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Abstract: We introduce a new, one-parametric class of NCP-functions. This class
subsumes the Fischer function and reduces to the minimum function in a limiting
case of the parameter. This new class of NCP-functions is used in order to reformu-
late the nonlinear complementarity problem as a nonsmooth system of equations.
We present a detailed investigation of the properties of the equation operator, of
the corresponding merit function as well as of a suitable semismooth Newton-type
method. Finally, numerical results are presented for this method being applied to a
number of test problems.
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1 Introduction

Consider the nonlinear complementarity problem, NCP(F ) for short, which is to find
a solution of the system

xi ≥ 0, Fi(x) ≥ 0, xiFi(x) = 0 ∀i ∈ I := {1, . . . , n},

where F : IRn → IRn is a continuously differentiable function. This problem has
a number of important applications in operations research, economic equilibrium
problems and in the engineering sciences. We refer the reader to the recent survey
paper [11] by Ferris and Pang for a description of many of these applications.

The number of solution methods for the complementarity problem NCP(F ) is
enormous, see, for example, the paper [10] by Ferris and Kanzow for an overview.
Many of these methods are based on a so-called NCP-function: An NCP-function
is a mapping ϕ : IR2 → IR having the property

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

The two probably most prominent examples of an NCP-function are the minimum
function

ϕ(a, b) = min{a, b}
(see, e.g., Pang [23, 24] and Fischer and Kanzow [15]) as well as the Fischer function

ϕ(a, b) =
√
a2 + b2 − a− b

(see, e.g., Fischer [13], Facchinei and Soares [8] and De Luca, Facchinei and Kanzow
[4]).

In this paper, we investigate the properties of the following new class of functions:

ϕλ(a, b) :=
√

(a− b)2 + λab− a− b, (1)

where λ is a fixed parameter such that λ ∈ (0, 4). It is easy to see that the expression
inside the square root in (1) is always nonnegative, i.e.

(a− b)2 + λab ≥ 0 ∀ a, b ∈ IR. (2)

Hence ϕλ is at least well-defined. Moreover, it is elementary to see that ϕλ is an
NCP-function. In the special case λ = 2, the NCP-function ϕλ obviously reduces to
the Fischer function, whereas in the limiting case λ → 0, the function ϕλ becomes
a multiple of the minimum function. Hence the class (1) covers the currently most
important NCP-functions so that a closer look at this new class of NCP-functions
seems to be worthwile.

Now, if we define the equation operator Φλ : IRn → IRn by

Φλ(x) :=


ϕλ(x1, F1(x))

...
ϕλ(xn, Fn(x))

 ,
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then it follows immediately from the definition of an NCP-function that

x∗ solves NCP(F ) ⇐⇒ x∗ solves Φλ(x) = 0.

Alternatively, if Ψλ : IRn → IR denotes the corresponding merit function

Ψλ(x) :=
1

2
Φλ(x)

TΦλ(x) =
1

2
‖Φλ(x)‖2,

then we may rewrite the complementarity problem NCP(F ) as the unconstrained
minimization problem

min Ψλ(x), x ∈ IRn.

In Sections 2 and 3, we will give a detailed discussion of the properties of Φλ and Ψλ,
respectively. These properties will be applied in Section 4 in order to establish global
and local fast convergence of a nonsmooth Newton-type method for the solution of
the nonlinear complementarity problem NCP(F ). Numerical results will be reported
in Section 5. We then conclude with some final remarks in Section 6.

Some words about our notation. The n-dimensional Euclidian space is abbre-
viated by IRn. If x ∈ IRn is any given vector, we denote its ith component by xi,
i.e., by using the letter i as a subscript. On the other hand, a superscript k usually
denotes the kth iterate of a sequence {xk} ⊆ IRn. A function G : IRn → IRm is said
to be a C1 mapping if it is continuously differentiable, and LC1 mapping if it is
differentiable with a locally Lipschitz continuous derivative. The Jacobian of G at
a point x ∈ IRn will be denoted by G′(x).

The index set {1, . . . , n} will often be abbreviated by the capital letter I. If
M ∈ IRn×n,M = (mij), is any given matrix and J,K ⊆ I, then MJK denotes
the submatrix in IR|J |×|K| with elements mij, i ∈ J, j ∈ K. Similarly, if d ∈ IRn is
any given vector with components di, i ∈ I, then dJ is the subvector in IR|J | with
elements di, i ∈ J.

Finally, we will make use of the Landau symbols o(·) and O(·): If {αk} and {βk}
are two sequences in IR with αk > 0, βk > 0 for all k ∈ IN and limk→∞ βk = 0,
then αk = o(βk) means that limk→∞ αk/βk = 0, whereas αk = O(βk) just says that
lim supk→∞ αk/βk < +∞, i.e., that there is a constant c > 0 with αk ≤ cβk for all
k ∈ IN.

In the following sections, we will further need some definitions and results from
nonsmooth analysis. In order to avoid a complete section on this background mate-
rial, we will introduce the relevant concepts within the subsequent sections directly
before they are used. We basically assume, however, that the reader is more or less
familiar with these concepts.

2 Properties of the Equation-Operator Φλ

We begin with a simple result for the function ϕλ whose elementary proof is left to
the reader.
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Lemma 2.1 ϕλ is locally Lipschitz continuous and directionally differentiable ev-
erywhere.

We next want to prove that ϕλ is actually strongly semismooth. To this end, we
first recall from [21, 27, 26, 25] that a locally Lipschitz continuous and directionally
differentiable function G : IRn → IRm is called semismooth at a point x ∈ IRn if

Hd−G′(x; d) = o(‖d‖)

holds for every d→ 0 and every H ∈ ∂G(x+d), and strongly semismooth at x ∈ IRn

if
Hd−G′(x; d) = O(‖d‖2)

for d→ 0 and H ∈ ∂G(x+d); here, G′(x; d) denotes the usual directional derivative
of G at x in the direction d, and

∂G(x) = conv{H ∈ IRm×n| ∃{xk} ⊆ DG : lim
k→∞

xk → x and lim
k→∞

G′(xk) = H}

is Clarke’s [2] generalized Jacobian of G at x, with DG being the set of all points
where G is differentiable. Note that ∂G(x) is known to be a nonempty, convex and
compact set.

Moreover, we call G (strongly) semismooth if it is (strongly) semismooth at each
point x ∈ IRn. We also mention that every C1 function is semismooth and that every
LC1 function is strongly semismooth.

Lemma 2.2 ϕλ is strongly semismooth.

Proof. We first note that

(a− b)2 + λab = 0⇐⇒ a = b = 0. (3)

Hence the mapping ϕλ is an LC1 mapping at any point (a, b) 6= (0, 0). In particular,
ϕλ is strongly semismooth at any point (a, b) 6= (0, 0). So it remains to consider the
origin.

To this end, let d := (da, db)
T ∈ IR2 be any nonzero direction vector. Then ϕλ is

smooth at the point 0 + d = d, so that H ∈ ∂ϕλ(d) is uniquely given by

H =

 2(da − db) + λdb

2
√

(da − db)2 + λdadb
− 1,

−2(da − db) + λda

2
√

(da − db)2 + λdadb
− 1

 .
Therefore, we obtain after some algebraic manipulations:

Hd =
(da − db)2 + λdadb√
(da − db)2 + λdadb

− da − db

=
√

(da − db)2 + λdadb − da − db
= ϕλ(da, db).
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On the other hand, the directional derivative of ϕλ at the origin in the direction d
is given by

ϕ′λ(0; d) = lim
t→0+

ϕλ(0 + td)− ϕλ(0)
t

= lim
t→0+

√
(da − db)2 + λdadb − da − db

= ϕλ(da, db).

Hence we have

Hd− ϕ′λ(0; d) = 0

for all nonzero vectors d ∈ IR2. In particular, it follows that ϕλ is strongly semis-
mooth also in the origin. 2

The following result is a simple consequence of Lemma 2.2.

Theorem 2.3 The following statements hold:

(a) Φλ is semismooth.

(b) If F is an LC1 mapping, then Φλ is strongly semismooth.

Proof. We first recall that Φλ is (strongly) semismooth if and only if each com-
ponent function is (strongly) semismooth, see [27]. We further recall that every C1

mapping is semismooth and every LC1 mapping is strongly semismooth. Hence, by
Lemma 2.2, each component function of Φλ is a composition of semismooth func-
tions if F is continuously differentiable and a composition of strongly semismooth
functions if F is an LC1 mapping. However, it is known that the composition of
(strongly) semismooth functions is again (strongly) semismooth, see [21, 14]. Hence
Φλ itself is (strongly) semismooth. 2

The following is a very technical result which, however, turns out to be highly
important in order to establish Theorem 2.8 below which, in turn, is the basis for a
fast local rate of convergence of our algorithm to be described in Section 4.

Lemma 2.4 Let fλ : IR2 → IR be defined by

fλ(a, b) :=
√

(a− b)2 + λab.

Then there is a constant c = cλ ∈ (0, 2) such that

‖∇fλ(a, b)‖2 ≤ cλ

for all nonzero vectors (a, b)T ∈ IR2.
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Proof. Let (a, b)T ∈ IR2 be any nonzero vector. Then it follows from (3) that fλ is
continuously differentiable at (a, b), and after some computation we therefore obtain

‖∇fλ(a, b)‖2 =
(

2(a−b)+λb
2
√

(a−b)2+λab

)2

+
(

−2(a−b)+λa
2
√

(a−b)2+λab

)2

= 8(a−b)2+8λab+λ2(a2+b2)−4λ(a2+b2)
4(a−b)2+4λab

= 2− λ(4−λ)
4

a2+b2

a2+b2+(λ−2)ab
.

(4)

Now it is easy to see that

a2 + b2

a2 + b2 + (λ− 2)ab
≥ 1

2
. (5)

To this end, we first note that

a2 + b2 + 2ab− λab = (a+ b)2 − λab ≥ 0

for all a, b ∈ IR. Therefore, we get

2a2 + 2b2 ≥ a2 + b2 + λab− 2ab = (a− b)2 + λab ≥ 0

for all a, b ∈ IR, where the last inequality follows from (2). This immediately implies
(5).

We now obtain from (4) and (5)

‖∇fλ(a, b)‖2 ≤ 2− λ(4− λ)

8
=: cλ.

Obviously, cλ is a constant such that cλ ∈ (0, 2). 2

Based on the previous lemma, we are now in the position to present an overestimate
of Clarke’s [2] generalized Jacobian of Φλ at an arbitrary point x ∈ IRn.

Proposition 2.5 For an arbitrary x ∈ IRn, we have

∂Φλ(x) ⊆ Da(x) +Db(x)F
′(x),

where Da(x) = diag(a1(x), . . . , an(x)), Db(x) = diag(b1(x), . . . , bn(x)) ∈ IRn×n are
diagonal matrices whose ith diagonal element is given by

ai(x) =
2(xi − Fi(x)) + λFi(x)

2
√

(xi − Fi(x))2 + λxiFi(x)
− 1, bi(x) =

−2(xi − Fi(x)) + λxi

2
√

(xi − Fi(x))2 + λxiFi(x)
− 1

if (xi, Fi(x)) 6= (0, 0), and by

ai(x) = ξi − 1, bi(x) = χi − 1 for any (ξi, χi) ∈ IR2 such that ‖(ξi, χi)‖ ≤
√
cλ

if (xi, Fi(x)) = (0, 0), where cλ ∈ (0, 2) denotes the constant from Lemma 2.4.
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Proof. By Proposition 2.6.2 (e) in Clarke [2], we have

∂Φλ(x)
T ⊆ ∂Φλ,1(x)× . . .× ∂Φλ,n(x),

where Φλ,i denotes the ith component function of Φλ. If i is such that (xi, Fi(x)) 6=
(0, 0), then it is easy to check that Φλ,i is continuously differentiable, cf. (3). Hence
it follows immediately that

∂Φλ,i(x) = {∇Φλ,i(x)}

=


 2(xi − Fi(x)) + λFi(x)

2
√

(xi − Fi(x))2 + λxiFi(x)
− 1

 ei+
 −2(xi − Fi(x)) + λxi

2
√

(xi − Fi(x))2 + λxiFi(x)
− 1

∇Fi(x)
 .

If, on the other hand, i is such that (xi, Fi(x)) = (0, 0), then we obtain from Lemma
2.4 that each element of ∂Φλ,i(x) can be represented in the form

{(ξi − 1)ei + (χi − 1)∇Fi(x)},

where (ξi, χi) ∈ IR2 is an arbitrary vector such that ‖(ξi, χi)‖ ≤
√
cλ. From these

equalities, the statement of the lemma follows easily. 2

We stress that, since cλ < 2 in view of Lemma 2.4, it cannot happen that the
diagonal elements ai(x) and bi(x) as defined in Proposition 2.5 are both equal to
zero for the same index i ∈ I. However, it is not clear from Proposition 2.5 that these
elements are nonpositive (namely for those indices for which (xi, Fi(x)) = (0, 0)).
We therefore need the following result.

Proposition 2.6 Any H ∈ ∂Φλ(x) can be written in the form

H = Da +DbF
′(x),

where Da, Db ∈ IRn×n are negative semidefinite diagonal matrices such that their
sum Da +Db is negative definite.

Proof. We first show that the statement holds for any matrix from the B-subdifferential

∂BΦλ(x) := {H ∈ IRn×n| ∃{xk} ⊆ DΦλ
: {xk} → x and {Φ′

λ(x)} → H},

where DΦλ
denotes the set of differentiable points of Φλ. So let H ∈ ∂BΦλ(x). By

definition, there exists a sequence {xk} converging to x with (xki , Fi(x
k)) 6= (0, 0) for

all i and all k such that {Φ′
λ(x

k)} → H. For each k, there exist negative semidefinite
diagonal matrices Dk

a, D
k
b ∈ IRn×n with Dk

a +Dk
b negative definite and

Φ′
λ(x

k) = Dk
a +Dk

bF
′(xk),
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see Proposition 2.5. Since it it easy to see that the elements of Dk
a and Dk

b are
bounded for all k, there exist subsequences {Dk

a}K and {Dk
b }K converging to di-

agonal matrices Da and Db, respectively. Obviously, Da and Db are also negative
semidefinite. Moreover, their sum Da + Db is negative definite since cλ < 2 by
Lemma 2.4. Hence, taking the limit k →∞ on the subset K gives

H = lim
k∈K

Φ′
λ(x

k) = lim
k∈K

(Dk
a +Dk

bF
′(xk)) = Da +DbF

′(x).

This is the desired representation for an arbitrary element H ∈ ∂BΦλ(x).
Now let H be an element from the generalized Jacobian ∂Φλ(x). By definition,

∂Φλ(x) is the convex hull of the B-subdifferential ∂BΦλ(x). Hence there is an integer
m > 0 and numbers λi ≥ 0 with

∑m
i=1 λi = 1 as well as matrices Hi ∈ ∂BΦλ(x) with

H =
m∑
i=1

λiHi.

In view of the first part of the proof, each Hi can be written in the form

Hi = Di
a +Di

bF
′(x)

with negative semidefinite diagonal matrices Di
a, D

i
b such that their sum is negative

definite. Therefore

H =
m∑
i=1

λiHi =

(
m∑
i=1

λiD
i
a

)
+

(
m∑
i=1

λiD
i
b

)
F ′(x) =: Da +DbF

′(x)

with Da :=
∑m
i=1 λiD

i
a and Db :=

∑m
i=1 λiD

i
b. From the corresponding properties

of Di
a and Di

b, it is very easy to see that also Da, Db are negative semidefinite di-
agonal matrices and that their sum is negative definite. This completes the proof. 2

We next present a new characterization of the class of P -matrices which will turn
out to be useful in the proof of the subsequent result. We note, however, that the
sufficiency part of this result can also be found in Yamashita and Fukushima [31],
and that Gabriel and Moré [16] recently proved a similar characterization.

Before stating our new characterization, we first recall that a matrixM ∈ IRn×n is
called a P -matrix if, for every nonzero vector x ∈ IRn, there is an index i0 = i0(x) ∈ I
such that xi0 [Mx]i0 > 0. For a number of equivalent formulations, we refer the
interested reader to the excellent book [3] by Cottle, Pang and Stone.

Proposition 2.7 A matrix of the form

Da +DbM

is nonsingular for all positive (negative) semidefinite diagonal matrices Da, Db ∈
IRn×n such that Da +Db is positive (negative) definite if and only if M ∈ IRn×n is
a P -matrix.
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Proof. The proof of the sufficiency part is a generalization of the proof given for
Theorem 3.3 in [15]: Assume that M is a P -matrix. Let Da, Db ∈ IRn×n be any
two positive semidefinite diagonal matrices such that their sum Da +Db is positive
definite. Let p ∈ IRn be an arbitrary vector such that

(Da +DbM)p = 0. (6)

Let Da = diag(a1, . . . , an) and Db = diag(b1, . . . , bn). Then, equation (6) can be
rewritten as

aipi + bi[Mp]i = 0 (i ∈ I).
Multiplying the ith equation by pi (i ∈ I) yields

ai(pi)
2 + bipi[Mp]i = 0 (i ∈ I). (7)

Assume that p 6= 0. Since M is a P -matrix, we therefore have the existence of an
index i0 ∈ I such that pi0 6= 0 and pi0 [Mp]i0 > 0. Since ai0 , bi0 ≥ 0 and ai0 + bi0 > 0
by our assumptions on the diagonal matrices Da and Db, we therefore get from (7)
the contradiction

0 = ai0(pi0)
2 + bi0pi0 [Mp]i0 > 0.

Hence p = 0 and Da +DbM is indeed nonsingular.
To prove the converse result, assume that M is not a P -matrix. Then there is

a vector p 6= 0 such that for all i ∈ I we have pi = 0 or pi[Mp]i ≤ 0. If pi = 0,
then let ai := 1 and bi := 0. Otherwise, define ai := |[Mp]i| and bi := |pi|. Let
Da := diag(a1, . . . , an) and Db := diag(b1, . . . , bn). Obviously, the diagonal matrices
Da and Db are positive semidefinite. Furthermore, their sum Da + Db is positive
definite; this follows immediately from the definitions of ai and bi (i ∈ I). Moreover,
it is not difficult to see that (Da + DbM)p = 0 holds, which proves the necessary
part of the lemma. 2

In the next result, we want to show that all elements in the generalized Jacobian
∂Φλ(x

∗) are nonsingular if x∗ is an R-regular solution of NCP(F ). We want to prove
this result by exploiting the characterization of P -matrices from Proposition 2.7.

First of all, however, we recall the definition of R-regularity. To this end, given
a fixed solution x∗ of NCP(F ), we use the index sets

α := {i ∈ I|x∗i > 0 = Fi(x
∗)},

β := {i ∈ I|x∗i = 0 = Fi(x
∗)},

γ := {i ∈ I|x∗i = 0 < Fi(x
∗)}.

Then x∗ is called an R-regular solution of NCP(F ) if the submatrix F ′(x∗)αα is
nonsingular and if the Schur-complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ ∈ IR|β|×|β|

is a P -matrix, cf. Robinson [28].
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Theorem 2.8 Assume that x∗ ∈ IRn is an R-regular solution of NCP(F ). Then all
elements in the generalized Jacobian ∂Φλ(x

∗) are nonsingular.

Proof. Let H ∈ ∂Φλ(x
∗) be arbitrary but fixed. Due to Lemma 2.5, there are

diagonal matrices Da := Da(x
∗) ∈ IRn×n and Db := Db(x

∗) ∈ IRn×n such that

H = Da +DbF
′(x∗). (8)

Without loss of generality, we assume that we can write

F ′(x∗) =

 F ′(x∗)αα F ′(x∗)αβ F ′(x∗)αγ
F ′(x∗)βα F ′(x∗)ββ F ′(x∗)βγ
F ′(x∗)γα F ′(x∗)γβ F ′(x∗)γγ

 (9)

and, similarly,

Da =

 Da,α 0 0
0 Da,β 0
0 0 Da,γ

 , (10)

Db =

 Db,α 0 0
0 Db,β 0
0 0 Db,γ

 , (11)

where Da,α := (Da)αα etc. Now let p ∈ IRn be an arbitrary vector with Hp = 0. If we
partition the vector p appropriately as p = (pα, pβ, pγ), and if we take into account
(8)–(11), the homogeneous linear system Hp = 0 can be rewritten as follows:

Da,αpα +Db,α (F ′(x∗)ααpα + F ′(x∗)αβpβ + F ′(x∗)αγpγ) = 0α, (12)

Da,βpβ +Db,β (F ′(x∗)βαpα + F ′(x∗)ββpβ + F ′(x∗)βγpγ) = 0β, (13)

Da,γpγ +Db,γ (F ′(x∗)γαpα + F ′(x∗)γβpβ + F ′(x∗)γγpγ) = 0γ. (14)

From Proposition 2.5, we obtain

Da,α = 0α, Da,γ = −κIγ, Db,α = −κIα, and Db,γ = 0γ

for a certain constant κ > 0. Hence (14) immediately gives

pγ = 0γ, (15)

so that (12) becomes

F ′(x∗)ααpα + F ′(x∗)αβpβ = 0α.

Since x∗ is an R-regular solution of NCP(F ), the submatrix F ′(x∗)αα is nonsingular.
Hence we obtain from the previous equation

pα = −F ′(x∗)−1
ααF

′(x∗)αβpβ. (16)
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Replacing this in (13), using (15), and rearranging terms yields[
Da,β +Db,β

(
F ′(x∗)ββ − F ′(x∗)βαF

′(x∗)−1
ααF

′(x∗)αβ
)]
pβ = 0β. (17)

Since the Schur-complement

F ′(x∗)ββ − F ′(x∗)βαF
′(x∗)−1

ααF
′(x∗)αβ

is a P -matrix in view of the assumed R-regularity of x∗, and since both diagonal
matrices Da,β, Db,β can be assumed to be negative semidefinite such that their sum
is negative definite by Proposition 2.6, it follows immediately from (17) and Propo-
sition 2.7 that

pβ = 0β.

But then we also have pα = 0α because of (16), so that p = 0. This shows that H
is nonsingular. 2

3 Properties of the Merit Function Ψλ

In this section, we investigate the properties of the merit function Ψλ. We begin
with the following result which will be crucial for the subsequent analysis as well as
for the design of our algorithm in the next section.

Theorem 3.1 The function Ψλ is continuously differentiable with ∇Ψλ(x) = HTΦλ(x)
for any H ∈ ∂Φλ(x).

Proof. By using Proposition 2.5 and the NCP-function property of ϕλ, the proof
can be carried out in essentially the same way as the one for Proposition 3.4 in [8]. 2

For the following results, it will be convenient to rewrite the merit function Ψλ :
IRn → IR as

Ψλ(x) =
1

2
Φλ(x)

TΦλ(x) =
∑
i∈I

ψλ(xi, Fi(x)),

where ψλ : IR2 → IR is defined by

ψλ(a, b) :=
1

2
(ϕλ(a, b))

2 =
1

2

(√
(a− b)2 + λab− a− b

)2

. (18)

In order to establish some important results for the merit function Ψλ, we will take
a closer look at the properties of ψλ. We begin with the following simple lemma.

Lemma 3.2 ψλ is continuously differentiable with ∇ψλ(0, 0) = 0.
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Proof. The continuous differentiability of ψλ can either be verified in the same way
as for Theorem 3.1 or by direct calculation. The fact that ∇ψλ(0, 0) = 0 then follows
from the first order optimality conditions in unconstrained minimization since the
origin is a global minimizer of the function ψλ. 2

The next result states that the two partial derivatives of the function ψλ cannot
have opposite signs.

Lemma 3.3 It holds that

∂ψλ
∂a

(a, b)
∂ψλ
∂b

(a, b) ≥ 0

for all a, b ∈ IR.

Proof. In view of Lemma 3.2, the result holds if (a, b) = (0, 0). Hence assume that
(a, b) 6= (0, 0). Then we can use the chain rule in order to write

∂ψλ
∂a

(a, b) = ϕλ(a, b)

 2(a− b) + λb

2
√

(a− b)2 + λab
− 1

 .
We first show that

2(a− b) + λb

2
√

(a− b)2 + λab
− 1 ≤ 0. (19)

Assume the contrary, i.e., assume that

2(a− b) + λb > 2
√

(a− b)2 + λab.

Since the right-hand side of this inequality is nonnegative, we can square both sides
in order to obtain

4(a− b)2 + λ2b2 + 4λ(a− b)b > 4(a− b)2 + 4λab.

This reduces to
λ(λ− 4)b2 > 0

which, however, contradicts the general assumption that λ ∈ (0, 4). Hence (19)
holds.

On the other hand, we have

∂ψλ
∂b

(a, b) = ϕλ(a, b)

 −2(a− b) + λa

2
√

(a− b)2 + λab
− 1

 ,
and in a similar way as in the first part of this proof, we can show that

−2(a− b) + λa

2
√

(a− b)2 + λab
− 1 ≤ 0.
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Thus

∂ψλ
∂a

(a, b)
∂ψλ
∂b

(a, b) = (ϕλ(a, b))
2

 2(a− b) + λb

2
√

(a− b)2 + λab
− 1

 −2(a− b) + λa

2
√

(a− b)2 + λab
− 1


≥ 0,

as desired. 2

The following lemma gives a very strong characterization of a global minimum of
the function ψλ in terms of the partial derivatives of this function.

Lemma 3.4 It holds that

ψλ(a, b) = 0⇐⇒ ∇ψλ(a, b) = 0⇐⇒ ∂ψλ
∂a

(a, b) = 0⇐⇒ ∂ψλ
∂b

(a, b) = 0.

Proof. If ψλ(a, b) = 0, then (a, b) is a global minimizer of the function ψλ. Hence
∇ψλ(a, b) = (0, 0) by the necessary optimality condition in unconstrained minimiza-
tion and Lemma 3.2. On the other hand, if (a, b) is a stationary point, then, of
course, the two partial derivatives vanish at the point (a, b). So it remains to prove
the implication

∂ψλ
∂a

(a, b) = 0 =⇒ ψλ(a, b) = 0 (20)

as well as the corresponding implication if the partial derivative with respect to the
second argument vanishes. Since the proof of the latter implication is similar to the
one of (20), we just consider (20) in the following.

In view of Lemma 3.2, we can assume that (a, b) 6= (0, 0). Then we have

∂ψλ
∂a

(a, b) = ϕλ(a, b)

 2(a− b) + λb

2
√

(a− b)2 + λab
− 1

 .
If ϕλ(a, b) = 0, we are done. Hence assume that

2(a− b) + λb

2
√

(a− b)2 + λab
− 1 = 0,

i.e.,

2(a− b) + λb = 2
√

(a− b)2 + λab. (21)

Squaring both sides yields after some rearrangements:

λ(λ− 4)b2 = 0.

This implies b = 0 since λ ∈ (0, 4). Now, substituting b = 0 in (21) gives

2a = 2
√
a2 = 2|a|
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and therefore a ≥ 0. However, since ϕλ is an NCP-function, we thus obtain ϕλ(a, b) =
0 and therefore also ψλ(a, b) = 0. This completes the proof. 2

We are now in the position to state and prove one of the main results of this section.
We only have to recall that a matrix M ∈ IRn×n is called a P0-matrix if, for any
nonzero x ∈ IRn, there is an index i0 = i0(x) ∈ I with xi0 6= 0 and xi0 [Mx]i0 ≥ 0,
see [3].

Theorem 3.5 Assume that x∗ ∈ IRn is a stationary point of Ψλ such that the Jaco-
bian F ′(x∗) is a P0-matrix. Then x∗ is a solution of the nonlinear complementarity
problem NCP(F ).

Proof. Based on the previous results, the proof is essentially the same as the one
given, e.g., for the (squared) Fischer-function by Facchinei and Soares [8]. For the
sake of completeness and in order to show how the previous results apply here, we
include a full proof.

We first recall that we can write

Ψλ(x) =
∑
i∈I

ψλ(xi, Fi(x))

with ψλ being defined in (18).
Now, since x∗ ∈ IRn is a stationary point, we have

0 = ∇Ψλ(x
∗) =

∂ψλ
∂a

(x∗, F (x∗)) + F ′(x∗)T
∂ψλ
∂b

(x∗, F (x∗)), (22)

where
∂ψλ
∂a

(x∗, F (x∗)) :=

(
. . . ,

∂ψλ
∂a

(x∗i , Fi(x
∗)), . . .

)T

∈ IRn

and, similarly,

∂ψλ
∂b

(x∗, F (x∗)) :=

(
. . . ,

∂ψλ
∂b

(x∗i , Fi(x
∗)), . . .

)T

∈ IRn.

Componentwise, equation (22) becomes

∂ψλ
∂a

(x∗i , Fi(x
∗)) +

[
F ′(x∗)T

∂ψλ
∂b

(x∗, F (x∗))

]
i

= 0 ∀i ∈ I.

Premultiplying the ith equation by ∂ψλ

∂b
(x∗i , Fi(x

∗)) yields

∂ψλ
∂a

(x∗i , Fi(x
∗))
∂ψλ
∂b

(x∗i , Fi(x
∗)) +

∂ψλ
∂b

(x∗i , Fi(x
∗))

[
F ′(x∗)T

∂ψλ
∂b

(x∗, F (x∗))

]
i

= 0

(23)
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for all i ∈ I. Now assume that ∂ψλ

∂b
(x∗, F (x∗)) 6= 0. By assumption, F ′(x∗) and

therefore also F ′(x∗)T is a P0-matrix. Hence there is an index i0 ∈ I such that
∂ψλ

∂b
(x∗i0 , Fi0(x

∗)) 6= 0 and

∂ψλ
∂b

(x∗i0 , Fi0(x
∗))

[
F ′(x∗)T

∂ψλ
∂b

(x∗, F (x∗))

]
i0

≥ 0. (24)

On the other hand, we also have

∂ψλ
∂a

(x∗i0 , Fi0(x
∗))
∂ψλ
∂b

(x∗i0 , Fi0(x
∗)) ≥ 0 (25)

by Lemma 3.3. In view of (23)–(25), we obtain

∂ψλ
∂a

(x∗i0 , Fi0(x
∗))
∂ψλ
∂b

(x∗i0 , Fi0(x
∗)) = 0.

Lemma 3.4 therefore implies

ψλ(x
∗
i0
, Fi0(x

∗)) = 0.

This, in turn, implies ∂ψλ

∂b
(x∗i0 , Fi0(x

∗)) = 0 by Lemma 3.4, a contradiction to the

choice of the index i0 ∈ I. Hence ∂ψλ

∂b
(x∗, F (x∗)) = 0 which, again by Lemma 3.4,

implies Ψλ(x
∗) = 0 so that x∗ solves NCP(F ). 2

Lemma 3.6 There exist constants c1 > 0 and c2 > 0 such that

c1|min{a, b}| ≤ |ϕλ(a, b)| ≤ c2|min{a, b}| (26)

for all a, b ∈ IR.

Proof. Let λ ∈ (0, 4) be fixed. We will show that the inequalities (26) hold with
the following constants:

c1 := c1(λ) := 1− λ/4 < 1 and c2 := c2(λ) := 2 +
√
λ > 2.

First note that we have

0 < c21 < c21 + 2c1 < 4c1 = 4− λ (27)

and
0 < λ+ 2(c2 − 2). (28)

Now we consider four cases:
Case 1: a ≥ 0, b ≥ 0.
Then it is easy to see that ϕλ(a, b) ≤ 0. Hence

|ϕλ(a, b)| = a+ b−
√

(a− b)2 + λab.



16 C. KANZOW AND H. KLEINMICHEL

Since ab ≥ 0, we therefore obtain

|ϕλ(a, b)| ≤ a+ b−
√

(a− b)2 = a+ b− |a− b| = 2|min{a, b}| ≤ c2|min{a, b}|.

In order to derive the left-hand inequality in (26), we first note that

2c1(a+ b) min{a, b} ≤ 2c1(ab+ ab) = 4c1ab

= (4− λ)ab ≤ (4− λ)ab+ c21min2{a, b},

so that

(a+ b)2 − (4− λ)ab ≤ c21min2{a, b} − 2c1(a+ b) min{a, b}+ (a+ b)2.

Since c1 min{a, b} ≤ min{a, b} ≤ a+ b, this implies√
(a− b)2 + λab ≤ |c1 min{a, b} − (a+ b)| = a+ b− c1 min{a, b}

and therefore

c1|min{a, b}| = c1 min{a, b} ≤ a+ b−
√

(a− b)2 + λab = |ϕλ(a, b)|.

Case 2: a < 0, b < 0.
Then we have ϕλ(a, b) > 0 so that

|ϕλ(a, b)| =
√

(a− b)2 + λab− a− b.

This implies

|ϕλ(a, b)| >
√

(a− b)2 − a− b = |a− b| − a− b = 2|min{a, b}| > c1|min{a, b}|

since ab > 0. In order to prove the right-hand inequality of (26), we assume without
loss of generality that |a| ≥ |b|. Since λ = (c2 − 2)2 in view of the definition of c2,
we obtain from (28) the inequality

0 < (λ+ 2c2 − 4)|a| |b| = (c22 − 2c2)|a| |b| ≤ (c22 − 2c2)|a|2

and therefore

(λ− 4)|a| |b| ≤ c22|a|2 − 2c2|a|(|a|+ |b|) = c22|a|2 + 2c2|a|(a+ b).

This implies
(a+ b)2 + (λ− 4)ab ≤ (c2|a|+ a+ b)2

which, since c2|a|+ a+ b = c2|a| − |a| − |b| ≥ (c2 − 2)|a| ≥ 0, gives√
(a− b)2 + λab− a− b ≤ c2|a| = c2 max{|a|, |b|} = c2|min{a, b}|.
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Case 3: a ≥ 0, b < 0.
In this case we have ab ≤ 0 and ϕλ(a, b) ≥ 0, so that

|ϕλ(a, b)| =
√

(a− b)2 + λab− a− b.

We therefore have

|ϕλ(a, b)| ≤
√

(a− b)2 − a− b = 2|min{a, b}| < c2|min{a, b}|.

In order to verify the other inequality in (26), we consider two subcases.
Subcase 3a: a+ b > 0.
Then a > 0, b = min{a, b} ≤ 0 and therefore because of (27):

0 < c21(a+ b)− 2c1b = c21a+ 2c1a+ c21b− 2c1(a+ b)

< (4− λ)a− c21|b| − 2c1(a+ b)

so that
c21|b|2 + 2c1|b|(a+ b) ≤ (4− λ)a|b| = −(4− λ)ab.

Hence

c21|b|2 + 2c1|b|(a+ b) + (a+ b)2 ≤ (a+ b)2 − (4− λ)ab = (a− b)2 + λab.

Taking the square root on both sides gives

0 ≤ c1|b|+ a+ b ≤
√

(a− b)2 + λab.

Hence we obtain

c1|min{a, b}| = c1|b| ≤
√

(a− b)2 + λab− a− b = |ϕλ(a, b)|.

Subcase 3b: a+ b ≤ 0.
Because of (27), we have:

0 ≤ a2c21 ≤ −abc21 ≤ −ab(4− λ)

so that

ac1 ≤
√
−ab(4− λ) ≤

√
(a+ b)2 − ab(4− λ) =

√
(a− b)2 + λab.

On the other hand, we also have (1 − c1)(a + b) ≤ 0 because of c1 < 1. Hence
a+ b− c1b ≤ ac1 and therefore

a+ b− c1b ≤ ac1 ≤
√

(a− b)2 + λab.

This implies

c1|min{a, b}| = c1|b| = −c1b ≤
√

(a− b)2 + λab− a− b = |ϕλ(a, b)|.
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Case 4: a < 0, b ≥ 0.
This case can be verified in a similar way as Case 3, so we omit the details here. 2

Note that, in particular, Lemma 3.6 implies a result by Tseng [30] who compares the
growth behaviour of the Fischer function with the growth behaviour of the minimum
function.

As a consequence of Lemma 3.6 and known results for the minimum function
(see, e.g., Facchinei and Soares [8] as well as Kanzow and Fukushima [19]), we
therefore obtain the following two theorems. In the statement of these results, we
call the function F : IRn → IRn a uniform P -function if there is a modulus µ > 0
such that

max
i∈I

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2

holds for all x, y ∈ IRn.

Theorem 3.7 If F is a uniform P -function, then the level sets

L(c) := {x ∈ IRn|Ψλ(x) ≤ c}

are compact for any fixed c ∈ IR.

Theorem 3.8 If F is a Lipschitz-continuous uniform P -function, then there exists
a constant c3 > 0 such that

‖x− x∗‖2 ≤ c3Ψλ(x)

for all x ∈ IRn, where x∗ denotes the unique solution of NCP(F ).

We note that Theorem 3.7 is important because it guarantees that any sequence
generated by our algorithm to be presented in the following section will be bounded
under the stated assumptions. On the other hand, Theorem 3.8 says that the func-
tion
√

Ψλ provides a global error bound for the nonlinear complementarity problem
NCP(F ).

4 Algorithm and Convergence

The following algorithm tries to solve the nonlinear complementarity problem by
solving the equivalent nonlinear system of equations

Φλ(x) = 0.

It applies a nonsmooth Newton-type method as introduced and investigated by
Kummer [20], Qi and Sun [27] as well as Qi [26] to this nonlinear system of equations.
The method is globalized by using the smooth merit function Ψλ.
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We stress that this algorithm looks very similar to the classical Newton method
applied to a smooth system of equations. The only difference is that, here, we
have to choose an element H ∈ ∂Φλ(x) instead of taking the (usually not existing)
classical Jacobian of Φλ at x.

The following is a precise statement of our algorithm.

Algorithm 4.1 (Semismooth Newton-type Method)

(S.0) (Initialization)
Choose λ ∈ (0, 4), x0 ∈ IRn, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1/2), p > 2, ε ≥ 0, and set
k := 0.

(S.1) (Termination Criterion)
If ‖∇Ψλ(x

k)‖ ≤ ε, stop.

(S.2) (Search Direction Calculation)
Select an element Hk ∈ ∂Φλ(x

k). Find a solution dk ∈ IRn of the linear system

Hkd = −Φλ(x
k).

If this system is not solvable or if the descent condition

∇Ψλ(x
k)Tdk ≤ −ρ‖dk‖p

is not satisfied, set dk := −∇Ψλ(x
k).

(S.3) (Line Search)
Compute tk := max{β`| ` = 0, 1, 2, . . .} such that

Ψλ(x
k + tkd

k) ≤ Ψλ(x
k) + σtk∇Ψλ(x

k)Tdk.

(S.4) (Update)
Set xk+1 := xk + tkd

k, k ← k + 1, and go to (S.1).

The global and local convergence properties of Algorithm 4.1 are summarized in
the following theorem. We implicitly assume in this result that the termination
parameter ε in Algorithm 4.1 is equal to zero, and that the algorithm generates an
infinite sequence.

Theorem 4.2 (a) Every accumulation point of a sequence {xk} generated by Al-
gorithm 4.1 is a stationary point of Ψλ.

(b) Suppose that x∗ is an isolated accumulation point of a sequence {xk} generated
by Algorithm 4.1. Then the entire sequence {xk} converges to the point x∗.

(c) Assume that x∗ is an accumulation point of a sequence {xk} generated by
Algorithm 4.1 such that x∗ is an R-regular solution of NCP(F ). Then:
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(i) The entire sequence {xk} converges to x∗.

(ii) The search direction dk is eventually given by the solution of the linear
system Hkd = −Φλ(x

k) in Step (S.2).

(iii) The full stepsize tk = 1 is accepted for all k sufficiently large.

(iv) The rate of convergence is Q-superlinear.

(v) If, in addition, F is an LC1 mapping, then the rate of convergence is
Q-quadratic.

Proof. Based on our results stated in Sections 2 and 3, the proof is basically the
same as the one for Theorem 3.1 in De Luca, Facchinei and Kanzow [4] for a related
algorithm. The only difference is that our statement (b) is slightly different, so that
we have to ensure that the R-regularity condition in part (c) implies that x∗ is an
isolated accumulation point of the sequence {xk}.

Suppose it is not. Since {Ψλ(x
k)} is monotonically decreasing, and since the

accumulation point x∗ solves NCP(F ), it follows that {Ψλ(x
k)} → 0. Hence each

accumulation point of the sequence {xk} is a solution of NCP(F ). Since, however,
an R-regular solution is known to be locally unique, x∗ is necessarily also an isolated
accumulation point of the sequence {xk}. But then part (i) of (c) follows from part
(b).

By using Theorems 2.3 and 3.1, we can prove all other statements in exactly the
same way as for the corresponding Theorem in [4] (see also [6, 18]). 2

Note that Theorem 4.2 (a) and (b) only give a global convergence result to stationary
points of the merit function Ψλ whereas we are much more interested in finding a
global minimizer of Ψλ and hence a solution of NCP(F ). Fortunately, Theorem 3.5
provides a rather weak assumption for such a stationary point to be a solution of
NCP(F ). We stress that the P0-matrix property used in Theorem 3.5 is satisfied, in
particular, for the large class of P0-functions and therefore especially for all monotone
functions F , see [22].

The existence of an accumulation point and thus of a stationary point of Ψλ

is guaranteed by Theorem 3.7. In view of our numerical experience, however, the
sequence {xk} generated by Algorithm 4.1 remains bounded and therefore admits
an accumulation point for all test problems, even if the assumptions from Theorem
3.7 are not met.

Finally, we stress that the local convergence theory for Algorithm 4.1 as given
in part (c) of Theorem 4.2 does not require any nondegeneracy assumption for the
solution x∗.

5 Numerical Results

We implemented Algorithm 4.1 in MATLAB and tested it on a SUN SPARC 20
station using basically all complementarity problems and all available starting points
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from the test problem collection MCPLIB by Dirkse and Ferris [5], see also Ferris
and Rutherford [12]. Two exceptions are the von Thünen problems pgvon105 and
pgvon106 whose implementations within the MCPLIB library seems to be somewhat
crucial [9] so that we deleted them from our tables. Nevertheless, we stress that our
algorithm was able to solve problem pgvon105 with an accuracy of Ψ(xk) ≈ 10−13

after k = 44 iterations, whereas for problem pgvon106 the algorithm stopped after
a few iterations with Ψ(xk) ≈ 10−5 since the steplength was getting too small.

Within our implementation, we incorporated some (partially heuristic) strategies
in order to improve the numerical results to some extent. In particular, we used the
following strategies:

(a) We replaced the monotone Armijo rule from Step (S.3) of Algorithm 4.1 by a
nonmonotone line search as suggested by Grippo, Lampariello and Lucidi [17]
and further investigated by Toint [29] for unconstrained minimization.

(b) We implemented a simple backtracking strategy as described, e.g., in [7], in
order to avoid possible domain violations (note that the function F in many
examples from the MCPLIB library is not defined everywhere).

Since the above two strategies are more or less standard techniques within our
algorithmic framework, we do not restate them here precisely. Instead, we mention
that we terminated our iteration if one of the following conditions was satisfied:

k > kmax,Ψ(xk) < ε or tk < tmin,

and that we used the following settings for our parameters:

ρ = 10−8, β = 0.5, σ = 10−4, p = 2.1,

and

kmax = 200, tmin = 10−12, ε = 10−12.

Using this algorithmic environment, we made some preliminary test runs using dif-
ferent values of our parameter λ. In view of these preliminary experiments, it seems
that the choice λ = 2, i.e., the Fischer function, gives the best global convergence
properties, whereas taking λ close to zero usually results in a faster local conver-
gence.

This motivated us to use a dynamic choice of λ for our test runs. More precisely,
we update λ at each iteration using the following rules:

(a) Set λ = 2 at the beginning of each iteration.

(b) If Ψ(xk) ≤ γ1, then set λ := Ψ(xk), else set λ := min{c1Ψ(xk), λ}.

(c) If Ψ(xk) ≤ γ2, then set λ := min{c2, λ}.
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Basically, this strategy uses the value λ = 2 as long as we are far away from a
solution, and reduces λ fast if we are getting close to a solution of the nonlinear
complementarity problem NCP(F ).

Our implementation uses the following values for the parameters involved in this
updating scheme for λ :

γ1 = 10−2, γ2 = 10−4, c1 = 10, and c2 = 10−8.

The numerical results which we obtained with this algorithm are summarized in
Table 1. In this table, we report the following data:

problem: name of the test problem in MCPLIB
n: number of variables
SP: number of starting point provided by MCPLIB
k: number of iterations
F -ev.: number of F -evaluations
F ′-ev.: number of Jacobian evaluations
Ψ(xf ): value of Ψ(x) at the final iterate x = xf

‖∇Ψ(xf )‖: value of ‖∇Ψ(x)‖ at the final iterate x = xf

G: number of gradient steps
N : number of Newton steps.

The results reported in Table 1 are, in our opinion, quite impressive. The algo-
rithm was able to solve almost all examples, most of them without any difficulties.
For example, the famous Hansen-Koopmans problem hanskoop, which is supposed
to be a difficult problem, was solved in approximately ten iterations for all starting
points.

There are just three examples which our algorithm was not able to solve. The first
one is the billups example which, in fact, was constructed by Billups [1] in order to
make almost all state-of-the-art methods to fail on this problem. By incorporating
a simple hybrid technique as discussed in Chapter 8 of the manuscript [18], it is no
problem to solve even this example.

The second failure is on problem colvdual (second starting point). This problem
is known to be very hard. We were able to solve it by using different parameter
settings, but then we usually got difficulties with some other test problems.

Finally, the third failure is on the Kojima-Shindo problem kojshin when using
the fourth starting point. Here we have a failure due to our nonmonotone line search
rule since this problem can be solved within a very few iterations when using the
standard (monotone) Armijo rule. So this is one of the rare situations where the
nonmonotone line search is worse than its monotone counterpart.

6 Concluding Remarks

In this paper, we introduced a new class of NCP-functions which, in particular,
covers the well-known Fischer function. We further investigated the theoretical and
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Table 1: Numerical results for Algorithm 4.1.

problem n SP k F -ev. F ′-ev. Ψ(xf ) ‖∇Ψ(xf )‖ G N

bertsekas 15 1 30 230 31 1.5e-17 1.2e-6 1 29
bertsekas 15 2 28 205 29 7.9e-17 8.2e-7 0 28
bertsekas 15 3 12 24 13 7.3e-15 1.2e-5 0 12
billups 1 1 — — — — — — —
colvdual 20 1 33 81 34 1.8e-14 9.1e-5 0 33
colvdual 20 2 — — — — — — —
colvnlp 15 1 14 28 15 4.5e-17 2.3e-6 0 14
colvnlp 15 2 16 18 17 2.7e-25 1.2e-10 0 16
cycle 1 1 3 5 4 3.5e-17 1.7e-8 0 3
explcp 16 1 19 24 20 1.3e-26 3.2e-13 0 19
hanskoop 14 1 9 11 10 5.9e-13 1.7e-5 1 8
hanskoop 14 2 11 15 12 7.0e-14 9.0e-6 1 10
hanskoop 14 3 9 11 10 2.3e-15 1.1e-6 1 8
hanskoop 14 4 8 12 9 4.9e-14 2.7e-6 0 8
hanskoop 14 5 17 21 18 5.1e-17 2.4e-7 1 16
josephy 4 1 27 36 28 1.7e-17 1.1e-7 0 27
josephy 4 2 6 10 7 5.8e-13 1.9e-5 0 6
josephy 4 3 59 71 60 1.6e-18 3.3e-8 0 59
josephy 4 4 5 6 6 6.6e-25 2.1e-11 0 5
josephy 4 5 4 5 5 1.4e-17 9.7e-8 0 4
josephy 4 6 7 10 8 6.2e-17 2.0e-7 0 7
kojshin 4 1 14 15 15 2.3e-27 1.2e-12 0 14
kojshin 4 2 7 12 8 9.9e-26 1.1e-11 0 7
kojshin 4 3 11 12 12 4.4e-14 7.4e-6 0 11
kojshin 4 4 — — — — — — —
kojshin 4 5 5 6 6 4.6e-26 5.5e-12 0 5
kojshin 4 6 6 8 7 2.5e-27 1.7e-12 0 6
mathinum 3 1 4 5 5 2.1e-15 2.6e-7 0 4
mathinum 3 2 5 6 6 5.8e-15 5.9e-7 0 5
mathinum 3 3 8 10 9 0.0 0.0 0 8
mathinum 3 4 7 8 8 2.3e-19 3.7e-9 0 7
mathisum 4 1 5 7 6 1.1e-19 2.2e-9 0 5
mathisum 4 2 6 7 7 1.4e-13 2.5e-6 0 6
mathisum 4 3 9 12 10 4.0e-29 3.1e-14 0 9
mathisum 4 4 6 7 7 4.7e-24 1.4e-11 0 6
nash 10 1 8 9 9 2.7e-24 3.4e-10 0 8
nash 10 2 9 15 10 7.4e-21 1.8e-8 0 9
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Table 1 (continued): Numerical results for Algorithm 4.1.

problem n SP k F -ev. F ′-ev. Ψ(xf ) ‖∇Ψ(xf )‖ G N

powell 16 1 9 11 10 1.5e-18 4.2e-9 0 9
powell 16 2 11 14 12 1.5e-23 9.2e-11 0 11
powell 16 3 20 21 21 3.7e-13 8.6e-6 1 19
powell 16 4 10 11 11 2.2e-15 1.1e-6 1 9
scarfanum 13 1 8 11 9 7.6e-20 1.3e-8 0 8
scarfanum 13 2 10 17 11 4.4e-17 2.9e-7 0 10
scarfanum 13 3 8 11 9 7.7e-15 4.9e-6 0 8
scarfasum 14 1 6 8 7 7.0e-19 1.8e-7 0 6
scarfasum 14 2 9 16 10 1.9e-17 5.4e-7 0 9
scarfasum 14 3 10 16 11 3.6e-18 3.6e-7 0 10
scarfbnum 39 1 19 24 20 1.0e-26 4.3e-11 0 19
scarfbnum 39 2 25 36 26 5.8e-28 1.2e-11 1 24
scarfbsum 40 1 20 29 21 1.4e-15 1.3e-5 0 20
scarfbsum 40 2 28 36 29 1.4e-14 4.1e-5 4 24
sppe 27 1 7 8 8 3.1e-14 1.2e-6 0 7
sppe 27 2 8 40 9 6.7e-13 6.8e-6 2 6
tobin 42 1 9 11 10 1.3e-13 2.1e-6 0 9
tobin 42 2 14 15 15 2.2e-13 3.0e-6 0 14

numerical properties of a corresponding nonsmooth Newton-type method. Theo-
retically, it turned out that our whole class of algorithms has essentially the same
(strong) properties as the Fischer function. On the other hand, the numerical results
presented in the previous section are quite promising, but still preliminary, and we
believe that a more sophisticated dynamic choice of our parameter could lead to
substantial improvements. We leave this as a future research topic.

We finally note that the results of this paper do not hold for the boundary values
λ = 0 and λ = 4. In fact, if λ = 0, then neither ψλ nor Ψλ are continuously differen-
tiable, so that Algorithm 4.1 is not even well-defined in this case, whereas for λ = 4
it is easy to see that ϕλ(a, b) = 0 for all a, b ≥ 0 so that ϕ4 is not an NCP-function.

Acknowledgement. The authors would like to thank Martin Zupke for pointing
out a gap in an earlier version of this paper. His comments led us to the introduction
of Proposition 2.6.

References

[1] S.C. Billups: Algorithms for Complementarity Problems and Generalized



NONLINEAR COMPLEMENTARITY PROBLEMS 25

Equations. Ph.D. Thesis, Computer Sciences Department, University of Wis-
consin, Madison, WI, August 1995.

[2] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York, NY, 1983 (reprinted by SIAM, Philadelphia, PA, 1990).

[3] R.W. Cottle, J.-S. Pang and R.E. Stone: The Linear Complementarity
Problem. Academic Press, Boston, 1992.

[4] T. De Luca, F. Facchinei and C. Kanzow: A semismooth equation ap-
proach to the solution of nonlinear complementarity problems. Mathematical
Programming 75, 1996, pp. 407–439.

[5] S.P. Dirkse and M.C. Ferris: MCPLIB: A collection of nonlinear mixed
complementarity problems. Optimization Methods and Software 5, 1995, pp.
123–156.

[6] F. Facchinei, A. Fischer and C. Kanzow: Inexact Newton methods for
semismooth equations with applications to variational inequality problems. In:
G. Di Pillo and F. Giannessi (eds.): Nonlinear Optimization and Applica-
tions. Plenum Press, New York, NY, 1996, pp. 125–139.

[7] F. Facchinei, A. Fischer and C. Kanzow: A semismooth Newton method
for variational inequalities: The case of box constraints. In: M.C. Ferris and
J.-S. Pang (eds.): Complementarity and Variational Problems. State of the
Art. SIAM, Philadelphia, PA, 76–90.

[8] F. Facchinei and J. Soares: A new merit function for nonlinear comple-
mentarity problems and a related algorithm. SIAM Journal on Optimization 7,
1997, pp. 225–247.

[9] M.C. Ferris: Private communication, September 1996.

[10] M.C. Ferris and C. Kanzow: Recent developments in the solution of non-
linear complementarity problems. Preprint, in preparation.

[11] M.C. Ferris and J.-S. Pang: Engineering and economic applications of
complementarity problems. SIAM Review, to appear.

[12] M.C. Ferris and T.F. Rutherford: Accessing realistic mixed complemen-
tarity problems within MATLAB. In: G. Di Pillo and F. Giannessi (eds.):
Nonlinear Optimization and Applications. Plenum Press, New York, NY, pp.
141–153.

[13] A. Fischer: A special Newton-type optimization method. Optimization 24,
1992, pp. 269–284.



26 C. KANZOW AND H. KLEINMICHEL

[14] A. Fischer: Solution of monotone complementarity problems with locally Lip-
schitzian functions. Mathematical Programming 76, 1997, pp. 513–532.

[15] A. Fischer and C. Kanzow: On finite termination of an iterative method
for linear complementarity problems. Mathematical Programming 74, 1996, pp.
279–292.
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