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Abstract. The standard assumption of identically distributed training and test data is
violated when the test data are generated in response to the presence of a predictive model.
This becomes apparent, for example, in the context of email spam filtering. Here, email
service providers employ spam filters and spam senders engineer campaign templates such
as to achieve a high rate of successful deliveries despite any filters. We model the interaction
between learner and data generator as a static game in which the cost functions of learner
and data generator are not necessarily antagonistic. We identify conditions under which
this prediction game has a unique Nash equilibrium and derive algorithms that find the
equilibrial prediction model. We derive two instances, the Nash logistic regression and the
Nash support vector machine, and empirically explore their properties in a case study on
email spam filtering.
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Static Prediction Games for Adversarial Learning Problems

1. Introduction

A common assumption on which most learning algorithms are based is that training and
test data are governed by identical distributions. However, in a variety of applications, the
distribution that governs data at application time may be influenced by an adversary whose
interests are in conflict with those of the learner. Consider, for instance, the following three
scenarios. In computer and network security, scripts that control attacks are engineered
with botnet and intrusion detection systems in mind. Credit card fraudsters adapt their
unauthorized use of credit cards—in particular, amounts charged per transactions and per
day and the type of businesses that amounts are charged from—such as not to trigger alert-
ing mechanisms employed by credit card companies. Email spam senders design message
templates that are instantiated by nodes of botnets. These templates are specifically de-
signed to produce a low spam score with popular spam filters. The domain of email spam
filtering will serve as a running example throughout the paper. In all of these applications,
the party that creates the predictive model and the adversarial party that generates future
data are aware of each other, and factor the possible actions of their opponent into their
decisions.

The interaction between learner and data generators can be modeled as a game in which
one player controls the predictive model whereas another exercises some control over the
process of data generation. The adversary’s influence on the generation of the data can be
formally modeled as a transformation that is imposed on the distribution that governs the
data at training time. The transformed distribution then governs the data at application
time. The optimization criterion of either player takes as arguments both, the predictive
model chosen by the learner and the transformation carried out by the adversary.

Typically, this problem is modeled under the worst-case assumption that the adversary
desires to impose the highest possible costs on the learner. This amounts to a zero-sum
game in which the loss of one player is the gain of the other. In this setting, both players
can maximize their expected outcome by following a minimax strategy. Lanckriet et al.
(2002) study the minimax probability machine (MPM). This classifier minimizes the max-
imal probability of misclassifying new instances for a given mean and covariance matrix
of each class. Geometrically, these class means and covariances define two hyper-ellipsoids
which are equally scaled such that they intersect; their common tangent is the minimax
probabilistic decision hyperplane. Ghaoui et al. (2003) derive a minimax model for input
data that are known to lie within some hyper-rectangles around the training instances.
Their solution minimizes the worst-case loss over all possible choices of the data in these in-
tervals. Similarly, worst-case solutions to classification games in which the adversary deletes
input features (Globerson and Roweis 2006; Globerson et al. 2009) or performs an arbitrary
feature transformation (Teo et al. 2007; Dekel and Shamir 2008; Dekel et al. 2010) have
been studied.

Several applications motivate problem settings in which the goals of the learner and
the data generator, while still conflicting, are not necessarily entirely antagonistic. For
instance, a fraudster’s goal of maximizing the profit made from exploiting phished account
information is not the inverse of an email service provider’s goal of achieving a high spam
recognition rate at close-to-zero false positives. When playing a minimax strategy, one
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often makes overly pessimistic assumptions about the adversary’s behavior and may not
necessarily obtain an optimal outcome.

Games in which a leader—typically, the learner—commits to an action first whereas the
adversary can react after the leader’s action has been disclosed are naturally modeled as a
Stackelberg competition. This model is appropriate when the follower—the data generator—
has full information about the predictive model. This assumption is usually a pessimistic
approximation of reality because, for instance, neither email service providers nor credit
card companies disclose a comprehensive documentation of their current security measures.
Stackelberg equilibria of adversarial classification problems can be identified by solving a
bilevel optimization problem (Brückner and Scheffer, 2011).

This paper studies static prediction games in which both players act simultaneously; that
is, without prior information on their adversary’s move. When the optimization criterion
of either player depends not only on the player’s own action but also on the adversary’s
move, then the concept of a player’s optimal action is no longer well-defined. Therefore, we
establish the concept of a Nash equilibrium of static prediction games. A Nash equilibrium
is a pair of actions chosen such that no player gains a benefit by unilaterally selecting
a different action. If a game has a unique Nash equilibrium and is played by rational
players that aim at maximizing their optimization criteria, it is reasonable for each player
to assume that the opponent will follow the Nash equilibrium. If one player follows the Nash
equilibrium, the optimal move for the other player is to follow this equilibrium as well. If,
however, multiple equilibria exist and the players choose their action according to distinct
ones, then the resulting combination may be arbitrarily disadvantageous for either player.
It is therefore interesting to study whether adversarial prediction games have a unique Nash
equilibrium.

Our work builds on a prior publication (Brückner and Scheffer, 2009) that has identified
conditions under which a unique Nash equilibrium of a static prediction game exists and
developed an algorithm which identifies this equilibrial model. We will discuss a flaw in
Theorem 1 of Brückner and Scheffer (2009) and develop a revised version of the theorem
that identifies conditions under which a unique Nash equilibrium of a prediction game ex-
ists. In addition to the inexact linesearch approach to finding the equilibrium that Brückner
and Scheffer (2009) develop, we will follow a modified extragradient approach and develop
Nash logistic regression and the Nash support vector machine. This paper also develops a
kernelized version of these methods. An extended empirical evaluation explores the applica-
bility of the Nash instances in the context of email spam filtering. We empirically verify the
assumptions made in the modeling process and compare the performance of Nash instances
with baseline methods on several email corpora, including a corpus from an email service
provider.

The rest of this paper is organized as follows. Section 2 introduces the problem setting.
We formalize the Nash prediction game and study conditions under which a unique Nash
equilibrium exists in Section 3. Section 4 develops strategies for identifying equilibrial
prediction models, and in Section 5 we detail on two instances of the Nash prediction game.
In Section 6, we report on experiments on email spam filtering; Section 7 concludes.
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2. Problem Setting

We study static prediction games between two players: The learner (v = −1) and an
adversary, the data generator (v = +1). In our running example of email spam filtering,
we study the competition between recipient and senders, not competition among senders.
Therefore, v = −1 refers to the recipient whereas v = +1 models the entirety of all legitimate
and abusive email senders as a single, amalgamated player.

In the past, the data generator v = +1 produced a sample D = {(xi, yi)}n
i=1 of n training

instances xi ∈ X with corresponding class labels yi ∈ Y = {−1,+1}. These object-class
pairs are drawn according to a training distribution with density function p(x , y). By
contrast, future object-class pairs, produced by the data generator at application time, are
drawn from some test distribution with density ṗ(x , y) which may significantly differ from
p(x , y).

The task of the learner v = −1 is to select the parameters w ∈ W ⊂ R
m of a predictive

model h(x ) = sign fw(x ) implemented in terms of a generalized linear decision function
fw : X → R with fw(x ) = wTφ(x ) and feature mapping φ : X → R

m. The learner’s
theoretical costs at application time are given by

θ−1(w, ṗ) =
∑

Y

∫

X
c−1(x , y)ℓ−1(fw(x ), y)ṗ(x , y)dx ,

where weighting function c−1 : X × Y → R and loss function ℓ−1 : R × Y → R detail
the weighted loss c−1(x , y)ℓ−1(fw(x ), y) that the learner incurs when the predictive model
classifies instance x as h(x ) = sign fw(x ) while the true label is y . The positive class- and
instance-specific weighting factors c−1(x , y) with EX,Y[c−1(x , y)] = 1 specify the importance
of minimizing the loss ℓ−1(fw(x ), y) for the corresponding object-class pair (x , y). For
instance, in spam filtering, the correct classification of non-spam messages can be business-
critical for email service providers while failing to detect spam messages runs up processing
and storage costs, depending on the size of the message.

The data generator v = +1 can modify the data generation process for future instances.
In practice, spam senders update their campaign templates which are disseminated to the
nodes of botnets. Formally, the data generator transforms the training distribution with
density p to the test distribution with density ṗ. The data generator incurs transformation
costs by modifying the data generation process which is quantified by Ω+1(p, ṗ). This term
acts as a regularizer on the transformation and may implicitly constrain the space of possible
distribution shifts, depending on the nature of the application that is to be modeled. For
instance, the email sender may not be allowed to alter the training distribution for non-spam
messages, or to modify the nature of the messages by changing the label from spam to non-
spam or vice versa. Additionally, changing the training distribution for spam messages may
run up costs depending on the extent of distortion inflicted on the informational payload.
The theoretical costs of the data generator at application time are the sum of the expected
prediction costs and the transformation costs,

θ+1(w, ṗ) =
∑

Y

∫

X
c+1(x , y)ℓ+1(fw(x ), y)ṗ(x , y)dx + Ω+1(p, ṗ),

where, in analogy to the learner’s costs, c+1(x , y)ℓ+1(fw(x ), y) quantifies the weighted loss
that the data generator incurs when instance x is labeled as h(x ) = sign fw(x ) while the true
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label is y . The weighting factors c+1(x , y) with EX,Y[c+1(x , y)] = 1 express the significance
of (x , y) from the perspective of the data generator. In our example scenario, this allows
to reflect that costs of correctly or incorrectly classified instances may vary greatly across
different physical senders that are aggregated into the amalgamated player.

Since the theoretical costs of both players depend on the test distribution, they can, for
all practical purposes, not be calculated. Hence, we focus on a regularized, empirical coun-
terpart of the theoretical costs based on the training sample D. The empirical counterpart
Ω̂+1(D, Ḋ) of the data generator’s regularizer Ω+1(p, ṗ) penalizes the divergence between
training sample D = {(xi, yi)}n

i=1 and a perturbated training sample Ḋ = {(ẋi, yi)}n
i=1 that

would be the outcome of applying the transformation that translates p into ṗ to sample
D. The learner’s cost function, instead of integrating over ṗ, sums over the elements of
the perturbated training sample Ḋ. The players’ empirical cost functions can still only be
evaluated after the learner has committed to parameters w and the data generator to a
transformation from training to test density function. However this transformation needs
only be represented in terms of the effects that it will have on the training sample D.
The transformed training sample Ḋ must not be mistaken for test data; test data will be
generated under ṗ at application time after the players have committed to their actions.

The empirical costs incurred by the predictive model h(x ) = sign fw(x ) with parameters
w and the shift from p to ṗ amount to

θ̂−1(w, Ḋ) =

n
∑

i=1

c−1,iℓ−1(fw(ẋi), yi) + ρ−1Ω̂−1(w), (1)

θ̂+1(w, Ḋ) =

n
∑

i=1

c+1,iℓ+1(fw(ẋi), yi) + ρ+1Ω̂+1(D, Ḋ), (2)

where we have replaced the weighting terms 1
ncv(ẋi, yi) by constant cost factors cv,i > 0

with
∑

i cv,i = 1. The learner’s regularizer Ω̂−1(w) in (1) accounts for the fact that Ḋ does
not constitute the test data itself, but is merely a training sample transformed to reflect the
test distribution and then used to learn the model parameters w. The trade-off between
the empirical loss and the regularizer is controlled by each player’s regularization parameter
ρv > 0 for v ∈ {−1,+1}.

Note that either player’s empirical costs θ̂v depend on both players’ actions w ∈ W
and Ḋ ⊆ X × Y, respectively. Because of the potentially conflicting players’ interests, the
decision process for w and Ḋ becomes a noncooperative two-player game which we call a
prediction game. In the following section, we will refer to the Nash prediction game (NPG)
which identifies the concept of an optimal move of the learner and the data generator under
the assumption of simultaneously acting players.

3. The Nash Prediction Game

The outcome of a prediction game is one particular combination of actions (w∗, Ḋ∗) that
runs up costs θ̂v(w

∗, Ḋ∗) for the players. Each player is aware that this outcome is affected
by both players’ action and that, consequently, their potential to choose an action can have
an impact on the other player’s decision. In general, there is no action that minimizes one
player’s cost function independent of the other player’s action. In a noncooperative game,
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the players are not allowed to communicate while making their decisions and therefore they
have no information about the other player’s strategy. In this setting, any concept of an
optimal move requires additional assumptions on how the adversary will act.

We model the decision process for w∗ and Ḋ∗, as a static two-player game with complete
information. In a static game, both players commit to an action simultaneously, without
information about their opponent’s action. In a game with complete information, both
players know their opponent’s cost function and action space.

When θ̂−1 and θ̂+1 are known and antagonistic, the assumption that the adversary will
seek the greatest advantage by inflicting the greatest damage on θ̂−1 justifies the minimax
strategy argminw maxḊ θ̂−1(w, Ḋ). However, when the players’ cost functions are not an-
tagonistic, assuming that the adversary will inflict the greatest possible damage is overly
pessimistic. Instead assuming that the adversary acts rationally in the sense of seeking
the greatest possible personal advantage leads to the concept of a Nash equilibrium. An
equilibrium strategy is a steady state of the game in which neither player has an incentive
to unilaterally change their plan of actions.

In static games, equilibrium strategies are called Nash equilibria, which is why we refer
to the resulting predictive model as Nash prediction game (NPG). In a two-player game,
a Nash equilibrium is defined as a pair of actions such that no player can benefit from
changing their action solely; that is,

θ̂−1(w
∗, Ḋ∗) = min

w∈W
θ̂−1(w, Ḋ∗),

θ̂+1(w
∗, Ḋ∗) = min

Ḋ⊆X×Y
θ̂+1(w

∗, Ḋ),

where W and X × Y denote the players’ action spaces.
However, a static prediction game may not have a Nash equilibrium, or it may possess

multiple equilibria. If (w∗, Ḋ∗) and (w′, Ḋ′) are distinct Nash equilibria and each player
decides to act according to a different one of them, then combinations (w∗, Ḋ′) and (w′, Ḋ∗)
may incur arbitrarily high costs for both players. Hence, one can argue that it is rational
for an adversary to play a Nash equilibrium only when the following assumption is satisfied.

Assumption 1 The following statements hold:

1. both players act simultaneously;

2. both players have full knowledge about both (empirical) cost functions θ̂v(w, Ḋ) defined
in (1) and (2), and both action spaces W and X × Y;

3. both players act rational with respect to their cost function in the sense of securing
their lowest possible costs;

4. a unique Nash equilibrium exists.

Whether Assumptions 1.1-1.3 are adequate—especially the assumption of simultaneous
actions—strongly depends on the application. For example, in some applications, the data
generator may unilaterally be able to acquire information about the model fw before com-
mitting to Ḋ. Such situations are better modeled as a Stackelberg competition (Brückner
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and Scheffer, 2011). On the other hand, when the learner is able to treat any executed
action as part of the training data D and update the model w, the setting is better mod-
eled as repeated executions of a static game with simultaneous actions. The adequateness
of Assumption 1.4, which we discuss in the following sections, depends on the chosen loss
functions, the cost factors, and the regularizers.

3.1 Existence of a Nash Equilibrium

Theorem 1 of Brückner and Scheffer (2009) identifies conditions under which a unique Nash
equilibrium exists. In 2010, Christian Kanzow has located a flaw in the proof of this theorem:
The proof argues that the pseudo-Jacobian can be decomposed into two (strictly) positive
stable matrices by showing that the real part of every eigenvalue of those two matrices is
positive. However, this does not generally imply that the sum of these matrices is positive
stable as well since this would require a common Lyapunov solution (cf. Problem 2.2.6
of Horn and Johnson 1991). But even if such a solution exists, the positive definiteness
cannot be concluded from the positiveness of all eigenvalues as the pseudo-Jacobian is
generally non-symmetric.

Having “unproven” prior claims, we will now derive sufficient conditions for the existence
of a Nash equilibrium. To this end, we first define

x :=
[

φ(x1)
T, φ(x2)

T, . . . , φ(xn)T
]

T

∈ φ(X )n ⊂ R
m·n,

ẋ :=
[

φ(ẋ1)
T, φ(ẋ2)

T, . . . , φ(ẋn)T
]

T

∈ φ(X )n ⊂ R
m·n,

as long, concatenated, column vectors induced by feature mapping φ, training sample
D = {(xi, yi)}n

i=1, and transformed training sample Ḋ = {(ẋi, yi)}n
i=1, respectively. For

terminological harmony, we refer to vector ẋ as the data generator’s action with corre-
sponding action space φ(X )n.

We make the following assumptions on the action spaces and the cost functions which
enables us to state the main result on the existence of at least one Nash equilibrium in
Lemma 1.

Assumption 2 The players’ cost functions defined in Equations 1 and 2, and their action
sets W and φ(X )n satisfy the properties:

1. loss functions ℓv(z, y) with v ∈ {−1,+1} are convex and twice continuously differen-
tiable with respect to z ∈ R for all fixed y ∈ Y;

2. regularizers Ω̂v are uniformly strongly convex and twice continuously differentiable
with respect to w ∈ W and ẋ ∈ φ(X )n, respectively;

3. action spaces W and φ(X )n are nonempty, compact, and convex subsets of finite-
dimensional Euclidean spaces R

m and R
m·n, respectively.

Lemma 1 Under Assumption 2, at least one equilibrium point (w∗, ẋ∗) ∈ W × φ(X )n of
the Nash prediction game defined by

min
w

θ̂−1(w, ẋ∗) min
ẋ

θ̂+1(w
∗, ẋ)

s.t. w ∈ W s.t. ẋ ∈ φ(X )n
(3)
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exists.

Proof. Each player v’s cost function is a sum over n loss terms resulting from loss function ℓv

and regularizer Ω̂v. By Assumption 2, these loss functions are convex and continuous, and
the regularizers are uniformly strongly convex and continuous. Hence, both cost functions
θ̂−1(w, ẋ) and θ̂+1(w, ẋ) are continuous in all arguments and uniformly strongly convex in
w ∈ W and ẋ ∈ φ(X )n, respectively. As both action spaces W and φ(X )n are nonempty,
compact, and convex subsets of finite-dimensional Euclidean spaces, a Nash equilibrium
exists—see Theorem 4.3 of Basar and Olsder (1999).

3.2 Uniqueness of the Nash Equilibrium

We will now derive conditions for the uniqueness of an equilibrium of the Nash prediction
game defined in (3). We first reformulate the two-player game into an (n + 1)-player game.
In Lemma 2 we then present a sufficient condition for the uniqueness of the Nash equilibrium
in this game, and by applying Proposition 4 and Lemma 5-7 we verify whether this condition
is met. Finally, we state the main result in Theorem 8: The Nash equilibrium is unique
under certain properties of the loss functions, the regularizers, and the cost factors which
all can be verified easily.

Taking into account the Cartesian product structure of the data generator’s action space

φ(X )n, it is not difficult to see that (w∗, ẋ∗) with ẋ∗ =
[

ẋ∗T
1 , . . . , ẋ∗T

n

]T
and ẋ∗

i := φ(ẋ ∗
i ) is

a solution of the two-player game if, and only if, (w∗, ẋ∗
1, . . . , ẋ

∗
n) is a Nash equilibrium of

the (n + 1)-player game defined by

min
w

θ̂−1(w, ẋ) min
ẋ1

θ̂+1(w, ẋ) · · · min
ẋn

θ̂+1(w, ẋ)

s.t. w ∈ W s.t. ẋ1 ∈ φ(X ) · · · s.t. ẋn ∈ φ(X )
, (4)

which results from (3) by repeating n times the cost function θ̂+1 and minimizing this
function with respect to ẋi ∈ φ(X ) for i = 1, . . . , n. Then the pseudo-gradient (in the sense
of Rosen 1965) of the game in (4) is defined by

gr(w, ẋ) :=

















r0∇wθ̂−1(w, ẋ)

r1∇ẋ1
θ̂+1(w, ẋ)

r2∇ẋ2
θ̂+1(w, ẋ)
...

rn∇ẋn
θ̂+1(w, ẋ)

















∈ R
m+m·n, (5)

with any fixed vector r = [r0, r1, . . . , rn]T where ri > 0 for i = 0, . . . , n. The derivative of
gr, that is, the pseudo-Jacobian of (4), is given by

Jr(w, ẋ) = Λr

[

∇2
w,wθ̂−1(w, ẋ) ∇2

w,ẋθ̂−1(w, ẋ)

∇2
ẋ,wθ̂+1(w, ẋ) ∇2

ẋ,ẋθ̂+1(w, ẋ)

]

,
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where

Λr :=











r0Im 0 · · · 0

0 r1Im · · · 0
...

...
. . .

...
0 0 · · · rnIm











∈ R
(m+m·n)×(m+m·n).

Notice, that these derivatives, i.e., pseudo-gradient gr and pseudo-Jacobian Jr, exist in
view of Assumption 2. The above definition of the pseudo-Jacobian enables us to state the
following result about the uniqueness of a Nash equilibrium.

Lemma 2 Let Assumption 2 hold and suppose there exists a fixed vector r = [r0, r1, . . . , rn]T

with ri > 0 for all i = 0, 1, . . . , n such that the corresponding pseudo-Jacobian Jr(w, ẋ) is
positive definite for all (w, ẋ) ∈ W × φ(X )n. Then the Nash prediction game in (3) has a
unique equilibrium.

Proof. The existence of a Nash equilibrium follows from Lemma 1. To prove the uniqueness,
recall from our previous discussion, that the original Nash game in (3) has a unique solution
if, and only if, the game from (4) with one learner and n data generators admits a unique
solution. In view of Theorem 2 of Rosen (1965), the latter attains a unique solution if the
pseudo-gradient gr is strictly monotone, i.e., for all actions w,w′ ∈ W and ẋ, ẋ′ ∈ φ(X )n

inequality

(

gr(w, ẋ) − gr(w
′, ẋ′)

)

T

([

w

ẋ

]

−
[

w′

ẋ′

])

> 0

holds. A sufficient condition for this pseudo-gradient being strictly monotone is the positive
definiteness of the pseudo-Jacobian Jr (see e.g., Theorem 7.11 in Geiger and Kanzow 1999,
Theorem 6 in Rosen 1965).

To verify if the condition of Lemma 2 is satisfied, we analyze the pseudo-Jacobian
Jr(w, ẋ). Throughout this section, we denote by ℓ′v(z, y) and ℓ′′v(z, y) the first and second
derivative of the mapping ℓv(z, y) with respect to z ∈ R. A direct calculation shows that
the first-order partial derivatives are given by

∇wθ̂−1(w, ẋ) =

n
∑

i=1

c−1,iℓ
′
−1(ẋ

T

i w, yi)ẋi + ρ−1∇wΩ̂−1(w), (6)

∇ẋi
θ̂+1(w, ẋ) = c+1,iℓ

′
+1(ẋ

T

i w, yi)w + ρ+1∇ẋi
Ω̂+1(x, ẋ). (7)

This allows us to calculate the entries of the pseudo-Jacobian:

∇2
w,wθ̂−1(w, ẋ) =

n
∑

i=1

c−1,iℓ
′′
−1(ẋ

T

i w, yi)ẋiẋ
T

i + ρ−1∇2
w,wΩ̂−1(w),

∇2
w,ẋi

θ̂−1(w, ẋ) = c−1,iℓ
′′
−1(ẋ

T

i w, yi)ẋiw
T + c−1,iℓ

′
−1(ẋ

T

i w, yi)Im,

∇2
ẋi,wθ̂+1(w, ẋ) = c+1,iℓ

′′
+1(ẋ

T

i w, yi)wẋT

i + c+1,iℓ
′
+1(ẋ

T

i w, yi)Im,

∇2
ẋi,ẋj

θ̂+1(w, ẋ) =

{

c+1,iℓ
′′
+1(ẋ

T

i w, yi)wwT + ρ+1∇2
ẋi

Ω̂+1(x, ẋ) , if i = j,

ρ+1∇2
ẋi,ẋj

Ω̂+1(x, ẋ) , if i 6= j.
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Let us define the matrix

Υ(w, ẋ) :=





















— ẋT

1 — 0 · · · 0
...

...
...

— ẋT
n— 0 · · · 0

0 — wT— 0
...

. . .

0 0 — wT—





















∈ R
2n×(m+m·n),

and let us denote the smallest eigenvalues of the Hessians of the regularizers on the corre-
sponding action spaces W and φ(X )n by

λ−1 := inf
w∈W

λmin

(

∇2
w,wΩ̂−1(w)

)

, (8)

λ+1 := inf
ẋ∈φ(X )n

λmin

(

∇2
ẋ,ẋΩ̂+1(x, ẋ)

)

, (9)

where λmin(A) denotes the smallest eigenvalue of the symmetric matrix A.

Remark 3 Note that the minimum in (8) and (9) is attained and is strictly positive: The
mapping λmin : Mk×k → R is concave on the set of symmetric matrices Mk×k of dimension
k × k (cf. Example 3.10 in Boyd and Vandenberghe 2004), and in particular, it therefore
follows that this mapping is continuous. Furthermore, the mappings u−1 : W → Mm×m

with u−1(w) := ∇2
w,wΩ̂−1(w) and u+1 : φ(X )n → Mm·n×m·n with u+1(ẋ) := ∇2

ẋ,ẋΩ̂+1(x, ẋ)
are continuous (for any fixed x) by Assumption 2. Hence, the mappings w 7→ λmin(u−1(w))
and ẋ 7→ λmin(u+1(ẋ)) are also continuous since each is precisely the composition λmin ◦ uv

of the continuous functions λmin and uv for v ∈ {−1,+1}. Taking into account that a
continuous mapping on a nonempty compact set attains its minimum, it follows that there
exist elements w ∈ W and ẋ ∈ φ(X )n such that

λ−1 = λmin

(

∇2
w,wΩ̂−1(w)

)

,

λ+1 = λmin

(

∇2
ẋ,ẋΩ̂+1(x, ẋ)

)

.

Moreover, since the Hessians of the regularizers are positive definite by Assumption 2, we
see that λv > 0 holds for v ∈ {−1,+1}. 3

Using the definition of Υ(w, ẋ), λv, and the abbreviations

ℓ′v,i := ℓ′v(ẋ
T

i w, yi) i = 1, . . . , n,

ℓ′′v,i := ℓ′′v(ẋ
T

i w, yi) i = 1, . . . , n,

Γv := diag(cv,1ℓ
′′
v,1, . . . , cv,nℓ′′v,n) ∈ R

n×n

for both players v ∈ {−1,+1}, we can summarize the previous discussion.

Proposition 4 The pseudo-Jacobian has the representation

Jr(w, ẋ) = J
(1)
r (w, ẋ) + J

(2)
r (w, ẋ) + J

(3)
r (w, ẋ) (10)

9
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where

J
(1)
r (w, ẋ) = ΛrΥ(w, ẋ)T

[

Γ−1 Γ−1

Γ+1 Γ+1

]

Υ(w, ẋ),

J
(2)
r (w, ẋ) = Λr











ρ−1λ−1Im c−1,1ℓ
′
−1,1Im · · · c−1,nℓ′−1,nIm

c+1,1ℓ
′
+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...
c+1,nℓ′+1,nIm 0 · · · ρ+1λ+1Im











,

J
(3)
r (w, ẋ) = Λr

[

ρ−1∇2
w,wΩ̂−1(w) − ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ̂+1(x, ẋ) − ρ+1λ+1Im·n

]

.

Recall, that we want to investigate whether there is some fixed positive vector r such that
Jr(w, ẋ) is positive definite for each pair of actions (w, ẋ) ∈ W×φ(X )n. A sufficient condi-

tion for the pseudo-Jacobian Jr(w, ẋ) to be positive definite is that J
(1)
r (w, ẋ), J

(2)
r (w, ẋ),

and J
(3)
r (w, ẋ) are positive semi-definite and at least one of these matrices is positive def-

inite. Before discussing these matrices separately, let us define r0 := 1, ri :=
c−1,i

c+1,i
> 0 for

all i = 1, . . . , n, with corresponding matrix

Λr :=











Im 0 · · · 0

0
c−1,1

c+1,1
Im · · · 0

...
...

. . .
...

0 0 · · · c−1,n

c+1,n
Im











, (11)

and let us make the following assumption on the loss functions ℓv and the regularizers Ω̂v

for v ∈ {−1,+1}. Instances of these functions satisfying Assumptions 2 and 3 will be given
in Section 5.

Assumption 3 For all w ∈ W and ẋ ∈ φ(X )n with ẋ =
[

ẋT
1 , . . . , ẋT

n

]T
the following

conditions are satisfied:

1. the second derivatives of the loss functions are equal for all y ∈ Y and i = 1, . . . , n,

ℓ′′−1(fw(ẋi), y) = ℓ′′+1(fw(ẋi), y),

2. the players’ regularization parameters satisfy

ρ−1ρ+1 > τ2 1

λ−1λ+1
cT

−1c+1,

where λ−1, λ+1 are the smallest eigenvalues of the Hessians of the regularizers specified
in (8) and (9), cv = [cv,1, cv,2, . . . , cv,n]T, and

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣ℓ′−1(fw(x), y) + ℓ′+1(fw(x), y)
∣

∣ , (12)

10
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3. for all i = 1, . . . , n either both players have equal instance-specific cost factors, c−1,i =
c+1,i, or the partial derivative ∇ẋi

Ω+1(x, ẋ) of the data generator’s regularizer is
independent of ẋj for all j 6= i.

Notice, that τ in Equation 12 can be chosen finite as the set φ(X ) × Y is assumed to
be compact, and consequently, the values of both continuous mappings ℓ′−1(fw(x), y) and
ℓ′+1(fw(x), y) are finite for all (x, y) ∈ φ(X ) ×Y.

Lemma 5 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3,

the matrix J
(1)
r (w, ẋ) is symmetric positive semi-definite (but not positive definite) for Λr

defined as in Equation 11.

Proof. The special structure of Λr and Υ(w, ẋ) gives

J
(1)
r (w, ẋ) = Υ(w, ẋ)T

[

r0Γ−1 r0Γ−1

diag(r1, . . . , rn)Γ+1 diag(r1, . . . , rn)Γ+1

]

Υ(w, ẋ).

From the assumption ℓ′′−1,i = ℓ′′+1,i and the definition r0 = 1, ri =
c−1,i

c+1,i
> 0 for all i = 1, . . . , n

it follows that Γ−1 = diag(r1, . . . , rn)Γ+1, such that

J
(1)
r (w, ẋ) = Υ(w, ẋ)T

[

Γ−1 Γ−1

Γ−1 Γ−1

]

Υ(w, ẋ),

which is obviously a symmetric matrix. Furthermore, we show that zTJ
(1)
r (w, ẋ)z ≥ 0 holds

for all vectors z ∈ R
m+m·n. To this end, let z be arbitrarily given, and partition this vector

in z =
[

zT

0 , zT

1 , . . . , zT
n

]T
with zi ∈ R

m for all i = 0, 1, . . . , n. Then a simple calculation
shows that

zTJ
(1)
r (w, ẋ)z =

n
∑

i=1

(

zT

0 xi + zT

i w
)2

c−1,iℓ
′′
−1,i ≥ 0

since ℓ′′−1,i ≥ 0 for all i = 1, . . . , n in view of the assumed convexity of mapping ℓ−1(z, y).

Hence, J
(1)
r (w, ẋ) is positive semi-definite. This matrix cannot be positive definite since we

have zTJ
(1)
r (w, ẋ)z = 0 for the particular vector z defined by z0 := −w and zi := xi for all

i = 1, . . . , n.

Lemma 6 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3, the

matrix J
(2)
r (w, ẋ) is positive definite for Λr defined as in Equation 11.

Proof. A sufficient and necessary condition for the (possibly asymmetric) matrix J
(2)
r (w, ẋ)

to be positive definite is that the Hermitian matrix

H(w, ẋ) := J
(2)
r (w, ẋ) + J

(2)
r (w, ẋ)T

is positive definite, that is, all eigenvalues of H(w, ẋ) are positive. Let Λ
1

2
r denote the square

root of Λr which is defined in such a way that the diagonal elements of Λ
1

2
r are the square

11
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roots of the corresponding diagonal elements of Λr. Furthermore, we denote by Λ
− 1

2
r the

inverse of Λ
1

2
r . Then, by Sylvester’s law of inertia, the matrix

H̄(w, ẋ) := Λ
− 1

2
r H(w, ẋ)Λ

− 1

2
r

has the same number of positive, zero, and negative eigenvalues as matrix H(w, ẋ) itself.

Hence, J
(2)
r (w, ẋ) is positive definite if, and only if, all eigenvalues of

H̄(w, ẋ) = Λ
− 1

2
r

(

J
(2)
r (w, ẋ) + J

(2)
r (w, ẋ)T

)

Λ
− 1

2
r

= Λ
− 1

2
r Λr











ρ−1λ−1Im c−1,1ℓ
′
−1,1Im · · · c−1,nℓ′−1,nIm

c+1,1ℓ
′
+1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...
c+1,nℓ′+1,nIm 0 · · · ρ+1λ+1Im











Λ
− 1

2
r +

Λ
− 1

2
r











ρ−1λ−1Im c+1,1ℓ
′
+1,1Im · · · c+1,nℓ′+1,nIm

c−1,1ℓ
′
−1,1Im ρ+1λ+1Im · · · 0
...

...
. . .

...
c−1,nℓ′−1,nIm 0 · · · ρ+1λ+1Im











ΛrΛ
− 1

2
r

=











2ρ−1λ−1Im c̃1Im · · · c̃nIm

c̃1Im 2ρ+1λ+1Im · · · 0
...

...
. . .

...
c̃nIm 0 · · · 2ρ+1λ+1Im











are positive, where c̃i :=
√

c−1,ic+1,i(ℓ
′
−1,i + ℓ′+1,i). Each eigenvalue λ of this matrix satisfies

(

H̄(w, ẋ) − λIm+m·n
)

v = 0

for the corresponding eigenvector vT =
[

vT
0 ,vT

1 , . . . ,vT
n

]

with vi ∈ R
m for i = 0, 1, . . . , n.

This eigenvalue equation can be rewritten block-wise as

(2ρ−1λ−1 − λ)v0 +

n
∑

i=1

c̃ivi = 0, (13)

(2ρ+1λ+1 − λ)vi + c̃iv0 = 0 ∀ i = 1, . . . , n. (14)

To compute all possible eigenvalues, we consider two cases. First, assume that v0 = 0.
Then (13) and (14) reduce to

n
∑

i=1

c̃ivi = 0 and (2ρ+1λ+1 − λ)vi = 0 ∀ i = 1, . . . , n.

Since v0 = 0 and eigenvector v 6= 0, at least one vi is nonzero. This implies that λ =
2ρ+1λ+1 is an eigenvalue. Using the fact that the null space of the linear mapping v 7→
∑n

i=1 c̃ivi has dimension (n−1)·m (we have n·m degrees of freedom counting all components
of v1, . . . ,vn and m equations in

∑n
i=1 c̃ivi = 0), it follows that λ = 2ρ+1λ+1 is an eigenvalue

of multiplicity (n − 1) · m.
Now we consider the second case where v0 6= 0. We may further assume that λ 6=

2ρ+1λ+1 (since otherwise we get the same eigenvalue as before, just with a different multi-
plicity).

12
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We then get from (14) that

vi = − c̃i

2ρ+1λ+1 − λ
v0 ∀ i = 1, . . . , n, (15)

and when substituting this expression into (13), we obtain

(

(2ρ−1λ−1 − λ) −
n
∑

i=1

c̃2
i

2ρ+1λ+1 − λ

)

v0 = 0.

Taking into account that v0 6= 0, this implies

0 = 2ρ−1λ−1 − λ − 1

2ρ+1λ+1 − λ

n
∑

i=1

c̃2
i

and, therefore,

0 = λ2 − 2(ρ−1λ−1 + ρ+1λ+1)λ + 4ρ−1ρ+1λ−1λ+1 −
n
∑

i=1

c̃2
i .

The roots of this quadratic equation are

λ = ρ−1λ−1 + ρ+1λ+1 ±

√

√

√

√(ρ−1λ−1 − ρ+1λ+1)2 +

n
∑

i=1

c̃2
i , (16)

and these are the remaining eigenvalues of H̄(w, ẋ), each of multiplicity m since there are
precisely m linearly independent vectors v0 6= 0 whereas the other vectors vi (i = 1, . . . , n)
are uniquely defined by (15) in this case. In particular, this implies that the dimensions of
all three eigenspaces together is (n − 1)m + m + m = (n + 1)m, hence other eigenvalues
cannot exist. Since the eigenvalue λ = 2ρ+1λ+1 is positive by Remark 3, it remains to show
that the roots in (16) are positive as well. By Assumption 3, we have

n
∑

i=1

c̃2
i =

n
∑

i=1

c−1,ic+1,i(ℓ
′
−1,i + ℓ′+1,i)

2 ≤ 4τ2cT

−1c+1 < 4ρ−1ρ+1λ−1λ+1,

where cv = [cv,1, cv,2, · · · , cv,n]T. This inequality and Equation 16 give

λ = ρ−1λ−1 + ρ+1λ+1 ±

√

√

√

√(ρ−1λ−1 − ρ+1λ+1)2 +

n
∑

i=1

c̃2
i

> ρ−1λ−1 + ρ+1λ+1 −
√

(ρ−1λ−1 − ρ+1λ+1)2 + 4ρ−1ρ+1λ−1λ+1 = 0.

As all eigenvalues of H̄(w, ẋ) are positive, matrix H(w, ẋ) and, consequently, also the ma-

trix J
(2)
r (w, ẋ) are positive definite.

13
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Lemma 7 Let (w, ẋ) ∈ W × φ(X )n be arbitrarily given. Under Assumptions 2 and 3, the

matrix J
(3)
r (w, ẋ) is positive semi-definite for Λr defined as in Equation 11.

Proof. By Assumption 3, either both players have equal instance-specific costs, or the
partial gradient ∇ẋi

Ω̂+1(x, ẋ) of the sender’s regularizer is independent of ẋj for all j 6= i
and i = 1, . . . , n. Let us consider the first case where c−1,i = c+1,i, and consequently ri = 1,
for all i = 1, . . . , n, such that

J
(3)
r (w, ẋ) =

[

ρ−1∇2
w,wΩ̂−1(w) − ρ−1λ−1Im 0

0 ρ+1∇2
ẋ,ẋΩ̂+1(x, ẋ) − ρ+1λ+1Im·n

]

.

The eigenvalues of this block diagonal matrix are the eigenvalues of the matrix
ρ−1(∇2

w,wΩ̂−1(w) − λ−1Im) together with those of ρ+1(∇2
ẋ,ẋΩ̂+1(x, ẋ) − λ+1Im·n). From

the definition of λv in (8) and (9) follows that these matrices are positive semi-definite for

v ∈ {−1,+1}. Hence, J
(3)
r (w, ẋ) is positive semi-definite as well.

Now, let us consider the second case where we assume that ∇ẋi
Ω̂+1(x, ẋ) is independent

of ẋj for all j 6= i. Hence, ∇2
ẋi,ẋj

Ω̂+1(x, ẋ) = 0 for all j 6= i such that

J
(3)
r (w, ẋ) =













ρ−1Ω̃−1 0 · · · 0

0 ρ+1
c−1,1

c+1,1
Ω̃+1,1 · · · 0

...
...

. . .
...

0 0 · · · ρ+1
c−1,n

c+1,n
Ω̃+1,n













,

where Ω̃−1 := ∇2
w,wΩ̂−1(w) − λ−1Im and Ω̃+1,i = ∇2

ẋi,ẋi
Ω̂+1(x, ẋ) − λ+1Im. The eigen-

values of this block diagonal matrix are again the union of the eigenvalues of the single
blocks ρ−1Ω̃−1 and ρ+1

c−1,i

c+1,i
Ω̃+1,i for i = 1, . . . , n. As in the first part of the proof, Ω̃−1 is

positive semi-definite. The eigenvalues of ∇2
ẋ,ẋΩ̂+1(x, ẋ) are the union of all eigenvalues of

∇2
ẋi,ẋi

Ω̂+1(x, ẋ). Hence, each of these eigenvalues is larger or equal to λ+1 and thus, each

block Ω̃+1,i is positive semi-definite. The factors ρ−1 > 0 and ρ+1
c−1,i

c+1,i
> 0 are multipliers

that do not affect the definiteness of the blocks, and consequently, J
(3)
r (w, ẋ) is positive

semi-definite as well.

The previous results guarantee the existence and uniqueness of a Nash equilibrium under
the stated assumptions.

Theorem 8 Let Assumptions 2 and 3 hold. Then the Nash prediction game in (3) has a
unique equilibrium.

Proof. The existence of an equilibrium of the Nash prediction game in (3) follows from
Lemma 1. Proposition 4 and Lemma 5 to 7 imply that there is a positive diagonal matrix
Λr such that Jr(w, ẋ) is positive definite for all (w, ẋ) ∈ W×φ(X )n. Hence, the uniqueness
follows from Lemma 2.

14
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4. Finding the Unique Nash Equilibrium

According to Theorem 8, a unique equilibrium of the Nash prediction game in (3) exists for
suitable loss functions and regularizers. To find this equilibrium, we derive and study two
distinct methods: The first is based on the Nikaido-Isoda function that is constructed such
that a minimax solution of this function is an equilibrium of the Nash prediction game and
vice versa. This problem is then solved by inexact linesearch. In the second approach, we
reformulate the Nash prediction game into a variational inequality problem which is solved
by a modified extragradient method.

The data generator’s action of transforming the input distribution manifests in a con-
catenation of transformed training instances ẋ ∈ φ(X )n mapped into the feature space
ẋi := φ(ẋi) for i = 1, . . . , n, and the learner’s action is to choose weight vector w ∈ W of
classifier h(x ) = sign fw(x ) with linear decision function fw(x ) = wTφ(x ).

4.1 An Inexact Linesearch Approach

To solve for a Nash equilibrium, we again consider the game from (4) with one learner and
n data generators. A solution of this game can be identified with the help of the weighted
Nikaido-Isoda function (Equation 17). For any two combinations of actions (w, ẋ) ∈ W ×
φ(X )n and (w′, ẋ′) ∈ W × φ(X )n with ẋ =

[

ẋT
1 , . . . , ẋT

n

]T
and ẋ′ =

[

ẋ′T
1 , . . . , ẋ′T

n

]T
, this

function is the weighted sum of relative cost savings that the n + 1 players can enjoy by
changing from strategy w to w′ and ẋi to ẋ′

i, respectively, while the other players continue
to play according to (w, ẋ), that is,

ϑr(w, ẋ,w′, ẋ′) := r0

(

θ̂−1(w, ẋ) − θ̂−1(w
′, ẋ)

)

+

n
∑

i=1

ri

(

θ̂+1(w, ẋ) − θ̂+1(w, ẋ(i))
)

, (17)

where ẋ(i) :=
[

ẋT

1 , . . . , ẋ′T
i , . . . , ẋT

n

]T
. Let us denote the weighted sum of greatest possible

cost savings with respect to any given combination of actions (w, ẋ) ∈ W × φ(X )n by

ϑ̄r(w, ẋ) := max
(w′,ẋ′)∈W×φ(X )n

ϑr(w, ẋ,w′, ẋ′), (18)

where w̄(w, ẋ), x̄(w, ẋ) denotes the corresponding pair of maximizers. Notice, that the
maximum in (18) is attained for any (w, ẋ), since W × φ(X )n is assumed to be compact
and ϑr(w, ẋ,w′, ẋ′) is continuous in (w′, ẋ′).

By these definitions, a combination (w∗, ẋ∗) is an equilibrium of the Nash prediction
game if, and only if, ϑ̄r(w

∗, ẋ∗) is a global minimum of mapping ϑ̄r with ϑ̄r(w
∗, ẋ∗) = 0

for any fixed weights ri > 0 and i = 0, . . . , n, cf. Proposition 2.1(b) of von Heusinger and
Kanzow (2009). Equivalently, a Nash equilibrium simultaneously satisfies both equations
w̄(w∗, ẋ∗) = w∗ and x̄(w∗, ẋ∗) = ẋ∗.

The significance of this observation is that the equilibrium problem in (3) can be refor-
mulated into a minimization problem of the continuous mapping ϑ̄r(w, ẋ). To solve this
minimization problem, we make use of Corollary 3.4 of von Heusinger and Kanzow (2009).
We set the weights r0 := 1 and ri :=

c−1,i

c+1,i
for all i = 1, . . . , n as in (11), which ensures the

main condition of Corollary 3.4, that is, the positive definiteness of the Jacobian Jr(w, ẋ)
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in (10) (cf. proof of Theorem 8). According to this corollary, vectors

d−1(w, ẋ) := w̄(w, ẋ) − w and d+1(w, ẋ) := x̄(w, ẋ) − ẋ

form a descent direction d(w, ẋ) := [d−1(w, ẋ)T,d+1(w, ẋ)T]T of ϑ̄r(w, ẋ) at any position
(w, ẋ) ∈ W × φ(X )n (except for the Nash equilibrium where d(w∗, ẋ∗) = 0), and conse-
quently, there exists t ∈ [0, 1] such that

ϑ̄r(w + td−1(w, ẋ), ẋ + td+1(w, ẋ)) < ϑ̄r(w, ẋ).

Since, (w, ẋ) and (w̄(w, ẋ), w̄(w, ẋ)) are feasible combinations of actions, the convexity of
the action spaces ensures that (w + td−1(w, ẋ), ẋ + td+1(w, ẋ)) is a feasible combination
for any t ∈ [0, 1] as well. The following algorithm exploits these properties.

Algorithm 1 ILS: Inexact Linesearch Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (1) and (2), and action spaces W and φ(X )n.

1: Select initial w(0) ∈ W, set ẋ(0) := x, set k := 0, and select σ ∈ (0, 1) and β ∈ (0, 1).

2: Set r0 := 1 and ri :=
c−1,i

c+1,i
for all i = 1, . . . , n.

3: repeat

4: Set d
(k)
−1 := w̄(k) − w(k) where w̄(k) := argmaxw′∈W ϑr

(

w(k), ẋ(k),w′, ẋ(k)
)

.

5: Set d
(k)
+1 := x̄(k) − ẋ(k) where x̄(k) := argmaxẋ′∈φ(X )n ϑr

(

w(k), ẋ(k),w(k), ẋ′).

6: Find maximal step size t(k) ∈
{

βl | l ∈ N
}

with

ϑ̄r

(

w(k), ẋ(k)
)

− ϑ̄r

(

w(k) + t(k)d
(k)
−1, ẋ

(k) + t(k)d
(k)
+1

)

≥ σ t(k)

(

∥

∥

∥
d

(k)
−1

∥

∥

∥

2

2
+
∥

∥

∥
d

(k)
+1

∥

∥

∥

2

2

)

.

7: Set w(k+1) := w(k) + t(k)d
(k)
−1 .

8: Set ẋ(k+1) := ẋ(k) + t(k)d
(k)
+1 .

9: Set k := k + 1.

10: until
∥

∥w(k) − w(k−1)
∥

∥

2

2
+
∥

∥ẋ(k) − ẋ(k−1)
∥

∥

2

2
≤ ǫ.

The convergence properties of Algorithm 1 are discussed in von Heusinger and Kanzow
(2009), so we skip the details here.

4.2 A Modified Extragradient Approach

In Algorithm 1, line 4 and 5, as well as the linesearch in line 6, require to solve a concave
maximization problem within each iteration. As this may become computationally de-
manding, we derive a second approach based on extragradient descent. Therefore, instead
of reformulating the equilibrium problem into a minimax problem, we directly address the
first-order optimality conditions of each players’ minimization problem in (4): Under As-

sumption 2, a combination of actions (w∗, ẋ∗) with ẋ∗ =
[

ẋ∗T
1 , . . . , ẋ∗T

n

]T
satisfies each

player’s first-order optimality conditions if, and only if, for all (w, ẋ) ∈ W × φ(X )n the
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following inequalities hold:

∇wθ̂−1(w
∗, ẋ∗)T(w − w∗) ≥ 0,

∇ẋi
θ̂+1(w

∗, ẋ∗)T(ẋi − ẋ∗
i ) ≥ 0 ∀ i = 1, . . . , n.

As the joint action space of all players W × φ(X )n is precisely the full Cartesian product
of the learner’s action set W and the n data generators’ action sets φ(X ), the (weighted)
sum of those individual optimality conditions is also a sufficient and necessary optimality
condition for the equilibrium problem. Hence, a Nash equilibrium (w∗, ẋ∗) ∈ W × φ(X )n

is a solution of the variational inequality problem,

gr(w
∗, ẋ∗)T

([

w

ẋ

]

−
[

w∗

ẋ∗

])

≥ 0 ∀ (w, ẋ) ∈ W × φ(X )n (19)

and vice versa (cf. Proposition 7.1 of Harker and Pang 1990). The pseudo-gradient gr

in (19) is defined as in (5) with fixed vector r = [r0, r1, . . . , rn]T where r0 := 1 and ri :=
c−1,i

c+1,i

for all i = 1, . . . , n (cf. Equation 11). Under Assumption 3, this choice of r ensures that
the mapping gr(w, ẋ) is continuous and strictly monotone (cf. proof of Lemma 2 and
Theorem 8). Hence, the variational inequality problem in (19) can be solved by modified
extragradient descent (see, for instance, Chapter 7.2.3 of Geiger and Kanzow 1999). Before
presenting Algorithm 2 which is an extragradient-based algorithm for the Nash prediction
game, let us denote the L2-projection of a into the nonempty, compact, and convex set A
by

ΠA(a) := arg min
a′∈A

‖a − a′‖2
2.

Notice, that if A := {a ∈ R
m | ‖a‖2 ≤ κ} is the closed l2-ball of radius κ > 0 and a /∈ A,

this projection simply reduces to a rescaling of vector a to length κ.
Based on this definition of ΠA, we can now state an iterative method (Algorithm 2)

which—apart from back projection steps—does not require to solve an optimization prob-
lem in each iteration. The proposed algorithm converges to a solution of the variational
inequality problem in 19, i.e., the unique equilibrium of the Nash prediction game, if As-
sumptions 2 and 3 hold—cf. Theorem 7.40 of Geiger and Kanzow (1999).

5. Instances of the Nash Prediction Game

In this section we present two instances of the Nash prediction game and investigate under
which conditions those games possess unique Nash equilibria. We start by specifying both
players’ loss functions and regularizers. An obvious choice for the loss function of the learner
ℓ−1(z, y) is the zero-one loss defined by

ℓ0/1(z, y) :=

{

1 , if yz < 0
0 , if yz ≥ 0

.

A possible choice for the data generator’s loss is ℓ0/1(z,−1) which penalizes positive decision
values z, independently of the class label. The rationale behind this choice is that the data
generator experiences costs when the learner blocks an event, that is, assigns an instance
to the positive class. For instance, a legitimate email sender experiences costs when a
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Algorithm 2 EDS: Extragradient Descent Solver for Nash Prediction Games

Require: Cost functions θ̂v as defined in (1) and (2), and action spaces W and φ(X )n.

1: Select initial w(0) ∈ W, set ẋ(0) := x, set k := 0, and select σ ∈ (0, 1) and β ∈ (0, 1).

2: Set r0 := 1 and ri :=
c−1,i

c+1,i
for all i = 1, . . . , n.

3: repeat

4: Set

[

d
(k)
−1

d
(k)
+1

]

:= ΠW×φ(X )n

([

w(k)

ẋ(k)

]

− gr

(

w(k), ẋ(k)
)

)

−
[

w(k)

ẋ(k)

]

.

5: Find maximal step size t(k) ∈
{

βl | l ∈ N
}

with

−gr

(

w(k) + t(k)d
(k)
−1 , ẋ

(k) + t(k)d
(k)
+1

)

T

[

d
(k)
−1

d
(k)
+1

]

≥ σ

(

∥

∥

∥
d

(k)
−1

∥

∥

∥

2

2
+
∥

∥

∥
d

(k)
+1

∥

∥

∥

2

2

)

.

6: Set

[

w̄(k)

x̄(k)

]

:=

[

w(k)

ẋ(k)

]

+ t(k)

[

d
(k)
−1

d
(k)
+1

]

.

7: Set step size of extragradient

γ(k) := − t(k)

∥

∥gr

(

w̄(k), x̄(k)
)
∥

∥

2

2

gr

(

w̄(k), x̄(k)
)

T

[

d
(k)
−1

d
(k)
+1

]

.

8: Set

[

w(k+1)

ẋ(k+1)

]

:= ΠW×φ(X )n

([

w(k)

ẋ(k)

]

− γ(k)gr

(

w̄(k), x̄(k)
)

)

.

9: Set k := k + 1.

10: until
∥

∥w(k) − w(k−1)
∥

∥

2

2
+
∥

∥ẋ(k) − ẋ(k−1)
∥

∥

2

2
≤ ǫ.

legitimate email is erroneously blocked just like an abusive sender, also amalgamated into
the data generator, experiences costs when spam messages are blocked.

However, the zero-one loss violates Assumption 2 as it is neither convex nor twice contin-
uously differentiable. In the following sections, we therefore approximate the zero-one loss
by the logistic loss and a newly derived trigonometric loss which both satisfy Assumption 2.

To regularize the players’ actions, recall that Ω̂+1(D, Ḋ) is an estimate of the transfor-
mation costs that the data generator incurs when shifting the training distribution—where
the training instances xi are drawn from—to the test distribution which is empirically rep-
resented by the transformed training instances ẋi. In our analysis, we approximate these
costs by the average squared l2-distance between xi and ẋi in the feature space induced by
mapping φ, that is,

Ω̂+1(D, Ḋ) :=
1

n

n
∑

i=1

1

2
‖φ(ẋi) − φ(xi)‖2

2 . (20)

The learner’s regularizer Ω̂−1(w) penalizes the complexity of the predictive model h(x ) =
sign fw(x ). We consider Tikhonov regularization which, for linear decision functions fw,
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reduces to the squared l2-norm of w,

Ω̂−1(w) :=
1

2
‖w‖2

2. (21)

Before presenting the Nash logistic regression (NLR) and the Nash support vector machine
(NSVM), we turn to a discussion on the applicability of general kernel functions.

5.1 Applying Kernels

So far, we assumed the knowledge of feature mapping φ : X → φ(X ) such that we can
compute an explicit feature representation φ(xi) of the training instances xi for all i =
1, . . . , n. However, in some applications, such a feature mapping is unwieldy or hard to
identify. Instead, one is often equipped with a kernel function k : X × X → R which
measures the similarity between two instances. Generally, kernel function k is assumed to
be a positive-semidefinite kernel such that it can be stated in terms of a scalar product in
the corresponding reproducing kernel Hilbert space, that is, ∃φ with k(x , x ′) = φ(x )Tφ(x ′).

To apply the representer theorem (see, e.g., Schölkopf et al. 2001) we assume that
the transformed instances lie in the span of the mapped training instances, that is, we
restrict the data generator’s action space such that the transformed instances ẋi are mapped
into the same subspace of the reproducing kernel Hilbert space as the unmodified training
instances xi. By this assumption, the weight vector w ∈ W and the transformed instances
φ(ẋi) ∈ φ(X ) for i = 1, . . . , n can be expressed as linear combinations of the mapped training
instances, i.e., ∃αi,Ξij such that

w =

n
∑

i=1

αiφ(xi) and φ(ẋj) =

n
∑

i=1

Ξijφ(xi) ∀ j = 1, . . . , n.

Further, let us assume that the action spaces W and φ(X )n can be adequately translated
into dual action spaces A ⊂ R

n and Z ⊂ R
n×n, which is possible, for instance, if W

and φ(X )n are closed l2-balls. Then, a kernelized variant of the Nash prediction game is
obtained by inserting the above equations into the players’ cost functions in (1) and (2)
with regularizers in (20) and (21),

θ̂−1(α,Ξ) =
n
∑

i=1

c−1,iℓ−1(α
TKΞei, yi) + ρ−1

1

2
α

TKα, (22)

θ̂+1(α,Ξ) =

n
∑

i=1

c+1,iℓ+1(α
TKΞei, yi) + ρ+1

1

2n
tr
(

(Ξ − In)TK(Ξ − In)
)

, (23)

where ei ∈ {0, 1}n is the i-th unit vector, α ∈ A is the dual weight vector, Ξ ∈ Z is the
dual transformed data matrix, and K ∈ R

n×n is the kernel matrix with Kij := k(xi, xj). In
the dual Nash prediction game with cost functions (22) and (23), the learner chooses the
dual weight vector α = [α1, . . . , αn]T and classifies a new instance x by h(x ) = sign fα(x )
with fα(x ) =

∑n
i=1 αik(xi, x ). In contrast, the data generator chooses the dual transformed

data matrix Ξ which implicitly reflects the change of the training distribution. Their trans-
formation costs are in proportion to the deviation of Ξ from the identity matrix In, where if
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Ξ equals In, the learner’s task reduces to standard kernelized empirical risk minimization.
The proposed Algorithms 1 and 2 can be readily applied when replacing w by α and ẋi by
Ξei for all i = 1, . . . , n.

An alternative approach to a kernelization of the Nash prediction game is to first con-
struct an explicit feature representation with respect to the given kernel function k and
the training instances, and then to train the Nash model by applying this feature mapping.
Here, we again assume that the transformed instances φ(ẋi) as well as the weight vector w

lie in the span of the explicitly mapped training instances φ(x ). Let us consider the kernel
PCA map (see, e.g., Schölkopf and Smola 2002) which is defined by

φPCA : x 7→ Λ
1

2

+
VT [k(x1, x ), . . . , k(xn, x )]T , (24)

where V is the column matrix of eigenvectors of kernel matrix K, Λ is the diagonal matrix

with the corresponding eigenvalues such that K = VΛVT, and Λ
1

2

+
denotes the pseudo-

inverse of the square root of Λ with Λ = Λ
1

2 Λ
1

2 .

Remark 9 Notice that for any positive-semidefinite kernel function k : X × X → R and
fixed training instances x1, . . . , xn ∈ X , the PCA map is a uniquely defined real function
with φPCA : X → R

n such that k(xi, xj) = φPCA(xi)
TφPCA(xj) for any i, j ∈ {1, . . . , n}:

We first show that φPCA is a real mapping from the input space X to the Euclidean space
R

n. As x 7→ [k(x1, x ), . . . , k(xn, x )]T is a real vector-valued function and V is a real n × n

matrix, it remains to show that the pseudo-inverse of Λ
1

2 is real as well. Since the kernel

function is positive-semidefinite, all eigenvalues λi of K are non-negative, and hence, Λ
1

2

is a diagonal matrix with real diagonal entries
√

λi for i = 1, . . . , n. The pseudo-inverse of

this matrix is the uniquely defined diagonal matrix Λ
1

2

+
with real non-negative diagonal

entries 1√
λi

if λi > 0 and zero otherwise. This proves the first claim. The PCA map also

satisfies k(xi, xj) = φPCA(xi)
TφPCA(xj) for any pair of training instances xi and xj as

φPCA(xi) = Λ
1

2

+
VT [k(x1, xi), . . . , k(xn, xi)]

T

= Λ
1

2

+
VTKei

= Λ
1

2

+
VTVΛVTei

= Λ
1

2

+
ΛVTei

for all i = 1, . . . , n and consequently

φPCA(xi)
TφPCA(xj) = eT

i VΛΛ
1

2

+
Λ

1

2

+
ΛVTej

= eT

i VΛΛ+ΛVTej

= eT

i VΛVTej

= eT

i Kej = Kij = k(xi, xj)

which proves the second claim. 3
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An equilibrium strategy pair w∗ ∈ W and [φPCA(ẋ ∗
1 )T, . . . , φPCA(ẋ ∗

n)T]T ∈ φ(X )n can
be identified by applying the PCA map together with Algorithms 1 or 2. To classify a new
instance x ∈ X we may first map x into the PCA map-induced feature space and apply
the linear classifier h(x ) = sign fw∗(x ) with fw∗(x ) = w∗TφPCA(x ). Alternatively, we can
derive a dual representation of w∗ such that w∗ =

∑n
i=1 α∗

i φPCA(xi), and consequently
fw∗(x ) = fα

∗(x ) =
∑n

i=1 α∗
i k(xi, x ), where α

∗ = [α∗
1, . . . , α

∗
n]T is a not necessarily uniquely

defined dual weight vector of w∗. Therefore, we have to identify a solution α
∗ of the linear

system

w∗ = Λ
1

2

+
VTKα

∗. (25)

A direct calculation shows that

α
∗ := VΛ

1

2

+
w∗ (26)

is a solution of (25) provided that either all elements λi of the diagonal matrix Λ are positive
or that λi = 0 implies that the same component of the vector w∗ is also equal to zero (in
which case the solution is nonunique). In fact, inserting (26) in (25) then gives

Λ
1

2

+
VTKα

∗ = Λ
1

2

+
VTVΛVTVΛ

1

2

+
w∗ = Λ

1

2

+
Λ

1

2Λ
1

2 Λ
1

2

+
w∗ = w∗

whereas in the other cases the linear system (25) is obviously inconsistent. The advantage
of the latter approach is that classifying a new instances x ∈ X requires the computation
of the scalar product

∑n
i=1 α∗

i k(xi, x ) rather than a matrix multiplication when mapping x
into the PCA map-induced feature space (cf. Equation 24).

5.2 Nash Logistic Regression

In this section we study the particular instance of the Nash prediction game where each
players’ loss function rests on the negative logarithm of the logistic function σ(a) := 1

1+e−a ,
that is, the logistic loss

ℓl(z, y) := − log σ(yz) = log
(

1 + e−yz
)

. (27)

We consider the regularizers in (20) and (21), respectively, which give rise to the following
definition of the Nash logistic regression (NLR).

Definition 10 The Nash logistic regression (NLR) is an instance of the Nash prediction
game with nonempty, compact, and convex action spaces W ⊂ R

m and φ(X )n ⊂ R
m·n and

cost functions

θ̂l
−1(w, ẋ) :=

n
∑

i=1

c−1,iℓ
l(wTẋi, yi) + ρ−1

1

2
‖w‖2

2

θ̂l
+1(w, ẋ) :=

n
∑

i=1

c+1,iℓ
l(wTẋi,−1) + ρ+1

1

n

n
∑

i=1

1

2
‖ẋi − xi‖2

2

where ℓl is specified in (27).
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In the above definition, column vectors x := [xT
1 , . . . ,xT

n ]T and ẋ := [ẋT
1 , . . . , ẋT

n ]T again
denote the concatenation of the original and the transformed training instances, respectively,
which are mapped into the feature space by xi := φ(xi) and ẋi := φ(ẋi).

As in our introductory discussion, the data generator’s loss function ℓ+1(z, y) := ℓl(z,−1)
penalizes positive decision values independently of the class label y . In contrast, instances
that pass the classifier, i.e., instances with negative decision values, incur little or almost
no costs. By the above definition, the Nash logistic regression obviously satisfies Assump-
tion 2, and according to the following corollary, also satisfies Assumption 3 for suitable
regularization parameters.

Corollary 11 Let the Nash logistic regression be specified as in Definition 10 with positive
regularization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 ≥ ncT

−1c+1, (28)

then Assumption 2 and 3 hold, and consequently, the Nash logistic regression possess a
unique Nash equilibrium.

Proof. By Definition 10, both players employ the logistic loss with ℓ−1(z, y) := ℓl(z, y) and
ℓ+1(z, y) := ℓl(z,−1) and the regularizers in (20) and (21), respectively. Let

ℓ′−1(z, y) = −y 1
1+eyz ℓ′+1(z, y) = 1

1+e−z

ℓ′′−1(z, y) = 1
1+ez

1
1+e−z ℓ′′+1(z, y) = 1

1+ez
1

1+e−z

(29)

denote the first and second derivatives of the players’ loss functions with respect to z ∈ R.
Further, let

∇wΩ̂−1(w) = w ∇ẋΩ̂+1(x, ẋ) = 1
n (ẋ − x)

∇2
w,wΩ̂−1(w) = Im ∇2

ẋ,ẋΩ̂+1(x, ẋ) = 1
nIm·n

(30)

denote the gradients and Hessians of the players’ regularizers. Assumption 2 holds as:

1. The the second derivatives of ℓ−1(z, y) and ℓ+1(z, y) are positive and continuous for
all z ∈ R and y ∈ Y. Consequently, ℓv(z, y) is convex and twice continuously differ-
entiable with respect to z for v ∈ {−1,+1} and fixed y .

2. The Hessians of the players’ regularizers are fixed, positive definite matrices and conse-
quently both regularizers are twice continuously differentiable and uniformly strongly
convex in w ∈ W and ẋ ∈ φ(X )n (for any fixed x ∈ φ(X )n), respectively.

3. By Definition 10, the players’ action sets are nonempty, compact, and convex subsets
of finite-dimensional Euclidean spaces.

Assumption 3 holds as for all z ∈ R and y ∈ Y:

1. The second derivatives of ℓ−1(z, y) and ℓ+1(z, y) in (29) are equal.
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2. The sum of the first derivatives of the loss functions is bounded,

ℓ′−1(z, y) + ℓ′+1(z, y) = −y
1

1 + eyz
+

1

1 + e−z
=

{

1−e−z

1+e−z , if y = +1
2

1+e−z , if y = −1
∈ (−1, 2),

which together with Equation 12 gives

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣ℓ′−1(fw(x), y) + ℓ′+1(fw(x), y)
∣

∣ < 1.

The supremum τ is strictly less than 1 since fw(x) is finite for compact action sets
W and φ(X )n. The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and
λ+1 = 1

n , such that inequalities

ρ−1ρ+1 ≥ ncT

−1c+1 > τ2 1

λ−1λ+1
cT

−1c+1

hold.

3. The partial gradient ∇ẋi
Ω̂+1(x, ẋ) = 1

n (ẋi − xi) of the data generator’s regularizer is
independent of ẋj for all j 6= i and i = 1, . . . , n.

As Assumptions 2 and 3 are satisfied, the existence of a unique Nash equilibrium follows
immediately from Theorem 8.

Recall, that the weighting factors cv,i are strictly positive with
∑n

i=1 cv,i = 1 for both
players v ∈ {−1,+1}. In particular, it therefore follows that in the unweighted case where
cv,i = 1

n for all i = 1, . . . , n and v ∈ {−1,+1}, a sufficient condition to ensure the existence
of a unique Nash equilibrium is to set the learner’s regularization parameter to ρ−1 ≥ 1

ρ+1
.

5.3 Nash Support Vector Machine

The Nash logistic regression tends to non-sparse solutions. This becomes particularly appar-
ent if the Nash equilibrium (w∗, ẋ∗) is an interior point of the joined action set W ×φ(X )n

in which case the (partial) gradients in (6) and (7) are zero at (w∗, ẋ∗). For regularizer (21),
this implies that w∗ is a linear combination of the transformed instances ẋi where all weight-
ing factors are non-zero since the first derivative of the logistic loss as well as the cost factors
c−1,i are non-zero for all i = 1, . . . , n. The support vector machine (SVM), which employs
the hinge loss,

ℓh(z, y) := max(0, 1 − yz) =

{

1 − yz , if yz < 1
0 , if yz ≥ 1

,

does not suffer from non-sparsity, however, the hinge loss obviously violates Assumption 2
as it is not twice continuously differentiable. Therefore, we propose a twice continuously
differentiable loss function that we call trigonometric loss, which satisfies Assumptions 2
and 3.
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Definition 12 For any fixed smoothness factor s > 0, the trigonometric loss is defined by

ℓt(z, y) :=







−yz , if yz < −s
s−yz

2 − s
π cos

(

π
2syz

)

, if |yz| ≤ s
0 , if yz > s

. (31)

The trigonometric loss is similar to the hinge loss in that it, except around the decision
boundary, penalizes misclassifications in proportion to the decision value z ∈ R and attains
zero for correctly classified instances. Analog to the once continuously differentiable Huber
loss where a polynomial is embedded into the hinge loss, the trigonometric loss combines the
perceptron loss ℓp(z, y) := max(0,−yz) with a trigonometric function. This trigonometrical
embedding yields a convex, twice continuously differentiable function.

Lemma 13 The trigonometric loss ℓt(z, y) is convex and twice continuously differentiable
with respect to z ∈ R for any fixed y ∈ Y.

Proof. Let

ℓt′(z, y) =







−y , if yz < −s
−1

2y + 1
2y sin

(

π
2syz

)

, if |yz| ≤ s
0 , if yz > s

(32)

ℓt′′(z, y) =







0 , if yz < −s
π
4s cos

(

π
2syz

)

, if |yz| ≤ s
0 , if yz > s

(33)

denote the first and second derivatives of ℓt(z, y), respectively, with respect to z ∈ R. The
trigonometric loss ℓt(z, y) is convex in z ∈ R (for any fixed y ∈ Y) as the second derivative
ℓt′′(z, y) is strictly positive if |z| = |yz| < s and zero otherwise. Moreover, since the second
derivative is continuous,

lim
|z|→s−

ℓt′′(z, y) =
π

4s
cos
(

±π

2

)

= 0 = lim
|z|→s+

ℓt′′(z, y),

the trigonometric loss is also twice continuously differentiable.

Because of the similarities of the loss functions, we call the Nash prediction game that
is based upon the trigonometric loss Nash support vector machine (NSVM) where we again
consider the regularizers in (20) and (21).

Definition 14 The Nash support vector machine (NSVM) is an instance of the Nash pre-
diction game with nonempty, compact, and convex action spaces W ⊂ R

m and φ(X )n ⊂
R

m·n and cost functions

θ̂t
−1(w, ẋ) :=

n
∑

i=1

c−1,iℓ
t(wTẋi, yi) + ρ−1

1

2
‖w‖2

2

θ̂t
+1(w, ẋ) :=

n
∑

i=1

c+1,iℓ
t(wTẋi,−1) + ρ+1

1

n

n
∑

i=1

1

2
‖ẋi − xi‖2

2

where ℓt is specified in (31).
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The following corollary states sufficient conditions under which the Nash support vector
machine satisfies Assumptions 2 and 3, and consequently has a unique Nash equilibrium.

Corollary 15 Let the Nash support vector machine be specified as in Definition 14 with
positive regularization parameters ρ−1 and ρ+1 which satisfy

ρ−1ρ+1 > ncT

−1c+1, (34)

then Assumptions 2 and 3 hold, and consequently, the Nash support vector machine has a
unique Nash equilibrium.

Proof. By Definition 14, both players employ the trigonometric loss with ℓ−1(z, y) := ℓt(z, y)
and ℓ+1(z, y) := ℓt(z,−1) and the regularizers in (20) and (21), respectively. Assumption 2
holds:

1. According to Lemma 13, ℓt(z, y), and consequently ℓ−1(z, y) and ℓ+1(z, y), are con-
vex and twice continuously differentiable with respect to z ∈ R (for any fixed y ∈
{−1,+1}).

2. The regularizers of the Nash support vector machine are equal to that of the Nash
logistic regression and possess the same properties as in Theorem 11.

3. By Definition 14, the players’ action sets are nonempty, compact, and convex subsets
of finite-dimensional Euclidean spaces.

Assumption 3 holds:

1. The second derivatives of ℓ−1(z, y) and ℓ+1(z, y) are equal for all z ∈ R since

ℓt′′(z, y) =

{

π
4s cos

(

π
2sz
)

, if |z| ≤ s
0 , if |z| > s

does not dependent on y ∈ Y.

2. The sum of the first derivatives of the loss functions is bounded as for y = −1:

ℓ′−1(z,−1) + ℓ′+1(z,−1) = 2ℓt′(z,−1) =







0 , if z < −s
1 − sin

(

− π
2sz
)

, if |z| ≤ s
2 , if z > s

∈ [0, 2],

and for y = +1:

ℓ′−1(z,+1) + ℓ′+1(z,+1) =







−1 , if z < −s
sin
(

π
2sz
)

, if |z| ≤ s
1 , if z > s

∈ [−1, 1].

Together with Equation 12, it follows that

τ = sup
(x,y)∈φ(X )×Y

1

2

∣

∣ℓ′−1(fw(x), y) + ℓ′+1(fw(x), y)
∣

∣ ≤ 1.
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The smallest eigenvalues of the players’ regularizers are λ−1 = 1 and λ+1 = 1
n , such

that inequalities

ρ−1ρ+1 > ncT

−1c+1 ≥ τ2 1

λ−1λ+1
cT

−1c+1

hold.

3. As for Nash logistic regression, the partial gradient ∇ẋi
Ω̂+1(x, ẋ) = 1

n (ẋi − xi) of the
data generator’s regularizer is independent of ẋj for all j 6= i and i = 1, . . . , n.

Because Assumptions 2 and 3 are satisfied, the existence of a unique Nash equilibrium fol-
lows immediately from Theorem 8.

6. Experimental Evaluation

The goal of this section is to explore the relative strengths and weaknesses of the discussed
instances of the Nash prediction game and existing baseline methods in the context of email
spam filtering. We compare a regular support vector machine (SVM), logistic regression
(LR), the feature-deleted regularized optimization problem (FDROP, Globerson and Roweis
2006), and the Nash instances Nash logistic regression (NLR) and Nash support vector
machine (NSVM).

We use four corpora of chronologically sorted emails detailed in Table 1: The first data
set contains emails of an email service provider (ESP) collected between 2007 and 2010. The
second (Mailinglist) is a collection of emails from publicly available mailing lists augmented
by spam emails from Bruce Guenter’s spam trap of the same time period. The third corpus
(Private) contains newsletters and spam and non-spam emails of the authors. The last
corpus is the NIST TREC 2007 spam corpus.

data set instances features delivery period

ESP 169,612 541,713 01/06/2007 - 27/04/2010
Mailinglist 128,117 266,378 01/04/1999 - 31/05/2006

Private 108,178 582,100 01/08/2005 - 31/03/2010
TREC 2007 75,496 214,839 04/08/2007 - 07/06/2007

Table 1: Data sets used in the experiments.

Feature mapping φ(x ) is defined such that email x ∈ X is tokenized with the X-tokenizer
(Siefkes et al., 2004) and converted into the m-dimensional binary bag-of-word vector x :=
[0, 1]m. The value of m is determined by the number of distinct terms in the data set where
we have removed all terms which occur only once. For each experiment and each repetition,
we then construct the PCA mapping (24) with respect to the corresponding n training
emails using the linear kernel k(x,x′) := xTx′ resulting in n-dimensional training instances
φPCA(xi) ∈ R

n for i = 1, . . . , n. To ensure the convexity as well as the compactness
requirement in Assumption 2, we notionally restrict the players’ action sets by defining
φ(X ) := {φPCA(x ) ∈ R

n | ‖φPCA(x )‖2
2 ≤ κ} and W := {w ∈ R

n | ‖w‖2
2 ≤ κ} for some fixed
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constant κ. Note that by choosing an arbitrarily large κ, the players’ action sets become
effectively unbounded.

For both algorithms, ILS and EDS, we set σ := 0.001, β := 0.2, and ǫ := 10−14. The
algorithms are stopped if l exceeds 30 in line 6 of ILS and line 5 in EDS, respectively; in this
case, no convergence is achieved. In all experiments, we use the F-measure—that is, the
harmonic mean of precision and recall—as evaluation measure and tune all parameters with
respect to likelihood. The particular protocol and results of each experiment are detailed
in the following sections.

6.1 Convergence

Corollaries 12 (for Nash logistic regression) and 16 (for the Nash support vector machine)
specify conditions on the regularization parameters ρ−1 and ρ+1 under which a unique Nash
equilibrium necessarily exists. When this is the case, both the ILS and EDS algorithms will
converge on that Nash equilibrium. In the first set of experiments, we study whether
repeated restarts of the algorithm converge on the same equilibrium when the bounds in
Equations 28 and 34 are satisfied, and when they are violated to increasingly large degrees.

We set cv,i := 1
n for v ∈ {−1,+1} and i = 1, . . . , n, such that for ρ−1 > 1

ρ+1
both

bounds (Equations 28 and 34) are satisfied. For each value of ρ−1 and ρ+1 and each of 10
repetitions, we randomly draw 400 emails from the data set and run EDS with a randomly
chosen initial solution (w(0), ẋ(0)) until convergence. We run ILS on the same training set; in
each repetition we randomly choose a distinct initial solution, and after each iteration k we
compute the Euclidean distance between the EDS solution and the current ILS iterate w(k).

Figure 1 reports on these average Euclidean distances between distinctly initialized runs.
The blue curves (ρ−1 = 2 1

ρ+1
) satisfy Equations 28 and 34, the yellow curves (ρ−1 = 1

ρ+1
)

lie exactly on the boundary; all other curves violate the bounds. Dotted lines show the
Euclidean distance between the Nash equilibrium and the solution of logistic regression.

Our findings are as follows. Logistic regression and regular SVM never coincide with
the Nash equilibrium—the Euclidean distances lie in the range between 10−2 and 2. ILS
and EDS always converge to identical equilibria when (28) and (34) are satisfied (blue
and yellow curves). The Euclidean distances lie at the threshold of numerical computing
accuracy. When Equations 28 and 34 are violated by a factor up to 4 (turquoise and red
curves), all repetitions still converge on the same equilibrium, indicating that the equilibrium
is either still unique or a secondary equilibrium is unlikely to be found. When the bounds
are violated by a factor of 8 or 16 (green and purple curves), then some repetitions of
the learning algorithms do not converge or start to converge to distinct equilibria. In the
latter case, learner and data generator may attain distinct equilibria and may experience
an arbitrarily poor outcome when playing a Nash equilibrium.

6.2 Regularization Parameters

The regularization parameters ρv of the players v ∈ {−1,+1} play a major role in the
prediction game. The learner’s regularizer determines the generalization ability of the pre-
dictive model and the data generator’s regularizer controls the amount of change in the
data generation process. In order to tune these parameter, one would need to have access
to labeled data that are governed by the transformed input distribution. In our second
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Figure 1: Average Euclidean distance (solid lines) between the EDS solution and the ILS
solution at iteration k = 0, . . . , 40 for Nash logistic regression on the ESP corpus.
The dotted lines show the distance between the EDS solution and the solution of
logistic regression. Error bars indicate standard deviation.

experiment, we will explore to which extend those parameters can be estimated using a
portion of the newest training data. Intuitively, the latest training data may more similar
to the test data than older training data.

We split the data set into three parts: The 2,000 oldest emails constitute the training
portion, we use the next 2,000 emails as hold-out portion on which the parameters are
tuned, and the remaining emails are used as test set. We randomly draw 200 spam and
200 non-spam messages from the training portion and draw another subset of 400 emails
from the hold-out portion. Both NPG instances are trained on the 400 training emails and
evaluated against all emails of the test portion. To tune the parameters, we conduct a grid
search maximizing the likelihood on the 400 hold-out emails. We repeat this experiment
10 times for all four data sets and report on the found parameters as well as the “optimal”
reference parameters according to the maximal value of F-measure on the test set. Those
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Figure 2b: Performance of NLR on the hold-
out data (ho) and the test data
(te) for fixed values of ρv.

optimal regularization parameters are not used in later experiments. The intuition of the
experiment is that the data generation process has already been changed between the oldest
and the latest emails. This change may cause a distribution shift which is reflected in the
hold-out portion. We expect that one can tune each players’ regularization parameter by
tuning with respect to this hold-out set.

In Figure 2a we plot the performance of the Nash logistic regression (NLR) on the hold-
out and the test data against the regularization parameters ρ−1 and ρ+1. The dashed line
visualizes the bound in (28) on the regularization parameters for which NLR is guaranteed to
possess a unique Nash equilibrium. Figure 2b shows sectional views of the plot in Figure 2a
along the ρ−1-axis (upper diagram) and the ρ+1-axis (lower diagram) for several values of
ρ+1 and ρ−1, respectively. As expected, the effect of the regularization parameters on the
test data is much stronger than on the hold-out data.

It turns out that the data generator’s ρ+1 has almost no impact on the value of F-
measure on the hold-out data set (see lower diagram of Figure 2b). Hence, we conclude
that estimating ρ+1 without access to labeled data from the test distribution or additional
knowledge about the data generator is difficult for this application; the latest training data
are still too different from the test data. In all remaining experiments and for all data sets we
set ρ+1 = 8 for NLR and ρ+1 = 2 for NSVM. For those choices the Nash models performed
generally best on the hold-out set for a large variety of values of ρ−1. For FDROP the
regularization of the data generator’s transformation is controlled explicitly by the number
K of modifiable attributes per positive instance. We conducted the same experiment for
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FDROP resulting in an optimal value of K = 25, i.e., the data generator is allowed to
remove up to 25 tokens of each spam email of the training data set.

From the upper diagram of Figure 2b we see that estimating ρ−1 for any fixed ρ+1 seems
possible. Even if we slightly overestimate the learner’s optimal regularization parameter—
to compensate for the distributional difference between the transformed training sample
and the marginal shifted hold-out set—the determined value of ρ−1 is close to the optimum
for all four data sets.

6.3 Evaluation for Nash-Playing Adversary

We evaluate both, a regular classifier trained under the i.i.d. assumption and the Nash-
equilibrial models against both, an adversary who does not transform the input distribution
and an adversary who executes the Nash-equilibrial transformation on the input distribu-
tion. Since we cannot be certain that actual spam senders play a Nash equilibrium, we use
the following semi-artificial setting.

The learner observes a sample of 200 spam and 200 non-spam emails drawn from the
training portion of the data and estimates the Nash-optimal prediction model with param-
eters ẇ; the trivial baseline solution of regularized empirical risk minimization (ERM) is
denoted by w. The data generator observes a distinct sample D of 200 spam and 200 non-
spam messages, also drawn from the training portion, and computes their Nash-optimal
response Ḋ.

We again set cv,i := 1
n for v ∈ {−1,+1} and i = 1, . . . , n and study the following four

scenarios:

• (w,D) : Both players ignore the presence of an opponent; that is, the learner employs
a regular classifier and the sender does not change the data generation process.

• (w, Ḋ) : The learner ignores the presence of an active data generator who changes the
data generation process such that D evolves to Ḋ by playing a Nash strategy.

• (ẇ,D) : The learner expects a rational data generator and chooses a Nash-equilibrial
prediction model. However, the data generator does not change the input distribution.

• (ẇ, Ḋ) : Both players are aware of the opponent and play a Nash-equilibrial action to
secure lowest costs.

We repeat this experiment 100 times for all four data sets. Table 2 reports on the average
values of F-measure over all repetitions and both NPG instances and corresponding base-
lines; numbers in boldface indicate significant differences (α = 0.05) between the F-measures
of fw and fẇ for fixed sample D and Ḋ, respectively.

As expected, when the data generator does not alter the input distribution, the regu-
larized empirical risk minimization baselines, logistic regression and the SVM, are generally
best. However, the performance of those baselines drops substantially when the data gen-
erator plays the Nash-equilibrial action Ḋ. The Nash-optimal prediction models are more
robust against this transformation of the input distribution and significantly outperform
the reference methods for all four data sets.
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NLR

vs.

LR

ESP

w ẇ

D 0.957 0.924

Ḋ 0.912 0.925

Mailinglist

w ẇ

D 0.987 0.984

Ḋ 0.958 0.976

Private

w ẇ

D 0.961 0.944

Ḋ 0.903 0.912

TREC 2007

w ẇ

D 0.980 0.979

Ḋ 0.955 0.961

NSVM

vs.

SVM

ESP

w ẇ

D 0.955 0.939

Ḋ 0.928 0.939

Mailinglist

w ẇ

D 0.987 0.985

Ḋ 0.961 0.976

Private

w ẇ

D 0.961 0.957

Ḋ 0.932 0.936

TREC 2007

w ẇ

D 0.979 0.981

Ḋ 0.960 0.968

Table 2: Nash predictor and regular classifier against passive and Nash-equilibrial data
generator.

6.4 Case Study on Email Spam Filtering

To study the performance of the Nash prediction models and the baselines for email spam
filtering, we evaluate all methods into the future by processing the test set in chronological
order. The test portion of each data set is split into 20 chronologically sorted disjoint
subsets. We average the value of F-measure on each of those subsets over the 20 models
(trained on different samples drawn from the training portion) for each method and perform
a paired t-test.

Figure 3 shows that, for all data sets, the NPG instances outperform logistic regression
and the SVM that do not explicitly factor the adversary into the optimization criterion.
Especially for the ESP corpus, the Nash logistic regression (NLR) and the Nash support
vector machine (NSVM) are superior. On the TREC 2007 data set, the methods behave
comparably with a slight advantage for the Nash support vector machine. The period over
which the TREC 2007 data have been collected is very short; we believe that the training
and test instances are governed by nearly identical distributions. Consequently, for this data
set, the game-theoretic models do not gain a significant advantage over logistic regression
and the SVM that assume i.i.d. samples.

method vs. method SVM LR FDROP NLR NSVM
SVM 0:0 40:2 13:16 8:57 2:65
LR 2:40 0:0 7:22 5:59 2:71

FDROP 16:13 22:7 0:0 4:22 3:24
NLR 57:8 59:5 22:4 0:0 22:30

NSVM 65:2 71:2 24:3 30:22 0:0

Table 3: Results of paired t-test over all corpora: Number of trials in which each method
(row) has significantly outperformed each other method (column) vs. number of
times it was outperformed.

Table 3 shows aggregated results over all four data sets. For each point in each of the
diagrams of Figure 3, we conduct a pairwise comparison of all methods based on a paired
t-test at a confidence level of α = 0.05. When a difference is significant, we count this

31



Brückner, Kanzow, and Scheffer

Oct07 Jul08 Apr09 Jan10

0.80

0.85

0.90

0.95

Performance on ESP corpus
F
-m

ea
su

re

Aug01 Jan03 Jun04 Nov05

0.90

0.92

0.94

0.96

0.98

Performance on Mailinglist corpus

F
-m

ea
su

re

Mar06 May07 Aug08 Oct09

0.75

0.80

0.85

0.90

0.95

Performance on Private corpus

F
-m

ea
su

re

Apr07 May07 Jun07

0.94

0.95

0.96

0.97

0.98

0.99

Performance on TREC 2007 corpus

F
-m

ea
su

re

SVM LR FDROP NLR NSVM

Figure 3: Value of F-measure of predictive models. Error bars indicate standard errors.

as a win for the method that achieves a higher value of F-measure. Each line of Table 3
details the wins and, set in italics, the losses of one method against all other methods. The
Nash logistic regression and the Nash support vector machine have more wins than they
have losses against each of the other methods. The ranking continues with FDROP, the
regular SVM, and logistic regression which loses more frequently than it wins against all
other methods.

6.5 Efficiency versus Effectiveness

To assess the predictive performance as well as the execution time as a function of the
sample size, we train the baselines and the two NPG instances for a varying number of
training examples. We report on the results for the ESP data set in Figure 4. The game-
theoretic models significantly outperform the trivial baseline methods logistic regression and
the SVM, especially for small data sets. However, this comes at the price of considerably
higher computational cost. The ILS algorithm requires in general only a couple of iterations
to converge; however in each iteration several optimization problems have to be solved such
that the total execution time is up to a factor 150 larger than that of the corresponding ERM
baseline. In contrast to the ILS algorithm, a single iteration of the EDS algorithm does
not require solving nested optimization problems. However, the execution time of the EDS

32



Static Prediction Games for Adversarial Learning Problems

50 100 200 400 800 1600 3200

0.75

0.80

0.85

0.90

Performance on ESP corpus

number of training emails

F
-m

ea
su

re

50 100 200 400 800 1600 3200
10

−2

10
0

10
2

10
4

Execution time on ESP corpus

number of training emails

ti
m

e
in

se
c

 SVM LR FDROP NLR (ILS) NSVM (ILS) NLR (EDS) NSVM (EDS)

Figure 4: Predictive performance (left) and execution time (right) for varying sizes of the
training data set.

algorithm is still higher as it often requires several thousand iterations to fully converge. For
larger data sets, the discrepancy in predictive performance between game-theoretic models
and i.i.d. baseline decreases. Regarding the whether ILS or EDS is faster at solving the
optimization problems that lead to the Nash equilibria our results are not conclusive. We
conclude that the benefit of the NPG prediction models over the classification baseline is
greatest for small to medium sample sizes.

6.6 Nash-Equilibrial Transformation

In contrast to FDROP, the Nash models allow the data generator to modify non-spam
emails. However in practice most senders of legitimate messages do not deliberately change
their writing behavior in order to bypass spam filters, perhaps with the exception of senders
of newsletters who must be careful not to trigger filtering mechanisms. In a final experiment,
we want to study whether the Nash model reflects this aspect of reality, and how the data
generator’s regularizer effects this transformation.

The training portion contains again n+1 = 200 spam and n−1 = 200 non-spam instances
randomly chosen from the oldest 4, 000 emails. We determine the Nash equilibrium and
measure the number of additions and deletions to spam and non-spam emails in Ḋ:

∆add
−1 := 1

n−1

∑

i:yi=−1

m
∑

j=1
max(0, ẋi,j − xi,j) ∆add

+1 := 1
n+1

∑

i:yi=+1

m
∑

j=1
max(0, ẋi,j − xi,j)

∆del
−1 := 1

n−1

∑

i:yi=−1

m
∑

j=1
max(0,xi,j − ẋi,j) ∆del

+1 := 1
n+1

∑

i:yi=+1

m
∑

j=1
max(0,xi,j − ẋi,j)

where xi,j indicates the presence of token j in the i-th training email, that is, ∆add
v and

∆del
v denote the average number of word additions and deletions per spam and non-spam

email performed by the sender.
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Figure 5: Average number of additions and deletions per spam/non-spam email for NLR
(left) and NSVM (right) with respect to the adversary’s regularization parameter
ρ+1 for fixed ρ−1 = n−1.

Figure 5 shows the number of additions and deletions of the Nash transformation as a
function of the adversary’s regularization parameter for the ESP data set. Table 4 reports
on the average number of word additions and deletions for all data sets. For FDROP, we
set the number of possible deletions to K = 25.

ESP

game non-spam spam
model add del add del

FDROP 0.0 0.0 0.0 24.8
NLR 0.7 1.0 22.5 31.2

NSVM 0.4 0.5 17.9 23.8

Mailinglist

game non-spam spam
model add del add del

FDROP 0.0 0.0 0.0 23.9
NLR 0.3 0.4 8.6 10.9

NSVM 0.3 0.3 6.9 8.4

Private

game non-spam spam
model add del add del

FDROP 0.0 0.0 0.0 24.2
NLR 0.4 0.2 24.3 11.2

NSVM 0.1 0.1 15.6 7.3

TREC 2007

game non-spam spam
model add del add del

FDROP 0.0 0.0 0.0 24.7
NLR 0.2 0.2 15.0 11.4

NSVM 0.2 0.1 11.1 8.4

Table 4: Average number of word additions and deletions per training email.

The Nash-equilibrial transformation imposes almost no changes on any non-spam email;
the number of modifications declines as the regularization parameter grows (see Figure 5).
We observe for all data sets that even if the total amount of transformation differs for NLR
and NSVM, both instances behave similarly insofar as the number of word additions and
deletions continues to grow when the adversary’s regularizer decreases.
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7. Conclusion

We studied prediction games in which a learner and a data generator have conflicting
but not necessarily directly antagonistic cost functions. We focused on static games in
which learner and data generator have to commit simultaneously to a predictive model
and a transformation on the input distribution, respectively. The cost-minimizing action
of each player depends on the opponent’s move; in the absence of information about the
opponent’s move, players may choose to play a Nash equilibrium which constitutes a cost-
minimizing move for each player if the other player follows the equilibrium as well. Because a
combination of actions from distinct equilibria may lead to arbitrarily high costs for either
player, we have studied conditions under which a prediction game can be guaranteed to
possess a unique Nash equilibrium. Lemma 1 identifies conditions under which at least one
equilibrium exists and Theorem 8 elaborates on when this equilibrium is unique. We propose
an inexact linesearch approach and a modified extragradient approach to identifying this
unique equilibrium. Empirically, both approaches turned out to perform quite similarly.

We derived Nash logistic regression and Nash support vector machine models, and de-
rived kernelized versions of these methods. Corollaries 12 and 16 specialize Theorem 8
and elaborate conditions on the player’s regularization parameters under which the Nash
logistic regression and the support vector machine converge on a unique Nash equilibrium.
Empirically, we find that both methods identify unique Nash equilibria when the bounds
laid out in Corollaries 12 and 16 are satisfied or violated by a factor of up to 4. From
our experiment on several email corpora we conclude that Nash logistic regression and the
support vector machine outperform their i.i.d. baselines and FDROP for the problem of
classifying future emails based on training data from the past.
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