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complicated subproblems (like quadratic programs or linear complementarity problems), or
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preliminary numerical results will also be given.
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1 Introduction

Let li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {+∞} be given lower and upper bounds with li < ui for
i = 1, . . . , n, define

l := (l1, . . . , ln)T and u := (u1, . . . , un)T ,

and suppose that F : O → IRn is a continuously differentiable mapping defined on an open
set O ⊆ IRn containing the rectangle [l, u]. Then the mixed complementarity problem (MCP,
for short) is to find a vector x∗ ∈ [l, u] such that each component x∗i satisfies exactly one of
the following implications:

x∗i = li =⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) =⇒ Fi(x
∗) = 0,

x∗i = ui =⇒ Fi(x
∗) ≤ 0.

(1)

If li = −∞ and ui = +∞ for all i = 1, . . . , n, it is easy to see that the MCP (1) is equivalent
to finding a solution of the nonlinear system of equations

F (x) = 0,

whereas the MCP (1) reduces to the standard nonlinear complementarity problem of finding
a feasible vector for the system of equations and inequalities

x ≥ 0, F (x) ≥ 0, xTF (x) = 0

in case li = 0 and ui = +∞ for all i = 1, . . . , n. For many engineering and economic
applications of the mixed and nonlinear complementarity problems, the interested reader is
referred to [15].

In this paper, we develop a new algorithm for the solution of the MCP (1) which has a
strong global and local convergence theory and which can be applied to an MCP (1) with a
general nonlinear (not necessarily monotone) mapping F . Typically, solution methods having
these properties fall into one of the following two classes: Either they generate feasible iterates
with respect to the box constraints [l, u] but have to solve relatively complicated subproblems
(like quadratic programs [27, 4, 20] or linear complementarity problems [10, 33]), or they
have relatively simple subproblems (like linear systems of equations [13, 8, 5]) but generate
not necessarily feasible iterates.

Having simple subproblems is obviously a desirable feature of any algorithm. On the
other hand, there exist many applications of MCPs where the mapping F is not defined
outside the feasible region [l, u]. Hence it would be extremely nice to have an algorithm
that, on the one hand, generates only feasible iterates and, on the other hand, has to solve
only simple subproblems. The method to be presented here has these two properties. In fact,
as far as we know, there are currently only three methods with similar features available:
One is the method by Moré [25], another one was recently proposed by Ulbrich [35], and the
third one was presented by Sun [34] on a recent conference.

The algorithm by Moré [25] generates feasible iterates and has to solve only one linear
system of equations per iteration, allowing possibly inexact solutions of the linear systems.
However, the conditions which ensure that a stationary point of a certain merit function
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used in [25] to be a global minimum seem to be stronger than those used in our approach.
Furthermore, Moré [25] assumes strict complementarity of a solution in order to prove local
fast convergence.

The method by Ulbrich uses a trust-region globalization and, therefore, has to solve more
complicated subproblems in its current version, although it should be possible to adapt his
idea within a line search framework with linear systems as subproblems. However, his method
will still be different from ours since we use a completely different globalization strategy.
Moreover, even within a line search framework, he would have to solve full dimensional
linear systems, whereas we have to solve linear systems of reduced dimension only. This is
also one of the advantages of our approach when compared to the method proposed by Sun
[34].

The algorithm we introduce here is mainly motivated by the recent research [21], but still
differs from the work [21] in a couple of respects. In particular, it uses a somewhat different
globalization strategy that allows us to stay strictly feasible rather than just feasible. The
strict feasibility of the algorithm seems to be highly important for mixed complementarity
problems since quite often the mapping F is not even defined on the boundary of the feasible
set [l, u]. For example, if a component function of F contains a logarithmic term like ln(xi),
modellers typically introduce a lower bound of li = 0 for the ith component of the vector x
although F is not really defined for xi = 0.

Our algorithm takes into account situations like this and needs F to be well-defined only in
the interior (l, u) of the feasible set [l, u] as well as in a neighbourhood of any accumulation
point (possibly on the boundary of [l, u]) generated by the algorithm. This is not at all
a restrictive requirement and will be satisfied for practically any mixed complementarity
problem. An alternative would be to place a lower bound of li = ε, ε > 0 a small number,
instead of li = 0 in case of a logarithmic term ln(xi), for example. However, this alternative
seems to be less elegant and may in some situations even exclude the real solution of the
MCP (1).

Our algorithm may be viewed as a Newton-type method applied to a reformulation of the
MCP (1) as a constrained nonlinear system of equations. This reformulation is introduced
in Section 2, where we also state some preliminary and mostly known results related to
this reformulation. The algorithm itself is motivated and stated in detail in Section 3.
The global and local convergence properties of the algorithm are investigated in Section 4,
whereas numerical results are given in Section 5. We then conclude this paper with some
final remarks in Section 6.

Some words about our notation. The n-dimensional real space is denoted by IRn, with
‖x‖ being the Euclidean norm of a vector x ∈ IRn. For index sets I, J ⊆ {1, . . . , n} and a
matrix M ∈ IRn×n, M = (mij), we denote by MIJ the submatrix consisting of the elements
mij for i ∈ I, j ∈ J . A similar notation is used for subvectors. We further write x+ or
[x]+ for the projection of a vector x ∈ IRn on the rectangle [l, u]. Finally, if f : IRn → IR
is a differentiable function, we view its gradient ∇f(x) at a point x as a column vector
throughout this manuscript.
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2 Preliminaries

In this section we first give the precise definition of an operator Φ which is used in order
to reformulate the MCP (1) as a nonlinear system of equations. We then state a couple of
properties of this operator as well as of its corresponding merit function Ψ which will be
useful for our convergence analysis in Section 4. Most of these properties are known and
taken from [2] and [14]; hence we can skip most of the proofs. In fact, we include only
a proof here if there is no explicit reference available for the corresponding result. Many
of the results given in this section are generalizations of standard results for the nonlinear
complementarity problem, see, in particular, [13, 8, 18].

Let us introduce the function φ : IR2 → IR by

φ(a, b) :=
√

a2 + b2 − a− b (2)

(see [16]) and define Φ : IRn → IRn componentwise in the following way:

Φi(x) :=


φ(xi − li, Fi(x)) if i ∈ Il,
−φ(ui − xi,−Fi(x)) if i ∈ Iu,
φ(xi − li, φ(ui − xi,−Fi(x)) if i ∈ Ilu,
−Fi(x) if i ∈ If ;

here, the index sets Il, Iu, Ilu and If form a partition of the set {1, . . . , n} and are defined in
the following way:

Il := {i | −∞ < li < ui = +∞},
Iu := {i | −∞ = li < ui < +∞},
Ilu := {i | −∞ < li < ui < +∞},
If := {i | −∞ = li < ui = +∞},

i.e., Il denotes the set of indices which have finite lower bounds only, Iu is the set of indices
which have finite upper bounds only, Ilu contains all indices with both finite lower and finite
upper bounds, and If is the set of free variables for which there are no finite bounds. Note
that, in the definition of Φ, it would also be possible to use some other φ-functions (see, e.g.,
[5, 22, 31]), but for the sake of simplicity and because of some technical details when using
different functions, we present our theoretical results only for the example given in (2).

Since the function φ has the property that

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

the following result is easy to verify (see [2, Proposition 3.2.7]).

Proposition 2.1 A vector x∗ ∈ IRn solves the MCP (1) if and only if x∗ is a solution of
the nonlinear system of equations Φ(x) = 0.

Due to the nonsmoothness of φ in the origin, the operator Φ is usually nonsmooth as well.
However, it turns out to be semismooth or even strongly semismooth, see [24, 30, 29] for the
precise definition and some properties of (strongly) semismooth functions.
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Proposition 2.2 The following statements hold:

(a) If F is continuously differentiable on O, then Φ is semismooth on O.

(b) If F is differentiable with F ′ being locally Lipschitzian on O, then Φ is strongly semis-
mooth on O.

Proof. The function φ is known to be strongly semismooth by [17, Lemma 20]. Furthermore,
a continuously differentiable function is also semismooth, and even strongly semismooth if
its derivative is locally Lipschitzian [30]. Since the composition of (strongly) semismooth
functions is again (strongly) semismooth by [17, Theorem 19], both statements follow im-
mediately. 2

As a consequence of Proposition 2.2 and known properties of (strongly) semismooth functions
[30, 29], we obtain the following result.

Proposition 2.3 The following statements hold:

(a) If F is continuously differentiable on O, then

Φ(x + d)− Φ(x)−Hd = o(‖d‖)

for any d→ 0 and any H ∈ ∂Φ(x + d), where x ∈ O is fixed.

(b) If F is differentiable with F ′ being locally Lipschitzian on O, then

Φ(x + d)− Φ(x)−Hd = O(‖d‖2)

for any d→ 0 and any H ∈ ∂Φ(x + d), where x ∈ O is fixed.

We next want to restate a result saying that all elements in the generalized Jacobian ∂Φ(x∗)
of Φ at a solution x∗ of the MCP are nonsingular under certain conditions (see [6] for the
definition of the generalized Jacobian). To this end, we first introduce a regularity concept
which is based on the following notation: Associated with a solution x∗ of the MCP (1), let
us define the index sets

α := {i |x∗i ∈ (li, ui) and Fi(x
∗) = 0},

β := {i |x∗i ∈ {li, ui} and Fi(x
∗) = 0},

γ := {i | (x∗i = li and Fi(x
∗) > 0) or (x∗i = ui and Fi(x

∗) < 0)}.

Then we can give the following definition.

Definition 2.4 A solution x∗ of the MCP (1) is called strongly regular if

(i) the submatrix F ′(x∗)αα is nonsingular, and

(ii) the Schur complement

F ′(x∗)α∪β,α∪β/F ′(x∗)αα := F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1
ααF ′(x∗)αβ

is a P -matrix, i.e., has positive principal minors.
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Note that the previous definition of strong regularity is not really the original definition given
in [32], but can be shown to be equivalent to the original one [11, Theorem 3.4]. For some
other characterizations, we refer the reader to [23]. Furthermore, an extensive treatment of
P -matrices is given in [7].

Using the strong regularity assumption, it is possible to establish the following nonsin-
gularity result, see [14, Theorem 2.7].

Proposition 2.5 Let x∗ be a strongly regular solution of the MCP (1). Then all elements
H ∈ ∂Φ(x∗) are nonsingular.

The previous result can be used in order to establish a local error bound.

Proposition 2.6 Let x∗ be a strongly regular solution of the MCP (1). Then there exists a
constant κ > 0 such that

‖Φ(x)‖ ≥ κ‖x− x∗‖
for all x ∈ IRn in a sufficiently small neighbourhood of x∗.

Proof. In view of Proposition 2.5, all elements in the generalized Jacobian ∂Φ(x∗) are non-
singular. On the other hand, Φ is a semismooth function by Proposition 2.2. Hence the
assertion follows from [28, Proposition 3]. 2

Next we consider the merit function Ψ : IRn → IR associated to the operator Φ and defined
by

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2.

Despite the nonsmoothness of Φ, it turns out that the merit function Ψ is continuously
differentiable everywhere. More precisely, we have the following result from [2, Theorem
3.2.8].

Proposition 2.7 The function Ψ is continuously differentiable at any point x ∈ IRn with
∇Ψ(x) = HTΦ(x) for an arbitrary H ∈ ∂Φ(x).

Our algorithm to be presented in the next section tries to find a solution of the constrained
nonlinear system

Φ(x) = 0, x ∈ [l, u],

or, equivalently, of the constrained optimization problem

min Ψ(x) subject to x ∈ [l, u]. (3)

In general, our method will only be able to compute a stationary point of this constrained
optimization problem. In our next result, we therefore introduce a condition which says that
such a stationary point is already a global minimum and, in fact, a solution of the MCP (1)
under relatively mild assumptions. The statement of this result makes use of the index sets

If := {i | li = −∞ and ui = +∞},
If̄ := {1, . . . , n} \ If ;
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note that If was already defined in the beginning of this section and contains all the free
indices for which there are no finite bounds, whereas its complement If̄ includes all the
indices where at least one of the two bounds is finite, i.e., If̄ = Il ∪ Iu ∪ Ilu in our previous
notation.

Using the above two index sets, we can restate the following result from [14, Theorem
3.5].

Proposition 2.8 Let x∗ be a stationary point of the constrained reformulation (3) of the
MCP (1) such that

(a) the submatrix F ′(x∗)If If
is nonsingular, and

(b) the Schur complement

F ′(x∗)/F ′(x∗)If If
:= F ′(x∗)If̄ If̄

− F ′(x∗)If̄ If
F ′(x∗)−1

If If
F ′(x∗)If If̄

is a P0-matrix, i.e., has nonnegative principal minors.

Then x∗ is a solution of the MCP (1).

Note that exactly the same conditions guarantee that an unconstrained stationary point of
the merit function Ψ is a solution of the MCP (1), see [14, Theorem 3.3]. For a discussion
of P0-matrices in general, the reader is once again referred to [7].

3 Algorithm

In this section, we give a detailed description of an algorithm for the solution of the mixed
complementarity problem (1). The main idea is to solve the MCP (1) by using a reformula-
tion of (1) as the constrained nonlinear system of equations

Φ(x) = 0, x ∈ [l, u].

In order to solve this constrained system, we apply a Newton-type method to Φ(x) = 0
and take care of the constraints by an active set strategy. The method is globalized by a
projected gradient-type method for the corresponding box constrained optimization problem

min Ψ(x) subject to x ∈ [l, u].

The precise statement is as follows.

Algorithm 3.1 (Strictly Feasible Newton-type Method)

(S.0) (Initialization)
Choose x0 ∈ (l, u), β ∈ (0, 1), σ ∈ (0, 1), τ ∈ (0, 1), γ > 0, ω ∈ (0, 1), ρ > 0, p1 > 1, p2 >
0, δ > 0, c > 0, and set k := 0.

(S.1) (Termination Criterion)
If xk is a stationary point of (3): STOP.
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(S.2) (Active Set Strategy)
Define

δk := min{δ, c
√
‖Φ(xk)‖}

and

Ak := {i |xk
i − li ≤ δk or ui − xk

i ≤ δk},
Ik := {1, . . . , n} \ Ak.

(S.3) (Compute Newton-type Search Direction)
Select an element Hk ∈ ∂Φ(xk) and compute a vector dk ∈ IRn in the following way:
For i ∈ Ak, set

dk
i :=

{
li − xk

i if xk
i − li ≤ δk,

ui − xk
i if ui − xk

i ≤ δk,

then solve the linear system

Hk
IkIk

dIk
= −Φ(xk)Ik

−Hk
IkAk

dk
Ak

(4)

in order to get the components dk
i for i ∈ Ik. If the linear system (4) is not solvable,

then set τk := τ and go to (S.6), else go to (S.4).

(S.4) (Acceptance Criterion for Newton-type Search Direction)
Set

τk := max{τ, 1− ‖Φ(xk)‖}.

If xk + τkd
k ∈ (l, u) and

‖Φ(xk + τkd
k)‖ ≤ ω‖Φ(xk)‖, (5)

then set xk+1 := xk + τkd
k and go to (S.7), else go to (S.5).

(S.5) (Projected Newton-type Search Direction)
Set x̄k

N := [xk + dk]+ and sk
N := x̄k

N − xk. If

∇Ψ(xk)Tsk
N ≤ −ρ‖sk

N‖p1 and ∇Ψ(xk)Tsk
N ≤ −ρ‖Φ(xk)‖p2 , (6)

then compute tk := max{τkβ
` | ` = 0, 1, 2, . . .} such that

Ψ(xk + tks
k
N) ≤ Ψ(xk) + tkσ∇Ψ(xk)Tsk

N ,

set xk+1 := xk + tks
k
N and go to (S.7); else go to (S.6)

(S.6) (Projected Gradient-type Search Direction)
Set x̄k

G := [xk − γ∇Ψ(xk)]+ and sk
G := x̄k

G − xk. Compute tk := max{τkβ
` | ` =

0, 1, 2, . . .} such that

Ψ(xk + tks
k
G) ≤ Ψ(xk) + σtk∇Ψ(xk)Tsk

G,

set xk+1 := xk + tks
k
G and go to (S.7).
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(S.7) (Update)
Set k ← k + 1 and go to (S.1).

Throughout this paper, we assume that the constant δ > 0 is chosen sufficiently small such
that

δ <
1

2
min

i=1,...,n
|ui − li|.

This, in particular, implies that we cannot have xk
i − li ≤ δk and ui − xk

i ≤ δk for the same
index i ∈ Ak since this would imply

|ui − li| = ui − li = (ui − xk
i ) + (xk

i − li) ≤ 2δk ≤ 2δ,

a contradiction to the choice of δ. Hence, there is no ambiguity in the definition of the
components dk

i for i ∈ Ak in Step (S.3) of Algorithm 3.1.
We now give some further comments on each step of Algorithm 3.1 in order to get a

better understanding of the method.
The active set strategy in Step (S.2) is motivated by the investigation from [12] for

constrained optimization problems. The set Ak is viewed as a suitable approximation to the
correct active set at the current point, whereas its complement Ik is viewed as a substitute
of the inactive indices.

In Step (S.3) of Algorithm 3.1, we try to compute a Newton-type search direction dk. For
the components dk

i with i ∈ Ak, we use a simple formula whose aim is, basically, to bring
the corresponding components of our iterates closer to the boundary. In order to understand
the formula for the computation of the components dk

i for i ∈ Ik, note that, after a possible
permutation of the rows and columns, we can rewrite the standard (unconstrained) Newton
equation Hkd = −Φ(xk) as(

Hk
IkIk

Hk
IkAk

Hk
AkIk

Hk
AkAk

) (
dIk

dAk

)
= −

(
Φ(xk)Ik

Φ(xk)Ak

)
. (7)

Now, recalling that we already have an expression for dk
Ak

, it is easy to see that the linear
system (4) is exactly the first block row in (7).

In Step (S.4), we then test whether we can take an almost full step along the Newton-type
search direction dk computed in Step (S.3); more precisely, if a large step in this direction
stays strictly feasible and gives a sufficient decrease for ‖Φ‖, we accept this step and turn to
the next iteration. We will see in Section 4 that the conditions in Step (S.4) of Algorithm
3.1 will eventually be satisfied around a strongly regular solution of the MCP (1), and this
will guarantee the local fast convergence of our method.

If the Newton-type search direction dk is not acceptable in Step (S.4) either because it
brings us out of the strictly feasible region or because it does not provide a sufficient decrease
for ‖Φ‖, we go to Step (S.5), calculate the projection of a full Newton-type step xk +dk onto
the feasible set [l, u], and use the line segment between xk and this projected point as a new
search direction. We call this a projected Newton-type search direction and denote it by sk

N .
In general, it cannot be guaranteed that sk

N is a good descent direction for our merit
function Ψ. Hence, if we do not want to destroy the global convergence properties of Algo-
rithm 3.1, we have to check whether sk

N is a suitable descent direction for Ψ, and we do this
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in (6). In case the two relatively mild criteria in (6) are satisfied, we accept sk
N as our search

direction and perform a simple line search by using the standard Armijo rule.
However, if sk

N is not a good descent direction, we switch to Step (S.6) and perform a
similar line search along a standard projected gradient-type search direction, see, e.g., [1].
This procedure will guarantee the global convergence of our method. A detailed convergence
analysis follows in the next section.

Remark 3.2 Given any feasible vector xk ∈ IRn (not necessarily generated by Algorithm
3.1), we can still define corresponding quantities like Ik,Ak, d

k etc. in exactly the same way
as in Algorithm 3.1. This is precisely the point of view we will take in our convergence
analysis below. The reader should keep this in mind.

4 Convergence Properties

In this section, we investigate the global and local convergence properties of Algorithm 3.1.
To this end, we always assume implicitly that Algorithm 3.1 does not terminate after a finite
number of iterations with a stationary point of (3).

Our first result states that all iterates generated by Algorithm 3.1 are strictly feasible.

Lemma 4.1 Algorithm 3.1 is well-defined and generates a sequence {xk} belonging to the
strictly feasible set (l, u).

Proof. From the statement of Algorithm 3.1, it follows that it is well-defined if and only if
the line searches in Steps (S.5) and (S.6) are finite. This, however, is well-known in case of a
projected gradient-type direction (see, e.g., [1, Section 2.3.2]) and follows immediately from
(6) in case of a projected Newton-type direction together with the continuous differentiability
of Ψ by Proposition 2.7.

The proof that the sequence {xk} is strictly feasible is by induction on k. The starting
point x0 was chosen from (l, u). Suppose that xk belongs to (l, u) for some k ≥ 0. If xk+1

is computed via Step (S.4), then this new iterate obviously belongs to the interior (l, u). If
xk+1 is computed in Step (S.5), i.e., xk+1 = xk + tks

k
N with sk

N = x̄k
N − xk, we obtain

xk+1 = xk + tk(x̄
k
N − xk) = tkx̄

k
N + (1− tk)x

k.

Since xk is strictly feasible in view of our induction hypothesis, and since x̄k
N is at least

feasible (in view of its very definition as a projection), it follows from tk ∈ (0, 1) that xk+1

is a strict convex combination of an interior point with a feasible point. Hence xk+1 belongs
to the interior, too. Finally, the argument is similar if xk+1 is computed in Step (S.6). 2

We next state a global convergence result for Algorithm 3.1.

Theorem 4.2 Any accumulation point x∗ of a sequence {xk} generated by Algorithm 3.1
is at least a stationary point of the constrained reformulation (3) of the MCP (1). If the
conditions of Proposition 2.8 are satisfied at x∗, then the accumulation point x∗ is already a
solution of the MCP (1).
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Proof. If the descent test (5) is satisfied infinitely many times, then it follows immediately
that any accumulation point x∗ of a sequence {xk} generated by Algorithm 3.1 satisfies
Φ(x∗) = 0, so any accumulation point is a solution of the MCP (1) and therefore, in partic-
ular, a stationary point of the constrained reformulation (3) of the MCP (1).

In the rest of this proof we can therefore assume that the descent test (5) is satisfied
only a finite number of times; in fact, without loss of generality, we will assume that it is
not satisfied at any iteration k ∈ IN. Under these conditions, we show that the sequence of
search directions {sk} (where either sk = sk

N or sk = sk
G) is gradient related with respect to

{xk}. The proof then follows from a general result in, e.g., [1, Proposition 2.2.1].
Let {xk}K be a subsequence converging to a nonstationary point x̄. We have to show that

the subsequence {sk}K is bounded and that lim supk→∞,k∈K ∇Ψ(xk)Tsk < 0. From known
results [1, Proof of Proposition 2.3.1], it follows that these two conditions are satisfied if
sk = sk

G denotes the projected gradient-type direction. So, without loss of generality, let us
assume that sk = sk

N is a projected Newton direction for all k ∈ K. Then we have

∇Ψ(xk)Tsk ≤ −ρ‖sk‖p1 (8)

and
∇Ψ(xk)Tsk ≤ −ρ‖Φ(xk)‖p2 (9)

for all k ∈ K. Obviously, (8) and the Cauchy-Schwarz inequality imply that {sk}K is
bounded (recall that p1 > 1). On the other hand, since {xk}K → x̄, we have

lim
k→∞,k∈K

‖Φ(xk)‖ = ‖Φ(x̄)‖

by continuity. Since x̄ is nonstationary for (3), it follows that x̄ is not a solution of the MCP
(1), and (9) therefore implies

lim sup
k→∞,k∈K

∇Ψ(xk)Tsk ≤ −ρ‖Φ(x̄)‖p2 < 0.

This proves that {sk} is indeed gradient related. 2

Note that Theorem 4.2 does not deal with the problem of the existence of an accumulation
point. However, if [l, u] is compact, for example, then the entire sequence {xk} is bounded
by Lemma 4.1; in particular, this sequence has at least one accumulation point under this
assumption. Furthermore, if [l, u] is equal to the nonnegative orthant and F is a uniform
P -function, it is also known that the sequence {xk} remains bounded, see, e.g., [13].

We now turn to the local convergence properties of Algorithm 3.1. Given a solution x∗

of the MCP (1), let us introduce the active and inactive sets associated with this solution by

A∗ := {i |x∗i = li or x∗i = ui},
I∗ := {i |x∗i ∈ (li, ui)}.

We next show that our approximations Ak and Ik computed in Step (S.2) of Algorithm 3.1
coincide with the exact sets A∗ and I∗ whenever xk ∈ (l, u) is sufficiently close to a strongly
regular solution of the MCP (1).
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Proposition 4.3 Let x∗ be a strongly regular solution of the mixed complementarity problem
MCP (1). Then Ak = A∗ and Ik = I∗ for all xk ∈ (l, u) sufficiently close to x∗, where Ak

and Ik denote the index sets computed in Step (S.2) of Algorithm 3.1.

Proof. The proof is essentially the same as one for a corresponding result in [21], and we
include it here only for the sake of completeness.

We first show that Ak is a subset of A∗ for xk ∈ (l, u) close enough to x∗ (the proof
of this direction is actually independent of the fact that the solution x∗ of the MCP (1) is
strongly regular). To this end, define

ν := min{min{x∗i − li, ui − x∗i } | i ∈ I∗} > 0,

i.e., ν is the smallest distance of the inactive components x∗i to the boundary of the feasible
set [l, u]. Let xk ∈ (l, u) be sufficiently close to x∗ such that

‖xk − x∗‖ ≤ ν

4

and
c
√
‖Φ(xk)‖ ≤ ν

4
.

Choose i ∈ Ak arbitrarily. Then xk
i − li ≤ δk or ui − xk

i ≤ δk. If xk
i − li ≤ δk, we get from

|xk
i − x∗i | ≤ ‖xk − x∗‖ ≤ ν

4

and
|xk

i − li| ≤ δk ≤ c
√
‖Φ(xk)‖ ≤ ν

4

that
|x∗i − li| ≤ |x∗i − xk

i |+ |xk
i − li| ≤

ν

2
,

i.e., we have i ∈ A∗ in view of the very definition of the constant ν.
If, on the other hand, we have ui − xk

i ≤ δk, we can show in a similar way that

|x∗i − ui| ≤
ν

2
,

so that i ∈ A∗ follows also in this case. Hence we have Ak ⊆ A∗ for all xk ∈ (l, u) sufficiently
close to x∗.

Conversely, we now show that A∗ ⊆ Ak. The verification of this inclusion makes use of
the strong regularity assumption for x∗. In fact, since x∗ is strongly regular, it follows from
Proposition 2.6 that there is a constant κ > 0 such that

|xk
i − x∗i | ≤ ‖Φ(xk)‖/κ (10)

for all i ∈ {1, . . . , n} and all xk ∈ (l, u) sufficiently close to x∗. Now let i ∈ A∗ be any fixed
index. Then x∗i = li or x∗i = ui.

12



Assume first that x∗i = li. Then

xk
i − li = |xk

i − x∗i | ≤ ‖Φ(xk)‖/κ

because of (10). Since ‖Φ(xk)‖ → 0 for xk → x∗ and δk = O(
√
‖Φ(xk)‖) in view of the

definition of δk in Step (S.2) of Algorithm 3.1, we have

‖Φ(xk)‖/κ ≤ δk

for all xk ∈ (l, u) sufficiently close to x∗. Therefore, we obtain

xk
i − li ≤ δk,

i.e., i ∈ Ak.
If, on the other hand, we have x∗i = ui, we can show in an analogous way that

ui − xk
i ≤ δk.

This proves that A∗ ⊆ Ak, so that both sets eventually coincide. This, in turn, implies that
we also have I∗ = Ik for all xk ∈ (l, u) close enough to x∗. 2

As a simple consequence of Proposition 4.3, we obtain the following technical result which
will be used in our subsequent analysis.

Lemma 4.4 Let x∗ be a strongly regular solution of the MCP (1). Then there exists a
constant κ1 > 0 such that the submatrices Hk

IkIk
are nonsingular with

‖(Hk
IkIk

)−1‖ ≤ κ1

for all xk ∈ (l, u) sufficiently close to x∗, where Hk denotes the matrix selected in Step (S.3)
of Algorithm 3.1.

Proof. Assume the statement is not true. Then there exists a sequence {xk} ⊆ (l, u)
converging to x∗ as well as as sequence of matrices {Hk} with Hk ∈ ∂Φ(xk) such that
Hk
IkIk

is either singular for almost all k ∈ IN or Hk
IkIk

is nonsingular on a subsequence with
‖(Hk

IkIk
)−1‖ → ∞ on this subsequence.

In view of Proposition 4.3, we have Ik = I∗ for all k ∈ IN sufficiently large. Since the
generalized Jacobian is upper semicontinuous by [6, Proposition 2.6.2 (c)], it follows that the
sequence {Hk} is bounded. Subsequencing if necessary, we can therefore assume that {Hk}
converges to a matrix H∗ ∈ IRn×n. In view of our previous considerations, it follows that
the submatrix H∗

I∗I∗ must be singular.
However, since the generalized Jacobian is also a closed mapping by [6, Proposition 2.6.2

(b)], the limiting matrix H∗ belongs to ∂Φ(x∗). Since I∗ = α with the index set α being
defined before Definition 2.4, this means that the submatrix H∗

αα is singular.
On the other hand, it is not difficult to see that Hαα = −F ′(x∗)αα for any element

H ∈ ∂Φ(x∗) (this follows, e.g., from Proposition 2.3 and Lemma 2.4 in [14], but can also be
verified by direct calculation). Due to the assumed strong regularity of the solution x∗, the
submatrix F ′(x∗)αα and therefore also the submatrix H∗

αα is nonsingular. This contradiction
completes the proof. 2

Also the next result is just technical, but will be exploited later.
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Lemma 4.5 Let x∗ be a strongly regular solution of the MCP (1). Then

dk
Ak

= x∗Ak
− xk

Ak

for all xk ∈ (l, u) sufficiently close to x∗, where dk
Ak

denotes the vector calculated in Step
(S.3) of Algorithm 3.1.

Proof. By Proposition 4.3, we have Ak = A∗ for all xk ∈ (l, u) close enough to x∗. Now let
i ∈ A∗ be a fixed index. Then either x∗i = li or x∗i = ui. Consider the case where x∗i = li.
Since Ak = A∗, the definition of dk

i yields that we have dk
i = li − xk

i or dk
i = ui − xk

i . If
dk

i = li − xk
i for all xk sufficiently close to x∗, we are done.

Assume this is not true. Then there is a sequence {xk} ⊆ (l, u) converging to x∗ such
that dk

i = ui − xk
i for all k ∈ IN. The definition of Ak and δk then implies

0 ≤ ui − xk
i ≤ δk ≤ c

√
‖Φ(xk)‖ → 0

and therefore xk
i → ui for k → ∞. On the other hand, we have xk

i → x∗i . This implies
x∗i = ui, a contradiction to our choice of the index i ∈ A∗.

Since the proof is similar for the case where x∗i = ui, we are done. 2

We next give an estimate on the length of the Newton-type search direction dk computed in
Step (S.3) of Algorithm 3.1.

Lemma 4.6 Let x∗ be a strongly regular solution of the MCP (1). Then there is a constant
κ2 > 0 such that

‖dk‖ ≤ κ2‖Φ(xk)‖

for all xk ∈ (l, u) sufficiently close to x∗, where dk is the vector computed in Step (S.3) of
Algorithm 3.1.

Proof. We obviously have
‖dk‖ ≤ ‖dk

Ak
‖+ ‖dk

Ik
‖. (11)

Using Lemma 4.5 and Proposition 2.6, it follows that there is a constant κ > 0 such that

‖dk
Ak
‖ = ‖xk

Ak
− x∗Ak

‖ ≤ ‖xk − x∗‖ ≤ ‖Φ(xk)‖/κ (12)

for all xk ∈ (l, u) close enough to x∗.
In order to estimate the growth behaviour of the components dk

Ik
, we first derive the

inequality
‖dk

Ik
‖ = ‖(Hk

IkIk
)−1

(
Φ(xk)Ik

+ Hk
IkAk

dk
Ak

)
‖

≤ ‖(Hk
IkIk

)−1‖
(
‖Φ(xk)Ik

‖+ ‖Hk
IkAk
‖ ‖dk

Ak
‖
) (13)

from the linear system (4). Since the sequence {Hk} with Hk ∈ ∂Φ(xk) is bounded for any
bounded sequence {xk}, there is a constant κ3 > 0 such that

‖Hk
IkAk
‖ ≤ κ3
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for all xk sufficiently close to x∗. Using this, (12), (13), and Lemma 4.4, we obtain

‖dk
Ik
‖ ≤ κ1

(
‖Φ(xk)Ik

‖+ κ3‖dk
Ak
‖
)

≤ κ1

(
‖Φ(xk)‖+ κ3‖Φ(xk)‖/κ

)
= κ4‖Φ(xk)‖

(14)

with κ4 := κ1 + κ3/κ. The statement now follows from (11), (12) and (14) by setting
κ2 := κ4 + 1/κ. 2

Using our previous results, we are now in the position to show that the entire sequence
{xk} generated by Algorithm 3.1 converges to a solution x∗ of the MCP (1) under suitable
assumptions.

Proposition 4.7 Let x∗ be a strongly regular solution of the MCP (1), and assume that x∗

is an accumulation point of a sequence {xk} generated by Algorithm 3.1. Then the entire
sequence {xk} converges to x∗.

Proof. Let {xk}k∈K be a subsequence converging to the strongly regular solution x∗ of the
MCP (1). In order to prove that the entire sequence {xk} converges to x∗, it is enough to
show that {‖xk+1−xk‖}k∈K → 0, see, e.g., [26, Lemma 4.10]. To this end, we consider three
cases depending on how xk+1 gets calculated in Algorithm 3.1.

Case 1: For all k ∈ K, xk+1 is computed in Step (S.4) of Algorithm 3.1.
Then we have

‖xk+1 − xk‖ = τk‖dk‖ ≤ ‖dk‖ ≤ ‖dk
Ik
‖+ ‖dk

Ak
‖. (15)

Using Lemma 4.5, we have
dk
Ak

= x∗Ak
− xk

Ak

for all k ∈ K sufficiently large. It therefore follows that

‖dk
Ak
‖ → 0 (16)

for k ∈ K, k →∞.
Next consider the subvector dk

Ik
. Since the generalized Jacobian is upper semicontinuous,

the sequence {Hk}k∈K is bounded. Hence, there exists a constant κ5 > 0 such that

‖Hk
IkAk
‖ ≤ κ5

for all k ∈ K sufficiently large. We therefore obtain from Lemma 4.4 that

‖dk
Ik
‖ ≤ ‖(Hk)−1

IkIk
‖

(
‖Φ(xk)Ik

‖+ ‖Hk
IkAk
‖ ‖dk

Ak
‖
)

≤ κ1

(
‖Φ(xk)Ik

‖+ κ5‖dk
Ak
‖
)
,

(17)

cf. (13). From (16), we already know that dk
Ak
→ 0 for k ∈ K, k → ∞. Furthermore, since

Φ(x∗) = 0 at the solution x∗ of MCP, we also have ‖Φ(xk)Ik
‖ → 0 for k ∈ K, k →∞. Hence

(17) yields
‖dk

Ik
‖ → 0 (18)
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for k ∈ K, k →∞. Now, using (16) and (18), we immediately obtain from (15) that

‖xk+1 − xk‖ → 0

for k ∈ K, k →∞.

Case 2: For all k ∈ K, xk+1 is computed in Step (S.5) of Algorithm 3.1.
Then we have xk+1 = xk + tks

k
N , and the search direction sk

N satisfies, in particular, the
descent condition

∇Ψ(xk)Tsk
N ≤ −ρ‖sk

N‖p1 (19)

for all k ∈ K. Since the subsequence {xk}k∈K converges to x∗ and {Ψ(xk)} is monotonically
decreasing, it follows that the entire sequence {Ψ(xk)} converges to Ψ(x∗). Therefore, we
have {Ψ(xk+1)−Ψ(xk)} → 0. Hence, the Armijo line search rule in Step (S.5) of Algorithm
3.1 implies

tk∇Ψ(xk)Tsk
N → 0

for k ∈ K, k →∞. In view of (19), it is easy to see that this implies

tk‖sk
N‖ → 0.

Consequently, we obtain
‖xk+1 − xk‖ = tk‖sk

N‖ → 0

for k ∈ K, k →∞.

Case 3: For all k ∈ K, xk+1 is computed in Step (S.6) of Algorithm 3.1.
Then we have xk+1 = xk + tks

k
G, and the definition of sk

G yields

‖xk+1 − xk‖ = tk‖sk
G‖

= tk‖x̄k
G − xk‖

= tk‖[xk − γ∇Ψ(xk)]+ − xk‖
≤ ‖[xk − γ∇Ψ(xk)]+ − [xk]+‖
≤ γ‖∇Ψ(xk)‖
→ 0

for k ∈ K, k → ∞; here we used that fact that xk = [xk]+ (since xk ∈ (l, u) by Lemma
4.1), that the projection operator is nonexpansive, that tk ∈ (0, 1) and that ∇Ψ(x∗) = 0
(since Ψ is continuously differentiable around x∗ and x∗ is a global minimum and therefore
an unconstrained stationary point of Ψ).

Finally, if the subsequence {xk}k∈K contains finitely or infinitely many iterates k with
xk+1 being calculated either in Step (S.4) or in Step (S.5) or in Step (S.6) of Algorithm 3.1,
then we can easily combine the above three cases and still obtain

{‖xk+1 − xk‖}k∈K → 0.
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This completes the proof. 2

Our next result basically says that the Newton-type search direction dk computed in Step
(S.3) of Algorithm 3.1 is a “superlinearly/quadratically convergent search direction”.

Lemma 4.8 Let x∗ be a strongly regular solution of the MCP (1), and let {xk} be any
sequence (not necessarily generated by Algorithm 3.1) converging to x∗. Then

‖xk + dk − x∗‖ = o(‖xk − x∗‖),

where dk denotes the Newton-type search direction calculated in Step (S.3) of Algorithm 3.1.
Furthermore, if F ′ is locally Lipschitzian around x∗, then

‖xk + dk − x∗‖ = O(‖xk − x∗‖2).

Proof. The proof is essentially the same as one given for a corresponding result in [21], and
is presented here for the sake of completeness.

Since xk → x∗ by assumption, it follows from Lemma 4.4 that the search directions dk as
computed in Step (S.3) of Algorithm 3.1 actually exist for all k sufficiently large. Moreover,
Proposition 4.3 guarantees that we have Ak = A∗ and Ik = I∗ for all k large enough. In
the rest of this proof, we therefore assume implicitly that k is sufficiently large so that the
above two statements hold.

First consider an index i ∈ A∗. Then x∗i = li or x∗i = ui. If x∗i = li, then dk
i = li − xk

i by
Lemma 4.5, and it follows that

|xk
i + dk

i − x∗i | = |xk
i + li − xk

i − li| = 0 = o(‖xk − x∗‖). (20)

Similarly, if x∗i = ui, then dk
i = ui − xk

i , and we obtain

|xk
i + dk

i − x∗i | = |xk
i + ui − xk

i − ui| = 0 = o(‖xk − x∗‖). (21)

Next consider indices i ∈ I∗. Using the notation N := {1, . . . , n}, we obtain from the
linear system (4), Lemma 4.5 and the fact that Ik = I∗:

Hk
I∗I∗(x

k
I∗ + dk

I∗ − x∗I∗) = Hk
I∗I∗d

k
I∗ + Hk

I∗I∗(x
k
I∗ − x∗I∗)

= −ΦI∗(x
k)−Hk

I∗A∗d
k
A∗ + Hk

I∗I∗(x
k
I∗ − x∗I∗)

= −ΦI∗(x
k) + ΦI∗(x

∗) + Hk
I∗A∗(x

k
A∗ − x∗A∗)

+Hk
I∗I∗(x

k
I∗ − x∗I∗)

= −ΦI∗(x
k) + ΦI∗(x

∗) + Hk
I∗N (xk − x∗),

(22)

since the solution x∗ satisfies Φ(x∗) = 0. In view of Proposition 2.3 (a), we have

|Φi(x
k)− Φi(x

∗)−Hk
i·(x

k − x∗)| = o(‖xk − x∗‖)

for all i ∈ {1, . . . , n}, where Hk
i· denotes the i-th row of the matrix Hk. Hence we obtain

‖ΦI∗(x
k)− ΦI∗(x

∗)−Hk
I∗N (xk − x∗)‖ = o(‖xk − x∗‖),
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so it follows from (22) and Lemma 4.4 that

‖xk
I∗ + dk

I∗ − x∗I∗‖ = o(‖xk − x∗‖). (23)

Using (20), (21) and (23), we have

‖xk + dk − x∗‖ = o(‖xk − x∗‖).

In a similar way, one can exploit Proposition 2.3 (b) and show that

‖xk + dk − x∗‖ = O(‖xk − x∗‖2)

holds if F ′ is locally Lipschitzian around x∗. 2

We now show that we maintain the superlinear/quadratic convergence properties of our
Newton-type search direction dk if we combine it with the corresponding stepsize τk computed
in Step (S.4) of Algorithm 3.1.

Lemma 4.9 Let x∗ be a strongly regular solution of the MCP (1), and let {xk} be any
sequence (not necessarily generated by Algorithm 3.1) converging to x∗. Then

‖xk + τkd
k − x∗‖ = o(‖xk − x∗‖),

where dk denotes the Newton-type search direction calculated in Step (S.3) of Algorithm 3.1
and τk > 0 is the stepsize computed in Step (S.4) of Algorithm 3.1. Furthermore, if F ′ is
locally Lipschitzian around x∗, then

‖xk + τkd
k − x∗‖ = O(‖xk − x∗‖2).

Proof. Since {xk} → x∗ by assumption, we have ‖Φ(xk)‖ → ‖Φ(x∗)‖ = 0 and therefore
eventually

τk = 1− ‖Φ(xk)‖ → 1.

Hence Lemma 4.8 implies

‖xk + τkd
k − x∗‖ ≤ ‖xk + dk − x∗‖+ (1− τk)‖dk‖

= o(‖xk − x∗‖) + o(‖dk‖).

However, we have ‖dk‖ = O(‖Φ(xk)‖) by Lemma 4.6. Moreover, since Φ is locally Lipschitz
continuous around the solution x∗, there is a constant L > 0 such that

‖Φ(xk)‖ = ‖Φ(xk)− Φ(x∗)‖ ≤ L‖xk − x∗‖.

This implies that

‖xk + τkd
k − x∗‖ = o(‖xk − x∗‖) + o(‖Φ(xk)‖) = o(‖xk − x∗‖).

The proof of the second part is similar by using the second part of Lemma 4.8 and exploiting
the precise definition of τk (note that, in order to verify the first statement, it was enough
to have τk → 1, whereas the proof of the second statement requires τk to converge to 1 with
a certain speed). 2

Summarizing the previous results in an appropriate way, we are now able to state our main
local convergence result for Algorithm 3.1.
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Theorem 4.10 Let x∗ be a strongly regular solution of the MCP (1), and assume that x∗

is an accumulation point of a sequence {xk} generated by Algorithm 3.1. Then the following
statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) Eventually, the algorithm takes only the Newton-type directions from Step (S.3) of
Algorithm 3.1.

(c) The rate of convergence is Q-superlinear.

(d) If F ′ is locally Lipschitzian around x∗, the rate of convergence is actually Q-quadratic.

Proof. Statement (a) is a direct consequence of Proposition 4.7.
In order to prove Statement (b), we first recall that the Newton-type search direction dk

from Step (S.3) eventually exists by Lemma 4.4, and that xk + τkd
k stays strictly feasible as

a relatively simple consequence of Proposition 4.3. To see that xk + τkd
k satisfies the descent

test from (5), we first note that Φ is locally Lipschitz around x∗. Hence we have

‖Φ(xk + τkd
k)− Φ(x∗)‖ ≤ LΦ‖xk + τkd

k − x∗‖ (24)

for some constant LΦ > 0 since xk → x∗ by Part (a) and τkd
k → 0 by, e.g., Lemma

4.6. Moreover, all elements H ∈ ∂Φ(x∗) are nonsingular by Proposition 2.5. Therefore, it
follows from the Inverse Function Theorem for locally Lipschitzian mappings (see [6, Theorem
7.1.1]) that Φ is invertible around Φ(x∗), and that the inverse function Φ−1 is also locally
Lipschitzian. Consequently, we have

‖Φ−1(Φ(xk))− Φ−1(Φ(x∗))‖ ≤ LΦ−1‖Φ(xk)− Φ(x∗)‖ (25)

for some constant LΦ−1 and all k ∈ IN sufficiently large. Now, using (24), (25), Lemma 4.9
and the fact that Φ(x∗) = 0, we immediately obtain

‖Φ(xk + τkd
k)‖ = ‖Φ(xk + τkd

k)− Φ(x∗)‖
= O(‖xk + τkd

k − x∗‖)
= o(‖xk − x∗‖)
= o(‖Φ−1(Φ(xk))− Φ−1(Φ(x∗))‖)
= o(‖Φ(xk)− Φ(x∗)‖)
= o(‖Φ(xk)‖).

Therefore, the descent test (5) in Step (S.4) of Algorithm 3.1 will eventually be satisfied,
and we have xk+1 = xk + τkd

k for all k ∈ IN sufficiently large with τk being computed in Step
(S.4) of Algorithm 3.1. Hence Statement (b) holds.

Statements (c) and (d) now follow immediately from Lemma 4.9 and the previous con-
siderations. 2

We close this section by noting that Theorem 4.10 can alternatively be stated as follows: If
the starting point x0 of Algorithm 3.1 is sufficiently close to a strongly regular solution x∗ of
the MCP (1), then the sequence {xk} generated by Algorithm 3.1 converges Q-superlinearly
(Q-quadratically) to x∗.
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5 Numerical Results

We implemented Algortihm 3.1 in MATLAB for nonlinear complementarity problems using
the parameter setting

β = 0.5, σ = δ = 10−4, τ = ω = 0.995, ρ = 10−12, p1 = 2.1, p2 = c = γ = 1

and the termination criteria

Ψ(xk) ≤ 10−12 or k > 500.

The actual implementation differs slightly from the description in Algorithm 3.1. In fact, we
allow a nonmonotone line search in Step (S.5) instead of the standard (monotone) Armijo rule
(see [19] for the original reference), and we try to accept our Newton-type search direction
in Step (S.4) even if the acceptance criterion (5) is not satisfied, i.e., we allow the stepsize
τk used in (S.4) to become a bit smaller.

The test problems whose names are given in Table 5.1 are taken from the MCPLIB
collection, see [9]. However, we had to exclude a few examples (namely problems powell

[second, third and fourth starting point], and scarfasum [all three starting points]) because
domain violations occured during the iteration (although all iterates were strictly feasible!).
The results of our test runs are given in Table 5.1 whose columns have the following meanings:

problem: name of the test example
n: dimension of the test example
SP: number of starting point
k: number of iterations until termination
F -ev.: number of function evaluations until termination
Ψ(xf ): value of Ψ(x) at final iterate x = xf

‖∇Ψ(xf )‖: value of ‖∇Ψ(x)‖ at final iterate x = xf

Note that we had to change the starting point for some examples by a small perturbation in
order to begin with a strictly feasible point, as required by our algorithm.

We believe that the numerical results are quite reasonable, especially since the parameters
have not been tuned very much. For some problems, we have a relatively high number of
function evaluations; however, this has mainly to do with our simple implementation of the
projected gradient-type method.

We also note that, at this stage of our research, a comparison with existing codes for the
solution of mixed complementarity problems (like those given in [3]) is difficult due to the fact
that our method has a couple of new features (e.g., the active set strategy) and because our
implementation is less sophisticated than the implementations of some of the methods given
in [3]. Nevertheless, it is interesting to note that our method seems to have absolutely no
problems in solving the josephy and kojshin examples, in contrast to many other methods
which seem to run into troubles either because of inconsistent subproblems or because they
converge to a non-optimal stationary point which does not belong to the feasible set. Hence
the (strict) feasibility of the iterates generated by our method can sometimes be quite helpful
in order to avoid convergence to non-optimal stationary points.
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Table 5.1: Numerical results for Algorithm 3.1.

problem n SP k F -ev. Ψ(xf ) ‖∇Ψ(xf )‖
bertsekas 15 1 30 212 3.7e-15 3.4e-6
bertsekas 15 2 29 166 3.7e-15 3.4e-6
bertsekas 15 3 47 227 5.6e-17 5.3e-7
billups 1 1 — — — —
colvdual 20 1 39 179 9.7e-14 2.7e-6
colvdual 20 2 29 135 9.7e-14 2.7e-6
colvnlp 15 1 49 258 9.4e-14 3.6e-6
colvnlp 15 2 18 46 9.4e-14 3.6e-6
cycle 1 1 6 7 8.6e-22 3.3e-11
explcp 16 1 6 7 3.2e-13 8.0e-7
hanskoop 14 1 48 160 1.2e-21 4.1e-10
hanskoop 14 2 41 121 1.1e-13 3.1e-6
hanskoop 14 3 25 132 8.9e-15 3.5e-7
hanskoop 14 4 39 195 3.7e-13 7.4e-6
hanskoop 14 5 460 3,614 8.0e-16 1.1e-7
josephy 4 1 5 8 2.9e-16 9.7e-8
josephy 4 2 6 7 4.7e-22 2.2e-10
josephy 4 3 15 16 1.3e-13 1.1e-6
josephy 4 4 5 6 6.5e-18 1.9e-8
josephy 4 5 6 7 7.2e-15 2.5e-7
josephy 4 6 7 10 7.6e-21 2.9e-10
kojshin 4 1 7 10 1.9e-18 4.9e-9
kojshin 4 2 6 7 1.5e-14 2.2e-6
kojshin 4 3 17 18 5.9e-15 2.1e-6
kojshin 4 4 6 8 2.1e-19 5.9e-9
kojshin 4 5 6 7 1.7e-17 2.0e-8
kojshin 4 6 6 12 5.9e-14 5.5e-6
mathinum 3 1 7 9 6.4e-14 7.8e-7
mathinum 3 2 5 6 5.1e-18 7.0e-9
mathinum 3 3 11 14 2.1e-20 4.4e-10
mathinum 3 4 5 6 9.0e-14 9.3e-7
mathisum 4 1 6 7 5.2e-16 6.1e-8
mathisum 4 2 6 7 2.0e-17 1.2e-8
mathisum 4 3 11 13 2.6e-18 4.3e-9
mathisum 4 4 5 6 1.7e-13 1.1e-6
nash 10 1 8 9 1.0e-16 7.4e-7
nash 10 2 11 12 1.1e-13 2.8e-5
pgvon105 1 — — — —
pgvon106 1 — — — —
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Table 5.1 (continued): Numerical results for Algorithm 3.1

problem n SP k F -ev. Ψ(xf ) ‖∇Ψ(xf )‖
powell 16 1 95 691 6.8e-13 1.0e-5
scarfanum 13 1 35 288 9.9e-17 1.0e-7
scarfanum 13 2 35 270 9.9e-17 1.0e-7
scarfanum 13 3 37 289 9.9e-17 1.0e-7
scarfbnum 39 1 42 121 5.7e-15 4.5e-6
scarfbnum 39 2 31 144 2.4e-15 2.0e-5
scarfbsum 40 1 29 167 2.7e-21 8.1e-9
scarfbsum 40 2 — — — —
sppe 27 1 66 365 8.6e-13 9.4e-7
sppe 27 2 11 25 1.7e-14 5.0e-7
tobin 42 1 9 12 2.3e-14 9.1e-7
tobin 42 2 9 16 6.4e-16 8.2e-8

6 Concluding Remarks

We presented a new method for the solution of mixed complementarity problems which,
besides having a strong local and global convergence theory, generates only strictly feasible
iterates and has to solve only one linear system of equations of reduced dimension at each
iteration. Theoretically, it seems possible to generalize our idea to solve systems of equa-
tions with more complicated constraints (as they occur, e.g., in the context of variational
inequalities) than just box constraints. However, from a practical point of view, this does not
seem to be very useful due to the fact that it can be quite expensive to calculate projections
onto these more general constraint sets, as required by our algorithm. So we are currently
looking for a somewhat different strategy in order to avoid the calculation of any projections.

Acknowledgement. The author would like to thank the anonymous referees for their useful
comments, especially for pointing out reference ??.
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