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Abstract. This paper describes a new technique to find the minimum norm solution of a
linear program. The main idea is to reformulate this problem as an unconstrained mini-
mization problem with a convex and smooth objective function. The minimization of this
objective function can be carried out by a Newton-type method which is shown to be globally
convergent. Furthermore, under certain assumptions, this Newton-type method converges in
a finite number of iterations to the minimum norm solution of the underlying linear program.
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1 Introduction

Consider the linear program in primal form

min cTx s.t. Ax = b, x ≥ 0 (1)

together with its dual
max bTλ s.t. ATλ ≤ c, (2)

where A ∈ IRm×n, c ∈ IRn, and b ∈ IRm are the given data, and A is assumed to have full
row rank. Let us denote by

inf(P ) := inf{cTx |Ax = b, x ≥ 0}

the optimal value of the primal problem (1). Throughout this manuscript, we assume that

inf(P ) ∈ IR. (3)

This is equivalent to saying that the primal (and hence also the dual) linear program has a
nonempty solution set. In particular, this means that the feasible set of (1) is nonempty.

The aim of this paper is to find the minimum norm solution of the primal program (1),
i.e., we want to find the solution x∗ of the program

min
1

2
‖x‖2 s.t. Ax = b, cTx = inf(P ), x ≥ 0. (4)

Note that this problem has a unique solution under the assumption (3). Since the minimum
norm solution could be a vertex as well as a point belonging to the relative interior of the
solution set (depending on the particular linear program under consideration), neither the
simplex method (see, e.g., [1]) nor the class of interior-point methods (see, e.g., [12]) will be
assured to find the minimum norm solution of (1).

The standard method for finding a minimum norm solution of a convex program is based
on the Tikhonov regularization, see [11]. Specialized to our linear program (1), the Tikhonov
regularization generates a sequence of iterates {xk} with xk being the unique solution of the
regularized program

min cTx +
εk

2
‖x‖2 s.t. Ax = b, x ≥ 0, (5)

where εk > 0 is a positive parameter and the sequence {εk} tends to zero. Hence the
Tikhonov regularization is, in general, quite costly since it has to solve a sequence of quadratic
programs. On the other hand, due to special properties of linear programs, it is known that a
solution of a single quadratic program (5) with a sufficiently small but positive parameter εk

already gives a solution of (4). This follows, e.g., from Mangasarian and Meyer [7, Corollary
2].

In this paper, we suggest an alternative approach for finding the minimum norm solution
of the linear program (1). Based on a reformulation of the minimum norm problem (4) as
a nonsmooth system of equations by Smith and Wolkowicz [10], we rewrite the problem (4)
as an unconstrained minimization problem with a smooth and convex objective function.
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This reformulation also depends on a certain parameter which has to be sufficiently large
but finite.

The details of this idea are given in Section 2. Section 3 then describes a Newton-type
method for the minimization of our unconstrained objective function. This method will be
shown to be globally convergent and finitely terminating under suitable assumptions. We
conclude this paper with some final remarks in Section 4.

A few words about our notation: We denote the n-dimensional real space by IRn. For
a vector x ∈ IRn, we write ‖x‖ for its Euclidean norm, and x+ or [x]+ for the vector
max{0, x}, where the maximum is taken componentwise, i.e., x+ is the projection of x onto
the nonnegative orthant. The rows of a matrix B will be denoted by Bi, whereas we write
bij for the (i, j)th element of the matrix B. Finally, Bε(x̄) := {x ∈ IRn | ‖x− x̄‖ ≤ ε} denotes
the closed ball with center x̄ ∈ IRn and radius ε > 0.

2 Unconstrained Minimization Reformulation

In order to find an unconstrained minimization reformulation for the minimum norm solution
of the primal linear program (1), we exploit the following result by Smith and Wolkowicz [10]
which is essentially based on some related results given by Mangasarian [6] and Mangasarian
and Meyer [7].

Theorem 2.1 A vector x∗ ∈ IRn is the minimum norm solution of the primal linear program
(1) if and only if there exists a positive number R > 0 such that, for each r ≥ R, we have

x∗ = [ATλ∗r − rc]+,

where λ∗r denotes a solution of the nonlinear system

A[ATλr − rc]+ = b.

Note that the characterization stated in Theorem 2.1 depends on the parameter r which has
to be sufficiently large. Due to the dependence on r we denote our variable by λr. According
to another result stated in [10], λr is related in some way to the dual variable λ from the
linear program (2); however, this relation does not play any role within this paper, so we
omit the details here.

Motivated by the characterization from Theorem 2.1, let us now introduce the function

f(λr) :=
1

2
‖[ATλr − rc]+‖2 − bTλr. (6)

Note that the function f also depends on the parameter r. Some elementary properties of
this function are stated in our next result.

Lemma 2.2 The function f from (6) is convex and continuously differentiable with gradient

∇f(λr) = A[ATλr − rc]+ − b.
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The proof of Lemma 2.2 is straightforward and therefore omitted here. Comparing the
statements of Theorem 2.1 and Lemma 2.2, we see that, for r > 0 sufficiently large, the
vector x∗ := [ATλ∗r − rc]+ is the minimum norm solution of the primal linear program (1)
if and only if λ∗r is a stationary point of the function f . Due to the convexity of f , this
is equivalent to saying that x∗ is the minimum norm solution of (1) if and only if λ∗r is a
minimum of the function f . Hence we get the unconstrained minimization reformulation

min f(λr), λr ∈ IRm, (7)

for the minimum norm problem. The advantage of the reformulation (7) is that this is a
smooth reformulation to which we can apply any first order minimization method in order to
solve this problem, whereas the reformulation provided by Theorem 2.1 gives a nonsmooth
nonlinear system of equations, and it is usually much more difficult to find globally convergent
methods for solving such a kind of problems. Moreover, in Section 3 we will describe a second
order method for the minimization of f (note that f is once but not twice continuously
differentiable).

Our next result gives a sufficient condition for the function f to have compact level sets.

Lemma 2.3 Consider the set

X := {λr ∈ IRm |ATλr ≤ 0, bTλr ≥ 0}.

Then f is coercive if and only if X = {0}.

Proof. First let f be a coercive function, i.e., lim‖λr‖→+∞ f(λr) = +∞. Suppose that
X 6= {0}. Then there is a nonzero λr with ATλr ≤ 0 and bTλr ≥ 0. Take this particular
element and define λk

r := kλr for k = 1, 2, . . .. It then follows that ‖λk
r‖ → +∞. On the other

hand, the sequence {f(λk
r)} remains bounded from above, contradicting the assumption that

f is coercive.
To prove the converse, we also proceed by contradiction, i.e., let X = {0} and assume

there is a constant γ ∈ IR and a sequence {λk
r} ⊆ IRm with ‖λk

r‖ → ∞ and f(λk
r) ≤ γ.

Without loss of generality, we can assume that the sequence {λk
r/‖λk

r‖} converges to some
vector λ∗r satisfying ‖λ∗r‖ = 1. Since

1

2

∥∥∥[
ATλk

r/‖λk
r‖ − rc/‖λk

r‖
]
+

∥∥∥2

− bT (λk
r/‖λk

r‖)/‖λk
r‖ =

f(λk
r)

‖λk
r‖2
≤ γ

‖λk
r‖2

,

we obtain
1

2
‖[ATλ∗r]+‖2 ≤ 0

by taking the limit k →∞. This implies

ATλ∗r ≤ 0.

Since f(λk
r) ≤ γ and the expression 1

2
‖[ATλk

r − rc]+‖2 is obviously nonnegative, we also have

−bTλk
r ≤ γ.
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Dividing both sides by ‖λk
r‖ and taking limits, we obtain

bTλ∗r ≥ 0.

Hence λ∗r is an element of the set X. In view of our assumption, this implies λ∗r = 0, a
contradiction to ‖λ∗r‖ = 1. This shows that f is indeed coercive. 2

Our next result gives a sufficient condition for the set X defined in Lemma 2.3 to contain
only the zero vector. The proof of this result makes use of the well-known Farkas-Lemma
which states that the system

Ax = b, x ≥ 0

has a solution if and only if the implication

ATλr ≤ 0 =⇒ bTλr ≤ 0

holds, see [5].

Theorem 2.4 Assume that (1) is strictly feasible, i.e., assume there is a vector x̂ ∈ IRn

such that Ax̂ = b and x̂ > 0. Then f is coercive.

Proof. Following Lemma 2.3, let us define the set

X := {λr ∈ IRm |ATλr ≤ 0, bTλr ≥ 0}.

In view of Lemma 2.3, we have to show that X contains only the zero vector. Assume this
is not true. Then there exists a vector λ̂r ∈ IRm with

AT λ̂r ≤ 0, bT λ̂r ≥ 0, λ̂r 6= 0. (8)

Since the linear program (1) has a nonempty feasible set, it follows from (8) and Farkas’
Lemma that the vector λ̂r satisfies

AT λ̂r ≤ 0, bT λ̂r = 0, λ̂r 6= 0. (9)

Let x̂ ∈ IRn be the strictly feasible vector for the primal linear program (1). Then it follows
from (9) that

0 = bT λ̂r = x̂TAT λ̂r.

Since x̂i > 0 and [AT λ̂r]i ≤ 0 for all i = 1, . . . , n, this shows that AT λ̂r = 0. However, A is
assumed to have full row rank, hence we get λ̂r = 0, a contradiction to λ̂r 6= 0 in view of (9). 2

Theorem 2.4 guarantees that any descent method for the minimization of f will generate a
bounded sequence. In particular, this sequence will have an accumulation point. For any
reasonable descent method, such an accumulation point will be a stationary point and hence
a global minimum of f due to the convexity of this function. A particular descent method
with an additional finite termination property will be discussed in the next section.
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3 Newton-type Method

In this section, we want to develop a Newton-type method for the solution of the uncon-
strained minimization problem

min f(λr), λr ∈ IRm.

Since the objective function f is once but not twice continuously differentiable, we first
review a few concepts from nonsmooth analysis. To this end, we will often write F := ∇f .
Since F = ∇f is locally Lipschitzian, we can define the so-called B-subdifferential of F = ∇f
at a point λr by

∂BF (λr) := {H ∈ IRm×m | ∃{λk
r} ⊆ DF : λk

r → λr and F ′(λk
r)→ H},

where DF denotes the set of points in IRm where F = ∇f is differentiable, cf. Qi [8]. The
convex hull of this set is Clarke’s [2] generalized Jacobian (which, in our case, should better
be called the generalized Hessian of f):

∂F (λr) := conv{∂BF (λr)}.

Our first result gives an overestimate for the generalized Jacobian of F at an arbitrary
point. We omit its proof here since it follows relatively easily from standard calculus rules
in nonsmooth analysis.

Lemma 3.1 Each element H ∈ ∂(∇f)(λr) is of the form

H = ADAT

with D = diag(d1, . . . , dn) being a diagonal matrix with entries di such that

di


= 1, if [ATλr − rc]i > 0,
∈ [0, 1], if [ATλr − rc]i = 0,
= 0, if [ATλr − rc]i < 0.

Based on the previous result, we can prove the following nonsingularity result which will
play an important role in our subsequent analysis.

Theorem 3.2 Let r > 0 be sufficiently large such that Theorem 2.1 applies, and let λ∗r be
a stationary point of f . Assume further that the corresponding minimum norm solution
x∗ = [ATλ∗r − rc]+ of the primal linear program (1) has at least m positive components, and
that we can find a subset of m positive components of x∗ such that the corresponding columns
of A are linearly independent. Then all elements H ∈ ∂(∇f)(λ∗r) are positive definite.

Proof. Let H ∈ ∂(∇f)(λ∗r) be arbitrarily given. Let us introduce the index sets

I+ := {i | [ATλ∗r − rc]i > 0},
I0 := {i | [ATλ∗r − rc]i = 0},
I− := {i | [ATλ∗r − rc]i < 0}.
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In view of Lemma 3.1, we then have

H = ADAT

with D = diag(d1, . . . , dn) and

di


= 1, if i ∈ I+,
∈ [0, 1], if i ∈ I0,
= 0, if i ∈ I−.

Since the minimum norm solution x∗ of (1) is supposed to have at least m positive components
and since we have x∗ = [ATλ∗r − rc]+, it follows that the index set I+ contains at least m
indices. Hence the diagonal matrix D contains at most n−m zero entries.

We now claim that this implies that H is positive definite. To this end, assume without
loss of generality that the first m components of x∗ are positive such that the corresponding
column vectors of the matrix A are linearly independent. Then we can write

D =

(
Dm

Dn−m

)
and A = (Am An−m)

with Dm = Im, Dn−m being a diagonal matrix with entries in [0, 1], and Am ∈ IRm×m, An−m ∈
IRm×(n−m) such that Am is nonsingular. This implies

H = ADAT

= (Am An−m)

(
Im

Dn−m

) (
AT

m

AT
n−m

)
= AmAT

m + An−mDn−mAT

n−m,

i.e., H is positive definite since AmAT
m is positive definite and An−mDn−mAT

n−m is at least
positive semi-definite. 2

Note that the assumptions of Theorem 3.2 imply that λ∗r is the unique global minimum of
our convex objective function f . However, the assumptions do not imply that the solution
set of the primal linear program (1) reduces to a singleton.

We further note that the assumptions of Theorem 3.2 are satisfied in case the minimum
norm solution x∗ of the linear program (1) is a nondegenerate vertex. This follows from
the fact that, by definition, a nondegenerate vertex has exactly m positive components,
together with a standard result from linear programming which says that the columns of A
corresponding to the positive components are linearly independent, cf. [1]. In addition, the
assumption may, in many cases, also be satisfied if the minimum norm solution x∗ is not a
vertex of (1).

We next describe our Newton-type algorithm for the unconstrained minimization of f .

Algorithm 3.3 (Newton-type method)

(S.0) Choose λ0
r ∈ IRm, ρ > 0, β ∈ (0, 1), p > 1, ε ≥ 0, and set k := 0.
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(S.1) If ‖∇f(λk
r)‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂(∇f)(λk
r), and calculate a solution ∆λk

r ∈ IRm of the linear system

Hk∆λr = −∇f(λk
r). (10)

Consider the following cases:

(a) If the system (10) has no solution, set ∆λk
r := −∇f(λk

r) and go to (S.3).

(b) If (10) has a solution satisfying ‖∇f(λk
r + ∆λk

r)‖ = 0, set λk+1
r := λk

r + ∆λk
r and

STOP.

(c) If (10) has a solution ∆λk
r satisfying

∇f(λk
r)

T∆λk
r ≤ −ρ‖∆λk

r‖p,

then go to (S.3), else set ∆λk
r := −∇f(λk

r) and go to (S.3).

(S.3) Compute a stepsize tk > 0 using Armijo’s rule, i.e., let tk := β`k with `k being the
smallest nonnegative integer ` such that

f(λk
r + β`∆λk

r) ≤ f(λk
r) + σβ`∇f(λk

r)
T∆λk

r .

(S.4) Set λk+1
r := λk

r + tk∆λk
r , k ← k + 1, and go to (S.1).

Note that Algorithm 3.3 looks pretty much like a standard Newton method for the minimiza-
tion of an unconstrained optimization problem: In Step (S.2), we try to solve the Newton
equation (10) with Hk being a substitute for the usually not existing Hessian of the function
f at the current iterate. We then check whether we are already at a solution or whether we
have to switch to a steepest descent direction in case the linear system (10) is not solvable
or does not provide a search direction satisfying the sufficient decrease condition from Step
(S.2) (c). Step (S.3) is then a standard Armijo line search applied to the objective function
f . In our analysis, we will always assume that Algorithm 3.3 does not terminate in Step
(S.1) after a finite number of iterations (though we will show that finite termination will
eventually happen in Step (S.2) (b)).

Our first result contains the global convergence properties of Algorithm 3.3.

Theorem 3.4 Every accumulation point λ∗r of a sequence {λk
r} generated by Algorithm 3.3

is a stationary point and hence a global minimum of f . If, in addition, r > 0 satisfies the
assumption of Theorem 2.1 and x∗ = [ATλ∗r − rc]+, then x∗ is the minimum norm solution
of the primal linear program (1).

Proof. The fact that every accumulation point λ∗r is a stationary point of f is rather stan-
dard and can more or less be verified by following the proof of Theorem 11 (a) in [3]. Since
f is convex by Lemma 2.2, we then obtain that λ∗r is also a global minimum of f . Finally,
the last statement follows from Theorem 2.1. 2
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We note an interesting consequence of Theorem 3.4 which was pointed out by one of the
referees: Let the assumptions of Theorem 3.4 be satisfied, {λk

r} be a sequence generated by
Algorithm 3.3 and xk := [ATλk

r−rc]+ be the corresponding sequence in the x-space. Assume
further that {λk

r} is bounded (this is certainly true under the assumption of Theorem 2.4)
so that {xk} is also bounded. Then the entire sequence {xk} converges to the minimum
norm solution of the primal linear program (1). This observation follows from the fact that
the minimum norm solution is unique so that the bounded sequence {xk} cannot have more
than one accumulation point.

Our next aim is to show that Algorithm 3.3 has a finite termination property. To this
end, we follow the technique of proof from [4], where the finite termination of the minimum
function approach for the solution of linear complementarity problems is established.

We begin with a technical result.

Lemma 3.5 Let λ∗r be a stationary point of f . Then there is an ε > 0 such that

∇f(λr)−H(λr − λ∗r) = 0

holds for all λr ∈ Bε(λ
∗
r) and all H ∈ ∂(∇f)(λr).

Proof. First recall from Lemma 2.2 that

∇f(λr) = A[ATλr − rc]+ − b.

Furthermore, any H ∈ ∂(∇f)(λr) is given by

H = ADAT

for some diagonal matrix D = diag(d1, . . . , dn) with entries (depending on λr) as specified
in Lemma 3.1. Since λ∗r is a stationary point of f , it follows that

bi = Ai[A
Tλ∗r − rc]+ ∀i = 1, . . . ,m.

Using these relations, we obtain for any fixed component i ∈ {1, . . . ,m}:

[∇f(λr)−H(λr − λ∗r)]i

= Ai[A
Tλr − rc]+ − bi −Hi(λr − λ∗r)

= Ai[A
Tλr − rc]+ − Ai[A

Tλ∗r − rc]+ − AiDAT (λr − λ∗r)

=
n∑

j=1

aij

(
max{0, [ATλr − rc]j} −max{0, [ATλ∗r − rc]j} − dj[A

T (λr − λ∗r)]j

)
=:

n∑
j=1

aijsj.

We now consider five cases in order to show that each sj in the above expression is equal to
zero provided that λr is sufficiently close to λ∗r.
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(a) If [ATλ∗r − rc]j > 0, then we also have [ATλr − rc]j > 0 for λr close to λ∗r. In view of
Lemma 3.1, this implies dj = 1. Hence we immediately obtain sj = 0 in this case.

(b) If [ATλ∗r − rc]j < 0, then we also have [ATλr − rc]j < 0 for λr close to λ∗r. Lemma 3.1
then implies dj = 0, and this shows that we have sj = 0 also in this case.

(c) If [ATλ∗r − rc]j = 0 and [ATλr − rc]j > 0, we have dj = 1 and therefore also sj = 0.

(d) If [ATλ∗r − rc]j = 0 and [ATλr − rc]j < 0, we have dj = 0. This also implies sj = 0.

(e) If [ATλ∗r − rc]j = 0 and [ATλr − rc]j = 0, we have dj ∈ [0, 1] by Lemma 3.1. However,
since, in this case, we have

[AT (λr − λ∗r)]j = [ATλr − rc]j − [ATλ∗r − rc]j = 0− 0 = 0,

we see that sj = 0 holds regardless of the precise value of dj.

Since the component i ∈ {1, . . . ,m} was chosen arbitrarily, the claim follows. 2

We are now able to state a finite termination property for Algorithm 3.3.

Theorem 3.6 Let r > 0 be sufficiently large such that Theorem 2.1 applies, and let λ∗r be
a stationary point of f satisfying the assumptions of Theorem 3.2. Then there is an ε > 0
such that, for all λk

r sufficiently close to λ∗r, the next iterate λk+1
r generated by Algorithm 3.3

is equal to λ∗r, i.e., xk+1 := [ATλk+1
r − rc]+ is equal to the minimum norm solution of the

primal linear program (1).

Proof. Let ε1 := ε with ε being the constant from Lemma 3.5. In view of Theorem 3.2 and
a standard perturbation result for the generalized Jacobian (see [9]), it follows that there is
a positive number ε2 such that any matrix H ∈ ∂(∇f)(λr) is nonsingular for all λr ∈ Br(λ

∗
r).

Now define ε := min{ε1, ε2} and assume that λk
r ∈ Bε(λ

∗
r). Then the matrix Hk ∈ ∂(∇f)(λk

r)
chosen in Step (S.2) of Algorithm 3.3 is nonsingular. Hence Algorithm 3.3 and Lemma 3.5
imply

(λk
r + ∆λk

r)− λ∗r = λk
r −H−1

k ∇f(λk
r)− λ∗r = −H−1

k

(
∇f(λk

r)−Hk(λ
k
r − λ∗r)

)
= 0.

Consequently, Algorithm 3.3 takes λk+1
r = λk

r + ∆λk
r = λ∗r as the next iterate and terminates

in Step (S.2) (b) since λ∗r is a stationary point of f . 2

We close this section by noting that the assumptions of Theorem 3.6 (in particular, the non-
singularity result from Theorem 3.2) typically guarantees the local superlinear/quadratic
convergence of nonsmooth Newton-type methods, whereas in our case, due to the special
piecewise structure of our objective function, we were able to show finite termination. With-
out such an assumption, however, one cannot expect finite termination or local fast conver-
gence in general.
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4 Concluding Remarks

In this paper, we introduced an alternative way to find the minimum norm solution of a
linear program. In contrast to the classical Tikhonov regularization, which has to solve a
quadratic program, we have to solve an unconstrained convex minimization problem in order
to find the minimum norm solution. However, similarly to the Tikhonov regularization, our
approach depends on a certain parameter which has to be sufficiently large but whose pre-
cise value is usually unknown a priori. Further work has to be done in order to get a better
understanding on the choice of this parameter. Finally, we note an interesting difference
between the Tikhonov regularization and our reformulation: While the former has to solve
a quadratic program in n variables, our unconstrained minimization reformulation depends
on m variables only, and m can be significantly smaller than n.

Acknowledgement. The authors would like to thank the two anonymous referees for their
useful comments which lead to some improvements of the current paper.
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