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Abstract

The Krasnoselskii-Mann iteration plays an important role in the approxima-
tion of fixed points of nonexpansive operators; it is is known to be weakly
convergent in the infinite dimensional setting. In this present paper, we pro-
vide a new inexact Krasnoselskii-Mann iteration and prove weak convergence
under certain accuracy criteria on the error resulting from the inexactness. We
also show strong convergence for a modified inexact Krasnoselskii-Mann iter-
ation under suitable assumptions. The convergence results generalize existing
ones from the literature. Applications are given to the Douglas-Rachford split-
ting method, the Fermat-Weber location problem as well as the alternating
projection method by John von Neumann.

1 Introduction

Let X be a normed space and T : X → X be a nonexpansive mapping, i.e., T
satisfies

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ X.

We further denote the set of fixed points of T by

F (T ) := {x ∈ X | Tx = x}.

Note that, if T is actually a mapping from X to a subset K ⊆ X, then F (T )
automatically belongs to K. Prominent examples for nonexpansive mappings from
a Hilbert space X to a nonempty, closed, and convex set K ⊆ X are, for example,
the projection map, the proximal point map, and several composite maps which
involve at least one of these two mappings, see, e.g., [2] for more details.

Throughout this paper, we consider the real Hilbert space setting: H denotes a
real Hilbert space with scalar product 〈., .〉 and induced norm ‖·‖. Our aim is to find
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a fixed point of a nonexpansive mapping T defined on H. Existence and uniqueness
results as well as many iterative schemes are well-known from the literature, cf.
[3, 5, 6, 7] and references therein for some relevant results in this direction. In
particular, one of the most famous fixed point methods is the Krasnoselskii-Mann
iteration from [19, 24] that starts at some given point x1 ∈ H and uses the recursion

xn+1 = (1− λn)xn + λnTxn ∀n = 1, 2, . . . (1)

for some suitably chosen scalars λn ∈ [0, 1]. The most general convergence result
for this procedure is due to Reich [26] and assumes that F (T ) is nonempty and the
scalars λn satisfy the condition

∞∑
n=1

λn(1− λn) =∞, (2)

then the iterates {xn} converge weakly to a fixed point of T . This statement remains
true if T : K → K with a nonempty, closed, and convex set K ⊆ H, in which case it
follows immediately from (1) that the whole sequence {xn} remains in K provided
that the starting point x1 is chosen from K.

Strong convergence of the Krasnoselskii-Mann iteration cannot be expected in
general, as noted by a counterexample in [15]. On the other hand, there exist a
couple of modified schemes which guarantee strong convergence results, see [5, 8] for
different examples. One of these schemes uses the recursion

xn+1 := αnxn + βnTxn + δnu, (3)

where T : H → K is nonexpansive, K ⊆ H is nonempty, closed, and convex,
αn, βn, δn ∈ [0, 1] are suitably chosen scalars satisfying αn + βn + δn = 1, and u
denotes a fixed element from K; for more details and conditions on the choice of
αn, βn, δn, we refer to [9, 10, 18, 28] and the discussion in Section 4.

The overall convergence behaviour of the Krasnoselskii-Mann iteration from (1)
is therefore well-investigated and yields very satisfactory global convergence results.
On the other hand, this theory requires that T can be evaluated exactly. In general,
this is an unrealistic assumption because the evaluation of T might involve the com-
putation of a projection or the solution of a nonlinear (convex) program. Combettes
[11] therefore considers the convergence of the inexact Krasnoselskii-Mann iteration

xn+1 := (1− λn)xn + λn(Txn + en) (4)

with a given starting point x1 ∈ H, where en represents an error in the evaluation
of Txn. He proves weak convergence of the sequence {xn} under the assumptions
that F (T ) is nonempty, λn ∈ (0, 1) satisfies (2), and the additional error condition

∞∑
n=1

λn‖en‖ <∞.

The same inexact Krasnoselskii-Mann scheme has been investigated recently by
Liang et al. [20] where additional results are presented, in particular, suitable rate
of convergence results are provided.
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Apart from the error due to the inexact evaluation of T , implementations of the
Krasnoselskii-Mann iteration produce an additional error due to the finite precision
arithmetic of the computer. To get a complete picture of the practical numerical
behaviour of the Krasnoselskii-Mann iteration, we are therefore forced to analyse
the convergence properties of a scheme like

xn+1 := (1− λn)xn + λn(Txn + en) + ẽn,

where, again, en represents the error in the evaluation of Txn, whereas ẽn denotes
the error resulting from the finite precision arithmetic. To keep the notation simple,
we can write this as

xn+1 := (1− λn)xn + λnTxn + rn

for some vector rn that we call the residual since it represents the difference between
the exact Krasnoselskii-Mann iteration and its inexact counterpart.

Here we consider the more general inexact scheme

xn+1 := αnxn + βnTxn + rn, (5)

where αn, βn ∈ [0, 1] are suitable numbers satisfying αn + βn ≤ 1, hence these two
numbers do not necessarily sum up to one, and rn is again called the residual vector.
Despite the fact that this generalizes existing choices, it turns out in our subsequent
analysis that, to some extent, the particular choice αn +βn < 1 also bridges the gap
between weak and strong convergence results.

Sometimes it is more convenient to consider the recursion

xn+1 := αnxn + βnTxn + γnen, (6)

where
αn, βn, γn ∈ [0, 1] satisfy αn + βn + γn = 1 (7)

and the vector en is called the error. Note that this iterative scheme is a special case
of (5) simply by setting rn = γnen. Our aim is to prove weak and strong convergence
results for these modified inexact Krasnoselskii-Mann iterations under suitable as-
sumptions which generalize the conditions known for the previously mentioned exact
and inexact versions of this fixed-point method.

The paper is therefore organized as follows: We first recall some basic definitions
and results in Section 2. The weak convergence of the iterative scheme from (5)
(and its special instance from (6), (7)) is then investigated in Section 3. Strong
convergence of a modified version is shown in Section 4. An application to the
Douglas-Rachford splitting method, the Fermat-Weber location problem, and the
alternating projection method by John von Neumann can be found in Section 5.
We conclude with some final remarks in Section 6.

Notation: Given a Hilbert space H, we denote by 2H the power set of H. An
operator A : H → 2H is sometimes called a multi-function. Given such a multi-
function, we write zer(A) for the set {x ∈ H | 0 ∈ Ax}. The projection of an
element x ∈ H onto a nonempty, closed, and convex set C ⊆ H is denoted by PCx.
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2 Preliminaries

Here we state some basic properties that will be used in our convergence theorems.
We begin with the following lemma whose proof is elementary and therefore omitted.

Lemma 2.1. Let X be a real inner product space. Then the following statements
hold:

(a) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, ∀x, y ∈ X.

(b) ‖tx+ sy‖2 = t(t+ s)‖x‖2 + s(t+ s)‖y‖2 − st‖x− y‖2, ∀x, y ∈ X, ∀s, t ∈ R.

The following result is also well-known, see, e.g., [1]. It plays a central role in our
weak convergence result.

Lemma 2.2. Let {σn} and {γn} be nonnegative sequences satisfying
∞∑
n=1

σn < ∞

and γn+1 ≤ γn + σn, n = 1, 2, . . .. Then, {γn} is a convergent sequence.

The next result comes from [30] and will be exploited in our strong convergence
result.

Lemma 2.3. Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1− αn)an + αnσn + γn, n ≥ 1,

where

(a) {αn} ⊂ [0, 1],
∑∞

n=1 αn =∞;

(b) lim supσn ≤ 0;

(c) γn ≥ 0 (n ≥ 1),
∑∞

n=1 γn <∞.

Then, an → 0 as n→∞.

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, and let K be
a nonempty, closed, and convex subset of H.

For any point u ∈ H, there exists a unique point PKu ∈ K such that

‖u− PKu‖ ≤ ‖u− y‖, ∀y ∈ K.

PK is called the metric projection of H onto K. We know that PK is a nonexpansive
mapping of H onto K. More precisely, PK is known to be firmly nonexpansive in
the sense that

〈x− y, PKx− PKy〉 ≥ ‖PKx− PKy‖2 (8)

for all x, y ∈ H. Furthermore, PKx is characterized by the properties PKx ∈ K and

〈x− PKx, PKx− y〉 ≥ 0, ∀y ∈ K. (9)

We finally restate an important result which is due to Opial [25] and characterizes
the weak limit of a weakly convergent sequence in a Hilbert space.
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Theorem 2.4. (Opial)
Let H be a Hilbert space and {xn} be any sequence in H converging weakly to x.
Then the strict inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y 6= x.

An operator A : H → 2H with domain D(A) is said to be monotone if

〈u− v, x− y〉 ≥ 0 ∀x, y ∈ D(A), u ∈ Ax, v ∈ Ay.

We say that the monotone operator A is maximal monotone if its graph

G(A) := {(x, y) : x ∈ D(A), y ∈ Ax}

is not properly contained in the graph of any other monotone operator.

3 Weak Convergence

This section investigates the weak convergence properties of the generalized inex-
act Krasnoselskii-Mann iteration from (5). The following is the main convergence
result and shows that we re-obtain the classical weak convergence of the exact
Krasnoselskii-Mann iteration under suitable conditions on the choice of αn, βn and
the behaviour of rn. These conditions will be discussed in some more detail after
the proof of this result.

Theorem 3.1. Let K be a nonempty, closed, and convex subset of a real Hilbert
space H. Suppose that T : H → K is a nonexpansive mapping such that its set of
fixed points F (T ) is nonempty. Let the sequence {xn} in H be generated by choosing
x1 ∈ H and using the recursion

xn+1 := αnxn + βnTxn + rn, ∀n ≥ 1, (10)

where rn denotes the residual vector. Here we assume that {αn} and {βn} are real
sequences in [0, 1] such that αn + βn ≤ 1 for all n ≥ 1 and the following conditions
hold:

(a)
∞∑
n=1

αnβn =∞;

(b)
∞∑
n=1

‖rn‖ <∞;

(c)
∞∑
n=1

(1− αn − βn) <∞.

Then the sequence {xn} generated by (10) converges weakly to a fixed point of T .
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Proof. We divide the proof into four steps.

Step 1: We show that the limit limn→∞ ‖xn − x∗‖ exists for any given fixed point
x∗ ∈ F (T ). To this end, choose an arbitrary x∗ ∈ F (T ). Then we obtain from (10)
and the nonexpansiveness of T that

‖xn+1 − x∗‖ = ‖αnxn + βnTxn + rn − x∗‖
= ‖αn(xn − x∗) + βn(Txn − x∗) + rn − (1− αn − βn)x∗‖
≤ αn‖xn − x∗‖+ βn‖Txn − x∗‖+ ‖rn − (1− αn − βn)x∗‖
≤ αn‖xn − x∗‖+ βn‖xn − x∗‖+ ‖rn − (1− αn − βn)x∗‖
= (αn + βn)‖xn − x∗‖+ ‖rn − (1− αn − βn)x∗‖
≤ (αn + βn)‖xn − x∗‖+ (1− αn − βn)‖rn − x∗‖+ (αn + βn)‖rn‖
≤ ‖xn − x∗‖+ (1− αn − βn)M + ‖rn‖,

for some M > 0 whose existence follows from condition (b) (note that, in general, the
exact value of M depends on the given fixed point x∗, but that our subsequent anal-
ysis only requires that there exists such a constant for any given fixed point of T ).
Applying Lemma 2.2 and using conditions (b) and (c), we have that lim

n→∞
‖xn − x∗‖

exists. In particular, this implies that {xn} is bounded.

Step 2: Here we show that lim inf
n→∞

‖xn − Txn‖ = 0 holds. Using Lemma 2.1, we

obtain for an arbitrary x∗ ∈ F (T ) that

‖xn+1 − x∗‖2

= ‖αn(xn − x∗) + βn(Txn − x∗) + rn − (1− αn − βn)x∗‖2
Lem. 2.1(a)

≤ ‖αn(xn − x∗) + βn(Txn − x∗)‖2 + 2〈rn − (1− αn − βn)x∗, xn+1 − x∗〉
Lem. 2.1(b)

= αn(αn + βn)‖xn − x∗‖2 + βn(αn + βn)‖Txn − x∗‖2 − αnβn‖xn − Txn‖2

+2
〈
rn − (1− αn − βn)x∗, xn+1 − x∗

〉
≤ (αn + βn)2‖xn − x∗‖2 − αnβn‖xn − Txn‖2

+2
〈
rn − (1− αn − βn)x∗, xn+1 − x∗

〉
≤ ‖xn − x∗‖2 − αnβn‖xn − Txn‖2 + 2

〈
rn − (1− αn − βn)x∗, xn+1 − x∗

〉
= ‖xn − x∗‖2 − αnβn‖xn − Txn‖2 + 2(1− αn − βn)

〈
rn − x∗, xn+1 − x∗

〉
+2(αn + βn)

〈
rn, xn+1 − x∗

〉
≤ ‖xn − x∗‖2 − αnβn‖xn − Txn‖2 + 2

[
(1− αn − βn)‖rn − x∗‖

+(αn + βn)‖rn‖
]
‖xn+1 − x∗‖

≤ ‖xn − x∗‖2 − αnβn‖xn − Txn‖2 +M1(1− αn − βn) +M2‖rn‖,

for some M1,M2 > 0 (recall that {xn} is bounded in view of Step 1). This implies
that

αnβn‖xn−Txn‖2 ≤ ‖xn−x∗‖2−‖xn+1−x∗‖2 +M1(1−αn−βn) +M2‖rn‖, n ≥ 1.

Therefore, by conditions (b) and (c), we have

∞∑
n=1

αnβn‖xn − Txn‖2 ≤ ‖x1 − x∗‖2 +M1

∞∑
n=1

(1− αn − βn) +M2

∞∑
n=1

‖rn‖ <∞.
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Using assumption (a), we obtain lim inf
n→∞

‖xn − Txn‖ = 0.

Step 3: We now show that we actually have lim
n→∞
‖xn − Txn‖ = 0. To this end, first

observe that

xn+1 − xn = βn(Txn − xn) + rn − (1− αn − βn)xn. (11)

This implies

‖Txn+1 − xn+1‖
= ‖Txn+1 − Txn + Txn − (αnxn + βnTxn + rn)‖
= ‖Txn+1 − Txn + (1− βn)(Txn − xn)− rn + (1− αn − βn)xn‖
≤ ‖Txn+1 − Txn‖+ (1− βn)‖Txn − xn‖+ ‖(1− αn − βn)xn − rn‖
≤ ‖xn+1 − xn‖+ (1− βn)‖Txn − xn‖+ ‖(1− αn − βn)xn − rn‖
(11)
= ‖Txn − xn‖+ 2‖(1− αn − βn)xn − rn‖
≤ ‖Txn − xn‖+ 2(1− αn − βn)‖xn‖+ 2‖rn‖
≤ ‖Txn − xn‖+ 2‖rn‖+ 2M3(1− αn − βn),

for some M3 > 0. Observe from conditions (b) and (c) that 2
∞∑
n=1

(
‖rn‖ + M3(1 −

αn − βn)
)
<∞. Applying Lemma 2.2 to the last chain of inequalities, we have that

lim
n→∞
‖xn − Txn‖ exists. In view of Step 2, this yields lim

n→∞
‖xn − Txn‖ = 0.

Step 4: In this final step, we prove the weak convergence of the sequence {xn} to a
fixed point of T . Since {xn} is bounded by Step 1, there exists a subsequence {xnk

}
of {xn} that converges weakly to some element p. We first show that p ∈ F (T ).
Assume the contrary that p 6= Tp. Using Opial’s Theorem 2.4 and the fact that
lim
n→∞
‖xn − Txn‖ = 0 by Step 3, we get

lim inf
n→∞

‖xnk
− p‖ < lim inf

n→∞
‖xnk

− Tp‖

≤ lim inf
n→∞

(
‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖
)

= lim inf
n→∞

‖Txnk
− Tp‖

≤ lim inf
n→∞

‖xnk
− p‖.

This contradiction shows that p ∈ F (T ). Suppose that the whole sequence {xn}
does not converge weakly to p. Then there exists another subsequence {xmj

} of
{xn} which converges weakly to some q 6= p. As in in the case of p we must have
q ∈ F (T ). It therefore follows from Step 1 that lim

n→∞
‖xn − p‖ and lim

n→∞
‖xn − q‖

exist. Let us denote these limits by d1 := lim
n→∞
‖xn − p‖ and d2 := lim

n→∞
‖xn − q‖,

respectively. Exploiting Opial’s Theorem 2.4 once again, we obtain

d1 = lim inf
k→∞

‖xnk
− p‖ < lim inf

k→∞
‖xnk

− q‖ = d2

= lim inf
j→∞

‖xmj
− q‖ < lim inf

j→∞
‖xmj

− p‖ = d1,

which is a contradiction. Therefore, p = q and the entire sequence {xn} converges
weakly to p. This completes the proof.
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Let us discuss Theorem 3.1 to some extent in the following remark.

Remark 3.2. (a) Consider the exact Krasnoselskii-Mann iteration from (1) which
corresponds to the case rn = 0 as well as αn = 1− λn, βn = λn for suitable numbers
λn ∈ [0, 1]. It then follows that conditions (b) and (c) in Theorem 3.1 are automati-
cally satisfied. Furthermore, condition (a) reduces to (2), i.e. we re-obtain the usual
assumption for the convergence of the Krasnoselskii-Mann iteration as a special case
of our Theorem 3.1.

(b) Next consider the inexact Krasnoselskii-Mann iteration from (4) proposed by
Combettes [11]. This is also a special case of our recursion (10) by setting αn :=
1− λn, βn := λn, and rn := λnen. It follows that condition (c) in Theorem 3.1 holds
automatically, whereas conditions (a) and (b) become

∞∑
n=1

λn(1− λn) =∞ and
∞∑
n=1

λn‖en‖ <∞,

which are precisely the convergence assumptions used by Combettes [11] (formally,
Combettes assumes that λn ∈ (0, 1), whereas here λn can be taken from the closed
interval [0, 1]).

(c) Recall that our iterative scheme is more general than (1) and (4) because αn
and βn do not necessarily sum up to one. Theorem 3.1 still yields global conver-
gence provided that the sequences αn, βn satisfy the conditions (a) and (c), where
(a) may be viewed as the counterpart of (2) and (c) tells us how fast αn + βn has
to approach one, so that αn and βn asymptotically approach the numbers 1 − λn
and λn, respectively, in the classical Krasnoselskii-Mann iteration. Besides being
more general, the discussion in the subsequent section also shows that the possibil-
ity of allowing αn + βn < 1 brings the Krasnoselskii-Mann iteration much closer to
a strongly convergent modification.

(d) Formally, the standard Picard-iteration xn+1 := Txn is a special case of the
iterative scheme from (10). However, it is known that the Picard iteration is, in
general, neither weakly nor strongly convergent for nonexpansive mappings (take,
e.g., H = R and Tx = −x). This fact is reflected by condition (a) in Theorem 3.1
which implies that we cannot take αn = 0 for all or almost all n ∈ N. This also
indicates that an assumption like condition (a) is necessary to verify at least weak
convergence of any Krasnoselskii-Mann-type iteration. ♦

We next present a couple of counterexamples to illustrate the necessity of the three
conditions (a), (b), and (c) in Theorem 3.1. The first counterexample shows that
Theorem 3.1 is not true if condition (a) fails, but conditions (b) and (c) are satisfied.

Example 3.3. Take T : R → R, Tx := max{0,−x}. Then T is nonexpansive and
has a unique fixed point x = 0. Consider the iteration

xn+1 := αnxn + βnTxn + rn with βn =
1

n2
, αn = 1− 1

n2
and rn := 0,

so that we have

xn+1 =
(
1− 1

n2

)
xn +

1

n2
max{0,−xn}.
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Note that the choices of αn, βn, and rn satisfy conditions (b), (c) from Theorem 3.1,
whereas assumption (a) is violated since

∞∑
n=1

αnβn =
∞∑
n=1

1

n2

(
1− 1

n2

)
=
∞∑
n=2

1

n2

(
1− 1

n2

)
≤

∞∑
n=2

1

n2
<∞.

Taking x1 = −1, a simple induction shows that the iterates xn are given by xn =
n

2(n−1) for all n ≥ 2. Hence xn = n
2(n−1) →

1
2
6= 0, i.e. {xn} converges, but not to the

unique fixed point of T . ♦

The next example establishes the fact that Theorem 3.1 is not true if condition (b)
fails, but conditions (a) and (c) are satisfied.

Example 3.4. As in the previous example, we take T : R→ R, Tx := max{0,−x}.
We consider the recursion

xn+1 := αnxn + βnTxn + rn with βn =
1

n
, αn = 1− 1

n
and rn =

1

n
,

so the iteration becomes

xn+1 :=
(
1− 1

n

)
xn +

1

n
max{0,−xn}+

1

n
.

The choice of αn, βn, and rn guarantee that conditions (a), (c) of Theorem 3.1 hold,
whereas condition (b) is obviously violated. Using the starting point x1 = −1, it is
not difficult to see that the sequence {xn} has the explicit representation xn = n

n−1
for all n ≥ 2. Clearly, we see that xn → 1, but the limit point is not a fixed point
of T . ♦

The final counterexample shows that Theorem 3.1 may not hold if conditions (a),
(b) are satisfied, whereas condition (c) is violated.

Example 3.5. Let T : R→ R be defined by Tx = −x+ 2 for all x ∈ R. Then it is
clear that T is nonexpansive and F (T ) = {1}. Furthermore, let us take αn := βn :=

1√
n+3

, and rn := 0 for all n ≥ 1. Then it is easy to see that
∞∑
n=1

αnβn =
∞∑
n=1

1
n+3

=∞,

∞∑
n=1

|rn| = 0 < ∞, and
∞∑
n=1

(
1 − αn − βn

)
=
∞∑
n=1

(
1 − 2√

n+3

)
= ∞. This implies that

conditions (a), (b) are satisfied, whereas condition (c) is violated in Theorem 3.1.
Now, for any initial point x1 ∈ R, our iterative scheme (10) becomes

xn+1 := αnxn + βnTxn + rn

=
1√
n+ 3

xn +
1√
n+ 3

(−xn + 2)

=
1√
n+ 3

(xn − xn + 2)

=
2√
n+ 3

→ 0, n→∞.

But 0 /∈ F (T ). Therefore, {xn} does not converge to a fixed point of T . ♦
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As a direct consequence of Theorem 3.1, we obtain the following corollary for the
iterative scheme from (6), (7).

Corollary 3.6. Let K be a nonempty, closed, and convex subset of a real Hilbert
space H. Suppose that T : H → K is a nonexpansive mapping such that its set of
fixed points F (T ) is nonempty. Let the sequence {xn} in H be generated by choosing
x1 ∈ H and using the recursion

xn+1 := αnxn + βnTxn + γnen,

where en denotes the error, and αn, βn, γn are nonnegative sequences satisfying αn+
βn + γn = 1 such that the following conditions hold:

(a)
∑∞

n=1 αnβn =∞;

(b)
∑∞

n=1 γn‖en‖ <∞;

(c)
∑∞

n=1 γn <∞.

Then the sequence {xn} converges weakly to a fixed point of T .

Note that, if we assume {en} to be bounded, then assumption (c) from Corollary 3.6
implies (b), so there is no need to force an extra condition like (b). On the other
hand, it is clear that the error en might be difficult to control in practice. While
the scalars αn, βn, γn can always be chosen such that the corresponding assumptions
hold, we usually cannot check whether assumption (b) is true. This might be possible
if it is known that the underlying problem satisfies a (local) error bound, but in
general this assumption just motivates that one has to evaluate the operator T at
xn with a sufficient accuracy.

A possible advantage of the iterative scheme from (6), (7) is outlined in the
following remark.

Remark 3.7. The exact Krasnoselskii-Mann iteration (1) is often applied to a
nonexpansive operator T : K → K, where K denotes a nonempty, closed, and
convex subset of a real Hilbert space H. The convergence proof coincides with the
one for operators T : H → H simply because the iteration itself guarantees that the
entire sequence {xn} remains in K provided that the starting point x1 is chosen from
K. For our inexact iteration (6), (7) (and similar for the inexact iteration from (4)),
the situation is different: The new iterate xn+1 is defined as a convex combination of
xn, Txn, and en. But, in general, there is no reason why the error en should belong
to K. Hence the sequence {xn} is usually not in K. Hence we have to assume that T
is an operator defined on the whole space H. In some situations, however, the result
might hold also for T : K → K, e.g., if zero belongs to the interior of K and the error
en is sufficiently small (which is not a completely unreasonable assumption), then it
is likely that also en belongs to K, and then the whole sequence {xn} generated by
our inexact scheme belongs to K. Though this does not hold in general, we stress
that, of course, the weak limit always belongs to K simply because it was shown to
be a fixed point of T in Theorem 3.1. ♦
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4 Strong Convergence

The Krasnoselskii-Mann iteration, applied to nonexpansive operators, is known to
be weakly convergent, but not strongly convergent in general. Strong convergence
results can be obtained either under significantly stronger assumptions, or for suit-
ably modified iteration schemes. Here we are interested in the latter approach.
There exist different ways to modify the standard method in order to guarantee
strong convergence, with different levels of generality. Since more general schemes
do not lead to better convergence results, at least not theoretically, we follow one of
the simplest approaches and consider an inexact version of the recursion

xn+1 := αnxn + βnTxn + δnu

for some fixed element u ∈ K and suitable parameters αn, βn, δn ∈ [0, 1], cf. (3). We
postpone a discussion of existing results til the end of this section.

Here we obtain a strong convergence result for the approximation of fixed points
of a nonexpansive mapping using an inexact form of (3) and give sufficient conditions
on the iteration parameters. Before stating the formal result, let us recall that the
fixed-point set F (T ) of a nonexpansive operator T : H → K is known to be a
nonempty, closed, and convex set, see [2], so the projection onto this set is well-
defined.

Theorem 4.1. Let K be a nonempty, closed, and convex subset of a real Hilbert
space H. Suppose that T : H → K is a nonexpansive mapping such that its set of
fixed points F (T ) is nonempty. Let the sequence {xn} in H be generated by choosing
x1 ∈ H and using the recursion

xn+1 = δnu+ αnxn + βnTxn + rn, ∀n ≥ 1, (12)

where u ∈ K denotes a fixed vector, rn represents the residual, and the nonnegative
real numbers αn, βn, δn are chosen such that αn + βn + δn ≤ 1, n ≥ 1, and

(a) lim
n→∞

δn = 0,
∞∑
n=1

δn =∞;

(b) lim inf
n→∞

αnβn > 0;

(c)
∞∑
n=1

(1− αn − βn − δn) <∞, and

(d)
∞∑
n=1

‖rn‖ <∞.

Then the sequence {xn} generated by (12) strongly converges to a point in F (T ),
which is the nearest point projection of u onto F (T ).

Proof. Let x∗ ∈ F (T ). Then, we obtain from (12), the nonexpansiveness of T and
αn + βn ≤ 1− δn that

‖xn+1 − x∗‖
= ‖δn(u− x∗) + αn(xn − x∗) + βn(Txn − x∗) + rn − (1− αn − βn − δn)x∗‖

11



≤ δn‖u− x∗‖+ αn‖xn − x∗‖+ βn‖Txn − x∗‖+ ‖rn − (1− αn − βn − δn)x∗‖
≤ δn‖u− x∗‖+ (αn + βn)‖xn − x∗‖+ ‖rn − (1− αn − βn − δn)x∗‖
≤ δn‖u− x∗‖+ (1− δn)‖xn − x∗‖+ ‖rn − (1− αn − βn − δn)x∗‖
≤ δn‖u− x∗‖+ (1− δn)‖xn − x∗‖+ (1− αn − βn − δn)‖x∗‖+ ‖rn‖
≤ max{‖u− x∗‖, ‖xn − x∗‖}+ (1− αn − βn − δn)‖x∗‖+ ‖rn‖.

Using induction, it is not difficult to see that this implies

‖xn+1 − x∗‖ ≤ max{‖u− x∗‖, ‖x1 − x∗‖}+
n∑
k=1

‖rk‖+ ‖x∗‖
n∑
k=1

(1− αk − βk − δk)

for all n ∈ N. This, in turn, yields

‖xn+1−x∗‖ ≤ max{‖u−x∗‖, ‖x1−x∗‖}+
∞∑
k=1

‖rk‖+‖x∗‖
∞∑
k=1

(1−αk−βk−δk). (13)

In particular, it follows from assumptions (c), (d) that the sequence {xn} is bounded
in H.

Let z := PF (T )u; recall that this projection exists since F (T ) is nonempty, closed,
and convex. We now distinguish two cases.

Case 1: Suppose that there exists n0 ∈ N such that {‖xn−z‖}∞n=n0
is non-increasing.

Then {‖xn − z‖}∞n=1 converges, and we therefore obtain

‖xn − z‖ − ‖xn+1 − z‖ → 0, n→∞. (14)

Then from (12) and Lemma 2.1 (a), (b), we obtain that

‖xn+1 − z‖2

= ‖αn(xn − z) + βn(Txn − z) + δn(u− z) + rn − (1− αn − βn − δn)z‖2
Lem. 2.1 (a)

≤ ‖αn(xn − z) + βn(Txn − z)‖2

+2
〈
δn(u− z) + rn − (1− αn − βn − δn)z, xn+1 − z

〉
Lem. 2.1 (b)

= αn(αn + βn)‖xn − z‖2 + βn(αn + βn)‖Txn − z‖2 − αnβn‖xn − Txn‖2

+2
〈
δn(u− z) + rn − (1− αn − βn − δn)z, xn+1 − z

〉
≤ (αn + βn)2‖xn − z‖2 − αnβn‖xn − Txn‖2

+2
〈
δn(u− z) + rn − (1− αn − βn − δn)z, xn+1 − z

〉
≤ (1− δn)2‖xn − z‖2 − αnβn‖xn − Txn‖2

+2
〈
δn(u− z) + rn − (1− αn − βn − δn)z, xn+1 − z

〉
≤ (1− δn)‖xn − z‖2 − αnβn‖xn − Txn‖2

+2
〈
δn(u− z) + rn − (1− αn − βn − δn)z, xn+1 − z

〉
= (1− δn)‖xn − z‖2 − αnβn‖xn − Txn‖2 + 2δn

〈
u− z, xn+1 − z

〉
+2
〈
rn − (1− αn − βn − δn)z, xn+1 − z

〉
(15)

≤ ‖xn − z‖2 − αnβn‖xn − Txn‖2 + 2δn
〈
u− z, xn+1 − z

〉
+2
〈
rn − (1− αn − βn − δn)z, xn+1 − z

〉
.

12



Using the boundedness of {xn}, this implies that

αnβn‖xn − Txn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + δnM5

+(1− αn − βn − δn)M6 + ‖rn‖M7 (16)

for some M5,M6,M7 > 0. By condition (b), we can assume without loss of generality
that there exists ε > 0 such that αnβn ≥ ε for all n ≥ 1. Hence, we obtain from (16)
together with (14) and conditions (a), (c), (d) that

lim
n→∞
‖xn − Txn‖ = 0.

Since {xn} is bounded, we can extract a subsequence {xnk
} of {xn} such that

lim sup
n→∞

〈u− z, xn − z〉 = lim
k→∞
〈u− z, xnk

− z〉

and {xnk
} converges weakly to some element p. By following the same line of

arguments as in Theorem 3.1 above, we can show that p ∈ F (T ). Hence, we obtain
from (9) that

lim sup
n→∞

〈u− z, xn+1 − z〉 = lim sup
n→∞

〈u− z, xn − z〉

= lim
k→∞
〈u− z, xnk

− z〉

= 〈u− z, p− z〉
≤ 0.

Now, we have from (15) that

‖xn+1 − z‖2 ≤ (1− δn)‖xn − z‖2 − αnβn‖xn − Txn‖2 + 2δn〈u− z, xn+1 − z〉
+2
〈
rn − (1− αn − βn − δn)z, xn+1 − z

〉
≤ (1− δn)‖xn − z‖2 + 2δn〈u− z, xn+1 − z〉

+(1− αn − βn − δn)M6 + ‖rn‖M7. (17)

Applying Lemma 2.3 in (17) and using conditions (a), (c), (d), we have that lim
n→∞
‖xn−

z‖ = 0. Thus, xn → z = PF (T )u for n→∞.

Case 2: Assume that there is no n0 ∈ N such that {‖xn − z‖}∞n=n0
is monotonically

decreasing. The technique of proof used here is adapted from [23]. Set Γn = ‖xn−z‖2
for all n ≥ 1 and let τ : N → N be a mapping defined for all n ≥ n0 (for some n0

large enough) by
τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1},

i.e. τ(n) is the largest number k in {1, . . . , n} such that Γk increases at k = τ(n);
note that, in view of Case 2, this τ(n) is well-defined for all sufficiently large n.
Clearly, τ is a non-decreasing sequence such that τ(n)→∞ as n→∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.
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After a conclusion similar to (16) (note that the first difference in that equation is
nonpositive in our current situation), it is easy to see that ‖xτ(n) − Txτ(n)‖ → 0.
Furthermore, using the boundedness of {xn} and conditions (a), (c), (d), we get

‖xτ(n)+1 − xτ(n)‖ = ‖δτ(n)(u− xτ(n)) + βτ(n)(Txτ(n) − xτ(n))
+rτ(n) − (1− ατ(n) − βτ(n) − δτ(n))xτ(n)‖

≤ δτ(n)‖u− xτ(n)‖+ βτ(n)‖Txτ(n) − xτ(n)‖
+‖rτ(n) − (1− ατ(n) − βτ(n) − δτ(n))xτ(n)‖

→ 0, n→∞. (18)

Since {xτ(n)} is bounded, there exists a subsequence of {xτ(n)}, still denoted by
{xτ(n)}, which converges weakly to some p ∈ F (T ). Similarly, as in Case 1 above
and exploiting (18), we can show that

lim sup
n→∞

〈u− z, xτ(n)+1 − z〉 ≤ 0.

Following (17), we obtain

‖xτ(n)+1 − z‖2 ≤ (1− δτ(n))‖xτ(n) − z‖2 + 2δτ(n)〈u− z, xτ(n)+1 − z〉
+(1− ατ(n) − βτ(n) − δτ(n))M6 + ‖rτ(n)‖M7. (19)

By Lemma 2.3 and using conditions (a), (c), (d), we have from (19) that lim
n→∞
‖xτ(n)−

z‖ = 0 which, in turn, implies lim
n→∞
‖xτ(n)+1 − z‖ = 0. Furthermore, for n ≥ n0, it

is easy to see that Γn ≤ Γτ(n)+1 if n 6= τ(n) (that is, τ(n) < n), because Γj > Γj+1

for τ(n) + 1 ≤ j ≤ n. As a consequence, we obtain for all sufficiently large n that
0 ≤ Γn ≤ Γτ(n)+1. Hence lim

n→∞
Γn = 0. Therefore, {xn} converges strongly to z. This

completes the proof.

Let us have a closer look at the iterative scheme from (12). The only difference
compared to the recursion from (10) comes from the additional term δnu for some
u ∈ K. Now assume that the zero vector belongs to K, and that we take u := 0 in
(12). Then this term vanishes, and the iteration (12) looks identical to the one from
(10), at least formally. However, it is important to note that these two schemes are
different even in this particular case, since condition (a) from Theorem 4.1 implies
that δn cannot be chosen to be equal to zero for all n, and, in fact, is not allowed
to converge to zero too fast. This, in turn, has some influence on the choice of the
scalars αn and βn which then have to be taken in a slightly different way as in the
weak convergence result from Theorem 3.1. Nevertheless, this observation indicates
that the choice αn +βn < 1 that is explicitly allowed in Theorem 3.1, is much closer
to the situation where we get strong convergence than the usual (and possibly more
natural) choice where αn + βn = 1 for all n ∈ N.

We next have a closer look at conditions (a)–(d) from Theorem 4.1. Due to the
previous discussion and the corresponding observations from the previous section,
the only assumption that needs to be discussed in some more detail is condition
(b). Using an idea of [27], we give the following example to establish that our
Theorem 4.1 fails if condition (b) is violated, i.e., if lim inf

n→∞
αnβn = 0.
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Example 4.2. Let H be any real Hilbert space. Choose an arbitrary element y ∈ H
such that y 6= 0 and ‖y‖ = 1, and define a subset K of H by K := {x ∈ H : x =
λy, λ ∈ [0, 1]}, i.e., K is the connecting line from the origin to the given point y.
Observe that K is a nonempty, closed, and convex subset of H. Then define the
mapping T : H → K by Tx = 0 for all x ∈ K. Clearly, T is nonexpansive, and
F (T ) = {0}.

Consider the iterative scheme (12) with

δn =
1

n
, αn =

(
1− 1

n

)(
1− 1

n2

)
, βn =

1

n2

(
1− 1

n

)
, rn = 0 for all n ≥ 1.

Then, it is clear that conditions (a), (c), and (d) are satisfied, but condition (b)
is violated. Now, take u := y ∈ K, and let x1 := u be the starting point. Since
rn = 0, αn + βn + δn = 1, x1 ∈ K, u ∈ K, and T maps into the convex set K,
it follows by induction that the entire sequence {xn} generated by (12) belongs to
K. Consequently, we have the representation xn = λny for each n ∈ N for some
λn ∈ [0, 1]. Taking this into account, we can write (12) as

xn+1 =
1

n
y +

(
1− 1

n

)(
1− 1

n2

)
xn =

1

n
y +

(
1− 1

n

)(
1− 1

n2

)
λny.

Suppose ‖xn‖ < 1
2
, and that xn is not yet equal to the fixed point (this extra

condition holds automatically, e.g., if H = R and y = 1, since then we obviously
have xn > 0 for all n ∈ N). Then, we have

0 < λn = ‖xn‖ <
1

2
.

Hence,

‖xn+1‖ =

∥∥∥∥( 1

n
+
(
1− 1

n

)(
1− 1

n2

)
λn

)
y

∥∥∥∥
=

(
1

n
+
(
1− 1

n

)(
1− 1

n2

)
λn

)
‖y‖

=
1

n
+
(
1− 1

n

)(
1− 1

n2

)
λn

≥ 1

n
+
(
1− 1

n

)(
1− 1

n

)
λn

=
1

n
+
(
1− 2

n
+

1

n2

)
λn

=
1

n
+ λn −

2

n
λn +

1

n2
λn

>
1

n
+ λn −

2

n
λn

> λn (since λn < 1/2)

= ‖xn‖.

This implies that the sequence {xn} does not converge to 0, which is the unique
fixed point of T . ♦
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In view of the weak convergence result from Theorem 3.1, one might expect that
condition (b) from Theorem 4.1 can be replaced by the weaker condition that
∞∑
n=1

αnβn = ∞. The following counterexample, however, shows that this is not

possible in general.

Example 4.3. Let H be an arbitrary Hilbert space, and let y,K, and T be given
as in Example 4.2, and let us again take x1 := u := y. Consider the recursion (12)
with the specifications

δn =
1

2n
, αn = 1− 1

n
, βn =

1

2n
, rn = 0, ∀n ≥ 1.

Then we can clearly see that δn → 0,
∞∑
n=1

δn =∞, αn+βn+δn = 1, and
∞∑
n=1

αnβn =∞.

Hence, conditions (a), (c), and (d) are satisfied, whereas (b) is violated, and the
iterative scheme (12) becomes

xn+1 = δnu+ αnxn + βnTxn + rn =
1

2n
u+

(
1− 1

n

)
xn.

Similar to the previous counterexample, one can argue that xn ∈ K for all n ∈ N,
so we can write xn = λny for some number λn ∈ [0, 1], and the recursion therefore
yields ∥∥xn+1

∥∥ =
∥∥∥ 1

2n
u+

(
1− 1

n

)
xn

∥∥∥
=

∥∥∥ 1

2n
y +

(
1− 1

n

)
λny
∥∥∥

=
( 1

2n
+
(
1− 1

n

)
λn

)
‖y‖

=
1

2n
+
(
1− 1

n

)
λn.

Suppose that ‖xn‖ < 1
2
, then λn = ‖xn‖ < 1

2
. So,

‖xn+1‖ =
1

2n
+
(
1− 1

n

)
λn > λn = ‖xn‖.

This implies that ‖xn+1‖ > ‖xn‖ whenever ‖xn‖ < 1
2
. Therefore, the sequence {xn}

cannot converge to the unique fixed point 0. ♦

We close this section with a discussion of some related strong convergence results in
the following remark.

Remark 4.4. (a) Strong convergence of the (unperturbed) iterative scheme (3) was
shown by Yao et al. [31] under the following set of assumptions regarding the choice
of the real numbers αn, βn, δn ∈ (0, 1): (i) αn + βn + γn = 1; (ii) limn→∞ δn = 0 and∑∞

n=1 δn = ∞; (iii) limn→∞ βn = 0. Hence, using rn = 0 in our setting, it follows
that conditions (a), (c), and (d) hold, whereas (b) is violated. In fact, Example 4.2
satisfies all conditions from Yao et al. [31], but the corresponding sequence {xn}
does not converge (strongly) to a fixed point. This shows that the main result from
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[31] does not hold under the stated assumptions.

(b) The main result by Hu [17] also considers the (unperturbed) recursion (3) and
proves strong convergence of the corresponding sequence {xn} under conditions on
the scalars αn, βn, δn which are even weaker than those noted in (a). In addition,
[17] requires a certain property of the underlying space which, however, holds auto-
matically in a Hilbert space. It therefore follows from Example 4.2 that the result
from [17] cannot hold.

(c) Hu and Liu [16] consider the (unperturbed) iteration from (3) and verify strong
convergence under the following conditions (adapted to our setting): (i) αn + βn +
γn = 1 (this condition is not stated explicitly in [16], but implicitly used within
their proof); (ii) limn→∞ δn = 0 and

∑∞
n=1 δn = ∞; (iii) 0 < lim infn→∞ αn ≤

lim supn→∞ αn < 1. Using rn := 0 in our framework, we see that conditions (a), (c),
and (d) in Theorem 4.1 obviously hold, whereas (b) is satisfied because we obtain
from (i), (ii), and (iii) that lim infn→∞ αnβn = lim infn→∞ αn(1−αn−δn) > 0. Hence
the assumptions used in [16] may be viewed as a special case of ours.

(d) The paper [10] by Cho et al. proves strong convergence of the slightly different
iteration

xn+1 := δnu+ (1− δn)γnxn + (1− δn)(1− γn)Txn

(adapted to our situation) under the assumptions that the real sequences {γn}, {δn}
satisfy the conditions (i) limn→∞ δn = 0 and

∑∞
n=1 δn =∞; (ii) 0 < lim infn→∞ γn ≤

lim supn→∞ γn < 1. Setting αn := (1 − δn)γn, βn := (1 − δn)(1 − γn), and rn := 0,
we may view this iteration as a special case of ours. Furthermore, it follows that
conditions (a), (c), and (d) from Theorem 4.1 hold automatically, whereas (i) and
(ii) also yield lim infn→∞ αnβn = lim infn→∞(1− δn)2γn(1− γn) > 0. Consequently,
the convergence result from [10] is a another special case of Theorem 4.1. ♦

5 Applications

This section presents three applications of our general theory. Since the (simpler)
Picard iteration xn+1 := Txn is known to be (weakly) convergent for firmly nonex-
pansive operators T , while this is not true, in general, for nonexpansive mappings T ,
we are particularly interested in applications whose operator T is nonexpansive, but
not firmly nonexpansive. We therefore consider the Peaceman-Rachford Splitting
method in Section 5.1, whose relaxation leads to the Douglas-Rachford splitting
method for the sum of two maximally monotone operators. This method can be
generalized to finitely many maximally monotone operators in Section 5.2, which
then is applied to the Fermat-Weber location problem in Section 5.3. Finally, we
consider the alternating projection method by John von Neumann in Section 5.4.

5.1 Application to the Douglas-Rachford Splitting Method

This section presents an application of our theory to the Douglas-Rachford splitting
method for finding zeros of an operator T such that T is the sum of two maximal
monotone operators, i.e. T = A+B with A,B : H → 2H being maximal monotone
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multi-functions on a Hilbert space H. The method was originally introduced in
[12] in a finite-dimensional setting, its extension to maximal monotone mappings in
Hilbert spaces can be found in [21].

Before we specialize our results to this method, let us first recall the basics
that are required to derive and analyze the Douglas-Rachford splitting method; for
the corresponding details, we refer, e.g., to the monograph [2] by Bauschke and
Combettes.

Let γ > 0 be a fixed parameter, and let us denote by

JγA := (I + γA)−1 and JγB := (I + γB)−1

the resolvents of A and B, respectively, which are known to be firmly nonexpansive.
Furthermore, let us write

RγA := 2JγA − I and RγB := 2JγB − I

for the corresponding reflections (also called Cayley operators), and note that the
firm nonexpansiveness of the resolvents implies immediately that these reflections
are nonexpansive operators.

Since one can show that 0 ∈ Tx for T = A+B if and only if x = JγB(y), where
y is a fixed point of the nonexpansive mapping RγARγB, a natural way to find a
zero of T = A + B is therefore to apply the Krasnoselskii-Mann iteration to this
operator, which yields the iteration

yn+1 := (1− λn)yn + λnRγARγByn, n ≥ 1, (20)

which in turn gives an approximation in the original variables by setting xn :=
JγB(yn). Note that this iteration requires only the evaluation of the resolvents of A
and B separately, not of their sum T = A + B. Recall that (20) is known as the
Douglas-Rachford splitting method, whereas the special case λn = 1 for all n ∈ N
gives the Peaceman-Rachford splitting method.

Using the definitions of the reflection operators, we may rewrite the iteration
(20) as

yn+1 := (1− λn)yn + λn
(
2JγA(2JγByn − yn)− 2JγByn + yn

)
= yn + 2λn

(
JγA(2JγByn − yn)− JγByn

)
. (21)

Similar to our previous sections, we now consider a more general setting and replace
1−λn and λn by αn and βn, respectively. This yields the following iterative method:

yn+1 := αnyn + βn
(
2JγA(2JγByn − yn)− 2JγByn + yn

)
= (αn + βn)yn + 2βn

(
JγA(2JγByn − yn)− JγByn

)
.

Following Combettes [11], we also allow errors an and bn in the evaluation of the re-
solvents JγA and JγB, which finally gives our generalized Douglas-Rachford splitting
method:

yn+1 := (αn + βn)yn + 2βn
(
JγA(2(JγByn + bn)− yn) + an − (JγByn + bn)

)
.

We want to investigate the weak and strong convergence properties of this iterative
scheme. We begin with the following weak convergence result.
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Theorem 5.1. Let H be a real Hilbert space. Let γ ∈ (0,∞), let {αn} and {βn} be
real sequences in [0, 1] such that αn + βn ≤ 1 for all n ≥ 1. Suppose {an} and {bn}
are sequences in H. Assume that 0 ∈ ran(A + B). Let the sequence {yn} in H be
generated by choosing y1 ∈ H and using the recursion

yn+1 := αnyn + 2βn
(
JγA
(
2(JγByn + bn)− yn

)
+ an

)
− 2βn(JγByn + bn) + βnyn (22)

for all n ≥ 1. Suppose the following conditions hold:

(a)
∞∑
n=1

αnβn =∞;

(b)
∞∑
n=1

βn
(
‖an‖+ ‖bn‖

)
<∞;

(c)
∞∑
n=1

(1− αn − βn) <∞.

Then the sequence {yn} generated by (22) converges weakly to some point y ∈ H
such that JγBy ∈ (A+B)−1(0), i.e. x := JγBy is a solution of the monotone inclusion
problem for the operator T := A+B.

Proof. Using the notation of the reflection operator, we set

rn := 2βnan + βnRγA(RγByn + 2bn)− βnRγA(RγByn), ∀n ≥ 1,

and define T := RγARγB. Then we obtain

yn+1 = αnyn + 2βn
[
JγA(2(JγByn + bn)− yn) + an

]
− 2βn(JγByn + bn) + βnyn

= αnyn + βn
[
2JγA(2(JγByn + bn)− yn)− 2(JγByn + bn) + yn + 2an

]
= αnyn + βn

[
RγA(2(JγByn + bn)− yn) + 2an

]
= αnyn + βn

[
RγA(2JγByn − yn + 2bn) + 2an

]
= αnyn + βn

[
RγA(RγByn + 2bn) + 2an

]
= αnyn + 2βnan + βnRγA(RγByn + 2bn)

= αnyn + βnRγA(RγByn) + 2βnan + βnRγA(RγByn + 2bn)

−βnRγA(RγByn)

= αnyn + βnTyn + rn.

Therefore, our iterative scheme (22) can be re-written as in Theorem 3.1, cf. (10).
Furthermore, by the nonexpansivity of RγA, we obtain that

∞∑
n=1

‖rn‖ =
∞∑
n=1

‖2βnan + βnRγA(RγByn + 2bn)− βnRγA(RγByn)‖

≤ 2
∞∑
n=1

βn‖an‖+
∞∑
n=1

βn‖RγA(RγByn + 2bn)−RγA(RγByn)‖

≤ 2
∞∑
n=1

βn
(
‖an‖+ ‖bn‖

)
<∞.

Using the fact that 0 ∈ ran(A+B), we have that F (T ) 6= ∅. Since T is nonexpansive
as a composition of the two nonexpansive reflection operators, Theorem 3.1 implies
that {yn}∞n=1 converges weakly to a fixed point of T , and this completes the proof.
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Taking A as the normal cone operator in Theorem 5.1, we obtain the following
corollary from Theorem 5.1.

Corollary 5.2. Let H be a real Hilbert space and C a closed affine subspace of H.
Let B : H → 2H be a maximal monotone operator. Let γ ∈ (0,∞) and {αn}, {βn}
be real sequences in [0, 1] such that αn + βn ≤ 1 for all n ≥ 1. Suppose {an}, {bn}
are sequences in H. Assume that 0 ∈ ran(NC + B). Let the sequence {yn} in H be
generated by choosing y1 ∈ H and using the recursion

yn+1 := αnyn + 2βn
(
PC
(
2(JγByn + bn)− yn

)
+ an

)
− 2βn(JγByn + bn) + βnyn (23)

for all n ≥ 1. Suppose the following conditions hold:

(a)
∞∑
n=1

αnβn =∞;

(b)
∞∑
n=1

βn
(
‖an‖+ ‖bn‖

)
<∞;

(c)
∞∑
n=1

(1− αn − βn) <∞.

Then the sequence {PCyn} converges weakly to JγBy.

Proof. Recall that NC is maximally monotone with JNC
= PC , see, e.g., [2, Examples

20.41 and 23.4]. Now, set A := NC in Theorem 5.1 and note that γA = γNC = NC

due to the cone property. Hence we have JγA = JNC
= PC . Therefore, the recursion

from (22) reduces to the one from (23). Consequently, it follows from Theorem 5.1
that the sequence {yn} generated by (23) converges weakly to some element y ∈ H
which is a fixed point of the operator T := RγARγB. Since the projection operator
onto closed affine subspaces in weakly continuous, cf. [2, Prop. 4.11], we obtain that
the sequence PCyn is weakly convergent to PCy = JγAy. Since y ∈ F (T ), we may
invoke [2, Prop. 4.21] to see that PCy = JγBy, and this completes the proof.

By following the same line of arguments as in Theorem 5.1, we also obtain a strong
convergence result.

Theorem 5.3. Let H be a real Hilbert space. Let γ ∈ (0,∞), let {αn}, {βn}, and
{δn} be real sequences in [0, 1] such that αn + βn + δn ≤ 1 for all n ≥ 1. Suppose
{an} and {bn} are sequences in H. Assume that 0 ∈ ran(A + B). Let the sequence
{yn} in H be generated by choosing y1 ∈ H and using the recursion

yn+1 := δnu+αnyn+2βn
(
JγA
(
2(JγByn+bn)−yn

)
+an

)
−2βn(JγByn+bn)+βnyn (24)

for all n ≥ 1, where u ∈ H is a fixed vector. Suppose the following conditions hold:

(a) lim
n→∞

δn = 0,
∞∑
n=1

δn =∞;

(b) lim inf
n→∞

αnβn > 0;

(c)
∞∑
n=1

(1− αn − βn − δn) <∞, and
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(d)
∞∑
n=1

βn
(
‖an‖+ ‖bn‖

)
<∞.

Then the sequence {yn} generated by (24) strongly converges to some point y ∈ H
such that JγBy ∈ (A+B)−1(0).

We next relate the previous theorems to some existing results from the literature.

Remark 5.4. (a) Consider the standard Douglas-Rachford method as given, e.g.,
in (21). This corresponds to αn = 1− λn, βn = λn and an = bn = 0 in the setting of
Theorem 5.1. Hence conditions (b), (c) hold automatically, whereas condition (a)
becomes

∞∑
n=1

λn(1− λn) =∞. (25)

Most references present the Douglas-Rachford splitting method in a slightly different
way. In fact, setting νn := 2λn in (21), we obtain νn ∈ [0, 2] for all n ∈ N, and
multiplying (25) by four, we see that (25) is equivalent to

∞∑
n=1

νn(2− νn) =∞,

which is the standard condition for the weak convergence of the Douglas-Rachford
splitting method, see, e.g., [2]. In this re-scaled version, the choices νn < 1 and
νn > 1 are called underrelaxation and overrelaxation, respectively.

(b) Combettes [11] considers the iterative scheme

yn+1 = yn + 2λn
(
JγA
(
2(JγByn + bn)− yn

)
+ an

)
− 2λn(JγByn + bn),

which corresponds to the standard Douglas-Rachford method from (21) with errors
an and bn in the evaluation of the resolvents JγA and JγB, respectively. The weak
convergence result stated in [11] is a special case of Theorem 5.1 simply by setting
αn := 1 − λn and βn := λn (or slightly adapted in the re-scaled version outlined in
comment (a)).

(c) Consider the Douglas-Rachford method from (21) in the re-scaled version with
νn := 2λn as in comment (a). A typical implementation chooses an element y1 ∈ H
as a starting point, and then computes xn := JγByn, zn := JγA(2xn − yn), yn+1 :=
yn + νn(zn − xn) for all n ≥ 1. The following inexact version (in finite-dimensional
spaces) can be found in [14] (and similarly in [29] in Hilbert spaces): Choose y1 ∈ H
and then

• compute xn such that ‖xn − JγB(yn)‖ ≤ εn;

• compute zn such that ‖zn − JγA(2xn − yn)‖ ≤ ε̃n;

• set yn+1 := yn + νn(zn − xn)
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for all n ≥ 1, where εn, ε̃n are nonnegative scalars which measure the degree of
inexactness in the evaluation of the two resolvents. Global convergence of this
inexact Douglas-Rachford method is shown under the assumptions

0 < inf
n≥1

νn ≤ sup
n≥1

νn < 2,
∞∑
n=1

εn <∞,
∞∑
n=1

ε̃n <∞. (26)

Setting an := zn− JγA(2xn− yn), bn := xn− JγByn, this method can be rewritten as

yn+1 := yn + νn(zn − xn)

= yn + νn
[
JγA(2xn − yn) + an − xn

]
= yn + νn

[
JγA
(
2(JγByn + bn)− yn

)
+ an − (JγByn + bn)

]
,

which fits precisely within our framework (with νn = 2λn). Moreover, the assump-
tions (26) together with αn := 1− λn, βn := λn obviously imply that all our conver-
gence conditions hold, hence the inexact Douglas-Rachford method from [14] is also
a special case of our framework.

(d) Consider our Theorem 3.1 and take αn = 1− λn, βn = λn, rn = 0 for all n ≥ 1,
where λn ∈ [0, 1], as well as the nonexpansive operator T := RγARγB for some
γ > 0. Then our iterative scheme (10) reduces to the recursion (26) in [32], and our
Theorem 3.1 reduces to Theorem 1 of that reference. Observe, however, that [32]
use the much stronger assumption 0 < infn≥1 λn ≤ supn≥1 λn < 1 on the choice of
the scalars λn as well as the maximal monotonicity of the operator A + B (recall
that the sum of two maximally monotone operators in monotone, but not necessarily
maximal monotone). Hence our results may be viewed as improvements of those
obtained in [32]. ♦

5.2 Extension to a Finite Number of Maximally Monotone
Operators

We now extend the previous section by finding a zero of a finite number of maximally
monotone operators; this is precisely the situation that occurs in our application to
the Fermat-Weber location problem in the following section.

Hence let H be a real Hilbert space and let Ai : H → 2H be maximally monotone
for all i = 1, . . . ,m. Our aim is to find an element in zer(A1 + . . .+Am). We know
how to do that for m = 2, and the basic idea for m ≥ 2 is to re-cast this problem
as a zero-finding problem of two operators in a suitable product space. To this end,
we follow the idea described, e.g., in [2], and introduce the notation

H := H × . . .×H (m-times),

D :=
{

(x, . . . , x) ∈ H | x ∈ H
}
,

j : H → D, x 7→ (x, . . . , x),

B := A1 × . . .× Am.
Given any element x ∈ H, we write x = (x1, . . . , xm) with the blocks xi belonging
to the Hilbert space H. Recall that H is also a Hilbert space with scalar product

〈x,y〉H :=
m∑
i=1

〈xi, yi〉 and induced norm ‖x‖H :=
( m∑
i=1

‖xi‖2
)1/2

.
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Further note that D is a subspace of H. Then the following elementary properties
play a central role, see [2, Ex. 23.4 and Prop. 25.4] for their proofs.

Lemma 5.5. Let Ai : H → 2H be maximally monotone for all i = 1, . . . ,m. Then,
using the above notation, the following statements hold:

(a) The orthogonal complement of D is given by D⊥ =
{
u ∈ H |

∑m
i=1 ui = 0

}
;

(b) The normal cone of D at a point x ∈ D is given by NDx = D⊥ (and the empty
set if x 6∈ D);

(c) The projection of x onto D is given by PDx = j
(

1
m

(x1 + . . .+ xm)
)
;

(d) The resolvent of ND is given by JND
x = PDx

(c)
= j
(

1
m

(x1 + . . .+ xm)
)
;

(e) The resolvent JγB has the representation JγBx =
(
JγA1x1, . . . , JγAmxm

)
;

(f) It holds that j
(
zer(A1 + . . .+ Am)

)
= zer

(
ND + B

)
.

Lemma 5.5 reduces our problem to finding a zero of the sum of two maximally
monotone operators (note that both operators involved in statement (f) are known
or easy to see to be maximally monotone). Therefore, setting A := ND, we are
exactly in the situation of the previous section. Assuming, for the sake of simplicity,
that there are no errors an and bn, the generalized Douglas-Rachford method in the
product space can be written as

xn := JγB(yn),

zn := JγA
(
2xn − yn

)
,

yn+1 := (αn + βn)yn + 2βn
(
zn − xn

)
for all n = 1, 2, . . ., where y1 is a suitable starting point. In view of Lemma 5.5 (d),
we have JγA = PD. Therefore, setting

pn := PDyn qn := PDxn,

and using the linearity of the projection onto the linear subspace D, we have zn =
2qn − pn, hence the method can be rewritten as

pn := PDyn,

xn := JγByn,

qn := PDxn,

yn+1 := (αn + βn)yn + 2βn(2qn − pn − xn)

for n = 1, 2, . . .. Noting that the block components of pn and qn are identical, and
setting yn =:

(
yn,1, . . . , yn,m

)
,xn =:

(
xn,1, . . . , xn,m

)
,pn =: j(pn),qn =: j(qn), we

can exploit Lemma 5.5 and rewrite the iteration from the product space H in the
following way as an iteration in the Hilbert space H itself:

pn := 1
m

∑m
i=1 yn,i,

xn,i := JγAi
yn,i ∀i = 1, . . . ,m,

qn := 1
m

∑m
i=1 xn,i,

yn+1,i := (αn + βn)yn,i + 2βn(2qn − pn − xn,i) ∀i = 1, . . . ,m.

 (27)

Using Corollary 5.2, we then obtain the following convergence result.
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Theorem 5.6. Let H be a real Hilbert space, Ai : H → 2H be maximally monotone
operators for all i = 1, . . . ,m for some m ≥ 2, and assume that 0 ∈ ran

(
A1 + . . .+

Am
)
. Furthermore, let {αn}, {βn} be real sequences in [0, 1] satisfying αn + βn ≤ 1

for all n ∈ N such that the following conditions hold:

(a)
∑∞

n=1 αnβn =∞;

(b)
∑∞

n=1(1− αn − βn) <∞.

Given any starting points y1,i ∈ H for all i = 1, . . . ,m, the iteration (27) generates
a sequence {pn} which converges weakly to a point in zer

(
A1 + . . .+ Am

)
.

We do not present a strongly convergent counterpart of the previous result since we
will apply Theorem 5.6 to the finite-dimensional Fermat-Weber location problem.

5.3 Application to the Fermat-Weber Location Problem

The classical Fermat-Weber problem in H := Rn is given by the optimization prob-
lem

min f(x) :=
m∑
i=1

ωi‖x− ai‖, (28)

where ωi > 0 are given weights, and ai ∈ H are pairwise disjoint points, sometimes
called anchor points. Here, ‖ · ‖ stands for the Euclidean vector norm. The objec-
tive function f from (28) is convex and coercive, hence the problem always has a
nonempty and convex solution set. Note, however, that f is not differentiable at the
anchor points.

The Fermat-Weber problem is a famous model in location theory, and we refer
to [13, 22] for suitable surveys with some historical background, several applications
and generalizations. The most famous method for the solution of problem (28) is
Weiszfeld’s algorithm, see [4] for an extensive discussion. In principle, Weiszfeld’s
method is a fixed-point iteration, but not always well-defined and not necessarily
convergent, at least not without suitable modifications. Here we present another
fixed point method as a consequence of Theorem 5.6.

To this end, note that the objective function in (28) has the natural splitting

f(x) = f1(x) + . . .+ fm(x) with fi(x) := ωi‖x− ai‖.

Furthermore, x∗ is a solution of (28) if and only if

0 ∈ ∂f(x∗) = ∂f1(x
∗) + . . .+ ∂fm(x∗),

where
∂f(x) :=

{
s | f(y) ≥ f(x) + 〈s, y − x〉 ∀y

}
denotes the subdifferential of f at x, and the equation comes from the sum rule
for this subdifferential. Since each subdifferential ∂fi is maximally monotone, see,
e.g., [2, Thm. 20.40], we see that we are in the situation discussed in Theorem 5.6
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with Ai := ∂fi for i = 1, . . . ,m. In order to apply this result, first recall that the
subdifferential of each mapping fi is given by

∂fi(x) =

{
{z | ‖z‖ ≤ ωi} if x = ai,{
ωi

x−ai
||x−ai||

}
if x 6= ai.

(29)

In order to apply the generalized splitting method, we need to calculate the resol-
vents JAi

= J∂fi (note that we take, without loss of generality, γ = 1 in the general
splitting scheme, since other choices of γ can be incorporated by scaling the weights
ωi). The following result tells us that these resolvents are very easy to compute
analytically. To this end, it is convenient to introduce the proximity operator Proxg
of a convex function g, defined by

Proxg(x) := argminy
{
g(y) +

1

2
‖y − x‖2

}
.

Then the following result holds.

Lemma 5.7. Using the previous notation, we have

J∂fi(x) = Proxfi(x) =

{
ai if ‖x− ai‖ ≤ ωi
x− ωi x−ai

‖x−ai‖ otherwise
(30)

for all i = 1, . . . ,m.

Proof. Let g := fi for some i ∈ {1, . . . ,m}. Then the first equation is a general
result, see, e.g., [2, Ex. 23.3]. Since Proxg is the resolvent of a maximal monotone
mapping ∂g, it follows that Proxg is single-valued. Furthermore, observe that for all
x, it holds that

x− y ∈ ∂g(y)⇔ x ∈ (I + ∂g)y ⇔ y = Proxg(x).

Therefore, it suffices to show that the function from (30) satisfies the condition
x − Proxg(x) ∈ ∂g(Proxg(x)), which is straightforward to see using the expression
(29) for the subdifferential of g = fi. This completes the proof.

Application of Theorem 5.6 to the Fermat-Weber problem (28) yields the following
convergence result.

Theorem 5.8. Let m be an integer such that m ≥ 2, a1, . . . , am ∈ Rn be pairwise
disjoint, and let fi(x) := ωi‖x − ai‖, i = 1, 2, . . . ,m. Let {αn} and {βn} be real
sequences in [0, 1] such that αn + βn ≤ 1 for all n ≥ 1. For each i = 1, 2, . . . ,m,
choose yi,1 ∈ R., and for all n ≥ 1, set

pn := 1
m

m∑
i=1

yn,i,

xn,i := Proxfiyn,i ∀i = 1, . . . ,m,

qn := 1
m

m∑
i=1

xn,i,

yn+1,i := (αn + βn)yn,i + 2βn(2qn − pn − xn,i) ∀i = 1, . . . ,m.


(31)

Suppose the following conditions hold:
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(a)
∞∑
n=1

αnβn =∞;

(b)
∞∑
n=1

(1− αn − βn) <∞.

Then the sequence {pn} generated by (31) converges to a solution of Fermat-Weber
location problem (28).

Note that all statements from this section can easily be extended to a Hilbert space,
and the previous result then yields weak convergence to a solution. Note, however,
that typical applications of the Fermat-Weber problem are in finite dimensions.

5.4 Application to the Alternating Projection Method by
John von Neumann

Let A,B ⊆ H be two nonempty, closed, and convex subsets of a real Hilbert space
H, and suppose that A ∩ B 6= ∅. Since the corresponding projection operators PA
and PB are (firmly) nonexpansive, their composition

T := PAPB

is nonexansive (but not firmly nonexpansive unless the underlying sets have some
additional properties, see, e.g., [6]). The fixed points of T are precisely the elements
from the intersection A ∩ B. The corresponding Picard iteration xn+1 := Txn is
known as the alternating projection method by John von Neumann. In order to
obtain a globally convergent variant, one can use the relaxation approach

xn+1 := (1− λn)xn + λnTxn = (1− λn)xn + λnPA(PBxn).

Following our general scheme, we replace the scalars 1 − λn and λn by αn and βn,
respectively, and allow errors an and bn in the computation of the projections PA
and PB. This results in the iteration

xn+1 := αnxn + βn
(
PA(PBxn + bn) + an

)
, n ≥ 1. (32)

Similar to the previous section, we now apply our general weak convergence result
from Theorem 3.1 to this particular application.

Theorem 5.9. Let H be a real Hilbert space, and let A,B ⊆ H be nonempty, closed,
and convex subsets such that A∩B 6= ∅. Let {αn} and {βn} be real sequences in [0, 1]
such that αn + βn ≤ 1 for all n ≥ 1. Furthermore, let {an} and {bn} be sequences
in H. Let the sequence {xn} in H be generated by using the recursion (32) with an
arbitrary starting point x1 ∈ H. Suppose the following conditions hold:

(a)
∑∞

n=1 αnβn =∞;

(b)
∑∞

n=1 βn
(
‖an‖+ ‖bn‖

)
<∞;

(c)
∑∞

n=1(1− αn − βn) <∞.
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Then the sequence {xn} converges weakly to an element of A ∩B.

Proof. Let T := PAPB. Then we can rewrite the iteration (32) as

xn+1 = αnxn + βn
(
PA(PBxn + bn) + an

)
= αnxn + βnPA(PBxn) + βn

(
PA(PBxn + bn)− PA(PBxn) + an

)
= αnxn + βnTxn + rn

with
rn := βn

(
PA(PBxn + bn)− PA(PBxn) + an

)
.

Using the nonexpansiveness of the projection operator, we have

‖rn‖ ≤ βn
(∥∥PA(PBxn + bn)− PA(PBxn)

∥∥+ ‖an‖
)

≤ βn
(∥∥PBxn + bn − PBxn

∥∥+ ‖an‖
)

= βn
(
‖bn‖+ ‖an‖

)
.

Condition (b) therefore yields
∞∑
n=1

‖rn‖ <∞.

Since T is nonexpansive, it follows that we are precisely in the situation of Theo-
rem 3.1, so we obtain weak convergence of the sequence {xn} to a fixed point of T
and, therefore, to an element in A ∩B.

Using a similar way of reasoning, we can also prove the following strong convergence
result by applying Theorem 4.1.

Theorem 5.10. Let H be a real Hilbert space, and let A,B ⊆ H be nonempty,
closed, and convex subsets such that A ∩ B 6= ∅. Let {αn}, {βn}, and {δn} be real
sequences in [0, 1] such that αn + βn + δn ≤ 1 for all n ≥ 1. Furthermore, let {an}
and {bn} be sequences in H. Let the sequence {xn} in H be generated by

xn+1 := δnu+ αnxn + βn
(
PA(PBxn + bn) + an

)
, n ≥ 1,

using an arbitrary starting point x1 ∈ H, where u ∈ H denotes a fixed vector.
Suppose the following conditions hold:

(a) limn→∞ δn = 0,
∑∞

n=1 δn =∞;

(b) lim infn→∞ αnβn > 0;

(c)
∑∞

n=1 βn
(
‖an‖+ ‖bn‖

)
<∞;

(d)
∑∞

n=1(1− αn − βn − δn) <∞.

Then the sequence {xn} converges strongly to an element of A ∩B.
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6 Final Remarks

This paper presents both weak and strong convergence results for a generalized
Krasnoselskii-Mann iteration and applies the result to three particular applications.
The convergence theorems can be used to re-cover existing results, but the examples
and counterexamples provided as an illustration for our method also show that
some of the existing results in the literature are erroneous. Part of our future
reseach is devoted to the solution of (generalized) Nash equilibrium problems, where,
under certain assumptions, suitable reformulations lead to nonexpansive fixed-point
problems.
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