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Abstract. We consider a class of optimization problems that is called a mathematical
program with vanishing constraints (MPVC for short). This class has some similarities to
mathematical programs with equilibrium constraints (MPECs, for short), and typically vi-
olates standard constraint qualifications, hence the well-known Karush-Kuhn-Tucker con-
ditions do not provide necessary optimality criteria. In order to obtain reasonable first
order conditions under very weak assumptions, we introduce several MPVC-tailored con-
straint qualifications, discuss their relation, and prove an optimality condition which may
be viewed as the counterpart of what is called M-stationarity in the MPEC-field.
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1 Introduction

Consider the optimization problem

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l

(1)

with continuously differentiable functions f, gi, hj, Gi, Hi : Rn → R. Following [2], we
call (1) a mathematical program with vanishing constraints, MPVC for short. It serves as
a model for many problems from structural and topology optimization, see [2] for more
details. For example, vanishing constraints occur in truss topology design problems if a
bar is not realized in the optimal structure so that constraints (like minimum thickness)
disappear at the solution. Loosely speaking, this is reflected in the program (1) by the
fact that the implicit constraint Gi(x) ≤ 0 vanishes whenever the corresponding inequality
Hi(x) ≥ 0 is active, cf. [2].

According to [2], the MPVC can, in principle, be reformulated as a mathematical pro-
gram with equilibrium constraints, MPEC for short. Such an MPEC is an optimization
problem of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , l,

see, for example, the two books [20, 27] for a general treatment and many applications of
MPECs, the more recent works [10, 11, 12, 25, 26, 28, 34, 36, 37] for some more refined
theoretical results, or [4, 7, 8, 13, 14, 18, 19, 30, 35] for a number of suitable methods.
Therefore, it would be possible to apply the whole MPEC machinery to an MPVC. How-
ever, the reformulation of an MPVC as an MPEC given in [2] has some disadvantages. In
particular, it increases the dimension and, more importantly, it involves a nonuniqueness
so that isolated solutions of the MPVC are, in general, not locally unique solutions of
the corresponding MPEC. Furthermore, it seems that the MPVC, though being a difficult
nonconvex optimization problem, is somewhat simpler than an MPEC.

This motivates to consider the MPVC itself. So far, the literature on MPVCs is rather
limited. From an application (engineering) point of view, it was considered in [1]. The
first formal theoretical treatment can be found in [2]. In particular, the paper [2] shows
that the MPVC typically does not satisfy standard constraint qualifications like the linear
independence or Mangasarian-Fromovitz constraint qualifications. Hence standard opti-
mization methods are likely to fail at MPVCs. The subsequent paper [17] investigates the
Abadie and Guignard constraint qualifications in the context of MPVCs. It shows that
also the Abadie constraint qualification is too strong an assumption for MPVCs, while the
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Guignard constraint qualification holds in many situations, and some sufficient conditions
are presented in [17].

While the Guignard constraint qualification implies that the usual KKT conditions are
necessary optimality criteria for an MPVC, it has at least two major disadvantages from
a practical point of view: First, it is difficult to see whether a given MPVC satisfies the
Guignard constraint qualification. It would be nice, for example, if one could say that a
certain condition holds in the case where all mappings gi, hj, Gi, Hi are linear, since this can
be checked a priori. Second, the Guignard constraint qualification is certainly not enough
in order to prove nice global or local convergence results for suitable algorithms. These
algorithms typically require some LICQ- or MFCQ-type conditions, see, for example, the
forthcoming paper [3].

The aim of this paper is therefore to introduce some MPVC-tailored constraint qualifi-
cation, a corresponding optimality result which holds under very weak conditions, as well
as several sufficient conditions for the different constraint qualifications.

To this end, we first recall in Section 2 a number of preliminary results. In Section 3,
we use an MPVC-variant of the Guignard constraint qualification in order to establish a
first order condition which is only slightly weaker than the usual KKT conditions. Sec-
tion 4 gives some relatively simple sufficient conditions for our MPVC-tailored Guignard
constraint qualification to hold. In particular, this includes the case where all functions
gi, hj, Gi, Hi are linear. MPVC-versions of some other standard constraint qualifications
are introduced and discussed in Section 5. We then close with some final remarks in Section
6.

Notation: R denotes the set of real numbers, R+ := [0, +∞) is the set of nonnegative
real numbers, and R− := (−∞, 0] are the nonpositive numbers. Given a(n index) set I, we
write P(I) for the set of all partitions of I into two disjoint subsets of I, i.e. (β1, β2) ∈ P(I)
if and only if β1 ∪ β2 = I and β1 ∩ β2 = ∅. The closure of a set X ⊆ Rn is denoted by
cl(X). Furthermore, we write Φ : Rn ⇒ Rn for a multifunction or set-valued map, i.e.,
Φ(x) is a subset of Rn. Its graph is defined as gphΦ := {(x, y) | y ∈ Φ(x)}. Following [31],
Φ : Rn ⇒ Rn is called a polyhedral multifunction if its graph is the union of finitely many
polyhedral convex sets.

2 Preliminaries

In this section we recall some basic definitions from optimization, introduce several index
sets and state some preliminary results that will be used in our subsequent analysis. We
begin with the definition of the dual and polar cone.

Definition 2.1 Let C ⊆ Rn be a nonempty set. Then

(a) C∗ := {v ∈ Rn | vT d ≥ 0 ∀d ∈ C} is the dual cone of C.

(b) C◦ := {v ∈ Rn | vT d ≤ 0 ∀d ∈ C} is the polar cone of C.
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Note that v ∈ C∗ if and only if −v ∈ C◦, hence C◦ is the negative of C∗.
Next consider a general optimization problem of the form

min f̃(x)
s.t. g̃i(x) ≤ 0 ∀i = 1, . . . , m̃,

h̃j(x) = 0 ∀j = 1, . . . , p̃,

(2)

where all functions f̃ , g̃i, h̃j : Rñ → R are assumed to be continuously differentiable. Let X̃
denote the feasible set of this optimization problem. Then the tangent cone at a feasible
point x̃ ∈ X̃ is defined by

T (x̃) :=
{
d ∈ Rñ

∣∣ ∃{x̃k} ⊆ X̃, {tk} ↓ 0 : x̃k → x̃ and
x̃k − x̃

tk
→ d

}
.

Furthermore, the linearized cone at x̃ ∈ X̃ is defined by

L(x̃) =
{
d ∈ Rñ | ∇g̃i(x̃)T d ≤ 0 (i : g̃i(x̃) = 0),

∇h̃j(x̃)T d = 0 (j = 1, . . . , p̃)
}
.

The following constraint qualifications are standard in optimization, see, e.g., [6, 29].

Definition 2.2 Let x̃ ∈ X̃ be a feasible point of the program (2). Then

(a) the linear independence constraint qualification (LICQ for short) holds at x̃ if the
gradients ∇h̃j(x̃) (j = 1, . . . , p̃), ∇g̃i(x̃) (i : g̃i(x̃) = 0) are linearly independent.

(b) the Mangasarian-Fromovitz constraint qualification (MFCQ for short) holds at x̃ if
the gradients ∇h̃j(x̃) (j = 1, . . . , p̃) are linearly independent, and there exists a vector
d̃ such that ∇h̃j(x̃)T d̃ = 0 (j = 1, . . . , p̃) and ∇g̃i(x̃)T d̃ < 0 (i : g̃i(x̃) = 0).

(c) the Abadie constraint qualification (ACQ for short) holds at x̃ if L(x̃) = T (x̃).

(d) the Guignard constraint qualification (GCQ for short) holds at x̃ if L(x̃)∗ = T (x̃)∗.

The following implications are known to hold:

LICQ =⇒ MFCQ =⇒ ACQ =⇒ GCQ,

whereas the converse directions do not hold in general. If x̃ denotes a local minimum
of (2) such that GCQ (or any of the other stronger constraint qualifications) is satisfied
at x̃, then it is known that there exist certain Lagrange multipliers such that the usual
KKT conditions hold. In fact, GCQ is known to be the weakest constraint qualification
which guarantees that the KKT conditions are necessary optimality conditions, in a sense
discussed in [15, 6].

Let us come back to our MPVC from (1). It was already noted in [2] that both LICQ
and MFCQ are usually violated at an arbitary feasible point. ACQ and GCQ were then
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discussed in more detail in the subsequent work [17]. In order to get a better understanding
of these results, let X denote the feasible set of (1), and let x∗ ∈ X be an arbitrary feasible
point. Then define the index sets

Ig :=
{
i
∣∣ gi(x

∗) = 0
}
,

I+ :=
{
i
∣∣ Hi(x

∗) > 0
}
,

I0 :=
{
i
∣∣ Hi(x

∗) = 0
}
.

(3)

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{
i
∣∣ Hi(x

∗) > 0, Gi(x
∗) = 0

}
,

I+− :=
{
i
∣∣ Hi(x

∗) > 0, Gi(x
∗) < 0

}
.

(4)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) > 0

}
,

I00 :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) = 0

}
,

I0− :=
{
i
∣∣ Hi(x

∗) = 0, Gi(x
∗) < 0

}
.

(5)

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second subscript

stands for the sign of Gi(x
∗). Using these index sets, we can state the following represen-

tation of the linearized cone at a feasible point of our MPVC. Its elementary proof can be
found in [2, Lemma 4].

Lemma 2.3 Let x∗ ∈ X be a feasible point for (1). Then the linearized cone at x∗ is given
by

L(x∗) =
{
d ∈ Rn | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig),
∇hj(x

∗)T d = 0 (j = 1, . . . , p),
∇Hi(x

∗)T d = 0 (i ∈ I0+),
∇Hi(x

∗)T d ≥ 0 (i ∈ I00 ∪ I0−),
∇Gi(x

∗)T d ≤ 0 (i ∈ I+0)
}
.

(6)

It is also possible to get an explicit representation of the tangent cone itself. To this end, let
x∗ ∈ X once again be feasible for the program (1), and let (β1, β2) ∈ P(I00) be an arbitrary
partition of the index set I00. Then let NLP∗(β1, β2) denote the nonlinear program

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) = 0 ∀i ∈ I0+,
Hi(x) ≥ 0 ∀i ∈ I0−,
Gi(x) ≤ 0 ∀i ∈ I+0,
Hi(x) ≥ 0 ∀i ∈ β1,
Gi(x) ≤ 0 ∀i ∈ β1,
Hi(x) = 0 ∀i ∈ β2,
Hi(x) ≥ 0 ∀i ∈ I+,
Gi(x) ≤ 0 ∀i ∈ I+− ∪ I0−.

(7)
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The tangent cone of NLP∗(β1, β2) is denoted by TNLP∗(β1,β2)(x
∗), whereas LNLP∗(β1,β2)(x

∗)
is the corresponding linearized cone. This linearized cone is given by

LNLP∗(β1,β2)(x
∗) =

{
d ∈ Rn | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig),
∇hj(x

∗)T d = 0 (j = 1, . . . , p),
∇Hi(x

∗)T d = 0 (i ∈ I0+),
∇Hi(x

∗)T d ≥ 0 (i ∈ I0−),
∇Gi(x

∗)T d ≤ 0 (i ∈ I+0),
∇Hi(x

∗)T d ≥ 0 (i ∈ β1),
∇Gi(x

∗)T d ≤ 0 (i ∈ β1),
∇Hi(x

∗)T d = 0 (i ∈ β2)
}
.

(8)

Following [17], we also define the MPVC-linearized cone

LMPV C(x∗) :=
{
d ∈ Rn | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig),
∇hj(x

∗)T d = 0 (j = 1, . . . , p),
∇Hi(x

∗)T d = 0 (i ∈ I0+),
∇Hi(x

∗)T d ≥ 0 (i ∈ I00 ∪ I0−),
∇Gi(x

∗)T d ≤ 0 (i ∈ I+0),
(∇Hi(x

∗)T d)(∇Gi(x
∗)T d) ≤ 0 (i ∈ I00)

}
.

(9)

Note that LMPV C(x∗) is, in general, a nonconvex cone, and that the only difference between
LMPV C(x∗) and the linearized cone L(x∗) is that we have an additional quadratic term in
the last line of (9), cf. Lemma 2.3.

Using these definitions and cones, the following result was shown in [17, Lemma 2.4].
(Similar results for MPECs may be found in [20, 28, 10].)

Lemma 2.4 Let x∗ be feasible for (1). Then the following statements hold:

(a) T (x∗) =
⋃

(β1,β2)∈P(I00)

TNLP∗(β1,β2)(x
∗).

(b) LMPV C(x∗) =
⋃

(β1,β2)∈P(I00)

LNLP∗(β1,β2)(x
∗).

Lemma 2.4 shows that the tangent cone T (x∗) is usually the union of finitely many cones
and, therefore, not convex in general. Since the linearized cone L(x∗) is polyhedral and,
therefore, always closed and convex, this shows that ACQ usually does not hold for MPVCs.
On the other hand, the discussion in [17] indicates that GCQ has a good chance to hold,
and several sufficient conditions for GCQ to be satisfied are given in [17]. Using GCQ, we
get the following result from [2, Theorem 1].

Theorem 2.5 Let x∗ be a local minimum of (1) such that GCQ holds at x∗. Then there
exist Lagrange multipliers λi ∈ R (i = 1, . . . ,m), µj ∈ R (j = 1, . . . , p), ηH

i , ηG
i ∈ R (i =

1, . . . , l) such that

∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) +

p∑
j=1

µj∇hj(x
∗)−

l∑
i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0 (10)

5



and
λi ≥ 0, gi(x

∗) ≤ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I00 ∪ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I0 ∪ I+−), ηG

i ≥ 0 (i ∈ I+0).

(11)

Note that (10) and (11) are the usual KKT conditions of our MPVC, cf. their derivation
in [2].

Motivated by the fact that most standard constraint qualifications are violated and
taking into account that GCQ is not enough in order to prove convergence of suitable
algorithms or sensitivity results for MPVCs, we now introduce several MPVC-tailored
variants of LICQ, MFCQ etc. To this end, let x∗ ∈ X be once again a feasible point of
MPVC. Then consider the nonlinear program

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hj(x) = 0 ∀j = 1, . . . , p,
Hi(x) = 0 ∀i ∈ I0+ ∪ I00,
Hi(x) ≥ 0 ∀i ∈ I0− ∪ I+,
Gi(x) ≤ 0 ∀i = 1, . . . , l

(12)

that we call the tightened nonlinear program, TNLP (x∗) for short, since its feasible set is
obviously contained in X. (Another tightened nonlinear program in the context of MPECs
was also used in [34] in order to define MPEC-tailored constraint qualifications.)

Definition 2.6 The MPVC (1) satisfies MPVC-LICQ (MPVC-MFCQ) at a feasible point
x∗, if TNLP (x∗) satisfies LICQ (MFCQ) at x∗.

Note that the above definition of MPVC-LICQ coincides with the definition given in [17],
and it follows immediately that MPVC-LICQ implies MPVC-MFCQ, since standard LICQ
always implies standard MFCQ.

As we will use MPVC-MFCQ in the subsequent analysis, we write it down explicitly
using Definition 2.2: MPVC-MFCQ holds at a feasible point x∗ of (1) if and only if the
gradients

∇hj(x
∗) (j = 1, . . . , p) and ∇Hi(x

∗) (i ∈ I0+ ∪ I00) (13)

are linearly independent, and there exists a vector d such that

∇gi(x
∗)T d < 0 ∀i ∈ Ig,

∇Hi(x
∗)T d > 0 ∀i ∈ I0−,

∇Gi(x
∗)T d < 0 ∀i ∈ I+0 ∪ I00,

∇hj(x
∗)T d = 0 ∀j = 1, . . . , p,

∇Hi(x
∗)T d = 0 ∀i ∈ I0+ ∪ I00.

(14)

In order to define the MPVC-counterparts of ACQ and GCQ, we also recall the following
result from [17, Corollary 2.5].
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Lemma 2.7 Given a feasible point x∗ ∈ X of (1), the inclusions T (x∗) ⊆ LMPV C(x∗) ⊆
L(x∗) hold.

While the usual ACQ requires that T (x∗) = L(x∗) which, in the context of MPVCs, was
noted to be too strong due to the usual nonconvexity of the tangent cone T (x∗), Lemma
2.7 motivates to replace this equality by the weaker assumption T (x∗) = LMPV C(x∗),
especially since the MPVC-linearized cone LMPV C(x∗) is, in general, also nonconvex by
definition. This gives the following MPVC-counterparts of ACQ and GCQ.

Definition 2.8 Let x∗ ∈ X be a feasible point of (1). Then

(a) MPVC-ACQ holds at x∗ if T (x∗) = LMPV C(x∗).

(b) MPVC-GCQ holds at x∗ if T (x∗)∗ = LMPV C(x∗)∗.

MPVC-ACQ was introduced earlier in [17, Definition 2.6], see also [9, 12] for similar def-
initions in the context of MPECs and disjunctive programs. Note that MPVC-ACQ and
MPVC-GCQ are not defined via the tightened nonlinear program TNLP (x∗) and, in fact,
are usually different from standard ACQ and standard GCQ of this tightened program.

As one might expect, the following implications hold:

MPVC-LICQ =⇒ MPVC-MFCQ =⇒ MPVC-ACQ =⇒ MPVC-GCQ. (15)

The first and third implications are direct consequences of the corresponding definitions,
whereas the second implication will be shown in Theorem 4.4 below.

Using Lemma 2.7, it follows immediately from Definition 2.8 that the standard GCQ
(standard ACQ) implies MPVC-GCQ (MPVC-ACQ). The converse is not true in general.
This is illustrated by the following counterexample where MPVC-ACQ (and therefore also
MPVC-GCQ) holds, whereas GCQ is violated and, thus, ACQ is not satisfied either.

Example 2.9 Consider the optimization problem

min f(x) := x2
1 + x2

2

s.t. H1(x) := x2 ≥ 0,
G1(x)H1(x) := (x2 − x3

1)x2 ≤ 0.
(16)

The unique solution of (16) is x∗ := (0, 0)T . A simple calculation (invoking Lemma 2.4, for
example) shows that the tangent cone at x∗ is given by T (x∗) = {d ∈ R2 | d2 = 0}. Hence,
its dual cone is T (x∗)∗ = {v ∈ R2 | v1 = 0}. Furthermore, the MPVC-linearized cone at x∗

is given by LMPV C(x∗) = {d ∈ R2 | d2 = 0}, cf. (9). Hence T (x∗) = LMPV C(x∗) and thus,
MPVC-ACQ holds. In turn, the linearized cone at x∗ is given by L(x∗) = {d ∈ R2 | d2 ≥ 0}
and its dual is L(x∗)∗ = {v ∈ R2 | v1 = 0, v2 ≥ 0}. Hence, we have L(x∗)∗ ( T (x∗)∗ and
thus, GCQ is violated. ♦

The next example shows that MPVC-GCQ has a chance to be satisfied even if MPVC-ACQ
is not and thus, MPVC-GCQ happens to be a strictly weaker constraint qualification than
MPVC-ACQ, cf. (15).
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Example 2.10 Consider the optimization problem

min f(x) := x2
1 + x2

2

s.t. g1(x) := −x2 ≤ 0,
H1(x) := x2 − x3

1 ≥ 0,
G1(x)H1(x) := x3

1(x2 − x3
1) ≤ 0.

(17)

Its unique solution is x∗ := (0, 0)T . One can easily see by geometric arguments or by
Lemma 2.4 that T (x∗) = {d ∈ R2 | d2 ≥ 0, d1d2 ≤ 0}. One can also compute that
LMPV C(x∗) = {d ∈ R2 | d2 ≥ 0}. Thus, MPVC-ACQ is obviously violated, whereas
MPVC-GCQ holds, since we have T (x∗)∗ = {v ∈ R2 | v1 = 0, v2 ≥ 0} = LMPV C(x∗)∗. ♦

3 Optimality Conditions under MPVC-GCQ

In this section, we want to present optimality conditions under the MPVC-GCQ assump-
tion. Since this means that GCQ does not necessarily hold, and because GCQ is the
weakest constraint qualification such that the standard KKT conditions are necessary first
order conditions, it follows that the optimality conditions to be derived in this section must
be weaker than those from Theorem 2.5. However, we will see that we do not lose much if
we replace GCQ by the MPVC-GCQ condition.

Our technique of proof is motivated by the corresponding analysis carried out in [11]
for MPECs, and is based on the so-called limiting normal cone.

Definition 3.1 Let C ⊆ Rn be a nonempty, closed set, and let a ∈ C. Then

(a) the Fréchet normal cone to C at a is defined by N̂(a, C) := (TC(a))◦, i.e., the Fréchet
normal cone is the polar of the tangent cone.

(b) the limiting normal cone to C at a is defined by

N(a, C) :=
{

lim
k→∞

wk | ∃{ak} ⊆ C : ak → a, wk ∈ N̂(ak, C)
}
. (18)

The Fréchet normal cone is sometimes also called the regular normal cone, most notably in
[33], whereas the limiting normal cone comes with a number of different names, including
normal cone, basic normal cone, and Mordukhovich normal cone due to the many contri-
butions of Mordukhovich in this area, see, in particular, [22, 23] for an extensive treatment
and many applications of this cone. In case of a convex set C, both the Fréchet normal
cone and the limiting normal cone coincide with the standard normal cone from convex
analysis, cf. [32].

For the remainder, we put
q := |I00|.

The following result calculates both the Fréchet and the limiting normal cone of a particular
set that will play an essential role in the analysis of MPVCs.
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Lemma 3.2 Let the set

C := {(ν, ρ) ∈ Rq × Rq | ρi ≥ 0, ρiνi ≤ 0 ∀i = 1, . . . , q}

be given. Then the following statements hold:

(a) N̂
(
(0, 0), C

)
=

{
(u, v) | u = 0, v ≤ 0

}
.

(b) N
(
(0, 0), C

)
=

{
(u, v) | ui ≥ 0, uivi = 0 ∀i = 1, . . . , q

}
.

Proof. Reordering the elements of the set C in a suitable way, we see that C can be
expressed as a Cartesian product C1 × · · · × Cq with closed sets Ci := {(νi, ρi) ∈ R2 | ρi ≥
0, ρiνi ≤ 0}. Invoking [33, Proposition 6.41], it follows that we simply have to calculate
the Fréchet and the limiting normal cones of the set M :=

{
(ν, ρ) ∈ R2 | ρ ≥ 0, ρν ≤ 0

}
at

(0, 0) ∈ R2.

(a) Because of the above remark, it suffices to show that N̂((0, 0), M) = {0} × R−. It is
easy to see, however, that TM((0, 0)) = M holds. Thus, the Fréchet normal cone is given
by N̂((0, 0), M) = M◦ = {(c, d) ∈ R2 | c = 0, d ≤ 0} = {0} × R−, which proves assertion
(a).

(b) It suffices to show that N((0, 0), M) =
{
(r, s) ∈ R2 | r ≥ 0, rs = 0

}
holds.

′ ⊆′: In view of the definition of the limiting normal cone in (18), we first need to figure
out how the Fréchet normal cone of M at an arbitrary point (ν, ρ) ∈ M looks like. To this
end, we consider five cases:

1) ν < 0, ρ > 0: This implies TM(ν, ρ) = R2. Hence N̂
(
(ν, ρ), M

)
= {0} × {0} =: A1.

2) ν = 0, ρ > 0: This implies TM(ν, ρ) = R−×R. Hence N̂
(
(ν, ρ), M

)
= R+×{0} =: A2.

3) ν < 0, ρ = 0: This implies TM(ν, ρ) = R×R+. Hence N̂
(
(ν, ρ), M

)
= {0}×R− =: A3.

4) ν > 0, ρ = 0: This implies TM(ν, ρ) = R×{0}. Hence N̂
(
(ν, ρ), M

)
= {0}×R =: A4.

5) ν = ρ = 0: This implies TM(ν, ρ) = M . Hence N̂
(
(ν, ρ), M

)
= {0} × R− = A3.

Now let w ∈ N
(
(0, 0), M

)
. Then there is a sequence {wk} → w such that wk ∈ N̂

(
(νk, ρk), M

)
for all k ∈ N and some sequence {(νk, ρk)} ⊆ M converging to (0, 0). Then it follows
from the above five cases that all wk belong to the set A1 ∪ A2 ∪ A3 ∪ A4 = A2 ∪ A4 =
R+ × {0} ∪ {0} × R = {(r, s) ∈ R2 | r ≥ 0, rs = 0}. Since this set is closed, the limiting
element w also belongs to this set. This gives the desired inclusion.

′ ⊇′: Let (a, b) ∈
{
(r, s) ∈ R2 | r ≥ 0, rs = 0

}
. First, we consider the case a > 0 (hence

b = 0). In order to prove (a, b) ∈ N
(
(0, 0), M

)
, we define the sequence {(uk, vk)} ⊆ M

by putting uk := 0 and selecting vk such that we have vk ↓ 0. Then we are in the above
second case for all k ∈ N. Consequently, we have (ak, bk) := (a, 0) ∈ N̂

(
(uk, vk), M

)
for all

9



k ∈ N which proves the desired inclusion. Next, consider the case a = 0 (and b arbitrary).
Then let {(uk, vk)} ⊆ M be any sequence with uk ↓ 0 and vk = 0 for all k ∈ N. Then the
above fourth case shows that N̂

(
(uk, vk), M

)
= {0} × R. Defining (ak, bk) := (0, b) for all

k ∈ R, it therefore follows that (ak, bk) ∈ N̂
(
(uk, vk), M

)
for all k ∈ N, and this gives the

desired inclusion also in this case. �

Now let D1 and D2 denote the following sets:

D1 :=
{
(d, ν, ρ) ∈ Rn × Rq × Rq

∣∣ ∇gi(x
∗)T d ≤ 0 (i ∈ Ig),

∇hj(x
∗)T d = 0 (j = 1, . . . , p),

∇Hi(x
∗)T d = 0 (i ∈ I0+),

∇Hi(x
∗)T d ≥ 0 (i ∈ I0−),

∇Gi(x
∗)T d ≤ 0 (i ∈ I+0),

∇Gi(x
∗)T d− νi = 0 (i ∈ I00),

∇Hi(x
∗)T d− ρi = 0 (i ∈ I00)

}
.

(19)

and
D2 :=

{
(d, ν, ρ) ∈ Rn × Rq × Rq

∣∣ ρi ≥ 0, νiρi ≤ 0 ∀i = 1, . . . , q
}
. (20)

These two sets will be crucial for the proof of our upcoming main result.

Lemma 3.3 Let the multifunction Φ : Rn+2q ⇒ Rn+2q be given by

Φ(v) :=
{
w ∈ D1 | v + w ∈ D2

}
. (21)

Then Φ is a polyhedral multifunction.

Proof. Since the graph of Φ may be expressed as

gphΦ =
{
(dv, νv, ρv, dw, νw, ρw) | ∇gi(x

∗)T dw ≤ 0 (i ∈ Ig),
∇hj(x

∗)T dw = 0 (j = 1, . . . , p),
∇Hi(x

∗)T dw = 0 (i ∈ I0+),
∇Hi(x

∗)T dw ≥ 0 (i ∈ I0−),
∇Gi(x

∗)T dw ≤ 0 (i ∈ I+0),
∇Gi(x

∗)T dw − νw
i = 0 (i ∈ I00),

∇Hi(x
∗)T dw − ρw

i = 0 (i ∈ I00),
ρv + ρw ≥ 0,
(ρv

i + ρw
i )(νv

i + νw
i ) ≤ 0 (i = 1, . . . , q)

}

10



=
⋃

(α1,α2)∈P({1,...,q})

{
(dv, νv, ρv, dw, νw, ρw) | ∇gi(x

∗)T dw ≤ 0 (i ∈ Ig),

∇hj(x
∗)T dw = 0 (j = 1, . . . , p),

∇Hi(x
∗)T dw = 0 (i ∈ I0+),

∇Hi(x
∗)T dw ≥ 0 (i ∈ I0−),

∇Gi(x
∗)T dw ≤ 0 (i ∈ I+0),

∇Gi(x
∗)T dw − νw

i = 0 (i ∈ I00),
∇Hi(x

∗)T dw − ρw
i = 0 (i ∈ I00),

ρv
α1

+ ρw
α1
≥ 0,

ρv
α2

+ ρw
α2

= 0,
νv

α1
+ νw

α1
≤ 0

}
,

gphΦ is the union of finitely many polyhedral convex sets. Hence the assertion follows. �

The previous results allow us to state the following main result of this section.

Theorem 3.4 Let x∗ be a local minimizer of (1) such that MPVC-GCQ holds. Then there
exist scalars λi ∈ R (i = 1, . . . ,m), µj ∈ R (j = 1, . . . , p), ηH

i , ηG
i ∈ R (i = 1, . . . , l) such that

∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) +

p∑
j=1

µj∇hj(x
∗)−

l∑
i=1

ηH
i ∇Hi(x

∗) +
l∑

i=1

ηG
i ∇Gi(x

∗) = 0 (22)

and
λi ≥ 0, gi(x

∗) ≤ 0, λigi(x
∗) = 0 ∀i = 1, . . . ,m,

ηH
i = 0 (i ∈ I+), ηH

i ≥ 0 (i ∈ I0−), ηH
i free (i ∈ I0+),

ηG
i = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηG

i ≥ 0 (i ∈ I+0 ∪ I00),

ηH
i ηG

i = 0 (i ∈ I00).

(23)

Proof. Since x∗ is a local minimizer of (1), standard results from optimization imply that
∇f(x∗)T d ≥ 0 for all d ∈ T (x∗), see, e.g., [24]. Since MPVC-GCQ holds at x∗, it therefore
follows that ∇f(x∗) ∈ T (x∗)∗ = LMPV C(x∗)∗. Consequently, we have ∇f(x∗)T d ≥ 0 for
all d ∈ LMPV C(x∗). This is equivalent to d∗ = 0 being a minimizer of

min
d
∇f(x∗)T d s.t. d ∈ LMPV C(x∗). (24)

Now, d∗ = 0 being a minimizer of (24) is equivalent to (d∗, ν∗, ρ∗) := (0, 0, 0) being a
minimizer of

min
d,ν,ρ

∇f(x∗)T d s.t. (d, ν, ρ) ∈ D := D1 ∩ D2 (25)

with D1 and D2 as defined in (19) and (20), respectively. Once more, since (0, 0, 0) is

a minimizer of (25), we have
(
∇f(x∗)T , 0, 0

)T
w ≥ 0 for all w ∈ T

(
(0, 0, 0),D

)
, where

T
(
(0, 0, 0),D

)
denotes the tangent cone of D at the origin. Using [33, Proposition 6.5],

this implies(
−∇f(x∗)T , 0, 0

)T ∈ T
(
(0, 0, 0),D

)◦
= N̂

(
(0, 0, 0),D

)
⊆ N

(
(0, 0, 0),D

)
. (26)
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Since Φ, as defined in (21), is a polyhedral multifunction by Lemma 3.3, [31, Proposition
1] may be invoked to show that Φ is locally upper Lipschitz at every point v ∈ Rn+2q. In
particular, it is therefore calm at every (v, w) ∈ gphΦ in the sense of [16]. Invoking [16,
Corollary 4.2], we see that (26) implies(

−∇f(x∗)T , 0, 0
)T ∈ N

(
(0, 0, 0),D1

)
+ N

(
(0, 0, 0),D2

)
.

Since D1 is polyhedral convex, the limiting normal cone of D1 is equal to the standard
normal cone from convex analysis, and standard results on the representation of this normal
cone (see, e.g., [6, 11]) yield the existence of certain vectors λ, µ, µH , µG such that −∇f(x∗)

0
0

 ∈
∑
i∈Ig

λi

 ∇gi(x
∗)

0
0

 +

p∑
j=1

µj

 ∇hj(x
∗)

0
0


−

∑
i∈I0+∪I0−

µH
i

 ∇Hi(x
∗)

0
0

 +
∑
i∈I+0

µG
i

 ∇Gi(x
∗)

0
0


−

∑
i∈I00

µH
i

 ∇Hi(x
∗)

0
−ei

 +
∑
i∈I00

µG
i

 ∇Gi(x
∗)

−ei

0


+N

(
(0, 0, 0),D2

)
(27)

with
λi ≥ 0 (i ∈ Ig), µH

i ≥ 0 (i ∈ I0−), µG
i ≥ 0 (i ∈ I+0), (28)

where ei denotes the compatible unit vector in Rq.
Using [33, Proposition 6.41] and Lemma 3.2, we get the following explicit representation

of the remaining normal cone:

N((0, 0, 0),D2) = N(0, Rn)×N
(
(0, 0), {(ν, ρ) | ρi ≥ 0, ρiνi ≤ 0 ∀i = 1, . . . , q}

)
= {0}n ×

{
(u, v) | ui ≥ 0, uivi = 0 ∀i = 1, . . . , q

}
.

Applying the above equality to (27) yields

µG
i ≥ 0 ∧ µG

i µH
i = 0 ∀i ∈ I00. (29)

Putting λi := 0 for i 6∈ Ig, ηH
i := 0 for i ∈ I+, ηG

i := 0 for i ∈ I0+ ∪ I0− ∪ I+−, ηG
i := µG

i

and ηH
i := µH

i for all other indices, we see from (28), (29) and the first row of (27) that
(22) and (23) are satisfied. �

Motivated by a corresponding terminology for MPECs (where it was introduced in [35])
and based on the fact that the optimality conditions (22), (23) from Theorem 3.4 were
derived using the Mordukhovich normal cone, we call them the M-stationary conditions of
an MPVC. They are slightly weaker than the standard KKT conditions (10), (11) from
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Theorem 2.5. In fact, in the latter we have ηH
i ≥ 0 and ηG

i = 0 for all i ∈ I00, whereas now
we only have ηG

i ≥ 0 and ηH
i ηG

i = 0 for all i ∈ I00. Geometrically, this means that, for every
index i ∈ I00, the pair (ηG

i , ηH
i ) lies on the nonnegative ηH

i -axis for a KKT point, where it
belongs to the union of the ηH

i -axis and the nonnegative ηG
i -axis for an M-stationary point.

4 Sufficient Conditions for MPVC-ACQ

It is the goal of this section to provide some relatively simple sufficient conditions for
MPVC-ACQ. Thus, we automatically obtain sufficient conditions for MPVC-GCQ, too,
since MPVC-ACQ implies MPVC-GCQ. Some more refined sufficient conditions for MPVC-
ACQ will be discussed in the next section.

The first result of this section is an immediate consequence of Lemma 2.4 and states
that MPVC-ACQ holds if ACQ is satisfied for NLP∗(β1, β2), for any (β1, β2) ∈ P(I00).

Lemma 4.1 Let x∗ be feasible for (1). If, for any partition (β1, β2) ∈ P(I00), the Abadie
constraint qualification holds for NLP∗(β1, β2), then MPVC-ACQ holds for (1).

Proof. Using our assumption and Lemma 2.4, we obtain

T (x∗) =
⋃

(β1,β2)∈P(I00)

TNLP∗(β1,β2)(x
∗) =

⋃
(β1,β2)∈P(I00)

LNLP∗(β1,β2)(x
∗) = LMPV C(x∗),

which gives the assertion. �

Note that the assumption in Lemma 4.1 is equivalent to assumption (A1) in [17]. An
immediate consequence is the following theorem.

Theorem 4.2 Let x∗ be feasible for (1) and assume that all functions gi, hj, Gi, and Hi

are linear. Then MPVC-ACQ holds at x∗.

Proof. Since all constraints of NLP∗(β1, β2) are linear for any (β1, β2) ∈ P(I00), it
follows from a well-known result in optimization that ACQ holds for each NLP∗(β1, β2),
(β1, β2) ∈ P(I00). Lemma 4.1 therefore gives the desired result. �

To clarify the relationship between MPVC-MFCQ and MPVC-ACQ, we need the following
auxiliary result.

Lemma 4.3 Let x∗ be feasible for (1) such that MPVC-MFCQ is satisfied. Then, for any
(β1, β2) ∈ P(I00), MFCQ holds at x∗ for NLP∗(β1, β2).

Proof. Let (β1, β2) ∈ P(I00) be given arbitrarily. We have to show that the gradients

∇hj(x
∗) ∀j = 1, . . . , p,

∇Hi(x
∗) ∀i ∈ I0+ ∪ β2

(30)
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are linearly independent, and that there exists a vector d̃ such that

∇gi(x
∗)T d̃ < 0 ∀i ∈ Ig,

∇Hi(x
∗)T d̃ > 0 ∀i ∈ I0− ∪ β1,

∇Gi(x
∗)T d̃ < 0 ∀i ∈ I+0 ∪ β1,

∇hj(x
∗)T d̃ = 0 ∀j = 1, . . . , p,

∇Hi(x
∗)T d̃ = 0 ∀i ∈ I0+ ∪ β2.

(31)

The linear independence of (30) is trivially satisfied, as we have β2 ⊆ I00 and MPVC-MFCQ
holds, cf. (13).

Since the occurring gradients are linearly independent, the linear system ∇hj(x
∗)T (j = 1, . . . , p)

∇Hi(x
∗)T (i ∈ I0+ ∪ β2)

∇Hi(x
∗)T (i ∈ β1)

 d =

 0
0
e


has a solution d̂, where e ∈ R|β1| denotes the vector of all ones. Now, choose d such that
(14) is satisfied, and put

d(δ) := d + δd̂.

Then, for all δ > 0, we have

∇hj(x
∗)T d(δ) = 0 ∀j = 1, . . . , p,

∇Hi(x
∗)T d(δ) = 0 ∀i ∈ I0+ ∪ β2,

∇Hi(x
∗)T d(δ) > 0 ∀i ∈ β1.

Furthermore, for δ > 0 sufficiently small, we have

∇gi(x
∗)T d(δ) < 0 ∀i ∈ Ig,

∇Hi(x
∗)T d(δ) > 0 ∀i ∈ I0−,

∇Gi(x
∗)T d(δ) < 0 ∀i ∈ β1 ∪ I+0.

This concludes the proof. �

The next theorem states that MPVC-MFCQ is a sufficient condition for MPVC-ACQ. An
immediate consequence of this result is the chain of implications already given in (15).

Theorem 4.4 Let x∗ be feasible for (1) such that MPVC-MFCQ holds. Then MPVC-ACQ
is satisfied.

Proof. Lemma 4.3 shows that standard MFCQ holds for every program NLP∗(β1, β2)
with (β1, β2) ∈ P(I00). Hence standard ACQ holds for each program NLP∗(β1, β2). The
statement therefore follows from Lemma 4.1. �

In particular, it follows from Theorem 4.4 and (15) that MPVC-LICQ implies MPVC-ACQ.
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5 More MPVC-tailored Constraint Qualifications

The goal of this section is to provide further MPVC-tailored constraint qualifications and
to investigate their relationships. The analysis is motivated by similar considerations for
MPECs in [37] and bilevel programs in [38], for example, see also the treatment for standard
optimization problems in [21] and elsewhere.

In order to state these constraint qualifications, we first recall the definition of two
well-known cones from, e.g., [5]. Given a feasible point x ∈ X of (1), we call

A(x) :=
{
d ∈ Rn | ∃δ > 0,∃α : R → Rn : α(τ) ∈ X ∀τ ∈ (0, δ),

α(0) = x, lim
τ↓0

α(τ)− α(0)

τ
= d

} (32)

the cone of attainable directions of X at x, and

F(x) :=
{
d ∈ Rn \ {0} | ∃δ > 0 : x + τd ∈ X ∀τ ∈ (0, δ)

}
(33)

the cone of feasible directions of X at x. Then the following chain of inclusions

cl
(
F(x)

)
⊆ cl

(
A(x)

)
⊆ T (x) ⊆ LMPV C(x) ⊆ L(x) (34)

holds, cf. [5, Lemma 5.2.1] and Lemma 2.7. Now, the standard Zangwill constraint quali-
fication (ZCQ for short) is said to hold at x if L(x) ⊆ cl

(
F(x)

)
, and the standard Kuhn-

Tucker constraint qualification (KTCQ for short) is satisfied at x if L(x) ⊆ cl
(
A(x)

)
. Using

(34), we immediately see that

ZCQ =⇒ KTCQ =⇒ ACQ. (35)

Since ACQ is already too strong for MPVCs, we therefore cannot expect ZCQ or KTCQ to
hold for our program (1). However, similar to the definition of MPVC-ACQ and MPVC-
GCQ, we obtain MPVC-tailored variants of these constraint qualifications by using the
MPVC-linearized cone instead of the linearized cone itself.

Definition 5.1 Let x∗ be feasible for (1). Then

(a) the MPVC-ZCQ holds at x∗ if LMPV C(x∗) ⊆ cl(F(x∗)).

(b) the MPVC-KTCQ holds at x∗ if LMPV C(x∗) ⊆ cl(A(x∗)).

An immediate consequence of the above definition and (34) are the implications

MPVC-ZCQ =⇒ MPVC-KTCQ =⇒ MPVC-ACQ,

which are the counterparts of (35). Moreover, standard ZCQ (standard KTCQ) implies
MPVC-ZCQ (MPVC-KTCQ).

In classical optimization, the case of a convex program, where all equality constraints
are supposed to be (affine) linear and all the inequality constraints (as well as the objective

15



function) are supposed to be convex, is often considered. Very popular constraint quali-
fications to be used in this context are the Slater-type constraint qualifications (SCQ for
short), see, for example, [21].

Since the GiHi-restrictions in (1), being a product of two non-constant functions, are
very likely to be nonconvex, these standard Slater-type constraint qualifications will rather
often fail to hold in the case of an MPVC. Thus, it is our goal to find suitable variants for
MPVCs. To this end, let us introduce the following terminology.

Definition 5.2 The program (1) is called MPVC-convex if the functions hj, Gi, Hi are
(affine) linear and all components gi are convex.

The next definition states the MPVC-tailored versions of two Slater-type constraint qual-
ifications.

Definition 5.3 Let the program (1) be MPVC-convex. Then this program is said to satisfy

(a) weak MPVC-SCQ or MPVC-WSCQ at a feasible point x∗ if there exists a vector x̂
such that

gi(x̂) < 0 ∀i ∈ Ig,
hj(x̂) = 0 ∀j = 1, . . . , p,
Gi(x̂) ≤ 0 ∀i ∈ I+0 ∪ I00,
Hi(x̂) = 0 ∀i ∈ I0+ ∪ I00,
Hi(x̂) ≥ 0 ∀i ∈ I0−.

(36)

(b) MPVC-SCQ if there exists a vector x̂ such that

gi(x̂) < 0 ∀i = 1, . . . ,m,
hj(x̂) = 0 ∀j = 1, . . . , p,
Gi(x̂) ≤ 0 ∀i = 1, . . . , l,
Hi(x̂) = 0 ∀i = 1, . . . , l.

Note that MPVC-SCQ obviously implies MPVC-WSCQ, whereas MPVC-SCQ has the
advantage that it can be checked without knowledge of the feasible point x∗. With these
definitions, we are now in a position to state the next theorem which tells us that MPVC-
WSCQ implies MPVC-ZCQ and thus, in view of our previous results, we also see that
MPVC-WSCQ and MPVC-SCQ are sufficient conditions for MPVC-ACQ.

Theorem 5.4 Let x∗ be feasible for the MPVC-convex program such that MPVC-WSCQ
is satisfied. Then MPVC-ZCQ holds at x∗.

Proof. Let d ∈ LMPV C(x∗). We need to show that there is a sequence dk ∈ F(x∗) such
that dk converges to d. To this end, choose x̂ satisfying (36), a positive sequence {tk} ↓ 0,
and put dk := d + tkd̂ := d + tk(x̂− x∗). Then dk obviously converges to d.

Now, let k be fixed for the time being. In order to see that dk is an element of F(x∗),
we need to prove that x∗ + τdk is feasible for (1) for all τ > 0 sufficiently small.
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First of all, note that, since the functions gi (i = 1, . . . , l) are convex, we have

∇gi(x
∗)T d̂ = ∇gi(x

∗)T (x̂− x∗) ≤ gi(x̂)− gi(x
∗) < 0 ∀i ∈ Ig. (37)

Furthermore, we also have
∇gi(x

∗)T d ≤ 0 ∀i ∈ Ig, (38)

since d is an element of LMPV C(x∗). Together, (37) and (38) imply

∇gi(x
∗)T dk < 0 ∀i ∈ Ig.

Invoking Taylor’s formula, it follows that, for all τ > 0 sufficiently small, we have

gi(x
∗ + τdk) = gi(x

∗) + τ∇gi(x
∗)T dk + o(τ) = τ∇gi(x

∗)T dk + o(τ) < 0 ∀i ∈ Ig. (39)

By continuity, we also have gi(x
∗ + τdk) < 0 for all i /∈ Ig and all τ > 0 sufficiently small,

which together with (39) yields

gi(x
∗ + τdk) ≤ 0 ∀i = 1, . . . , l, (40)

for all τ > 0 sufficiently small. In order to check the remaining constraints, we put
u := τtk and note that u > 0 becomes arbitrarily small for τ → 0. The definition of u
implies x∗ + τdk = (1− u)x∗ + ux̂ + τd. Invoking the linearity of the respective functions
and exploiting the fact that d ∈ LMPV C(x∗), we thus obtain, for τ > 0 sufficiently small,

hj(x
∗ + τdk) = hj((1− u)x∗ + ux̂) + τ ∇hj(x

∗)T d︸ ︷︷ ︸
=0

= (1− u) hj(x
∗)︸ ︷︷ ︸

=0

+u hj(x̂)︸ ︷︷ ︸
=0

= 0 ∀j = 1, . . . , p.
(41)

Similarly, we can compute that, for τ > 0 sufficiently small, we have

Hi(x
∗ + τdk) = Hi((1− u)x∗ + ux̂) + τ∇Hi(x

∗)T d

= (1− u)Hi(x
∗) + uHi(x̂) + τ∇Hi(x

∗)T d


> 0, if i ∈ I+,
= 0, if i ∈ I0+,
≥ 0, if i ∈ I0− ∪ I00,

(42)
which, in particular, implies

Hi(x
∗ + τdk) ≥ 0 ∀i = 1, . . . , l. (43)

Furthermore, for τ > 0 sufficiently small, we also have

Gi(x
∗ + τdk) = (1− u)Gi(x

∗) + uGi(x̂) + τ∇Gi(x
∗)T d


< 0, if i ∈ I+− ∪ I0−,
> 0, if i ∈ I0+,
≤ 0, if i ∈ I+0.

(44)
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Together, we obtain Gi(x
∗ + τdk)Hi(x

∗ + τdk) ≤ 0 for all i ∈ {1, . . . , l} \ I00 and for
all τ > 0 sufficiently small. Thus, it remains to check the GiHi-restriction for i ∈ I00.
First, let i ∈ I00 such that ∇Gi(x

∗)T d > 0. Since we have d ∈ LMPV C(x∗), this im-
plies ∇Hi(x

∗)T d = 0 and thus Hi(x
∗ + τdk) = 0, in view of (42), that is we have

Gi(x
∗ + τdk)Hi(x

∗ + τdk) = 0. Second, let i ∈ I00 such that ∇Gi(x
∗)T d ≤ 0. Then

we have Gi(x
∗ + τdk) ≤ 0 in view of (44), and thus Gi(x

∗ + τdk)Hi(x
∗ + τdk) ≤ 0, which

concludes the proof. �

In the figure below, the relationships among the different MPVC-tailored constraint qual-
ifications are summarized:

MPVC-(W)SCQ

��
MPVC-ZCQ

��

MPVC-LICQ

��
MPVC-KTCQ

%-SSSSSSSS
SSSSSSSS

MPVC-MFCQ

qy kkkkkkkk
kkkkkkkk

MPVC-affine +3 MPVC-ACQ

��
MPVC-GCQ

Here MPVC-affine refers to the situation from Theorem 4.2 where all mappings gi, hj, Gi, Hi

are linear. The above figure summarizes the results which were actually shown in this pa-
per. Some other implications also hold, for example, it was shown in [17] that MPVC-LICQ
is a sufficient condition for standard Guignard CQ and, therefore, stronger stationary con-
ditions hold under MPVC-LICQ. In general, however, these stronger stationary conditions
do not hold under any of the other MPVC-tailored CQs.

6 Final Remarks

Motivated by the fact that most standard constraint qualifications are violated for math-
ematical programs with vanishing constraints, we introduced several new constraint qual-
ifications which take the particular structure of the program into account. The weakest
among these new constraint qualifications still guarantees an optimality condition to hold
at a local minimum which is only slightly weaker than the standard KKT conditions.
Several sufficient conditions and other constraint qualifications are also presented. In par-
ticular, some of these sufficient conditions are very simple and can be checked a priori
without knowledge of the particular solution point.

In our future work, we plan to exploit some of the constraint qualifications introduced
here in order to get second order conditions for mathematical programs with vanishing con-
straints. Moreover, we would like to see under which additional assumptions our necessary
optimality condition is also a sufficient condition for local optimality under convexity-type
assumptions.
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