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Abstract. We consider a special class of optimization problems that we call Mathematical
Programs with Vanishing Constraints, MPVC for short, which serves as a unified frame-
work for several applications in structural and topology optimization. Since an MPVC
most often violates stronger standard constraint qualification, first-order necessary opti-
mality conditions, weaker than the standard KKT-conditions, were recently investigated
in depth. This paper enlarges the set of optimality criteria by stating first-order sufficient
and second-order necessary and sufficient optimality conditions for MPVCs.
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1 Introduction

We consider a constrained optimization problem of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l.

(1)

that we call a Mathematical program with vanishing constraints (MPVC for short), where
all functions f, gi, hj, Gi, Hi : Rn → R are assumed to be at least continuously differentiable.
This special class of optimization problems was first introduced in [1] and shown to serve
as a unified framework for several applications in structural und topology optimization.
The naming of the problem is motivated by the fact that, on the one hand, it is closely
related to the class of optimization problems called Mathematical programs with equilibrium
constraints (MPECs for short), see [7, 10] for a general treatment and [1] for the relation
between MPVCs and MPECs, and, on the other hand, that, due to the characteristic
constraints Hi(x) ≥ 0 and Gi(x)Hi(x) ≤ 0, the implicit sign restriction Gi(x) ≤ 0 vanishes
as soon as Hi(x) = 0 holds.

The recent works on MPVCs have already investigated first-order necessary optimality
conditions in depth. For example, in [1] the notion of a strongly stationary point was
introduced and it was shown that a feasible point of an MPVC is strongly stationary
if and only if it satisfies the KKT-conditions from standard optimization, and herewith,
strong stationarity becomes a necessary optimality criterion under the presence of certain
constraint qualifications, like the Guignard CQ, see, in particular, [5] for a more detailed
discussion.

In turn, in [6], it was pointed out that the Guignard CQ, the weakest constraint qual-
ification to garantuee the KKT-conditions to hold at a local minimizer of a standard op-
timization problem, holds under reasonable assumptions at a feasible point of an MPVC,
but may yet be violated in some non-pathological cases. Thus, borrowing from the MPEC-
theory, a weaker stationarity condition, called M-stationarity and holding under weaker
constraint qualifications, was introduced and investigated in [6].

The goal of this paper is to extend the set of optimality conditions that can be stated
in the MPVC-context. To this end, we state a new first-order sufficient condition and
present both a second-order necessary and a second-order sufficient optimality condition
for MPVCs.

The first-order sufficient condition, in particular, tells us that a strongly stationary
point of an MPVC is already a local minimizer provided that the constraint functions
gi, hj, Gi, Hi have certain convexity properties. We find this result quite astonishing since
the MPVC itself is still a nonconvex program even if gi, hj, Gi, Hi have nice convexity
properties, due to the product constraint Gi(x)Hi(x) ≤ 0. In that part, some ideas go
back to related results for MPECs which can be found, e.g., in [13].

1



As to the second-order conditions, our approach is motivated by corresponding results
from standard optimization theory as well as some related results in the MPEC-setting,
see, in particular, [11] and [7].

The organization of the paper is as follows: We first introduce some important index
sets and preliminary definitions in Section 2. In particular, we recall the above mentioned
stationarity concepts: strong stationarity and M-stationarity. In Section 3, the first-order
sufficient optimality condition is stated, whereas the second-order optimality conditions
are presented in Section 4. We close with some final remarks in Section 5.

The notation that we use in this paper is standard, with ‖·‖ being an arbitrary norm in
Rn. The directional derivative of a mapping f : Rn → R at x in the direction d is denoted
by f ′(x; d). Recall that we have f ′(x; d) = ∇f(x)T d whenever f is differentiable at x.

2 Preliminaries

In this section, we introduce several index sets that turned out to be vital for the analysis
of MPVCs. Furthermore, we give definitions of two stationarity concepts, strong station-
arity and M-stationarity, which were introduced in the context of MPVCs in [1] and [6],
respectively.

For these purposes, let X denote the feasible set of (1), and let x∗ ∈ X be an arbitrary
feasible point. Then we define the index sets

J :=
{
1, . . . , p

}
,

Ig :=
{
i
∣∣ gi(x

∗) = 0
}
,

I+ :=
{
i
∣∣ Hi(x

∗) > 0
}
,

I0 :=
{
i
∣∣ Hi(x

∗) = 0
}
.

(2)

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{
i
∣∣ Hi(x

∗) > 0, Gi(x
∗) = 0

}
,

I+− :=
{
i
∣∣ Hi(x

∗) > 0, Gi(x
∗) < 0

}
.

(3)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) > 0

}
,

I00 :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) = 0

}
,

I0− :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) < 0

}
.

(4)

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second subscript

stands for the sign of Gi(x
∗).

With the above definitions, we are now in a position to define the above mentioned
stationarity concepts.

Definition 2.1 Let x∗ be feasible for the MPVC (1). Then x∗ is called strongly stationary
if there exist scalars λi ∈ R (i = 1, . . . ,m), µj ∈ R (j ∈ J), ηH

i , ηG
i ∈ R (i = 1, . . . , l) such
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that

∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) +

∑
j∈J

µj∇hj(x
∗)−

l∑
i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0 (5)

and
λi ≥ 0, gi(x

∗) ≤ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I0− ∪ I00), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I+− ∪ I0), ηG

i ≥ 0 (i ∈ I+0).

(6)

From [1], we know that strong stationarity is equivalent to the usual KKT conditions of
an MPVC, i.e., strong stationarity is a necessary optimality condition under the presence
of, e.g., the Guignard constraint qualification. See [5] for a more detailed discussion and
sufficient conditions for the Guignard constraint qualification.

It may happen that a local minimum x∗ of an MPVC is not a strongly stationary point
even if all mappings gi, hj, Gi, Hi are linear. In this case, a weaker stationary concept was
introduced in [6], with the terminology coming from a similar concept for MPECs, see
[9, 12, 3].

Definition 2.2 Let x∗ be feasible for the MPVC (1). Then x∗ is called M-stationary if
there exist scalars λi ∈ R (i = 1, . . . ,m), µj ∈ R (j ∈ J), ηH

i , ηG
i ∈ R (i = 1, . . . , l) such that

∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) +

∑
j∈J

µj∇hj(x
∗)−

l∑
i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0 (7)

and
λi ≥ 0, gi(x

∗) ≤ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηG

i ≥ 0 (i ∈ I+0 ∪ I00),

ηH
i ηG

i = 0 (i ∈ I00).

(8)

Note the difference between a strongly stationary point and an M-stationary point: In the
former, we have ηH

i ≥ 0 and ηG
i = 0 for all i ∈ I00, whereas in the latter case, we only have

ηG
i ≥ 0 and ηH

i ηG
i = 0 for all i ∈ I00. In particular, differences occur only for indices from

the crucial index set I00. In fact, this set will play an important role also in the analysis
of the subsequent sections.

From [6, Theorem 3.4], we know that M-stationarity is a necessary optimality criterion
under the presence of a condition that is called MPVC-GCQ, since it is an MPVC-version
of the standard Guignard constraint qualification. This MPVC-GCQ condition is satisfied
under very weak assumptions, in particular, it holds when all mappings gi, hj, Gi, Hi are
linear, see [6] for more details.
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In the analysis of optimality conditions for standard nonlinear programs, the so-called
Lagrangian plays an important role. As a counterpart of this Lagrangian in our MPVC
setting, we define the mapping L : Rn × Rm × Rp × Rl × Rl → R by

L(x, λ, µ, ηG, ηH) := f(x) +
m∑

i=1

λigi(x) +
∑
j∈J

µjhj(x)−
l∑

i=1

ηH
i Hi(x) +

l∑
i=1

ηG
i Gi(x) (9)

and call this function the MPVC-Lagrangian. For example, a feasible point x∗ of (1) is
strongly stationary (or M-stationary) if and only if there exist multipliers (λ, µ, ηG, ηH)
such that

∇xL(x∗, λ, µ, ηG, ηH) = 0

and (λ, µ, ηG, ηH) satisfies (6) (or (8)).

3 A First-Order Sufficient Optimality Condition

We know from the discussion of the previous section that both strong stationarity and
M-stationarity are first-order necessary optimality conditions. In the case of a standard
nonlinear program, the usual KKT conditions are also known to be sufficient optimality
conditions under certain convexity assumptions. In our case, however, this result cannot
be applied since the product term Gi(x)Hi(x) usually does not satisfy any convexity re-
quirements. Nevertheless, we will see in this section that M- and strong stationarity are
also sufficient optimality conditions for our nonconvex MPVC problem, provided that the
mappings gi, hj, Gi, Hi satisfy some convexity assumptions (but not necessarily the prod-
ucts GiHi themselves). Our analysis here is motivated by a related result from [13] in the
context of MPECs.

In order to state the desired result, we first recall some well-known terms concerning
certain convexity properties of real-valued functions, see, for example, [2, 8].

Definition 3.1 Let S ⊆ Rn be a nonempty convex set and let f : S → R. Then f is called
quasiconvex if, for each x, y ∈ S, the following inequality holds:

f(λx + (1− λ)y) ≤ max{f(x), f(y)} ∀λ ∈ (0, 1).

Definition 3.2 Let S ⊆ Rn be a nonempty open set and let f : S → R be a differentiable
function. Then f is called pseudoconvex if, for each x, y ∈ S, the following implication
holds:

∇f(x)T (y − x) ≥ 0 =⇒ f(y) ≥ f(x).

Now, let x∗ be an M-stationary point of the MPVC (1) with corresponding multipliers

4



λ, µ, ηG, ηH . Then we define the following index sets:

J+ := {j ∈ J | µj > 0},
J− := {j ∈ J | µj < 0},
I+
00 := {i ∈ I00 | ηH

i > 0},
I−00 := {i ∈ I00 | ηH

i < 0},
I+
0− := {i ∈ I0− | ηH

i > 0},
I+
0+ := {i ∈ I0+ | ηH

i > 0},
I−0+ := {i ∈ I0+ | ηH

i < 0},
I0+
+0 := {i ∈ I+0 | ηH

i = 0, ηG
i > 0} = {i ∈ I+0 | ηG

i > 0},
I0+
00 := {i ∈ I00 | ηH

i = 0, ηG
i > 0} = {i ∈ I00 | ηG

i > 0}.

(10)

Note that, for a strongly stationary point, the two index sets I−00 and I0+
00 are empty.

Using these index sets and definitions, we are able to state the main result of this
section.

Theorem 3.3 Let x∗ be an M-stationary point of the MPVC (1). Suppose that f is
pseudoconvex at x∗ and that gi (i ∈ Ig), hj (j ∈ J+),−hj (j ∈ J−), Gi (i ∈ I0+

+0 ), Hi (i ∈
I−0+),−Hi (i ∈ I+

0+ ∪ I+
00 ∪ I+

0−) are quasiconvex. Then the following statements hold:

(a) If I−00 ∪ I0+
00 = ∅ then x∗ is a local minimizer of (1).

(b) If I−0+ ∪ I−00 ∪ I0+
+0 ∪ I0+

00 = ∅ then x∗ is a global minimizer of (1).

Proof. Since x∗ is an M-stationary point of (1) there exist multipliers λ, µ, ηG, ηH such
that

∇f(x∗)+
∑
i∈Ig

λi∇gi(x
∗)+

p∑
j=1

µj∇hj(x
∗)−

∑
i∈I0

ηH
i ∇Hi(x

∗)+
∑

i∈I+0∪I00

ηG
i ∇Gi(x

∗) = 0 (11)

with
λi ≥ 0 ∀i ∈ Ig, ηH

i ≥ 0 ∀i ∈ I0−
ηG

i ≥ 0 ∀i ∈ I00 ∪ I+0, ηH
i ηG

i = 0 ∀i ∈ I00.
(12)

Now let x be any feasible point of (1). For i ∈ Ig, we then have gi(x) ≤ 0 = gi(x
∗). Thus,

by the quasiconvexity of gi (i ∈ Ig), we obtain

gi(x
∗ + t(x− x∗)) = gi((1− t)x∗ + tx) ≤ max{gi(x), gi(x

∗)} = 0 = gi(x
∗)

for all t ∈ (0, 1), which implies

∇gi(x
∗)T (x− x∗) = g′i(x

∗; x− x∗) = lim
t↓0

gi(x
∗ + t(x− x∗))− gi(x

∗)

t
≤ 0 ∀i ∈ Ig.

In view of (12), we therefore have

λi∇gi(x
∗)T (x− x∗) ≤ 0 ∀i ∈ Ig. (13)
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By similar arguments, we also obtain

∇hj(x
∗)T (x− x∗) ≤ 0 ∀j ∈ J+, and −∇hj(x

∗)T (x− x∗) ≤ 0 ∀j ∈ J−,

which gives
µj∇hj(x

∗)T (x− x∗) ≤ 0 ∀j ∈ J, (14)

taking the definitions of J+ and J− into account.
Again, since x is feasible for (1), we particularly have −Hi(x) ≤ 0 for all i = 1, . . . , l.

Thus, by the quasiconvexity of −Hi for i ∈ I+
0+ ∪ I+

00 ∪ I+
0−, we obtain with the above

arguments −∇Hi(x
∗)T (x − x∗) ≤ 0 and thus, in view of the definition of the occurring

index sets, we have

−ηH
i ∇Hi(x

∗)T (x− x∗) ≤ 0 ∀i ∈ I+
0+ ∪ I+

00 ∪ I+
0−. (15)

We now verify statement (b) first. To this end, let I−0+ ∪ I−00 ∪ I0+
+0 ∪ I0+

00 = ∅. Then it is
clear from (12), (15), and the definition of the index sets that we even have

−ηH
i ∇Hi(x

∗)T (x− x∗) ≤ 0 ∀i ∈ I0, ηG
i ∇Gi(x

∗)T (x− x∗) ≤ 0 ∀i ∈ I00 ∪ I+0, (16)

where the second inequality is an equality due to the fact that ηG
i = 0 for all (remaining)

indices i ∈ I00 ∪ I+0. Then (13), (14), (16) together with (11) imply

−∇f(x∗)T (x− x∗) =
( ∑

i∈Ig

λi∇gi(x
∗)T +

p∑
j=1

µj∇hj(x
∗)−

∑
i∈I0

ηH
i ∇Hi(x

∗) + . . .

· · ·+
∑

i∈I+0∪I00

ηG
i ∇Gi(x

∗)
)T

(x− x∗) ≤ 0.

Hence we have ∇f(x∗)T (x−x∗) ≥ 0, which implies f(x) ≥ f(x∗), as f is pseudoconvex by
assumption. Since x is an arbitrary feasible point of (1), x∗ is a global minimizer of (1) in
the case that I−0+ ∪ I−00 ∪ I0+

+0 ∪ I0+
00 = ∅ holds, which proves assertion (b).

To verify statement (a), we only need to show, in view of the above arguments, that
for any feasible x sufficiently close to x∗, we have

−ηH
i ∇Hi(x

∗)T (x− x∗) ≤ 0 ∀i ∈ I−0+ (17)

and
ηG

i ∇Gi(x
∗)T (x− x∗) ≤ 0 ∀i ∈ I0+

+0 , (18)

since then we see that (13), (14) and (16) are satisfied, and thus, by analogous reasoning
as above, we obtain f(x) ≥ f(x∗) for all feasible x sufficiently close to x∗.

First let i ∈ I−0+. By continuity, it follows that Gi(x) > 0 and thus Hi(x) = 0 for any
x ∈ X sufficiently close to x∗. Invoking the quasiconvexity of Hi (i ∈ I−0+), this implies
∇Hi(x

∗)T (x− x∗) ≤ 0, and since we have ηH
i < 0 (i ∈ I−0+), (17) follows immediately.
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Second, let i ∈ I0+
+0 . By continuity, it follows that Hi(x) > 0 and thus Gi(x) ≤ 0 for

any x ∈ X sufficiently close to x∗. Invoking the quasiconvexity of Gi (i ∈ I0+
+0 ), this implies

∇Gi(x
∗)T (x− x∗) ≤ 0, which gives (18), since we have ηG

i > 0 (i ∈ I0+
+0 ). �

We next state a simple consequence of Theorem 3.3 where the M-stationarity of x∗ is
replaced by the strong stationarity assumption.

Corollary 3.4 Let x∗ be a strongly stationary point of the MPVC (1). Suppose that f is
pseudoconvex at x∗ and that gi (i ∈ Ig), hj (j ∈ J+),−hj (j ∈ J−), Gi (i ∈ I0+

+0 ), Hi (i ∈
I−0+),−Hi (i ∈ I+

0+ ∪ I+
00 ∪ I+

0−) are quasiconvex. Then the following statements hold:

(a) x∗ is a local minimizer of (1).

(b) If I−0+ ∪ I0+
+0 = ∅ then x∗ is a global minimizer of (1).

Proof. Since the assumptions of Theorem 3.3 are satisfied and strong stationarity im-
plies that I−00 ∪ I0+

00 = ∅, (a) and (b) follow immediately from Theorem 3.3 (a) and (b),
respectively. �

In nonlinear programming, the case of a convex program, where all the equality constraints
are supposed to be (affine) linear and the inequality constraints are convex, is often consid-
ered. However, due to the GiHi-constraints, being a product of two non-constant functions,
our MPVC (1) is very likely a nonconvex optimization problem. Alternatively, the con-
cept of an MPVC-convex program was therefore introduced in [6], where all the functions
hj, Hi, Gi are supposed to be (affine) linear and the functions gi are supposed to be convex.
For the class of MPVC-convex programs, we now get the following first-order sufficient
optimality condition as a direct consequence of our previous results.

Corollary 3.5 Let the program (1) be MPVC-convex such that f is convex. Furthermore,
let x∗ be a strongly stationary point of (1). Then the following statements hold:

(a) x∗ is a local minimizer of (1).

(b) If I−0+ ∪ I0+
+0 = ∅, then x∗ is a global minimizer of (1).

Proof. Follows immediately from Corollary 3.4, since convex functions are both pseudo-
and quasiconvex. �

We would like to point out that we find the above result somehow remarkable: The MPVC-
convex program, though being equipped with convex and linear functions gi, hj, Hi, Gi,
must yet be assumed to be a nonconvex program, due to the GiHi-constraints. Nev-
ertheless, Corollary 3.5 tells us that strong stationarity (and thus the KKT-conditions
themselves) are sufficient optimality conditions. That means, we have shown the KKT-
conditions to be a sufficient optimality criterion for a class of usually nonconvex programs.
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4 Second-Order Optimality Conditions

The goal of this section is to provide (necessary and sufficient) second-order optimality
conditions for MPVCs. The analysis is motivated by general results from optimization or,
more specialized, from the MPEC-field.

In order to state second-order optimality results for nonlinear programs, a suitable cone,
usually a subset of the linearized cone, is needed, on which the Hessian of the Lagrangian
is or is shown to be positive (semi-)definite. The cone which plays that role in our context
will be defined below and is a subset of the so-called MPVC-linearized cone which was
initially introduced in [5]. Given a feasible point x∗ of (1), the MPVC-linearized cone is
defined by

LMPV C(x∗) :=
{
d ∈ Rn | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig),
∇hj(x

∗)T d = 0 (j ∈ J),
∇Hi(x

∗)T d = 0 (i ∈ I0+),
∇Hi(x

∗)T d ≥ 0 (i ∈ I00 ∪ I0−),
∇Gi(x

∗)T d ≤ 0 (i ∈ I+0),
(∇Hi(x

∗)T d)(∇Gi(x
∗)T d) ≤ 0 (i ∈ I00)

}
.

(19)

In many situations of MPVC-analysis, the MPVC-linearized cone has been used instead
of the usual linearized cone. Thus, it is not surprising that it occurs in the context of
second-order optimality conditions for MPVCs, too.

For the definition of the above mentioned subset of the MPVC-linearized cone, we
assume that we have a strongly stationary point (x∗, λ, µ, ηG, ηH) of (1). Then we define
C(x∗) by

C(x∗) :=
{
d ∈ LMPV C(x∗) | ∇gi(x

∗)T d = 0 (i ∈ I+
g ),

∇Hi(x
∗)T d = 0 (i ∈ I+

00 ∪ I+
0−),

∇Gi(x
∗)T d = 0 (i ∈ I0+

+0 )
}
,

(20)

that is, in fact, we have (taking into account that I−00 = ∅ at a strongly stationary point)

C(x∗) =
{
d ∈ Rn | ∇gi(x

∗)T d ≤ 0 (i ∈ I0
g ),

∇gi(x
∗)T d = 0 (i ∈ I+

g ),
∇hj(x

∗)T d = 0 (j ∈ J),
∇Hi(x

∗)T d ≥ 0 (i ∈ I0
00 ∪ I0

0−),
∇Hi(x

∗)T d = 0 (i ∈ I0+ ∪ I+
00 ∪ I+

0−),
∇Gi(x

∗)T d ≤ 0 (i ∈ I00
+0),

∇Gi(x
∗)T d = 0 (i ∈ I0+

+0 ),
(∇Hi(x

∗)T d)(∇Gi(x
∗)T d) ≤ 0 (i ∈ I00)

}
,

(21)
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where we put
I+
g := {i ∈ Ig | λi > 0},
I0
g := {i ∈ Ig | λi = 0},

I+
00 := {i ∈ I00 | ηH

i > 0},
I0
00 := {i ∈ I00 | ηH

i = 0},
I+
0− := {i ∈ I0− | ηH

i > 0},
I0
0− := {i ∈ I0− | ηH

i = 0},
I00
+0 := {i ∈ I+0 | ηG

i = 0},
I0+
+0 := {i ∈ I+0 | ηG

i > 0}

(22)

in accordance with (10).
The definition of these index sets may, again, appeal a bit complicated and make the

proof of our theorems somewhat technical, but on the other hand we prove pretty strong
results, showing that we can use the same cone C(x∗) for both the necessary and the
sufficient second-order condition.

The following lemma is a direct preparation for the upcoming theorem on second-order
necessary optimality conditions. Its technique of proof goes back to similar considerations
in the context of standard nonlinear programs, see [4], for example. Note, however, that
we cannot simply apply these standard results since, e.g., the usual LICQ assumption
typically does not hold for MPVCs, see [1]. Instead of this, we use the MPVC-version of
LICQ which was initially introduced in [5]. We recall its definition below.

Definition 4.1 We say that MPVC-LICQ is satisfied at a feasible point x∗ of (1) if the
gradients

∇hj(x
∗) (j = 1, . . . , p),

∇gi(x
∗) (i ∈ Ig),

∇Hi(x
∗) (i ∈ I0),

∇Gi(x
∗) (i ∈ I00 ∪ I+0),

are linearly independent.

Note that for the whole section, all functions occuring in (1) are assumed to be at least
twice continuously differentiable.

Lemma 4.2 Let x∗ be a strongly stationary point of (1) such that MPVC-LICQ holds.
Furthermore, let d ∈ C(x∗). Then there exists an ε > 0 and a twice continuously differen-
tiable curve x : (−ε, ε) → Rn such that x(0) = x∗, x′(0) = d, x(t) ∈ X for t ∈ [0, ε) and
such that, in addition, we have

gi(x(t)) = 0 (i ∈ I+
g ),

hj(x(t)) = 0 (j ∈ J),
Hi(x(t)) = 0 (i ∈ I+

00 ∪ I+
0− ∪ I0+),

Gi(x(t)) = 0 (i ∈ I0+
+0 ).

(23)
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Proof. Let d ∈ C(x∗) and let (λ, µ, ηG, ηH) be the (unique) multipliers such that
(x∗, λ, µ, ηG, ηH) is a strongly stationary point. We define some further subsets (depending
on x∗ and the particular vector d chosen from C(x∗)) of the index sets which were defined
previously:

I0
g,= := {i ∈ I0

g | ∇gi(x
∗)T d = 0},

I0
g,< := {i ∈ I0

g | ∇gi(x
∗)T d < 0},

I0
00,= := {i ∈ I0

00 | ∇Hi(x
∗)T d = 0},

I0
00,> := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0},

I0
0−,= := {i ∈ I0

0− | ∇Hi(x
∗)T d = 0},

I0
0−,> := {i ∈ I0

0− | ∇Hi(x
∗)T d > 0},

I00
+0,∗= := {i ∈ I00

+0 | ∇Gi(x
∗)T d = 0},

I00
+0,∗< := {i ∈ I00

+0 | ∇Gi(x
∗)T d < 0},

I0
00,>= := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0, ∇Gi(x

∗)T d = 0},
I0
00,>< := {i ∈ I0

00 | ∇Hi(x
∗)T d > 0, ∇Gi(x

∗)T d < 0}.

(24)

Then we define the mapping z : Rn → Rq, where q := |I+
g ∪ I0

g,=|+ |J |+ |I0+ ∪ I+
00 ∪ I+

0− ∪
I0
00,= ∪ I0

0−,=|+ |I0+
+0 ∪ I00

0+,∗= ∪ I0
00,>=|, by

z(x) :=


gi(x) (i ∈ I+

g ∪ I0
g,=)

hj(x) (j ∈ J)
Hi(x) (i ∈ I0+ ∪ I+

00 ∪ I+
0− ∪ I0

00,= ∪ I0
0−,=)

Gi(x) (I0+
+0 ∪ I00

+0,∗= ∪ I0
00,>=)

 , (25)

and denote the j-th component function of z by zj. Furthermore, let H̄ : Rq+1 → Rq be
the mapping defined by

H̄j(y, t) := zj

(
x∗ + td + z′(x∗)T y

)
∀j = 1, . . . , q.

The system H̄(y, t) = 0 has a solution (y∗, t∗) := (0, 0), and the partial Jacobian

H̄y(0, 0) = z′(x∗)z′(x∗)T ∈ Rq×q

is nonsingular since the matrix z′(x∗) has full rank q due to the MPVC-LICQ assumption.
Thus, invoking the implicit function theorem and using the twice continuous differentia-
bility of all mappings involved in the definition of z, there exists an ε > 0 and a twice
continuously differentiable curve y : (−ε, ε) → Rq such that y(0) = 0 and H̄(y(t), t) = 0
for all t ∈ (−ε, ε). Moreover, its derivative is given by

y′(t) = −
(
H̄y(y(t), t)

)−1
H̄t

(
y(t), t

)
∀t ∈ (−ε, ε).

In particular, this implies

y′(0) = −
(
H̄y(0, 0)

)−1
H̄t(0, 0) = −

(
H̄y(0, 0)

)−1
z′(x∗)d︸ ︷︷ ︸

=0

= 0,
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due to the properties of d. Now define

x(t) := x∗ + td + z′(x∗)T y(t).

Then x(·) is twice continuously differentiable on (−ε, ε), and we obviously have x(0) = x∗

and x′(0) = d. Hence, we still need to show that x(t) ∈ X and that x(·) satisfies (23) for
all t sufficiently close to 0.

For these purposes, first note that H̄j(y(t), t) = 0 implies zj(x(t)) = 0 and thus we
obtain

gi(x(t)) = 0 (i ∈ I+
g ∪ I0

g,=),
hj(x(t)) = 0 (j ∈ J),
Hi(x(t)) = 0 (i ∈ I0+ ∪ I+

00 ∪ I+
0− ∪ I0

00,= ∪ I0
0−,=),

Gi(x(t)) = 0 (i ∈ I0+
+0 ∪ I00

+0,∗= ∪ I0
00,>=),

(26)

so that (23) and the feasibility of x(t) for the above occuring index sets is garantueed for
all t ∈ (−ε, ε).

By simple continuity arguments, one can also verify that we have gi(x(t)) < 0 (i /∈ Ig),
Gi(x(t)) < 0 (i ∈ I0−∪I+−) and Hi(x(t)) > 0 (i ∈ I+) for all t sufficiently close to 0. Thus,
taking the definition of C(x∗) into account, it remains to show that

gi(x(t)) ≤ 0 (i ∈ I0
g,<),

Hi(x(t)) ≥ 0 (i ∈ I0
00,> ∪ I0

0−,>),
(27)

and that
Gi(x(t))Hi(x(t)) ≤ 0 (i ∈ I0

00,>< ∪ I0
0−,> ∪ I00

+0,∗<) (28)

for t > 0 sufficiently small.
In order to verify (27), let i ∈ I0

g,<. Then we have ∇gi(x
∗)T d < 0 by definition.

This implies ∇gi(x(τ))T x′(τ) < 0 for all |τ | sufficiently small. From the mean value
theorem, we obtain a τt ∈ (0, t) such that gi(x(t)) = gi(x(0)) +∇gi(x(τt))

T x′(τt)(t− 0) =
t∇gi(x(τt))

T x′(τt) < 0 for all t > 0 sufficiently small, which proves the first statement of
(27).

In order to prove the second statement, let i ∈ I0
00,> ∪ I0

0−,>. Then it follows, by
definition, that ∇Hi(x

∗)T d > 0, and thus by continuity, it holds that ∇Hi((x(t))T x′(t) > 0
for all t sufficiently close to 0. Since we have Hi(x(0)) = Hi(x

∗) = 0, this implies Hi(x(t)) >
0 for all t > 0 sufficiently small, using the above arguments.

To verify (28), first let i ∈ I0
0−,>. Then we have Gi(x(t)) < 0 by continuity, and with the

above reasoning we get Hi(x(t)) > 0 for t > 0 sufficiently small, so that Gi(x(t))Hi(x(t)) ≤
0 holds in this case.

Now, let i ∈ I0
00,><. Then, by definition, we have ∇Hi(x

∗)T d > 0 and ∇Gi(x
∗)T d < 0.

Then, with analogous reasoning as above, it follows that Hi(x(t)) > 0 and Gi(x(t)) < 0
for t > 0 sufficiently small, which gives (28) in this case.

Finally, let i ∈ I00
+0,∗<. Then we have Hi(x(t)) > 0 for |t| sufficiently small. And since

we have ∇Gi(x
∗)T d < 0, we obtain Gi(x(t)) < 0 for all t > 0 sufficiently small, which

eventually proves (28). �
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The proof of the following theorem exploits the existence of the curve x from the above
lemma.

Theorem 4.3 Let x∗ be a local minimizer of (1) such that MPVC-LICQ holds. Then we
have

dT∇2
xxL(x∗, λ, µ, ηG, ηH)d ≥ 0 ∀d ∈ C(x∗),

where λ, µ, ηG, ηH are the (unique) multipliers corresponding to (the strongly stationary)
point x∗ of (1).

Proof. First recall from [5] that MPVC-LICQ implies that there exist (unique) multipliers
such that (x∗, λ, µ, ηG, ηH) is a strongly stationary point.

Let d ∈ C(x∗). Using the curve x(·) (and ε > 0) from Lemma 4.2, we are in a position
to define the function φ : (−ε, ε) → R by

φ(t) := L(x(t), λ, µ, ηG, ηH),

where L denotes the MPVC-Lagrangian from (9). Then φ is twice continuously differen-
tiable with

φ′(t) = x′(t)T∇xL(x(t), λ, µ, ηG, ηH)

and

φ′′(t) = x′′(t)T∇xL(x(t), λ, µ, ηG, ηH) + x′(t)T∇2
xxL(x(t), λ, µ, ηG, ηH)x′(t).

Using Lemma 4.2, we therefore obtain

φ′(0) = dT∇xL(x∗, λ, µ, ηG, ηH) = 0

and
φ′′(0) = dT∇2

xxL(x∗, λ, µ, ηG, ηH)d,

since we have ∇xL(x∗, λ, µ, ηG, ηH) = 0, as (x∗, λ, µ, ηG, ηH) is a strongly stationary point
of (1).

Now, suppose that φ′′(0) = dT∇2
xxL(x∗, λ, µ, ηG, ηH)d < 0. By continuity, we thus have

φ′′(t) < 0 for t sufficiently close to 0. Invoking Taylor’s formula, we obtain

φ(t) = φ(0) + tφ′(0) +
t2

2
φ′′(ξt)

for all t ∈ (−ε, ε) and a suitable point ξt depending on t. Since we have φ′(0) = 0 and
φ′′(ξt) < 0 for t sufficiently close to 0, we thus have φ(t) < φ(0) for these t ∈ (−ε, ε). Since
(x∗, λ, µ, ηG, ηH) is a strongly stationary point of (1), we have

φ(0) = f(x∗) +
∑
i∈Ig

λigi(x
∗) +

∑
j∈J

µjhj(x
∗) +

∑
i∈I+0

ηG
i Gi(x

∗)−
∑
i∈I0

ηH
i Hi(x

∗) = f(x∗)
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and, in view of (23) and the feasibility of x(t) for t > 0 sufficiently small, we also have

φ(t) = f(x(t))+
∑
i∈Ig

λigi(x(t))+
∑
j∈J

µjhj(x(t))+
∑
i∈I+0

ηG
i Gi(x(t))−

∑
i∈I0

ηH
i Hi(x(t)) = f(x(t)),

which yields f(x(t)) < f(x∗) for all t > 0 sufficiently small, in contradiction to x∗ being a
local minimizer of (1). �

We next state a second-order sufficiency condition. Note, again, that this result makes use
of the same set C(x∗) as the second-order necessary condition from Theorem 4.3.

Theorem 4.4 Let (x∗, λ, µ, ηG, ηH) be a strongly stationary point of the MPVC (1) such
that

dT∇2
xxL(x∗, λ, µ, ηG, ηH)d > 0 ∀d ∈ C(x∗) \ {0}. (29)

Then x∗ is a strict local minimizer of (1).

Proof. Assume that x∗ is not a strict local minimizer of (1). Then there exists a sequence
{xk} ⊆ X tending to x∗ with f(xk) ≤ f(x∗) for all k. Now, put tk := ‖xk − x∗‖. Then we

have tk ↓ 0. Furthermore, we define the sequence {dk} ⊆ Rn by dk := xk−x∗

tk
. Since we have

‖dk‖ = 1 for all k ∈ N, we can assume, without loss of generality, that {dk} has a limit
d ∈ Rn \{0}. Furthermore, by construction, we see that d lies in the tangent cone T (x∗) of
(1) and thus, invoking Corollary 2.5 from [5], we particularly have d ∈ LMPV C(x∗). Hence,
we have

∇gi(x
∗)T d ≤ 0 (i ∈ Ig),

∇hj(x
∗)T d = 0 (j ∈ J),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d ≥ 0 (i ∈ I00 ∪ I0−),

∇Gi(x
∗)T d ≤ 0 (i ∈ I+0),

(30)

as well as (
∇Gi(x

∗)T d
)(
∇Hi(x

∗)T d
)
≤ 0 (i ∈ I00). (31)

Furthermore, since we have f(xk) ≤ f(x∗) for all k by assumption, the mean value theorem
yields a vector ξk on the connecting line between xk and x∗ such that ∇f(ξk)T (xk−x∗) ≤ 0
for all k. Dividing by ‖xk − x∗‖ and passing to the limit thus implies

∇f(x∗)T d ≤ 0. (32)

Now, we consider two different cases, which both lead to a contradiction.
First, consider the case that equality holds in (30) for all indices i ∈ I+

g ∪I+
0−∪I+

00∪I0+
+0 .

Then we have d ∈ C(x∗). Since xk is feasible for (1) for all k and we have xk → x∗, the
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following statements hold for all k sufficiently large:

λi gi(x
k)︸ ︷︷ ︸

≤0

≤ 0 (i ∈ Ig),

µj hj(x
k)︸ ︷︷ ︸

=0

= 0 (j ∈ J),

ηH
i Hi(x

k)︸ ︷︷ ︸
=0

= 0 (i ∈ I0+),

−ηH
i Hi(x

k)︸ ︷︷ ︸
≥0

≤ 0 (i ∈ I0− ∪ I00),

ηG
i Gi(x

k)︸ ︷︷ ︸
≤0

≤ 0 (i ∈ I+0),

(33)

where we use continuity arguments as well the fact that we have Gi(x
k)Hi(x

k) ≤ 0 for all
i = 1, . . . , l and all k, for the third and fifth statement. Invoking (33) and the properties
of the multipliers (λ, µ, ηG, ηH), we obtain

f(x∗) ≥ f(xk)

≥ f(xk) +
∑
i∈Ig

λigi(x
k) +

∑
j∈J

µjhj(x
k) +

∑
i∈I+0

ηG
i Gi(x

k)−
∑
i∈I0

ηH
i Hi(x

k)

= l(xk),

(34)

where we put l(x) := L(x, λ, µ, ηG, ηH). Applying Taylor’s formula to (34) yields a vector
ξk on the connecting line between x∗ and xk such that

f(x∗) ≥ l(xk)
= l(x∗)︸︷︷︸

=f(x∗)

+ ∇l(x∗)T︸ ︷︷ ︸
=∇xL(x∗,λ,µ,ηG,ηH)=0

(xk − x∗) + 1
2
(xk − x∗)T∇2l(ξk)(xk − x∗)

= f(x∗) + 1
2
(xk − x∗)T∇2

xxL(ξk, λ, µ, ηG, ηH)(xk − x∗),

(35)

also exploiting the fact that (x∗, λ, µ, ηG, ηH) is a strongly stationary point of (1). Dividing
by ‖x∗ − xk‖2 and letting k →∞ gives

dT∇2
xxL(x∗, λ, µ, ηG, ηH)d ≤ 0, (36)

which contradicts assumption (29) of our theorem, because we have 0 6= d ∈ C(x∗).
Second, consider the opposite case, that is, assume that there is an index i ∈ I+

g ∪ I+
0−∪

I+
00 ∪ I0+

+0 such that a strict inequality holds in (30). We only consider the case that there
exists an index i ∈ I+

g such that ∇gi(x
∗)T d < 0, since the other cases can be treated in the

same way. Now, let s ∈ I+
g such that ∇gs(x

∗)T d < 0. Then it follows from (30) and (32)
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that

0 ≥ ∇f(x∗)T d

= −
( ∑

i∈Ig

λi∇gi(x
∗)T d +

∑
j∈J

µj∇hj(x
∗)T d +

∑
i∈I+0

ηG
i ∇Gi(x

∗)T d−
∑
i∈I0

ηH
i ∇Hi(x

∗)T d
)

≥ −
∑
i∈I+

g

λi∇gi(x
∗)T d

≥ −λs∇gs(x
∗)T d > 0,

which yields the desired contradiction also in this case. �

5 Final Remarks

This paper contains three main results: First, it shows that the strong stationarity con-
ditions (which are known to be equivalent to the standard KKT conditions) are sufficient
optimality conditions for an interesting class of MPVCs. Second, we prove a necessary and
a sufficient second-order optimality condition using the same cone in both results. It would
be interesting to see whether the MPEC-counterparts of our second-order conditions are
actually identical to existing second-order conditions for MPECs, cf. [7, 11], or whether
we can use our technique of proof in order to obtain better results also in the context of
MPECs.

References

[1] W. Achtziger and C. Kanzow: Mathematical programs with vanishing con-
straints: Optimality conditions and constraint qualifications. Mathematical Program-
ming, to appear.

[2] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty: Nonlinear Programming.
Theory and Algorithms. John Wiley & Sons, 1993 (second edition).

[3] M. L. Flegel and C. Kanzow: A direct proof for M-stationarity under MPEC-
ACQ for mathematical programs with equilibrium constraints. In: S. Dempe and
V. Kalashnikov (eds.): Optimization with Multivalued Mappings: Theory, Applica-
tions and Algorithms. Springer–Verlag, New York, 2006, pp. 111–122.

[4] C. Geiger and C. Kanzow: Theorie und Numerik restringierter Optimierungsauf-
gaben. Springer-Verlag, Berlin, Heidelberg, New York, 2002.

[5] T. Hoheisel and C. Kanzow: On the Abadie and Guignard constraint qualifica-
tion for mathematical progams with vanishing constraints. Preprint 272, Institute of
Mathematics, University of Würzburg, Würzburg, September 2006.

15



[6] T. Hoheisel and C. Kanzow: Stationary Conditions for mathematical programs
with vanishing constraints using weak constraint qualifications. Preprint 274, Institute
of Mathematics, University of Würzburg, Würzburg, December 2006.

[7] Z.-Q. Luo, J.-S. Pang, and D. Ralph: Mathematical Programs with Equilibrium
Constraints. Cambridge University Press, Cambridge, New York, Melbourne, 1996.

[8] O. L. Mangasarian: Nonlinear Programming. McGraw-Hill Book Company, New
York, NY, 1969.

[9] J. V. Outrata: Optimality conditions for a class of mathematical programs with
equilibrium constraints. Mathematics of Operations Research, 24 (1999), pp. 627–644.
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