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Abstract. Motivated by a recent method introduced by two of the authors in [16] for
mathematical programs with equilibrium constraints (MPECs), we present a related reg-
ularization scheme for the solution of mathematical programs with vanishing constraints
(MPVCs). This new regularization method has stronger convergence properties than exist-
ing ones. In particular, it is shown that every limit point is at least M-stationary under a
linear independence-type constraint qualification. If, in addition, an asymptotic weak non-
degeneracy assumption holds, the limit point is shown to be S-stationary. Second-order
conditions are not needed to obtain these results. Furthermore, some results are given
which state that the regularized subproblems satisfy suitable standard constraint qualifi-
cations such that existing software can be applied to these regularized problems.

Key Words: Mathematical programs with vanishing constraints, Constraint qualification,
Regularization method, Global convergence.



1 Introduction
We consider a constrained optimization problem of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) ≤ 0 ∀i = 1, . . . , l

(1)

that we call a mathematical program with vanishing constraints, MPVC for short, where
we assume throughout that the functions f, gi, hi, Hi, Gi : Rn → R are continuously differ-
entiable. The MPVC was introduced to the mathematical community in the recent paper
[1], where it was extracted as a mathematical model of various applications including opti-
mal topology design problems in mechanical structures. Several theoretical properties and
different numerical approaches for MPVCs can be found in [1, 2, 7, 8, 9, 10, 11, 12, 13, 14].

The MPVC is closely related to a class of problems that is called a mathematical
program with equilibrium (or complementarity) constraints (MPECs). Such an MPEC is
a constrained optimization problem of the form

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
Gi(x) ≥ 0 ∀i = 1, . . . , l,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Gi(x)Hi(x) = 0 ∀i = 1, . . . , l.

We refer the interested reader to the monographs [18, 19, 5] for more details on MPECs. In
principle, it is possible to formulate an MPVC as an MPEC (and vice versa), and, indeed,
there exist different ways how this can be accomplished, cf. the corresponding discussion in
[1, 11] for some suitable reformulations. So far, however, all these reformulations have cer-
tain disadvantages like the introduction of additional (nonunique) solutions or the violation
of certain constraint qualifications. This observation motivates to take into account the
special structure of the MPVC and to consider this as an independent class of interesting
optimization problems.

Nevertheless, the similarities between MPVCs on the one hand and MPECs on the
other hand are obvious, hence it is natural to use existing ideas for the solution of one
class of problems also for the solution of the other class of problems. This is precisely
what is done in this paper: Based on a recent regularization method for the solution of
MPECs from [16], we adapt the main idea and modify the approach in such a way that it
exploits the structure of an MPVC. The result is a regularization method for MPVCs which
has stronger convergence properties than existing (regularization) methods for MPVCs, cf.
[2, 12, 14].

The organization of this paper is as follows: Section 2 summarizes some background
material regarding stationary points and constraint qualifications for MPVCs. Section 3
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gives the details and some preliminary properties of the new relaxation scheme. The
convergence properties of the new regularization method are investigated in Section 4. We
conclude with some final remarks in Section 5.

Some words regarding our notation: Most of the notation used is standard. For a
differentiable function f : Rn → R, ∇f(x) ∈ Rn denotes the gradient of f at x which is
understood as a column vector. Moreover, for λ ∈ Rn we denote by

supp(λ) :=
{
i ∈ {1, . . . , n} | λi 6= 0

}
the support of this vector.

2 Preliminaries

2.1 Constraint Qualifications for Standard Nonlinear Programs

Since the idea behind a relaxation method is to replace the difficult MPVC by a sequence
of (hopefully simpler) standard nonlinear programs, we begin our preliminary section by
recalling some constraint qualifications for this problem class. Consider the following non-
linear program

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m, (2)
hi(x) = 0 ∀i = 1, . . . , p

and define the set of active inequalities as

Ig(x
∗) := {i | gi(x∗) = 0}

for any x∗ ∈ Rn feasible for the nonlinear program (2). Let Z denote the set of feasible
points of (2) and x∗ ∈ Z be arbitrarily given. The (Bouligand) tangent cone of Z at x∗ is
then defined as

TZ(x∗) :=
{
d ∈ Rn | ∃{xk} ⊆ Z, ∃{τk} ↓ 0 such that xk → x∗ and

xk − x∗

τk
→ d

}
,

and the linearized cone of Z at x∗ is given by

LZ(x∗) :=
{
d ∈ Rn | ∇gi(x∗)Td ≤ 0 (i ∈ Ig(x∗)), ∇hi(x∗)Td = 0 (i = 1, . . . , p)

}
.

Furthermore, the polar cone to an arbitrary cone C ⊆ Rn is defined as

C◦ := {s ∈ Rn | ∀d ∈ C : sTd ≤ 0}.

One of the constraint qualifications we are going to state uses positive-linearly dependent
vectors. We therefore first recall the definition of positive-linear dependence.
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Definition 2.1 A set of vectors

{ai | i ∈ I1} ∪ {bi | i ∈ I2}

is said to be positive-linearly dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2),
not all of them being zero, with αi ≥ 0 for all i ∈ I1 and∑

i∈I1

αiai +
∑
i∈I2

βibi = 0.

Otherwise, we say that these vectors are positive-linearly independent.

With these definitions, we are now able to define some constraint qualifications for nonlinear
programs.

Definition 2.2 A feasible point x∗ for (2) is said to satisfy the

(a) linear independence constraint qualification (LICQ) if the gradients

{∇gi(x∗) | i ∈ Ig(x∗)} ∪ {∇hi(x∗) | i = 1, . . . , p}

are linearly independent;

(b) constant positive-linear dependence constraint qualification (CPLD) if, for any sub-
sets I1 ⊆ Ig(x

∗) and I2 ⊆ {1, . . . , p} such that the gradients

{∇gi(x∗) | i ∈ I1} ∪ {∇hi(x∗) | i ∈ I2}

are positive-linearly dependent, there exists a neighbourhood N(x∗) of x∗ such that
the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2}

are linearly dependent for all x ∈ N(x∗);

(c) Abadie constraint qualification (ACQ) if TZ(x∗) = LZ(x∗);

(d) Guignard constraint qualification (GCQ) if TZ(x∗)◦ = LZ(x∗)◦.

The following relations hold between these four constraint qualifications:

LICQ =⇒ CPLD =⇒ ACQ =⇒ GCQ.

The second implication was proven in [3], whereas the first and the third implication follow
directly from the definitions. It is well known that every local minimum x∗ of (2), such
that GCQ holds in x∗, admits multipliers λi (i = 1, . . . ,m) and µi (i = 1, . . . , p) such that
the triple (x∗, λ, µ) is a KKT point, i.e.,

0 = ∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)

with supp(λ) ⊆ Ig(x
∗) and λi ≥ 0 (i = 1, . . . ,m).
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2.2 Stationary Points for MPVCs

While the KKT conditions are, more or less, the only prominent stationarity concept for
standard nonlinear programs, there are several stationarity concepts in use when it comes
to MPVCs. In order to state these, we need the following index sets: Let x∗ be an arbitrary
feasible point of (1). Then let Ig = {i | gi(x∗) = 0} be defined as before, and consider the
additional index sets

I+ :=
{
i
∣∣Hi(x

∗) > 0
}
, I0 :=

{
i
∣∣Hi(x

∗) = 0
}
. (3)

Furthermore, we divide the index set I+ into the following subsets:

I+0 :=
{
i
∣∣Hi(x

∗) > 0, Gi(x
∗) = 0

}
,

I+− :=
{
i
∣∣Hi(x

∗) > 0, Gi(x
∗) < 0

}
.

(4)

Similarly, we partition the set I0 in the following way:

I0+ :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) > 0

}
,

I00 :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) = 0

}
,

I0− :=
{
i
∣∣Hi(x

∗) = 0, Gi(x
∗) < 0

}
.

(5)

Note that the first subscript indicates the sign of Hi(x
∗), whereas the second subscript

stands for the sign of Gi(x
∗). We would also like to point out that the above index sets

substantially depend on the chosen point x∗. Throughout this section, it will always be
clear from the context which point these index sets refer to.

Definition 2.3 Let x∗ be feasible for the MPVC (1). Then x∗ is called

(a) weakly stationary if there exist multipliers λ ∈ Rm, µ ∈ Rp, ηH , ηG ∈ Rl such that

∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
i=1

µi∇hi(x∗)−
l∑

i=1

ηHi ∇Hi(x
∗) +

l∑
i=1

ηGi ∇Gi(x
∗) = 0

and
λi ≥ 0 (i ∈ Ig), λi = 0 (i /∈ Ig),
ηHi = 0 (i ∈ I+), ηHi ≥ 0 (i ∈ I0−), ηHi free (i ∈ I0+ ∪ I00),

ηGi = 0 (i ∈ I+− ∪ I0− ∪ I0+), ηGi ≥ 0 (i ∈ I+0 ∪ I00).

(b) T-stationary if x∗ is weakly stationary and ηGi ηHi ≤ 0 for all i ∈ I00.

(c) M-stationary if x∗ is weakly stationary and ηGi ηHi = 0 for all i ∈ I00.

(d) S-stationary if x∗ is weakly stationary and ηHi ≥ 0, ηGi = 0 for all i ∈ I00.

Obviously, the following implications hold for these stationarity concepts:

S-stationarity =⇒ M-stationarity =⇒ T-stationarity =⇒ weak stationarity.
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0
ηGi

ηHi

(a) weak stationarity

0
ηGi

ηHi

(b) T-stationarity

0
ηGi

ηHi

(c) M-stationarity

0
ηGi

ηHi

(d) S-stationarity

Figure 1: Geometric illustration of weak, T-, M-, and S-stationarity for an index i ∈ I00

The only difference between these four stationarity concepts lies in the conditions on the
multipliers corresponding to the bi-active set I00. These conditions are illustrated in Figure
1. Hence, if the bi-active set is empty, all four stationary concepts coincide.

The notion of weak stationarity for MPVCs was introduced in [14], whereas M-statio-
narity for MPVCs is due to [9] and S-stationarity, which is in fact equivalent to the KKT
conditions of (1), was first mentioned in [1]. T-stationarity was only recently brought on in
[7]. In an MPEC setting, the counterpart of T-stationarity is usually called C-stationarity,
cf. [20].

2.3 MPVC-tailored Constraint Qualifications

Since it is known that most standard constraint qualifications are violated by the vanishing
constraints, special MPVC constraint qualifications have been developed to guarantee that
a local solution of (1) is stationary in one of the above senses. Although there are much
more MPVC constraint qualifications known by now, we will confine ourselves to only two
of them. Whereas the first one is based on the famous linear independence constraint qual-
ification for standard nonlinear programs and has been used for MPVCs quite some time
now, the second one is an adaption of the less known constant positive-linear dependence
constraint qualification which was introduced in [23] and further investigated in [3] and
only recently applied to MPVCs in [12].

Definition 2.4 A feasible point x∗ of the MPVC (1) is said to satisfy the

(a) MPVC-linear independence constraint qualification (MPVC-LICQ) if the gradients

{∇gi(x∗) | i ∈ Ig} ∪ {∇hi(x∗) | i = 1, . . . , p}
∪ {∇Gi(x

∗) | i ∈ I00 ∪ I+0} ∪ {∇Hi(x
∗) | i ∈ I0}

are linearly independent;

(b) MPVC-constant positive-linear dependence constraint qualification (MPVC-CPLD)
if, for all subsets I1 ⊆ Ig, I2 ⊆ I0−, I3 ⊆ I+0 ∪ I00, I4 ⊆ {1, . . . , p}, I5 ⊆ I0+ ∪ I00,
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the following implication holds true: If the gradients{
{∇gi(x) | i ∈ I1} ∪ {−∇Hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3}

}
∪
{
{∇hi(x) | i ∈ I4} ∪ {∇Hi(x) | i ∈ I5}

}
are positive-linearly dependent in x∗, they remain linearly dependent in a whole neigh-
bourhood of x∗.

In the definition of MPVC-CPLD, we use double face brackets to separate the gradients
for which there are sign constraints in the definition of positive linear dependence from
those without sign constraints.

Apart from those defined above, there exist a number of constraint qualifications tai-
lored to MPVCs like MPVC-MFCQ, MPVC-CRCQ and MPVC-ACQ as variants of the
standard MFCQ (Mangasarian-Fromovitz constraint qualification), standard CRCQ (con-
stant rank constraint qualification), and standard ACQ. Some of the relations between
these constraint qualifications are displayed in the diagram below, see [12] and the refer-
ence therein for more information about these constraint qualifications.

MPVC-MFCQ

%-SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

%-SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

MPVC-LICQ

%-SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk
MPVC-CPLD +3 MPVC-ACQ

MPVC-CRCQ

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

Analogous to the standard case, MPVC-LICQ is the strongest constraint qualification
of the five mentioned here and MPVC-ACQ is the weakest. MPVC-CPLD relaxes both
MPVC-MFCQ and MPVC-CRCQ, whereas it is known that neither MPVC-MFCQ implies
MPVC-CRCQ nor vice versa.

In [1], it was proven that a local minimum of (1) satisfying MPVC-LICQ is S-stationary.
However, the following example proves that we cannot expect local or even global minima
to be S-stationary if MPVC-LICQ is violated.

Example 2.5 Consider the following 3-dimensional MPVC which is based on an example
originally designed for MPECs from [20]:

min f(x) = x1 + x2 − x3

s.t. g1(x) = −4x1 + x3 ≤ 0,
g2(x) = −4x2 + x3 ≤ 0,
H(x) = x2 ≥ 0,
G(x)H(x) = x1x2 ≤ 0

One can easily verify that x∗ = (0, 0, 0)T is the global minimum and that MPVC-LICQ
is violated in x∗ whereas MPVC-MFCQ and MPVC-CRCQ are satisfied. Although x∗ is
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the global minimum, it is M-stationary but not S-stationary. In fact, there exist two mul-
tipliers corresponding to x∗, namely (λ1, λ2, η

H , ηG) = (1
4
, 3

4
,−2, 0) and (λ1, λ2, η

H , ηG) =
(3

4
, 1

4
, 0, 2) which both satisfy the requirements for M-stationarity, whereas none of them

gives S-stationarity. ♦

It is known that every local minimum of (1) satisfying MPVC-ACQ (or any stronger MPVC
constraint qualification such as the ones introduced above) is M-stationary, see [9] for the
proof where even less (MPVC-GCQ) is needed. The example above implies, however, that
we cannot hope for more unless we assume significantly stronger constraint qualifications.

3 New Relaxation Approach
As their name indicates, the reason why MPVCs are considered complicated problems lies
in the vanishing constraints. Illustrating both the theoretical and numerical nature of the
difficulties, we consider the following most simple MPVC:

minx1,x2 f(x)
s.t. H(x) = x2 ≥ 0,

G(x)H(x) = x1x2 ≤ 0
(6)

The feasible set of (6) is depicted in Figure 2.

0
x1

x2

Figure 2: Feasible set for Example 6

Obviously, the feasible set consists of the union of the second quadrant with the half-axis
R+ × {0}. The latter part is lower-dimensional and violates both standard LICQ and
MFCQ since here both constraints H(x) ≥ 0 and G(x)H(x) ≤ 0 are active. Thus, the
perhaps most intuitive approach to overcome these deficiencies is to enlarge the feasible
area around this half-axis such that at least one of these two constraints is non-active in
every feasible point. This idea leads to a so-called relaxation or regularization method
where a sequence of standard nonlinear programs is solved such that the feasible sets of
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the nonlinear programs converge to the feasible set of the original MPVC. These methods
are very popular for the related problem class of MPECs, see for example [21, 6, 17, 22, 15].
So far, only two of these approaches were applied to MPVCs, cf. [2, 12]. In this paper,
we want to adapt the idea from [16] which exhibits strong convergence properties when
applied to MPECs.

To this end, we consider the function ϕ : R2 → R defined by

ϕ(a, b) =

{
ab, if a+ b ≥ 0,

−1
2
(a2 + b2), if a+ b < 0.

In [16] it was shown that this function has the following properties:

Lemma 3.1 (a) ϕ is an NCP-function, i.e. ϕ(a, b) = 0 if and only if a ≥ 0, b ≥ 0, ab =
0.

(b) ϕ is continuously differentiable with gradient

∇ϕ(a, b) =


(
b
a

)
, if a+ b ≥ 0,(

−a
−b

)
, if a+ b < 0.

(c) ϕ has the property that

ϕ(a, b)

{
> 0, if a > 0 and b > 0,
< 0, if a < 0 or b < 0.

Based on this function, we define the function Φ(·; t) : R2 → R given by

Φ(a, b; t) :=

{
a(b− t), if a+ b ≥ t,
−1

2
(a2 + (b− t)2), if a+ b < t

(7)

for arbitrary values t ≥ 0 and the corresponding relaxed problem NLP(t) for t ≥ 0 as

min f(x)
s.t. gi(x) ≤ 0 ∀i = 1, . . . ,m,

hi(x) = 0 ∀i = 1, . . . , p,
Hi(x) ≥ 0 ∀i = 1, . . . , l,
Φ(Gi(x), Hi(x); t) ≤ 0 ∀i = 1, . . . , l.

(8)

Hence, we replace the vanishing constraints

Hi(x) ≥ 0, Gi(x)Hi(x) ≤ 0

by
Hi(x) ≥ 0,Φ(Gi(x), Hi(x); t) ≤ 0,
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0
Gi(x)

t

Hi(x)

Figure 3: Geometric interpretation of the relaxation

see Figure 3 for a geometric illustration. Note that, unlike [16], we do not relax the
constraint Gi(x)Hi(x) ≤ 0 symmetrically in Gi and Hi since we consider MPVCs where
there is no constraint Gi(x) ≥ 0. This has the advantage that every local minimum x∗ of
(1), where Gi(x

∗) ≤ 0 for all i and Hi(x
∗) > 0 for all i with Gi(x

∗) = 0 also is a local
minimum of NLP(t) if t > 0 is chosen sufficiently small. The following properties of NLP(t)
can be proven completely analogous to [16]:

Lemma 3.2 Let X be the feasible set of the MPVC (1) and X(t) the feasible set of NLP(t)
for t ≥ 0. Then the following three statements hold:

(a) X(0) = X.

(b) X(t1) ⊆ X(t2) for all 0 ≤ t1 ≤ t2.

(c)
⋂
t≥0X(t) = X.

Thus, the relaxed problems NLP(t) have the requested properties that their feasible sets
contain the one of the original MPVC and are converging to the original feasible set for
t ↓ 0.

To simplify the notation in the subsequent convergence analysis, we introduce the index
sets

Ig(x) := {i | gi(x) = 0},
IH(x) := {i | Hi(x) = 0},

IΦ(x; t) := {i | Φ(Gi(x), Hi(x); t) = 0}

for t ≥ 0 and x feasible for NLP(t). We also employ the following partition of the index
set IΦ:

I00
Φ (x; t) := {i ∈ IΦ | Hi(x)− t = 0, Gi(x) = 0},
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I+0
Φ (x; t) := {i ∈ IΦ | Hi(x)− t > 0, Gi(x) = 0},
I0+

Φ (x; t) := {i ∈ IΦ | Hi(x)− t = 0, Gi(x) > 0}.

Note that these sets indeed form a partition of IΦ(x; t) since the definition of Φ together
with Lemma 3.1 (a) implies that

Φ(Gi(x), Hi(x); t) = 0⇐⇒ Gi(x) ≥ 0, Hi(x)− t ≥ 0, Gi(x)
(
Hi(x)− t

)
= 0.

This relation will be used several times in our subsequent analysis without an explicit
reference.

4 Convergence Results
Concentrating on the complicated constraints, we assume in this section that there are no
standard inequality and equality constraints. However, extensions of the results and proofs
to the case with standard constraints are straightforward.

The following theorem is our main convergence result. Basically, it states that a limit
of KKT points of the regularized problems gives at least an M-stationary point of the
original MPVC under fairly mild assumptions. Note that this result is stronger than the
corresponding convergence results of existing relaxation methods where (under similar or
even stronger assumptions) convergence can be shown only to weakly stationary points
or to T-stationary points, cf. [12, 14]. In fact, so far none of the existing regularization
methods for MPVCs can be shown to converge to M-stationary points without requiring
additional assumptions to hold.

Theorem 4.1 Let {tk} ↓ 0 such that {(xk, νk, ρk)} is a sequence of KKT points of NLP (tk)
with xk → x∗, where MPVC-CPLD is satisfied at x∗. Then x∗ is an M-stationary point of
(1).

Proof. The feasibility of x∗ for (1) is a direct consequence of Lemma 3.2. As (xk, νk, ρk)
is a KKT point of NLP (tk), we have

0 = ∇f(xk)−
l∑

i=1

νki ∇Hi(x
k) +

l∑
i=1

ρki∇[Φ(Gi(x
k), Hi(x

k); tk)],

and

νki ≥ 0, Hi(x
k) ≥ 0, νki Hi(x

k) = 0 (i = 1, . . . , l),
ρki ≥ 0, Φ(Gi(x

k), Hi(x
k); tk) ≤ 0, ρki Φ(Gi(x

k), Hi(x
k); tk) = 0 (i = 1, . . . , l).

Putting

δG,ki :=

{
ρki (Hi(x

k)− tk), i ∈ I+0
Φ (xk; tk),

0, else, δH,ki :=

{
ρkiGi(x

k), i ∈ I0+
Φ (xk; tk),

0, else,
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and noticing that

∇[Φ(Gi(x
k), Hi(x

k); tk)] = (Hi(x
k)− tk)∇Gi(x

k) +Gi(x
k)∇Hi(x

k) = 0

for i ∈ I00
Φ (xk; tk) we hence get

0 = ∇f(xk)−
l∑

i=1

νki ∇Hi(x
k) +

l∑
i=1

δG,ki ∇Gi(x
k) +

l∑
i=1

δH,ki ∇Hi(x
k),

where δG,k, δH,k ≥ 0 due to the definition of the index sets I0+
Φ (xk; tk) and I+0

Φ (xk; tk). In
view of [22, Lem. A.1] we may assume that the gradients

{∇Hi(x
k) | i ∈ supp(νk) ∪ supp(δH,k)} ∪ {∇Gi(x

k) | i ∈ supp(δG,k)} (9)

are linearly independent.
We claim that the sequence {(νk, δG,k, δH,k)} is bounded. In order to prove this, suppose

that
‖(νk, δG,k, δH,k)‖ →k→∞ ∞.

Then there exists (ν̃, δ̃G, δ̃H) 6= 0 and an infinite subset K ⊆ N such that

(νk, δG,k, δH,k)

‖(νk, δG,k, δH,k)‖
→k∈K (ν̃, δ̃G, δ̃H).

By inserting this limiting process in the equation above, we get

0 = −
∑

i∈supp(ν̃)

ν̃i∇Hi(x
∗) +

∑
i∈supp(δ̃G)

δ̃Gi ∇Gi(x
∗) +

∑
i∈supp(δ̃H)

δ̃Hi ∇Hi(x
∗)

=
∑

i∈supp(ν̃)∩I0−

νi(−∇Hi(x
∗)) +

∑
i∈supp(δ̃G)

δ̃Gi ∇Gi(x
∗)

+
∑

i∈supp(δ̃H)

δ̃Hi ∇Hi(x
∗) +

∑
i∈supp(ν̃)\I0−

(−νi)∇Hi(x
∗).

Hence the vectors{
{−∇Hi(x

∗) | i ∈ supp(ν̃) ∩ I0−} ∪ {∇Gi(x
∗) | i ∈ supp(δ̃G)}

}
∪ {∇Hi(x

∗) | i ∈ supp(δ̃H) ∪ (supp(ν̃) \ I0−)}

are positive-linearly dependent. In view of the inclusions

supp(ν̃) ∩ I0− ⊆ I0−,

supp(δ̃G) ⊆ I00 ∪ I+0,

supp(δ̃H) ∪ (supp(ν̃) \ I0−) ⊆ I00 ∪ I0+,

11



and MPVC-CPLD this contradicts the linear independence of the gradients in (9). Hence,
the sequence {(νk, δG,k, δH,k)} is bounded and therefore, at least on a subsequence, conver-
gent to some limit (ν, δG, δH). By means of that, we define some new multipliers (ηG, ηH)
by

ηGi :=

{
δGi , i ∈ supp(δG),
0, else, ηHi :=


νi, i ∈ supp(ν),
−δHi , i ∈ supp(δH),
0, else.

Note that ηHi is well defined since we have supp(νk) ∩ supp(δH,k) = ∅ for all k sufficiently
large (otherwise, it is easy to see that there would exist an index i such that bothHi(x

k) = 0
and Hi(x

k) = tk > 0, a contradiction). Then it follows that x∗ with the multipliers (ηG, ηH)
is at least weakly stationary. In order to verify that it is even M-stationary we assume the
contrary. Then there exists an index j ∈ I00 such that ηGj > 0 and ηHj 6= 0. Since ηGj > 0,
necessarily j ∈ I+0

Φ (xk; tk) for k sufficiently large. Hence, Hj(x
k) > tk > 0 and therefore,

νkj = 0 and hence νj = 0. Due to supp(δH) ⊆ I0+
Φ (xk; tk), this yields ηHj = νj = 0, in

contradiction to our assumption. This concludes the proof. �

In order to obtain strong stationarity of the limit point, we need an additional assumption.
To this end, we employ the notion of asymptotic weak nondegeneracy as defined below.

Definition 4.2 Let {tk} ↓ 0 and {xk} be a sequence of feasible points of NLP(tk) with
xk → x∗. If for all k sufficiently large

I+0
Φ (xk; tk) ∩ I00 = ∅ and I0+

Φ (xk; tk) ∩ I00 = ∅

the sequence {xk} is called asymptotically weakly nondegenerate.

In [16], asymptotic weak nondegeneracy was defined differently (and for MPECs). However,
is is easy to see that both definitions are equivalent. In combination with MPVC-CPLD,
this condition is strong enough to guarantee S-stationarity of a limit point generated by
the relaxation method.

Theorem 4.3 Let {tk} ↓ 0 and {(xk, νk, ρk)} be a sequence of KKT points of NLP(tk)
with xk → x∗. If MPVC-CPLD holds in x∗ and the sequence {xk} is asymptotically weakly
nondegenerate, then x∗ is a strongly stationary point of (1).

Proof. To prove this result, we only have to verify that the multipliers ηG, ηH we con-
structed in the proof of Theorem 4.1 satisfy ηGi = 0 and ηHi ≥ 0 for all i ∈ I00 under
the additional assumption of asymptotic weak nondegeneracy. However, this assumption
directly implies supp(δG) ∩ I00 = ∅ and supp(δH) ∩ I00 = ∅ and thus S-stationarity of the
limit point. �

Both convergence results rely on the assumption that the regularized problems admit a
sequence of KKT points. The most intuitive approach to guarantee this would be to prove
that the relaxed problems inherit a constraint qualification from the original problem (1).
However, as the following example illustrates, this is not always the case.
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Example 4.4 Consider again the example (6) from the beginning of Section 3:

minx1,x2 f(x)
s.t. H(x) = x2 ≥ 0,

G(x)H(x) = x1x2 ≤ 0,
(10)

and let x∗ = (0, 0)T . Then it is easy to see that MPVC-LICQ is satisfied in x∗. Let us
now consider the sequences tk = 1

k
and xk = (0, 1

k
)T for k ∈ N. Then obviously tk ↓ 0 and

xk → x∗, and the point xk is feasible for NLP(tk) for all k ∈ N. The only active constraint
is Φ(G(xk), H(xk); tk) ≤ 0 and the corresponding gradient is

∇xΦ(G(xk), H(xk); tk) =

(
xk2 − tk
xk1

)
=

(
0

0

)
,

thus NLP(tk) does not satisfy LICQ in xk for all k ∈ N. In fact, not even ACQ holds in xk.
Only GCQ, which is, in a sense, the weakest constraint qualification known for nonlinear
programs, is valid at xk. ♦

We are going to prove that this is not a mere coincidence but that MPVC-LICQ in a
feasible point x∗ of (1) always implies GCQ for all points x feasible for NLP(t), with t > 0
sufficiently small, that belong to a certain neighbourhood of x∗. To this end, we need two
auxiliary results. The first one is stated in the following lemma and can be found in [4,
Theorem 3.2.2].

Lemma 4.5 Consider the cones

C1 := {d ∈ Rn | aTi d ≤ 0, ∀i = 1, . . . ,m, bTi d = 0 ∀i = 1, . . . , p}

and

C2 := {s ∈ Rn | s =
m∑
i=1

αiai +

p∑
i=1

βibi, αi ≥ 0 ∀i = 1, . . . ,m}.

Then C2 = C◦1 and C1 = C◦2 .

To simplify the notation in the proof of Theorem 4.7, we would like to introduce some
nonlinear programs that are very similar to the relaxed problems NLP(t) but have better
properties when it comes to constraint qualifications. Let t > 0 and x̂ be feasible for
NLP(t). Then choose an arbitrary subset I ⊆ IΦ

00(x̂; t) and denote its complement by
Ī := IΦ

00\I. We then define the nonlinear program NLP(t, I) as

min f(x) s.t. Hi(x) ≥ 0, Gi(x) ≤ 0 ∀i ∈ I+0
Φ (x̂; t) ∪ I,

Hi(x) ≥ 0, Hi(x) ≤ t ∀i ∈ I0+
Φ (x̂; t) ∪ Ī , (11)

Hi(x) ≥ 0,Φ(Gi(x), Hi(x); t) ≤ 0 ∀i 6∈ IΦ(x̂; t)

and denote its feasible set by X(t, I). Then it is easy to see that

X(t, I) ⊆ X(t)

and that x̂ is feasible for NLP(t, I), too. The following auxiliary lemma can be proven
analogously to [16, Lemma 4.6]. Therefore, we do not state its proof here.
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Lemma 4.6 For all t > 0 and all x̂ feasible for NLP(t),

TX(t)(x̂) =
⋃

I⊆I00
Φ (x̂;t)

TX(t,I)(x̂).

These two auxiliary results enable us to prove the announced result about MPVC-LICQ
for the original problem implying GCQ for NLP(t) in a neighbourhood.

Theorem 4.7 Let x∗ be feasible for the MPVC (1) such that MPVC-LICQ holds in x∗.
Then there is a T > 0 and a neighbourhood U(x∗) such that the following holds for all
t ∈ (0, T ]: If x ∈ U(x∗) is feasible for NLP(t), then standard GCQ for NLP(t) holds in x.

Proof. By MPVC-LICQ, the gradients

{∇Gi(x
∗) | i ∈ I00 ∪ I+0} ∪ {∇Hi(x

∗) | i ∈ I0} (12)

are linearly independent and due to the continuity of the derivatives, they remain linearly
independent in a neighbourhood. Hence, we can choose a T > 0 and a neighbourhood
U(x∗) such that for all t ∈ (0, T ] and all x̂ ∈ U(x∗) feasible for NLP(t) the gradients in
(12) are linearly independent and the following inclusions hold:

IH(x̂) ⊆ I0,

I00
Φ (x̂; t) ∪ I0+

Φ (x̂; t) ⊆ I00 ∪ I0+, (13)
I00

Φ (x̂; t) ∪ I+0
Φ (x̂; t) ⊆ I00 ∪ I+0.

Then for all I ⊆ I00
Φ (x̂; t), the gradients corresponding to active constraints in NLP(t, I)

are
{∇Gi(x̂) | i ∈ I+0

Φ (x̂; t) ∪ I} ∪ {∇Hi(x̂) | i ∈ I0+
Φ (x̂; t) ∪ Ī ∪ IH(x̂)}.

Thanks to the construction of T and U(x∗), these gradients are linearly independent, i.e.
LICQ is satisfied in x̂ for NLP(t, I) (to this end, note that i ∈ IH(x̂) implies i 6∈ IΦ(x̂; t)).
However, LICQ immediately implies ACQ, thus we know

TX(t,I)(x̂) = LX(t,I)(x̂)

for all I ⊆ I00
Φ (x̂; t). Applying Lemma 4.6 then yields

TX(t)(x̂) =
⋃

I⊆I00
Φ (x̂;t)

LX(t,I)(x̂)

and passing over to the polar cone, we obtain

TX(t)(x̂)◦ =
⋂

I⊆I00
Φ (x̂;t)

LX(t,I)(x̂)◦,

see [4, Theorem 3.1.9]. GCQ for NLP(t) is satisfied if TX(t)(x̂)◦ = LX(t)(x̂)◦ holds. Since
the inclusion TX(t)(x̂)◦ ⊇ LX(t)(x̂)◦ is always true, it suffices to verify the opposite inclusion.
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To do so, we will exploit the representation of TX(t)(x̂)◦ derived above. By definition, the
linearized tangent cone to NLP(t, I) in x̂ is given by

LX(t,I)(x̂) = {d ∈ Rn | ∇Gi(x̂)Td ≤ 0 ∀i ∈ I+0
Φ (x̂; t) ∪ I,

∇Hi(x̂)Td ≤ 0 ∀i ∈ I0+
Φ (x̂; t) ∪ Ī ,

∇Hi(x̂)Td ≥ 0 ∀i ∈ IH(x̂)}.

To calculate its polar cone, we can apply Lemma 4.5 and obtain

LX(t,I)(x̂)◦ = {s ∈ Rn | s =
∑

i∈I+0
Φ (x̂;t)∪I

ηGi ∇Gi(x̂) +
∑

i∈I0+
Φ (x̂;t)∪Ī

ηHi ∇Hi(x̂)−
∑

i∈IH(x̂)

νi∇Hi(x̂),

ηG, ηH , ν ≥ 0}.

Now consider an arbitrary element s ∈ TX(t)(x̂)◦. Due to our representation of this polar-
cone as an intersection of the cones LX(t,I)(x̂)◦, we can choose an arbitrary I ⊆ I00

Φ (x̂; t)
and obtain

s =
∑

i∈I+0
Φ (x̂;t)∪I

ηGi ∇Gi(x̂) +
∑

i∈I0+
Φ (x̂;t)∪Ī

ηHi ∇Hi(x̂)−
∑

i∈IH(x̂)

νi∇Hi(x̂),

where ηG, ηH , ν ≥ 0. On the other hand, we could also choose Ī instead of I, which would
lead us to

s =
∑

i∈I+0
Φ (x̂;t)∪Ī

η̄Gi ∇Gi(x̂) +
∑

i∈I0+
Φ (x̂;t)∪I

η̄Hi ∇Hi(x̂)−
∑

i∈IH(x̂)

ν̄i∇Hi(x̂),

where again η̄G, η̄H , ν̄ ≥ 0. The construction of U(x∗) ensures that the gradients

{∇Gi(x̂) | i ∈ I+0
Φ (x̂; t) ∪ I00

Φ (x̂; t)} ∪ {∇Hi(x̂) | i ∈ I0+
Φ (x̂; t) ∪ I00

Φ (x̂; t) ∪ IH(x̂)}

are linearly independent which implies that s has a unique representation based on these
vectors. As a consequence, we now know ηGi = 0 for all i ∈ I and ηHi = 0 for all i ∈ Ī, i.e.

s =
∑

i∈I+0
Φ (x̂;t)

ηGi ∇Gi(x̂) +
∑

i∈I0+
Φ (x̂;t)

ηHi ∇Hi(x̂)−
∑

i∈IH(x̂)

νi∇Hi(x̂),

still with ηG, ηH , ν ≥ 0. However, an elementary calculation yields

LX(t)(x̂) = {d ∈ Rn | ∇Gi(x̂)Td ≤ 0 ∀i ∈ I+0
Φ (x̂; t),

∇Hi(x̂)Td ≤ 0 ∀i ∈ I0+
Φ (x̂; t),

∇Hi(x̂)Td ≥ 0 ∀i ∈ IH(x̂)}

and thus, by Lemma 4.5, we have proven s ∈ LX(t)(x̂)◦. Since s ∈ TX(t)(x̂)◦ was chosen
arbitrarily, this verifies the inclusion TX(t)(x̂)◦ ⊆ LX(t)(x̂)◦ and we have thus proven that
GCQ for NLP(t) holds in x̂. �

The existence of Lagrange multipliers in local minima of NLP(t) is now a direct consequence
of Theorem 4.7.

15



Theorem 4.8 Let x∗ be feasible for the MPVC (1) such that MPVC-LICQ holds in x∗.
Then there is a T > 0 and a neighbourhood U(x∗) such that the following holds for all
t ∈ (0, T ]: If x ∈ U(x∗) is a local minimizer feasible for NLP(t), then there exist Lagrange
multipliers such that x together with these multipliers is a KKT point of NLP(t).

At first glance, Theorem 4.7 strikes the impression that the relaxed problems NLP(t) are
not much better conditioned than the original MPVC. However, recall that LICQ is violated
in every feasible point x∗ of (1) where there is at least one index i such that Gi(x

∗) ≥ 0
and Hi(x

∗) = 0, even if MPVC-LICQ holds in this point. In contrast to this, we are now
going to prove that MPVC-LICQ in x∗ implies LICQ for NLP(t) for most of the points
out of a neighbourhood of x∗. A similar result also holds for the constraint qualification
MPVC-CPLD, which was used in the previous convergence theorems.

Theorem 4.9 Let x∗ be feasible for the MPVC (1) such that MPVC-LICQ (MPVC-
CPLD) holds in x∗. Then there is a T > 0 and a neighbourhood U(x∗) such that the
following holds for all t ∈ (0, T ]: If x ∈ U(x∗) is feasible for NLP(t) with I00

Φ (x; t) = ∅,
then standard LICQ (CPLD) for NLP(t) holds in x.

Proof. Let us first verify the assertion for MPVC-LICQ. To this end, choose T > 0 and
U(x∗) as in the poof of Theorem 4.7. Then for every t ∈ (0, T ] and every x̂ ∈ U(x∗) feasible
for NLP(t) with I00

Φ (x̂; t) = ∅, the gradients corresponding to active constraints are

{(Hi(x̂)− t)∇Gi(x̂) | i ∈ I+0
Φ (x̂; t)}∪{Gi(x̂)∇Hi(x̂) | i ∈ I0+

Φ (x̂; t)}∪{∇Hi(x̂) | i ∈ IH(x̂)}.

By the definition of T and U(x∗), these gradients are linearly independent, hence LICQ is
satisfied in x̂.

To prove the assertion under MPVC-CPLD, assume that there were sequences tk ↓ 0
and xk → x∗ with xk feasible for NLP(tk) and I00

Φ (xk; tk) = ∅ for all k ∈ N such that
standard CPLD is not satisfied in xk for all k ∈ N. Since CPLD is violated, there have to
be subsets Ik1 ⊆ I+0

Φ (xk; tk), Ik2 ⊆ I0+
Φ (xk; tk), and Ik3 ⊆ IH(xk) such that the gradients{

{(Hi(x
k)− tk)∇Gi(x

k) | i ∈ Ik1 } ∪ {Gi(x
k)∇Hi(x

k) | i ∈ Ik2 } ∪ {−∇Hi(x
k) | i ∈ Ik3 }

}
∪ ∅

are positive-linearly dependent in xk, but linearly independent in points arbitrary close to
xk. Since there are only finitely many index sets, we can assume without loss of generality
Iki = Ii for all i = 1, 2, 3. For all k sufficiently large, we know I+0

Φ (xk; tk) ⊆ I00 ∪ I+0

and thus I1 ⊆ I00 ∪ I+0. Analogously, one can verify I2 ⊆ I00 ∪ I0+ and I3 ⊆ I0 for all
k ∈ N sufficiently large. Positive-linear dependence in xk as stated above also implies
positive-linear dependence of the gradients

{−∇Hi(x
k) | i ∈ I3 ∩ I0−} ∪

{
{∇Gi(x

k) | i ∈ I1} ∪ {∇Hi(x
k) | i ∈ I2 ∪ (I3\I0−)}

}
,

and because of the violation of CPLD, we can find a sequence yk → x∗ such that these
gradients are linearly independent in yk. If these gradients were positive-linearly inde-
pendent in x∗, by continuity they would remain positive-linearly independent in a whole
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neighbourhood. This, however, contradicts the existence of the sequence xk → x∗. On
the other hand, if they were positive-linearly dependent in x∗, MPVC-CPLD would imply
that they remain linearly dependent in a neighbourhood, which contradicts the existence
of yk → x∗. This concludes the proof. �

5 Final Remarks
We introduced a new relaxation scheme for the solution of mathematical programs with
vanishing constraints. This relaxation scheme has stronger convergence properties than
existing ones, and the relaxed problems were shown to satisfy suitable standard constraint
qualifications which allow the application of standard software for the solution of the
relaxed (sub-) problems.

We believe that the theoretical advantages of the current method will also be very
useful from a numerical point of view when applied to difficult instances of MPVCs which,
in particular, have weak or T-stationary points that are attracted by other methods but
not by our scheme. At the moment, however, the number of test examples for MPVCs is
somewhat limited, therefore a numerical comparison of these different approaches does not
really provide enough insight in order to figure out the pros and cons of these methods.
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