statements follow directly from the definition of θ.

(c) Let a ∈ R. If a = 0, then the boundedness of θ immediately gives

ϕ(0; t) = tθ

(
a

t

)

→ 0 = a for t → 0.

On the other hand, if a 6= 0, we have |a| ≥ t for all t > 0 sufficiently small. Hence we ob-
tain ϕ(a; t) = |a| for all t > 0 sufficiently small, and this gives our assertion also for a 6= 0. �

With the aid of ϕ(·; t), we are in a position to define Φ(·; t) : R
2 → R by

Φ(x1, x2; t) := x1 + x2 − ϕ(x1 − x2; t) . (11)

Some useful properties of the function Φ(·; t) are subsumed in the following results.

13



Lemma 4.5 For t > 0 let Φ(·; t) be the function given in (11). Then Φ(·; t) is twice
continuously differentiable with gradient

∇Φ(x1, x2; t) =







(
2
0

)
, if x1 − x2 ≤ −t,

(
0
2

)
, if x1 − x2 ≥ t,

(1−θ′(
x1−x2

t
)

1+θ′(
x1−x2

t
)

)
, if |x1 − x2| < t,

and Hessian

∇2Φ(x1, x2; t) =







(
0 0
0 0

)

, if |x1 − x2| ≥ t,

1
t

(
−θ′′(x1−x2

t
) θ′′(x1−x2

t
)

θ′′(x1−x2

t
) −θ′′(x1−x2

t
)

)

, if |x1 − x2| < t.

Proof. The proof follows immediately from the definition of Φ; cf. also [37]. �

Figure 1: Illustration of Lemma 4.6

Lemma 4.6 Let Φ(·; t) be given by (11). Then the following holds true:

Φ(x1, x2; t)







< 0, if x1 < 0 or x2 < 0,
< 0, if x1, x2 ≥ 0 and x1 · x2 = 0 and |x1 − x2| < t,
= 0, if x1, x2 ≥ 0 and x1 · x2 = 0 and |x1 − x2| ≥ t,
> 0, if x1, x2 > 0 and |x1 − x2| ≥ t,
free, if x1, x2 > 0 and |x1 − x2| < t.

Proof. The proof follows immediately from considering the following cases:
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i) For x1, x2 ≤ 0 we have

Φ(x1, x2; t) = x1 + x2
︸ ︷︷ ︸

≤0

− ϕ(x1 − x2; t)
︸ ︷︷ ︸

>0 by Lemma 4.4

< 0.

ii) For x1 > 0, x2 < 0 we obtain from Lemma 4.4

Φ(x1, x2; t) = x1 + x2 − ϕ(x1 − x2; t) ≤ x1 + x2 − |x1 − x2| = 2x2 < 0 .

iii) For x1 < 0, x2 > 0 it follows again from Lemma 4.4 that

Φ(x1, x2; t) = x1 + x2 − ϕ(x1 − x2; t) ≤ x1 + x2 − |x1 − x2| = 2x1 < 0 .

iv) For x1 > 0, x2 = 0 we obtain from Lemma 4.4

Φ(x1, x2; t) = x1 − ϕ(x1; t)

{
= 0, if x1 ≥ t,
< 0, if x1 < t.

v) For x1 = 0, x2 > 0 it holds that

Φ(x1, x2; t) = x2 − ϕ(−x2; t)

{
= 0, if x2 ≥ t,
< 0, if x2 < t.

vi) For x1, x2 > 0 with |x1 − x2| ≥ t the definition of ϕ implies

Φ(x1, x2; t) = x1 + x2 − ϕ(x1 − x2; t) = x1 + x2 − |x1 − x2| > 0.

The previous cases also show that, by continuity, the sign of Φ can be both positive and
negative in the remaining case where x1, x2 > 0 and |x1 − x2| < t. �

For a regularization parameter t > 0, the regularized problem P (t) labels the following
program:

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Φ(Gi(x), Hi(x); t) ≤ 0 ∀i = 1, . . . , l .

Let the feasible set of P (t) be denoted by X(t).

Proposition 4.7 For the feasible sets X of (2) and X(t) of P (t), we have the following
relations:

(a) For t > 0, we have X ⊂ X(t);
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(b) X(0) = X;

(c) For t1 < t2 we have X(t1) ⊂ X(t2).

Proof. The proof of (a) follows immediately from Lemma 4.6. Statement (b) is due to
(9) and the fact that Φ(x1, x2; 0) = x1 +x2−|x1 −x2| for all x1, x2 ∈ R, whereas statement
(c) can be verified similarly to [37, Lemma 3.2]. �

Item (a) from above is illustrated in the below example.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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(a) X for Example 4.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t=1

t=1

(b) X(t) for Example 4.8

Figure 2: Feasible sets for Example 4.8

Example 4.8 Consider the MPVC

min x2
1 + x2

2 s.t. x2 ≥ 0, x1x2 ≤ 0.

Then its feasible set X and the feasible set X(t) of the regularized problem for t = 1 are
depicted in Figure 4.1. ♦

4.2 Convergence Analysis

Before we investigate some convergence properties of our regularization scheme, it is nec-
essary to study some relationships between certain active sets, which arise naturally in this
context. To this end, let x be an arbitrary feasible point of P (t), and let us introduce the
following index sets similar to those previously defined for a feasible point x∗ of the MPVC
itself in (6)–(8):

I+(x) :=
{
i
∣
∣ Hi(x) > 0

}
, I0(x) :=

{
i
∣
∣Hi(x) = 0

}
.
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The set I+(x) is then partitioned, again, by

I++(x) :=
{
i ∈ I+

∣
∣ Gi(x) > 0

}
,

I+−(x) :=
{
i ∈ I+

∣
∣ Gi(x) < 0

}
,

I+0(x) :=
{
i ∈ I+

∣
∣ Gi(x) = 0

}
.

Analogously, I0(x) is partitioned into three subsets I0+(x), I00(x), I0−(x). Furthermore,
put

M(x, t) := {i | Φ(Gi(x), Hi(x); t) = 0}.

There are some elementary inclusions to hold for the above index sets and those from
(6)–(8).

Lemma 4.9 Let x∗ be feasible for (2) and let t > 0. Then for all points x which are
feasible for P (t) and that are close enough to x∗, we have

(a) I0(x) ⊆ I0;

(b) M(x, t) ⊆ I00 ∪ I0+ ∪ I+0;

(c) I0(x) ∩ M(x, t) ⊆ I0+ ∪ I00.

Proof. (a) Let i /∈ I0. Thus, for x sufficiently close to x∗ we have Hi(x) > 0 and hence,
i /∈ I0(x).

(b) Let i /∈ I00∪I0+∪I+0. Then we have i ∈ I+−∪I0− and thus, Gi(x) < 0 for x sufficiently
close to x∗. Thus, in view of Lemma 4.6 we have i /∈ M(x, t).

(c) Follows immediately from (a) and (b). �

We are now in a position to state our three main convergence results. We begin with a
result which may be viewed as the counterpart of [37, Theorem 5.1].

Theorem 4.10 Let {(xk, λk, µk, ρk, νk)} be a sequence of KKT points of P (tk) for tk ↓ 0.
Furthermore, let xk converge to the point x∗ satisfying MPVC-LICQ. Then the sequence
{(λk, µk, ηG,k, ηH,k)} with ηG,k and ηH,k given by

ηG,k
i := νk

i D1Φ(Gi(x
k), Hi(x

k); tk) ∀i = 1, . . . , l,

ηH,k
i := ρk

i − νk
i D2Φ(Gi(x

k), Hi(x
k); tk) ∀i = 1, . . . , l,

(12)

converges to a limit (λ, µ, ηG, ηH) such that (x∗, λ, µ, ηG, ηH) is a weakly stationary point
of (2).

Proof. To simplify the notation within this proof, we assume that the MPVC does not
contain any standard constraints given by g and h. The proof can easily be generalized to
this case. Hence we concentrate our analysis on the difficult (vanishing) constraints.
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The KKT conditions of P (tk) yield multipliers (ρk, νk) such that

0 = ∇f(xk) −
l∑

i=1

ρk
i ∇Hi(x

k) +
l∑

i=1

νk
i ∇

(
Φ(Gi(x

k), Hi(x
k); tk)

)
(13)

and

ρk
i ≥ 0, Hi(x

k) ≥ 0, ρk
i Hi(x

k) = 0 (i = 1, . . . , l),
νk

i ≥ 0, Φ(Gi(x
k), Hi(x

k); tk) ≤ 0, νk
i Φ(Gi(x

k), Hi(x
k); tk) = 0 (i = 1, . . . , l).

(14)

Using the definitions of the multipliers ηG,k and ηH,k from (12), we may rewrite (13) as

0 = ∇f(xk) −
l∑

i=1

ηH,k
i ∇Hi(x

k) +

l∑

i=1

ηG,k
i ∇Gi(x

k) . (15)

It is now our goal to investigate the signs of ηG,k
i and ηH,k

i with respect to the different
index sets.

To this end, we begin with ηG,k
i . In view of Lemma 4.9 (b) and (14), for i ∈ I+− ∪ I0−,

we have νk
i = 0 and thus, ηG,k

i = 0, for all k sufficiently large.
We now show that we have ηG,k

i = 0 for k sufficiently large for i ∈ I0+, too. To this
end, it obviously suffices to see that this holds for all i ∈ I0+ ∩ M(xk, tk), as for i ∈
I0+ \M(xk, tk) we have ηG,k

i = 0 anyway. Now, for i ∈ I0+ ∩M(xk, tk) it clearly holds that
i ∈ I0+(xk)∪I++(xk). More precisely, we have i ∈ I0+(xk), because i ∈ I++(xk)∩M(xk, tk)
would imply that Hi(x

k), Gi(x
k) > 0 and Gi(x

k) + Hi(x
k) = ϕ(Gi(x

k) − Hi(x
k); tk), and

hence, by the definition of ϕ, we necessarily have |Gi(x
k) − Hi(x

k)| ≤ tk → 0, which
is a contradiction to |Gi(x

k) − Hi(x
k)| → Gi(x

∗) > 0, and so this case cannot occur.
Consequently we have i ∈ I0+(xk) ∩ M(xk, tk) which means that Hi(x

k) = 0, Gi(x
k) > 0,

and Φ(Gi(x
k), Hi(x

k); tk) = 0. This implies D1Φ(Gi(x
k), Hi(x

k); tk) = 0 and thus ηG,k
i = 0

for all k sufficiently large.
Moreover, for i ∈ I+− we see from Lemma 4.6 that, for k sufficiently large, we have

Φ(Gi(x
k), Hi(x

k); tk) < 0 and hence, νk
i = 0. Furthermore, by analogous reasoning we also

have ρk
i = 0. This yields ηH,k

i = 0 for k sufficiently large.
Eventually, it can also be argued that for i ∈ I+0 we also have ηH,k

i = 0 for k sufficiently
large. For these purposes, it obviously suffices to see that this holds true for i ∈ I+0 ∩
M(xk, tk), since otherwise, we have ηH,k

i = 0 anyway. So, for such an index i we have ρk
i = 0

for k sufficiently large. Moreover, it can be shown that i ∈ I+0(x
k) for k sufficiently large

as follows: From Lemma 4.6 it is clear that i ∈ I+0(x
k) ∪ I++(xk), but actually the case

i ∈ I++(xk) cannot occur, which can be verified just as above. Thus, we have Hi(x
k) > 0

and Gi(x
k) = 0. But as we also have 0 = Φ(Gi(x

k), Hi(x
k); tk) = Hi(x

k)− ϕ(−Hi(x
k); tk),

Lemma 4.4 yields −Hi(x
k) ≤ −tk and thus, Lemma 4.5 gives D2Φ(Gi(x

k), Hi(x
k); tk) = 0.

Together, thus far, we have shown that for k sufficiently large we have

ηG,k
i = 0 (i ∈ I0− ∪ I+− ∪ I0+) and ηH,k

i = 0 (i ∈ I+) . (16)
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Thus, (15) can be written as

0 = ∇f(xk) −
∑

i∈I0

ηH,k
i ∇Hi(x

k) +
∑

i∈I+0∪I00

ηG,k
i ∇Gi(x

k).

This may be expressed in matrix-vector notation as fk = AT
k ηk

I , where we put

fk := ∇f(xk), ηk
I :=

(
ηG,k

I00∪I+0

ηH,k
I0

)

and Ak :=

(
−∇Gi(x

k) (i ∈ I+0 ∪ I00)
∇Hi(x

k) (i ∈ I0)

)

.

Now, Ak converges to a matrix with full rank by the MPVC-LICQ assumption and as
fk is convergent, too, necessarily the sequence ηk

I is also convergent, say to a limit point
ηI = (ηG

I00∪I+0
, ηH

I0
). In view of (16), we have ηG

i = 0 for all i ∈ I0− ∪ I+− ∪ I0+ and

ηH
i = 0 (i ∈ I+). Hence it remains to show that ηG

i ≥ 0 for all i ∈ I+0 ∪ I00 and ηH
i ≥ 0 for

all i ∈ I0−

From (14) we see that νk
i ≥ 0 for all i = 1, . . . , l. Furthermore, Lemma 4.5 yields

D1Φ(Gi(x
k), Hi(x

k); tk)) ≥ 0 and hence, ηG,k
i = νk

i D1Φ(Gi(x
k), Hi(x

k); tk) ≥ 0 for all i. In
particular, we infer that ηG

i ≥ 0 for i ∈ I00 ∪ I+0.
In turn, for i ∈ I0−, due to Lemma 4.9, we know that, for k sufficiently large, i /∈

M(xk, tk). Thus, we have ηH,k
i = ρk

i ≥ 0 and hence, ηH
i ≥ 0.

Altogether, this shows that (x∗, ηG, ηH) is a weakly stationary point of (2). �

We note that the corresponding result in [37] shows C-stationarity for the limit point in the
MPEC setting, whereas, here, we only have weak stationarity. However, recall that this
is mainly a problem of terminology, since weak stationarity for MPVCs is much stronger
than weak stationarity for MPECs, and there exists no counterpart of C-stationarity for
MPVCs.

In order to obtain more than weak stationarity, we need to assume SSOSC for the
subproblems P (tk).

Theorem 4.11 Let the assumptions and definitions of Theorem 4.10 hold and assume in
addition that SSOSC holds at xk for P (tk) for all k ∈ N (sufficiently large). Then the point
(x∗, λ, µ, ηG, ηH) is M-stationary for (2).

Proof. Again, we assume throughout this proof that the MPVC (2) contains no standard
constraints in order to focus on the main difficulties.

Recall that due to Theorem 4.10 the sequences ηG,k
i and ηH,k

i are convergent to limit
points ηG

i and ηH
i , respectively, such that (x∗, ηG, ηH) is weakly stationary. Now, suppose

that it is not M-stationary. Then there exists an index j ∈ I00 such that ηG
j > 0 and

ηH
j 6= 0. The fact that ηG

j > 0, implies that ηG,k
j = νk

j D1Φ(Gj(x
k), Hj(x

k); tk) > 0 for

all k sufficiently large. Thus, in particular, we see that νk
j > 0 and hence, from the

complementarity in (14), we infer that

Φ(Gj(x
k), Hj(x

k); tk) = 0 (17)
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for k sufficiently large, that is j ∈ M(xk, tk).
Furthermore, since we also have D1Φ(Gj(x

k), Hj(x
k); tk) > 0, Lemma 4.5 yields

Gj(x
k) − Hj(x

k) < tk (18)

for k sufficiently large.
We now argue that the case ηH

j > 0 cannot occur: To this end, note that ηH
j > 0

implies ηH,k
j = ρk

j − νk
j D2Φ(Gj(x

k), Hj(x
k); tk) > 0 and hence, also invoking Lemma 4.5

and Definition 2.2, we have ρk
j > νk

j D2Φ(Gj(x
k), Hj(x

k); tk) ≥ 0, and thus, in view of (14),
we get Hj(x

k) = 0 for all k sufficiently large. Using (18), this yields Gj(x
k) < tk. Invoking

(17) and Hj(x
k) = 0, we obtain

0 = Φ(Gj(x
k), Hj(x

k); tk) = Gj(x
k) − ϕ(Gj(x

k); tk)

Together with Lemma 4.4, this implies Gj(x
k) ≥ tk > 0 in contrast to (18) and Hj(x

k) = 0.

Thus, we only need to consider the case ηH
j < 0. At this, we clearly have ηH,k

j =

ρk
j − νk

j D2Φ(Gj(x
k), Hj(x

k); tk) < 0 for all k sufficiently large. Hence, we obtain 0 ≤ ρk
j <

νk
j D2Φ(Gj(x

k), Hj(x
k); tk) and thus, in particular, D2Φ(Gj(x

k), Hj(x
k); tk) > 0 which, by

Lemma 4.5, gives Gj(x
k) − Hj(x

k) > −tk. Together with (18) this yields

|Gj(x
k) − Hj(x

k)| < tk . (19)

Thus,

0 = Φ(Gj(x
k), Hj(x

k); tk)
(19)
= Gj(x

k) + Hj(x
k) − tkθ

(Gj(x
k) − Hj(x

k)

tk

)

.

Hence, Lemma 4.5 and an easy calculation yields Gj(x
k), Hj(x

k) > 0, that is j ∈ I++(xk).

In particular, we then have ρk
j = 0 and hence ηH,k

j = −νk
j D2Φ(Gj(x

k), Hj(x
k); tk). This,

invoking (19), Lemma 4.5 and the definition of ηG,k
j , ηH,k

j gives

ηG,k
j = νk

j

(

1 − θ′
(Gj(x

k) − Hj(x
k)

tk

))

,

ηH,k
j = −νk

j

(

1 + θ′
(Gj(x

k) − Hj(x
k)

tk

))

for all k sufficiently large. Putting uk := 1 − θ′
(Gj(x

k) − Hj(x
k)

tk

)

, this can be rewritten

as
ηG,k

j = νk
j uk, ηH,k

j = −νk
j (2 − uk). (20)

Since we have ηG,k
j → ηG

j > 0 and ηH,k
j → ηH

j < 0, from (20) we can quickly deduce that

the sequence {νk
j } is bounded, νk

j , uk 6→ 0 and 2−uk

uk
→ −

ηH
j

ηG
j

> 0.
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Now, for k ∈ N, choose a vector dk ∈ R
n with the following properties:

∇Gi(x
k)T dk = 0 (i ∈ (I00 ∪ I+0) \ {j}),

∇Hi(x
k)T dk = 0 (i ∈ I0 \ {j}),

∇Gj(x
k)T dk = −2−uk

uk
,

∇Hj(x
k)T dk = 1,

(21)

which is possible due to MPVC-LICQ. Then, the sequence {dk} can be chosen such that it is
bounded due to the convergence of the right hand side in (21) and the linear independence
of the gradients occuring on the left hand side. Moreover, we have

dk ∈ C(xk) = {d ∈ R
n | ∇Hi(x

k)T d = 0 (i : ρk
i > 0),

∇(Φ(Gi(x
k), Hi(x

k); tk))
T d = 0 (i : νk

i > 0)}
(22)

for all k ∈ N, which can be seen as follows: The first defining condition is satisfied since
we have {i | ρk

i > 0} ⊆ I0(x
k) ⊆ I0 for k sufficiently large and ρk

j = 0 as was stated earlier.
To verify the second condition we first note that

∇(Φ(Gi(x
k), Hi(x

k); tk))
T dk = D1Φ(Gi(x

k), Hi(x
k); tk)∇Gi(x

k)T dk

+D2Φ(Gi(x
k), Hi(x

k); tk)∇Hi(x
k)T dk .

(23)

Furthermore, we recall that, due to Lemma 4.9, we have {i | νk
i > 0} ⊆ M(xk, tk) ⊆

I00 ∪ I0+ ∪ I+0. In view of the choice of dk and (23) it is immediately clear that for i ∈
I00∩M(xk , tk) with i 6= j we have ∇(Φ(Gi(x

k), Hi(x
k); tk))

T dk = 0. For the case of i ∈ I0+∩
M(xk, tk) it was argued in the proof of Theorem 4.10 that D1Φ(Gi(x

k), Hi(x
k); tk) = 0 and

thus, in view of (23), the second condition reduces to D2Φ(Gi(x
k), Hi(x

k); tk)∇Hi(x
k)T dk=0,

which is then, due to its choice, satisfied for dk. An analogous reasoning will work for
i ∈ I+0 ∩M(xk, tk): The proof of Theorem 4.10 shows that D2Φ(Gi(x

k), Hi(x
k); tk) = 0 in

this case, hence the second condition reduces to D1Φ(Gi(x
k), Hi(x

k); tk)∇Gi(x
K)T dk = 0

which holds by the choice of dk in (21). Thus, it remains to verify the second condition
for the index j. For these purposes, note that we have D1Φ(Gj(x

k), Hj(x
k); tk) = uk and

D2Φ(Gj(x
k), Hj(x

k); tk) = 2 − uk due to (19) and Lemma 4.5, and hence, invoking the
choice of dk and (23), we obtain

∇Φ(Gj(x
k), Hj(x

k); tk)
T dk = uk(−

2 − uk

uk

) + (2 − uk) = 0,

which eventually yields dk ∈ C(xk) for all k sufficiently large. Now, we compute the Hessian
of the Lagrangian Lt of the program P (t):
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∇2
xxLt(x

k, ρk, νk)

= ∇2f(xk) −
l∑

i=1

ρk
i ∇

2Hi(x
k) +

l∑

i=1

νk
i ∇

2(Φ(Gi(x
k), Hi(x

k); tk))

= ∇2f(xk) −
l∑

i=1

ηH,k
i ∇2Hi(x

k) +

l∑

i=1

ηG,k
i ∇2Gi(x

k)

+
∑

i∈M(xk,tk)

νk
i D11Φ(Gi(x

k), Hi(x
k); tk)∇Gi(x

k)∇Gi(x
k)T

+
∑

i∈M(xk,tk)

νk
i D12Φ(Gi(x

k), Hi(x
k); tk)(∇Gi(x

k)∇Hi(x
k)T + ∇Hi(x

k)Gi(x
k)T )

+
∑

i∈M(xk,tk)

νk
i D22Φ(Gi(x

k), Hi(x
k); tk)∇Hi(x

k)∇Hi(x
k)T

= ∇2f(xk) −
l∑

i=1

ηH,k
i ∇2Hi(x

k) +

l∑

i=1

ηG,k
i ∇2Gi(x

k)

+
∑

i∈M(xk,tk)∩I00

νk
i D11Φ(Gi(x

k), Hi(x
k); tk)∇Gi(x

k)∇Gi(x
k)T

+
∑

i∈M(xk,tk)∩I00

νk
i D12Φ(Gi(x

k), Hi(x
k); tk)(∇Gi(x

k)∇Hi(x
k)T + ∇Hi(x

k)∇Gi(x
k)T )

+
∑

i∈M(xk,tk)∩I00

νk
i D22Φ(Gi(x

k), Hi(x
k); tk)∇Hi(x

k)∇Hi(x
k)T ,

(24)
where the last equality can be seen as follows: From Lemma 4.9 we have the inclusion
M(xk, tk) ⊆ I0+ ∪ I00 ∪ I+0. Then it can be argued, cf. the proof of Theorem 4.10, that
we have |Gi(x

k) − Hi(x
k)| ≥ tk for i ∈ M(xk, tk) ∩ I0+ and hence, due to Lemma 4.5,

all second-order partial derivatives of Φ(Gi(x
k), Hi(x

k); tk) are zero for k sufficiently large.
The same observation holds for all i ∈ M(xk, tk) ∩ I+0 and all k sufficiently large, which
shows the last equality in (24).

From (24) and the properties of dk we thus infer that

(dk)T∇2
xxLt(x

k, ρk, νk)dk

= (dk)T∇2f(xk)(dk) −
l∑

i=1

ηk
i (d

k)T∇2Hi(x
k)dk +

l∑

i=1

ηG,k
i (dk)T∇2Gi(x

k)dk

+νk
j D11Φ(Gj(x

k), Hj(x
k); tk)

(2 − uk

uk

)2

− 2νk
j D12Φ(Gj(x

k), Hj(x
k); tk)

(2 − uk

uk

)

+νk
j D22Φ(Gj(x

k), Hj(x
k); tk) .

At this, the first three summands are bounded for k ∈ N, due to the convergence of
the multipliers, the boundedness of {dk} and the continuity of ∇2f,∇2Hi and ∇2Gi for
i = 1, . . . , l. In turn, for the remaining summands we compute, by means of Lemma 4.5,
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that

νk
j D11Φ(Gj(x

k), Hj(x
k); tk)

(
2−uk

uk

)2

− 2νk
j D12Φ(Gj(x

k), Hj(x
k); tk)2−uk

uk
+ νk

j D22Φ(Gj(x
k), Hj(x

k); tk)

= νk
j

(

− 1
tk

θ′′
(

Gj(x
k)−Hj(xk)

tk

)(
2−uk

uk

)2

− 2 1
tk

θ′′
(

Gj(x
k)−Hj(x

k)
tk

)
2−uk

uk
− 1

tk
θ′′

(
Gj(x

k)−Hj(x
k)

tk

))

= −
νk

j

tk
θ′′

(
Gj(x

k)−Hj(x
k)

tk

)((
2−uk

uk

)2

+ 2 2−uk

uk
+ 1

)

→k→∞ −∞ ,

where the asymptotic behaviour is due to the boundedness of {νk
j }( 6→ 0), the continuity

of θ′′, the fact that 2−uk

uk
→ −

ηH
j

ηG
j

> 0 and tk → 0. In particular, this yields that for k

sufficiently large we have (dk)T∇2
xxLt(x

k, ρk, νk)dk < 0 in contradiction to the fact that
dk ∈ C(xk), which is actually the critical cone of SSOSC for P (tk) at xk, which is supposed
to hold for all k. �

We now present our third main result. It is similar to Theorem 4.10 in the sense that we
get a weakly stationary point for our MPVC under the weaker MPVC-CPLD assumption
(whereas in Theorem 4.10, MPVC-LICQ was assumed). However, we do not get conver-
gence of the multipliers. The proof shows boundedness of certain scalars which then can
be used to construct suitable multipliers showing that the limit point is indeed weakly
stationary.

Theorem 4.12 Let (xk, λk, µk, ρk, νk) be a sequence of KKT points of P (tk) for tk ↓ 0.
Furthermore, let xk converge to the point x∗ satisfying MPVC-CPLD. Then x∗ is a weakly
stationary point of the MPVC (2).

Proof. Similar to the previous proofs, we assume without loss of generality that no
standard constraints are involved in our MPVC from (2).

The feasibility of x∗ for the MPVC follows from the definition of P (tk) and tk ↓ 0.
Furthermore, the KKT conditions of P (tk) yield the following properties of (xk, ρk, νk) for
all k ∈ N:

0 = ∇f(xk) −
l∑

i=1

ρk
i ∇Hi(x

k) +

l∑

i=1

νk
i (αk

i ∇Gi(x
k) + (2 − αk

i )∇Hi(x
k))

and

supp(ρk) ⊆ I0(x
k), ρk

i > 0 ∀i ∈ supp(ρk),

supp(νk) ⊆ M(xk, tk), νk
i > 0 ∀i ∈ supp(νk),

where, according to Lemma 4.5, we have

αk
i =







0, Gi(x
k) ≥ Hi(x

k) + tk,

1 − θ′
(

Gi(x
k)−Hi(x

k)
tk

)

, |Gi(x
k) − Hi(x

k)| < tk,

2, Hi(x
k) ≥ Gi(x

k) + tk.
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Now, define the multipliers

δG,k
i := νk

i αk
i , δH,k

i := (2 − αk
i )ν

k
i ∀i = 1 . . . , l

for all k ∈ N. Thus, it follows that

supp(δG,k) ⊆ M(xk, tk)\I0(x
k), δG,k

i > 0 ∀i ∈ supp(δG,k),

supp(δH,k) ⊆ M(xk, tk)\
(
I00(x

k) ∪ I+0(x
k)

)
, δH,k

i > 0 ∀i ∈ supp(δH,k).

The first statement is due to the fact that Φ(Gi(x
k), Hi(x

k); tk) = 0 = Hi(x
k) would imply

(cf. Lemma 4.6) that Gi(x
k) ≥ tk and hence αk

i = 0. The second statement can be seen in
a similar fashion.

Now, for all k ∈ N the following inclusions hold true:

supp(δG,k) ⊆ M(xk, tk)\I0(x
k) ⊆ I00 ∪ I+0,

supp(δH,k) ⊆ M(xk, tk)\
(
I00(x

k) ∪ I+0(x
k)

)
⊆ I00 ∪ I0+.

The first statement is a consequence of Lemma 4.9 (b) and the fact that i ∈ I0+ would
imply Gi(x

k) − Hi(x
k) > tk for k sufficiently large and hence, in view of Lemma 4.6, we

would have Hi(x
k) = 0 to stay feasible. The second statement can be verified analogously.

By modifying the multipliers (ρk, δG,k, δH,k) in a suitable way, we can find multipliers
(ρ̄k, δ̄G,k, δ̄H,k) such that ρ̄k ≥ 0, δ̄G,k ≥ 0, δ̄H,k ≥ 0,

supp(ρ̄k) ⊆ supp(ρk) ⊆ I0(x
k),

supp(δ̄G,k) ⊆ supp(δG,k) ⊆ M(xk, tk)\I0(x
k),

supp(δ̄H,k) ⊆ supp(δH,k) ⊆ M(xk, tk)\
(
I00(x

k) ∪ I+0(x
k)

)
,

and

0 = ∇f(xk) −
l∑

i=1

ρ̄k
i ∇Hi(x

k) +
l∑

i=1

δ̄G,k
i ∇Gi(x

k) +
l∑

i=1

δ̄H,k
i ∇Hi(x

k)

and all gradients from the equation above with nonvanishing multipliers are linearly inde-
pendent, cf. [37, Lemma A.1]. Obviously, this implies supp(ρ̄k) ∩ supp(δ̄H,k) = ∅ for all
k ∈ N. In order to prove that the sequence {(ρ̄k, δ̄G,k, δ̄H,k)} is bounded, we assume the
contrary. Then there exists a subset K ⊆ N such that

∥
∥{(ρ̄k, δ̄G,k, δ̄H,k)}

∥
∥ →K ∞ and

{(ρ̄k, δ̄G,k, δ̄H,k)}
∥
∥{(ρ̄k, δ̄G,k, δ̄H,k)}

∥
∥
→K (ρ̃, δ̃G, δ̃H) 6= (0, 0, 0).

By continuity of f, G, and H , this implies

0 = −
l∑

i=1

ρ̃i∇Hi(x
∗) +

l∑

i=1

δ̃G
i ∇Gi(x

∗) +

l∑

i=1

δ̃H
i ∇Hi(x

∗), (25)

where for all k ∈ K sufficiently large one has

supp(ρ̃) ⊆ supp(ρ̄k) ⊆ I0(x
k) ⊆ I0,
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supp(δ̃G) ⊆ supp(δ̄G,k) ⊆ M(xk, tk)\I0(x
k) ⊆

(
I00 ∪ I+0

)
,

supp(δ̃H) ⊆ supp(δ̄H,k) ⊆ M(xk, tk)\
(
I00(x

k) ∪ I+0(x
k)

)
⊆ I00 ∪ I0+,

as well as supp(ρ̃) ∩ supp(δ̃H) ⊆ supp(ρ̄k) ∩ supp(δ̄H,k) = ∅. Moreover, we have δ̃G
i > 0 for

all i ∈ supp(δ̃G) and

I0− ∩
(
supp(ρ̃) ∪ supp(δ̃H)

)
= I0− ∩ supp(ρ̃),

because Gi(x
∗) < 0 implies i /∈ M(xk, tk) for all k sufficiently large. In view of (25), it

follows that the set
{

{−∇Hi(x
∗) | i ∈ supp(ρ̃) ∩ I0−} ∪ {∇Gi(x

∗) | i ∈ supp(δ̃G)}
}

∪
{
∇Hi(x

∗) | i ∈ supp(δ̃H) ∪ (supp(ρ̃)\I0−)
}

is positive-linearly dependent (note that, here, we use the splitting supp(ρ̃) =
(
supp(ρ̃ ∩

I0−

)
∪

(
supp(ρ̃) \ I0−

)
and moved those terms from (25) belonging to the index set

supp(ρ̃) \ I0− from the first to the last sum which is possible since MPVC-CPLD requires
no sign constraints for the corresponding multipliers). Hence the MPVC-CPLD implies
linear dependence of these gradients in xk for all k sufficiently large. This, however, is a
contradiction to our choice of (ρ̄k, δ̄G,k, δ̄H,k). Thus, our assumption was wrong and the
sequence (ρ̄k, δ̄G,k, δ̄H,k) is bounded and consequently has at least one accumulation point
(ρ̄, δ̄G, δ̄H). This point then satisfies

0 = ∇f(x∗) −
l∑

i=1

ρ̄i∇Hi(x
∗) +

l∑

i=1

δ̄G
i ∇Gi(x

∗) +

l∑

i=1

δ̄H
i ∇Hi(x

∗)

and

supp(δ̄G) ⊆ I00 ∪ I+0, δ̄
G
i > 0 ∀i ∈ supp(δ̄G),

supp(ρ̄) ∪ supp(δ̄H) ⊆ I0,

supp(ρ̄) ∩ supp(δ̄H) = ∅,

I0− ∩
(
supp(ρ̄) ∪ supp(δ̄H)

)
= I0− ∩ supp(ρ̄).

Hence, the multipliers ηG := δ̄G and

ηH
i :=







ρ̄i, if i ∈ supp(ρ̄),
−δ̄H , if i ∈ supp(δ̄H),
0, else

are well defined and (x∗, ηH, ηG) is a weakly stationary point of the MPVC (2) (note that
δ̄H
i = 0 for all i ∈ I0−). �

The following corollary is an immediate consequence of the latter result and the fact that
both MPVC-MFCQ and MPVC-CRCQ imply MPVC-CPLD.
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Corollary 4.13 Let {(xk, λk, µk, ρk, νk)} be a sequence of KKT points of P (tk) for tk ↓ 0.
Furthermore, let xk converge to the point x∗ satisfying MPVC-MFCQ or MPVC-CRCQ.
Then x∗ is a weakly stationary point of the MPVC (2).

We close this section with a simple observation: Since the local regularization changes the
feasible set of the MPVC only locally around the origin, it follows that a local minimum
x∗ of the MPVC satisfying strict complementarity (i.e. either Gi(x

∗) > 0 or Hi(x
∗) > 0

holds for all i = 1, . . . , l) is also a local minimum of the regularized problem P (t) for all
t > 0 sufficiently small, and vice versa. In this case, it is therefore not necessary to push
the regularization parameter t down to zero.

5 Final Remarks

The results presented here are twofold. On the one hand, an existing convergence theorem
for a local regularization approach for MPECs has been improved using a problem-tailored
variant of the so-called CPLD condition. On the other hand, based on the ideas for MPECs,
a local regularization scheme for MPVCs has been introduced and a number of convergence
theorems could be proven.

An open problem and interesting future research topic is the question whether the
convergence results under the CPLD-type conditions can also be shown to hold for the
global regularization method by Scholtes [33] in the MPEC setting or for a corresponding
method in the MPVC setting.

Acknowledgement: The second author would like to thank Gabriel Haeser from the Uni-
versity of Campinas for pointing his attention to the CPLD condition as a new constraint
qualification for nonlinear programs.
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