
NEWTON’S METHOD FOR COMPUTING A NORMALIZED
EQUILIBRIUM IN THE GENERALIZED NASH GAME

THROUGH FIXED POINT FORMULATION1

Anna von Heusinger2, Christian Kanzow2, and Masao Fukushima3

Preprint 286 January 2009

3 University of Würzburg
Institute of Mathematics
Am Hubland, 97074 Würzburg, Germany

e-mail: heusinger@mathematik.uni-wuerzburg.de
kanzow@mathematik.uni-wuerzburg.de

3 Kyoto University
Department of Applied Mathematics and Physics
Graduate School of Informatics
Kyoto 606-8501, Japan
e-mail: fuku@i.kyoto-u.ac.jp

January 24, 2009

1This research was supported by a grant from the international doctorate program
“Identification, Optimization, and Control with Applications in Modern Technologies”
within the Elite-Network of Bavaria. This research was also supported in part by a Grant-
in-Aid for Scientific Research from Japan Society for the Promotion of Science.

1

Abstract. We consider the generalized Nash equilibrium problem (GNEP),
where not only the players’ cost functions but also their strategy spaces de-
pend on the rivals’ decision variables. Existence results for GNEPs are typi-
cally shown by using a fixed point argument for a certain set-valued function.
Here we use a regularization of this set-valued function in order to obtain
a single-valued function that is easier to deal with from a numerical point
of view. We show that the fixed points of the latter function constitute an
important subclass of the generalized equilibria called normalized equilibria.
This fixed point formulation is then used to develop a nonsmooth Newton
method for computing a normalized equilibrium. The method uses a so-
called computable generalized Jacobian that is much easier to compute than
Clarke generalized Jacobian or B-subdifferential. We establish local superlin-
ear/quadratic convergence of the method under the constant rank constraint
qualification, which is weaker than the frequently used linear independence
constraint qualification, and a suitable second-order condition. Some numer-
ical results are presented to illustrate the performance of the method.

Key Words: Generalized Nash equilibrium problem; Normalized equilib-
rium; Fixed point characterization; Nonsmooth Newton method; Computable
generalized Jacobian; Constant rank constraint qualification; Local superlin-
ear/quadratic convergence

1 Introduction

We consider the generalized Nash game, or the generalized Nash equilibrium
problem (GNEP), with N players ν = 1, . . . , N . We denote each player ν’s
decision variable as xν ∈ Rnν , and collectively write x := (x1, . . . , xN) ∈ Rn

with n := n1 + · · · + nN . Moreover, when we want to emphasize the special
role of player ν’s variable within the vector x, we use the short-hand notation
x := (xν , x−ν), where x−ν := (x1, . . . , xν−1, xν+1, . . . , xN) ∈ Rn−nν . In the
game, each player ν controls the variable xν ∈ Rnν and tries to minimize
a cost function θν : Rn → R subject to the constraint (xν , x−ν) ∈ X with
x−ν given as exogenous, where X ⊆ Rn is a common strategy set2. Then,
a vector x∗ := (x∗,1, . . . , x∗,N) ∈ X is called a solution of the GNEP, or a
generalized Nash equilibrium (GNE), if for each ν = 1, . . . , N , x∗,ν solves the
following optimization problem with x∗,−ν being fixed:

min
xν

θν(x
ν , x∗,−ν) s.t. (xν , x∗,−ν) ∈ X. (1)

Note that the strategy set in player ν’s problem (1) depends on the other
players’ strategies x−ν . If X is defined as the Cartesian product of certain
sets Xν ⊆ Rnν , i.e., X = X1 × · · · × XN , then the GNEP reduces to the
standard Nash equilibrium problem (NEP). In this case, the constraint in
(1) is independent of the other players’ strategies and simply written as
xν ∈ Xν .

The GNEP has a long history originating from Debreu [7]3 and Arrow
and Debreu [2], which appeared slightly later than the famous work by Nash
[24] on the NEP. Recently, the GNEP has particularly attracted increasing
attention of researchers from different fields, due to the fact that it has a
number of important applications in, for example, liberalized energy markets,
global and regional environments, and various engineering design problems.
See [10] and the references cited therein for more details.

It may be worth mentioning at this point that the GNEP usually has
multiple solutions, and in fact uniqueness is rarity. In general, different solu-
tions of an equilibrium problem (such as the NEP and the GNEP) may have
different implications, unlike an optimization problem in which all optimal
solutions can be regarded as having the equal value in terms of the objective

2A more general GNEP assumes that the constraint in each player ν’s optimization
problem (1) is given by (xν , x∗,−ν) ∈ Xν , where Xν is a subset of Rn and may vary with
ν. The GNEP considered in this paper assumes X1 = · · · = XN =: X. This class of
GNEPs was first studied by Rosen [32] and is sometimes called the GNEP with shared,
or common, constraints.

3The term ‘generalized Nash game’ began to be used much later. In fact, the GNEP
was called an abstract economy in [7].

1

function. From this perspective, it may be meaningful to single out a special
GNE that has a certain additional property. Rosen [32] proposed the solution
concept called a normalized equilibrium which is a special GNE character-
ized by some conditions imposed on Lagrange multipliers associated with
the constraints in each player’s problem. The uniqueness of a normalized
equilibrium can be established under some assumptions [32].

The purpose of this paper is to develop a Newton-type method for com-
puting a normalized equilibrium in the GNEP. Although there have been
quite a few attempts to develop numerical methods designed to find a GNE
for various purposes [5, 11, 12, 14, 15, 16, 22, 23], many of those methods do
not enjoy a fast, i.e., quadratic or superlinear, convergence property. A few
exceptions include Newton-type methods applied to a system of equations
obtained from a variational inequality reformulation of the GNEP [11] as well
as those based on the regularized Nikaido-Isoda function [15]. The former
[11] uses a completely different approach from the one used in this paper and
does not present any numerical results, while the latter [15] is closer to our
approach, but has the disadvantage that certain generalized Jacobians (or
generalized Hessians, to be more precise) are difficult (and sometimes im-
possible) to compute. Moreover, fast local convergence is established in [15]
with the linear independence constraint qualification, which will be replaced
by the weaker condition called the constant rank constraint qualification in
this paper.

Our present approach also uses a Newton-type method but it will be ap-
plied to a system of equations obtained from a fixed point formulation of the
GNEP. Needless to say, since the very beginning of game theory, fixed point
theorems such as Kakutani and Brouwer have played the most fundamental
role in establishing the existence of an equilibrium [3, 7, 24, 25, 32] as well as
in computing an equilibrium [1]. From the computational viewpoint, how-
ever, a fixed point approach is not necessarily efficient because the problem
is typically reformulated as the Kakutani fixed point problem involving a
set-valued function. To overcome this difficulty, we employ a regularization
technique to yield a fixed point problem involving a single-valued function.
Under certain conditions, this function admits a so-called computable gener-
alized Jacobian [33], which enables us to design a Newton-type method with a
fast local convergence property. Moreover, the use of this computable gener-
alized Jacobian allows us to avoid the common linear independence constraint
qualification in order to show local superlinear/quadratic convergence.

The organization of the paper is as follows. In Section 2, we formally state
the definition of a normalized equilibrium and present a fixed point character-
ization by means of the solution map of a parametrized optimization problem.
We next introduce and analyze the computable generalized Jacobian of this

2

solution map in Section 3. Utilizing the computable generalized Jacobian, we
present a Newton-type method for computing a normalized equilibrium and
prove local superlinear convergence under suitable assumptions in Section 4.
We show some numerical results in Section 5, and conclude with some final
remarks in Section 6.

A few words about our notation: The gradient ∇f(x) of a differentiable
function f : Rn → R is always regarded as a column vector. Furthermore,
we denote by ∇F (x) the transposed Jacobian of a differentiable function
F : Rn → Rm at a given point x, i.e., the columns of ∇F (x) ∈ Rn×m are the
gradients of the component functions Fi. For a real-valued function f(x, y)
involving variables x ∈ Rn and y ∈ Rm, the partial derivatives with respect
to x and y are denoted by ∇xf(x, y) ∈ Rn and ∇yf(x, y) ∈ Rm, respectively.
Second-order partial derivatives obtained by first differentiating with respect
to y and then with respect to x are written as the matrix ∇2

yxf(x, y) ∈ Rm×n.
Similarly, we denote the first- and second-order partial derivatives of a real-
valued function g(x) with the variable x comprising several block components
x1, . . . , xN by ∇xνg(x) and ∇2

xνxµg(x), etc.

2 Normalized Equilibrium and Fixed Point

Formulation

Throughout the paper, we make the following blanket assumption.

Assumption 2.1 (a) The set X is a nonempty convex set and has the
representation

X := {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}

with a twice continuously differentiable function g : Rn → Rm whose
component functions gi are convex.

(b) The cost functions θν , ν = 1, . . . , N, are twice continuously differen-
tiable and, as a function of xν alone, convex.

Convexity is a standard assumption in game theory, while the twice contin-
uous differentiability is a reasonable requirement since we want to develop a
locally superlinearly convergent method. Note that we could also add linear
equality constraints in the representation of X without changing the theory
essentially, but for the sake of notational simplicity, we consider only equality
constraints.

Under Assumption 2.1, each player’s optimization problem is a smooth
convex program. Hence, under a certain constraint qualification (including

3

the CRCQ given in Section 3), a tuple x = (x1, . . . , xN) is a GNE if and
only if it satisfies the following Karush-Kuhn-Tucker (KKT) conditions of
problem (1) for all ν = 1, . . . , N simultaneously:

∇xνθν(x
ν , x−ν) +

m∑
i=1

λν
i∇xνgi(x

ν , x−ν) = 0,

λν
i ≥ 0, gi(x

ν , x−ν) ≤ 0, λν
i · gi(x

ν , x−ν) = 0, i = 1, . . . ,m,

(2)

where λν = (λν
1, . . . , λ

ν
m)T , ν = 1, . . . , N , are Lagrange multipliers.

The solution concept called a normalized equilibrium, first introduced
by Rosen [32], is a special GNE characterized by the Lagrange multipliers,
whose definition is formally stated as follows:

Definition 2.2 Let γ ∈ RN be a vector with positive components γν, ν =
1, . . . , N . A GNE x is called a normalized equilibrium (NoE) with weights
γ = (γ1, . . . , γN)T if the Lagrange multipliers λν ∈ Rm, ν = 1, . . . , N , satisfy,
in addition to the KKT conditions (2), the condition

γ1λ
1 = γ2λ

2 = · · · = γNλ
N . (3)

In the remainder of the paper, we restrict ourselves to the special case
where the weights of all players are equal, i.e.,

γ1 = γ2 = · · · = γN . (4)

Then, since (3) and (4) imply

λ1 = λ2 = · · · = λN , (5)

a NoE with equal weights is characterized as a GNE x for which there exists
a single multiplier vector λ = (λ1, . . . , λm)T ∈ Rm such that

∇xνθν(x
ν , x−ν) +

m∑
i=1

λi∇xνgi(x
ν , x−ν) = 0, ν = 1, . . . , N,

λi ≥ 0, gi(x) ≤ 0, λi · gi(x) = 0, i = 1, . . . ,m.

(6)

Hereafter, whenever we refer to a NoE, it means a NoE with equal weights.

Remark 2.3 Restriction to the case of equal weights is for simplicity of pre-
sentation. It should be kept in mind that the role of weights γ = (γ1, . . . , γN)T

in the definition of NoE is something beyond the scaling of the players’ cost
functions. A NoE is not invariant with respect to the choice of γ. That is,

4

different values of γ usually yield different NoEs [32]. Moreover, the condi-
tion ensuring the uniqueness of a NoE depends on the value of γ [32]. More
specifically, it can happen that a NoE is unique for some γ, whereas there
are multiple NoEs for some γ′ 6= γ. Thus the structure of NoEs may be
affected by the weights γ. Consequently, the choice of weights is important
from the practical and game theoretic viewpoint. The significance of NoE
and a related solution concept of GNEP are discussed in [12]. ♦

To show the existence of a NoE, Rosen [32] considered the following op-
timization problem4 in the variable y = (y1, . . . , yN) ∈ Rn:

minimizey

N∑
ν=1

θν(y
ν , x−ν)

subject to gi(y) ≤ 0, i = 1, . . . ,m,

(7)

where the vector x = (x1, . . . , xN) ∈ Rn is treated as a parameter. Let the
set of optimal solutions to (7) be denoted by Y (x). Then it is not difficult
to see that a vector x ∈ Rn is a NoE if and only if x is a fixed point of
the solution map Y (·), i.e., x ∈ Y (x). This fact was used to establish the
existence of a NoE by using the Kakutani fixed point theorem [32]. However,
a Kakutani fixed point is not very convenient to deal with numerically as it
is based on a set-valued function.

As a remedy for this inconvenience, we consider the following regularized
version of problem (7):

minimizey

N∑
ν=1

[
θν(y

ν , x−ν) +
α

2
‖yν − xν‖2

]
subject to gi(y) ≤ 0, i = 1, . . . ,m.

(8)

Here and throughout the rest of this paper, α > 0 is a fixed regularization
parameter. Under a suitable constraint qualification, a necessary and suffi-
cient optimality condition for (the convex) problem (8) is that there exists a
vector λ = (λ1, . . . , λm)T ∈ Rm satisfying the KKT conditions

∇xνθν(y
ν , x−ν) + α(yν − xν) +

m∑
i=1

λi∇xνgi(y) = 0, ν = 1, . . . , N,

λi ≥ 0, gi(y) ≤ 0, λi · gi(y) = 0, i = 1, . . . ,m.

(9)

4Similar parametrized problems are commonly used as a basic tool for analysis not only
in the GNEP but also in the NEP (see, e.g., [25]).

5

Since the objective function is strongly convex in y, problem (8) has a unique
optimal solution for every fixed x ∈ X, which we denote yα(x). The solu-
tion map x 7→ yα(x) is therefore a single-valued function defined on X.
Alternatively, this function may be derived by using the so-called regular-
ized Nikaido-Isoda function, cf. von Heusinger and Kanzow [14]. The basic
properties of the function yα(·) are summarized as follows:

Proposition 2.4 Suppose that a certain constraint qualification for the set
X holds. Then the following statements hold:

(a) The function yα(·) : X → X is continuous.

(b) A vector x ∈ X is a NoE if and only if it is a fixed point of the function
yα(·), i.e., x = yα(x).

Proof. (a) This follows from a classical stability result in parametric
optimization [17].
(b) Suppose x = yα(x). Then it follows from (9) that x together with λ
satisfies (6), showing that x is a NoE. Conversely, if x = (x1, . . . , xN) is a
NoE, then it along with some λ satisfies (6), which in turn implies that (9)
is satisfied with (y, x) = (x, x). This means yα(x) = x, since the vector y
satisfying (9) is uniquely determined for every x. �

In general, the function yα(·) is not differentiable. However, in order to
apply Newton’s method to the fixed point problem x = yα(x), we need some
first-order information about yα(·). One could use the concept of Clarke’s
generalized Jacobian [4] or the Bouligand (B-) subdifferential [30]. These
two have been thoroughly analyzed in the past years, but in our particular
situation, it is practically difficult to compute an element of these generalized
differentials of yα(·). Here, we therefore adopt an approach that makes use of
the so-called computable generalized Jacobian, which was suggested by Sun
et al. [33] in the context of projection operators.

3 The Computable Generalized Jacobian

In this section we define a kind of replacement for the Jacobian of the function
yα(·), which is related to the B-subdifferential, but easier to compute in
practice. The concept is similar to the computable generalized Jacobian
introduced in [33] for the projection operator onto a closed convex set. The
extension here for the function yα(·) is actually motivated to a large extent
by the ideas from [33].

6

By definition, yα(x) is the unique solution of the parameterized optimiza-
tion problem

minimizey ψα(x, y)
subject to gi(y) ≤ 0, i = 1, . . . ,m,

(10)

where ψα : Rn × Rn → R is defined by

ψα(x, y) =
N∑

ν=1

[
θν(y

ν , x−ν) +
α

2
‖yν − xν‖2

]
.

Then the KKT conditions for problem (10) can be written as

∇yψα(x, y) +
m∑

i=1

λi∇gi(y) = 0,

λi ≥ 0, gi(y) ≤ 0, λi · gi(y) = 0, i = 1, . . . ,m.

(11)

Note that ∇yψα(x, y) is given by

∇yψα(x, y) =

 ∇x1θ1(y
1, x−1) + α(y1 − x1)

...
∇xN θN(yN , x−N) + α(yN − xN)

 ∈ Rn. (12)

Let
I0(x) := {i | gi(yα(x)) = 0} (13)

be the index set of active constraints at y = yα(x).
We adopt one of the main assumptions used in [33] which also appear in

the context of piecewise differentiable functions.

Assumption 3.1 The constant rank constraint qualification (CRCQ) holds
at yα(x), i.e., there exists a neighbourhood N(yα(x)) of yα(x) such that for
every set J ⊆ I0(x), the set of gradient vectors

{∇gi(y) | i ∈ J}

has the same rank (which depends on J) for all y ∈ N(yα(x)).

The CRCQ is weaker than the linear independence constraint qualification.
Moreover, it is always fulfilled in the case of linear constraints. Further-
more, due to a result by Janin [18], it is known that the CRCQ is a suit-
able constraint qualification in the sense that the satisfaction of CRCQ at

7

the minimizer yα(x) of problem (10) guarantees the existence (not necessar-
ily uniqueness) of corresponding Lagrange multipliers λ such that the KKT
conditions (11) hold. Hence the set

M(x) := {λ ∈ Rm | (yα(x), λ) satisfies (11) } (14)

is always nonempty under Assumption 3.1.
There is a family of index sets that will play a crucial role in our analysis.

For each x ∈ Rn, define

B(x) :=
{
J ⊆ I0(x) | ∇gi(yα(x)) (i ∈ J) are linearly independent and

supp(λ) ⊆ J for some λ ∈M(x)
}
, (15)

where supp(λ) denotes the support of the nonnegative vector λ ∈ Rm, i.e.,

supp(λ) := {i ∈ {1, . . . ,m} | λi > 0}.

We first claim that the family B(x) is always nonempty.

Lemma 3.2 Suppose M(x) 6= ∅. Then B(x) 6= ∅.

Proof. Let us choose a multiplier λ ∈ M(x) with minimal support. If
supp(λ) = ∅, we take J := ∅ and immediately see that J ∈ B(x). Now
suppose supp(λ) 6= ∅. We claim that J := supp(λ) belongs to B(x). Ob-
viously, we have supp(λ) ⊆ J ⊆ I0(x). Hence it remains to show that
∇gi(yα(x)) (i ∈ J) are linearly independent. Suppose this is not true. Then
there is a nonzero vector βJ = (βi)i∈J such that∑

i∈J

βi∇gi(yα(x)) = 0.

Replacing βJ by −βJ if necessary, we may assume without loss of generality
that at least one component βi (i ∈ J) is positive. Let t̃ := min{λi/βi | βi >
0}. Then we have λi − t̃βi ≥ 0 for all i ∈ J and λi0 − t̃βi0 = 0 for at least
one index i0 ∈ J . Now define

λ̃i :=

{
λi − t̃βi, i ∈ J,
λi, i 6∈ J.

Then it follows immediately that the vector λ̃ = (λ̃1, . . . , λ̃m)T belongs to
M(x). However, by construction, the support of λ̃ is strictly contained in
the support of λ, a contradiction to our choice of λ. �

8

Recall that M(x) 6= ∅ under Assumption 3.1, and hence the statement of
Lemma 3.2 holds, in particular, in this situation.

For an index set J ⊆ {1, . . . ,m} with complement Ĵ := {1, . . . ,m}\J , we
now consider the function φα(·, ·, · ; J) : Rn+n+m → Rn+m defined by

φα(x, y, λ; J) :=

∇yψα(x, y) +
∑

i∈J λi∇gi(y)
gJ(y)
λĴ

 , (16)

where the partition (J, Ĵ) of {1, . . . ,m} is used to split the vectors λ and
g(y) into λ = (λJ , λĴ) and g(y) = (gJ(y), gĴ(y)), respectively.

Lemma 3.3 Let x ∈ X and suppose that Assumption 3.1 holds. Further-
more, let M(x) be defined by (14). Then, for any J ∈ B(x), there exists a
unique vector λ ∈M(x) such that φα(x, yα(x), λ; J) = 0.

Proof. Let J ∈ B(x) and let λ ∈ M(x) be such that supp(λ) ⊆ J . Then
we have λ = (λJ , λĴ) with λJ ≥ 0 and λĴ = 0. Since (x, yα(x), λ) satisfies the
KKT conditions (11), we have ∇yψα(x, yα(x)) +

∑
i∈J λi∇gi(yα(x)) = 0 and

gJ(yα(x)) = 0 (since J ⊆ I0(x)). Hence φα(x, yα(x), λ; J) = 0 holds. Fur-
thermore, the gradients ∇gi(yα(x)) (i ∈ J) are linearly independent, which
implies that λ is uniquely determined. �

We next show that, under certain assumptions, for any fixed x and J ∈
B(x), the system of equations φα(x, y, λ; J) = 0 has a locally unique solution
(y(x; J), λ(x; J)).

Lemma 3.4 Let x̄ ∈ X be given, and suppose that Assumption 3.1 holds
at ȳ := yα(x̄). Let J ∈ B(x̄) be a fixed index set and λ̄ ∈ M(x̄) be the
corresponding unique multiplier from Lemma 3.3 such that φα(x̄, ȳ, λ̄; J) = 0.
Then the following statements hold:

(a) There exist open neighbourhoods NJ(x̄) of x̄ and NJ(ȳ, λ̄) of (ȳ, λ̄),
and a C1-diffeomorphism (y(· ; J), λ(· ; J)) : NJ(x̄) → NJ(ȳ, λ̄) such
that y(x̄; J) = ȳ, λ(x̄; J) = λ̄ and

φα(x, y(x; J), λ(x; J); J) = 0 (17)

holds for all x ∈ NJ(x̄).

(b) The transposed Jacobian of the function y(· ; J) is given by the formula

∇y(x; J) = ATC−1 − ATC−1D(DTC−1D)−1DTC−1, (18)

9

where

A = A(x; J) := −∇2
yxψα(x, y(x; J)),

C = C(x; J) := ∇2
yyψα(x, y(x; J)) +

∑
i∈J

λi(x; J)∇2gi(y(x; J)),

D = D(x; J) := ∇gJ(y(x; J)).

Proof. (a) First note that, by Lemma 3.3, the pair (ȳ, λ̄) is determined
uniquely for any given x̄ and J ∈ B(x̄). The Jacobian of φα(· ; J) with respect
to the variables (y, λ) is given by (after some reordering)

∇(y,λ)φα(x, y, λ; J) =

∇2
yyψα(x, y) +

∑
i∈J λi∇2gi(y) ∇gJ(y) 0

∇gJ(y)T 0 0
0 0 I|Ĵ |

 .

(19)
We claim that this matrix is nonsingular at (x, y, λ) = (x̄, ȳ, λ̄). Statement (a)
is then an immediate consequence of the standard implicit function theorem.
In fact, the nonsingularity follows from the observation that the Jacobian
∇gJ(ȳ) has full rank by the choice of J ∈ B(x̄) together with the observation
that the blanket Assumption 2.1 (b) implies the positive definiteness of the
matrix ∇2

yyψα(x̄, ȳ), whereas Assumption 2.1 (a) guarantees that the terms
λ̄i∇2gi(ȳ) are at least positive semidefinite for all i ∈ J .

(b) Differentiating equation (17) with respect to x and using some algebraic
manipulations, it is not difficult to obtain the desired formula for the deriva-
tives of the function y(· ; J). The details are left to the reader. �

Our aim is to give a relation between the functions y(· ; J) as defined in
Lemma 3.4 and the function yα(·) that is the solution map of the parameter-
ized optimization problem (10). More precisely, we will show that, under the
same assumptions as in Lemma 3.4, there is a neighbourhood of the point x̄
such that, for every x in this neighbourhood, there is an index set J (depend-
ing on the point x) such that yα(x) = y(x; J) holds. This is made precise in
the next lemma.

Lemma 3.5 Let x̄ ∈ X be given, and suppose that Assumption 3.1 holds at
ȳ := yα(x̄). Then there exists a neighbourhood N(x̄) of x̄ such that for all
x ∈ N(x̄), the following statements hold:

(a) The CRCQ holds at yα(x);

(b) B(x) ⊆ B(x̄);

10

(c) at any given point x ∈ N(x̄), the equality yα(x) = y(x; J) holds for any
index set J ∈ B(x), where y(· ; J) is the function defined in Lemma 3.4.

Proof. (a) This follows from the definition of the CRCQ and the continuity
of the function yα(·), cf. Proposition 2.4 (a).

(b) The proof is essentially the same as the one in [29] for the projection
operator. Assume there exists no neighbourhood N(x̄) of x̄ such that B(x) ⊆
B(x̄) for all x ∈ N(x̄). Then there is a sequence {xk} converging to x̄ such
that for each k, there is an index set Jk ∈ B(xk) \ B(x̄). Since there are only
finitely many such index sets, by working with a subsequence if necessary, we
may assume that these index sets Jk are the same for all k. Let this common
index set be J .

According to the definition of B(xk), the vectors ∇gi(yα(xk)) (i ∈ J) are
linearly independent and there exists λk ∈ M(xk) such that supp(λk) ⊆
J ⊆ I0(x

k), but J 6∈ B(x̄). Due to the continuity of the functions gi and
yα, it holds that I0(x

k) ⊆ I0(x̄), hence we have J ⊆ I0(x̄) for all k suffi-
ciently large. Furthermore, the assumed CRCQ condition guarantees that
the vectors ∇gi(yα(x̄)) (i ∈ J) are also linearly independent. Hence we have
J 6∈ B(x̄) only if there is no λ ∈M(x̄) such that supp(λ) ⊆ J . However, the
KKT conditions imply that

∇yψα(xk, yα(xk)) +
∑
i∈J

λk
i∇gi(yα(xk)) = 0 for all k. (20)

Since the functions yα and ∇gi are continuous, we have ∇gi(yα(xk)) →
∇gi(yα(x̄)). Taking into account the linear independence of {∇gi(yα(x̄))}i∈J ,
we see that the sequence {λk} is convergent, say λk

i → λ̌i for all i ∈ J . Taking
the limit in (20) and setting λ̌i = 0 for i ∈ Ĵ , we can easily verify that the
vector λ̌ := (λ̌J , λ̌Ĵ) belongs to M(x̄). Moreover, the definition of λ̌ guaran-
tees that supp(λ̌) ⊆ J , and hence J ∈ B(x̄). This contradicts our assumption.

(c) From (a) and (b) it follows that there is a neighbourhood N(x̄) such that
for any x ∈ N(x̄), the CRCQ holds at yα(x) and B(x) ⊆ B(x̄). Furthermore,
for each J ∈ B(x̄), let NJ(x̄) and NJ(ȳ, λ̄) be the neighbourhoods defined
in Lemma 3.4, where λ̄ is the vector also defined there. We then define the
neighbourhood

V (x̄) :=
⋂

J∈B(x̄)

NJ(x̄) ∩N(x̄),

which is open since there are only finitely many J ’s.
For any given vector x ∈ V (x̄), the optimization problem (10) has a

unique solution yα(x). Moreover, Lemma 3.3 implies that for every fixed

11

J ∈ B(x), there exists a unique Lagrange multiplier λ = λJ(x) ∈M(x) such
that (x, yα(x), λJ(x)) satisfies

φα(x, yα(x), λJ(x); J) = 0.

In particular, for the Lagrange multiplier associated with
(
x̄, ȳ

)
, we write

λJ(x̄) as λ̄J .
On the other hand, Lemma 3.4 implies that there is a continuously differ-

entiable function
(
y(· ; J), λ(· ; J)

)
: NJ(x̄) → NJ(ȳ, λ̄J) such that, for every

x ∈ NJ(x̄), the pair
(
y(x; J), λ(x; J)

)
is the unique solution of

φα(x, y, λ; J) = 0 (21)

in the set NJ(ȳ, λ̄J). Hence, if we can show that there exists an open neigh-
bourhood U(x̄) ⊆ V (x̄) such that for every x ∈ U(x̄) and every J ∈ B(x) we
have (

yα(x), λJ(x)
)
∈ NJ(ȳ, λ̄J),

then the uniqueness implies that(
yα(x), λJ(x)

)
=

(
y(x; J), λ(x; J)

)
for all x ∈ U(x̄) and J ∈ B(x), and this would conclude the proof.

Suppose there exists no such open neighbourhood U(x̄) ⊆ V (x̄). Then
there exists a sequence {xk} with xk → x̄ and Jk ∈ B(xk) such that

(yα(xk), λJk(xk)) 6∈ NJk(ȳ, λ̄Jk) for all k. (22)

By working with a subsequence, we may assume that Jk is the same index set
for all k. Denote this index set by J . Furthermore, choose open neighbour-
hoods NJ(ȳ) of ȳ and NJ(λ̄J) of λ̄J such that NJ(ȳ)×NJ(λ̄J) ⊆ NJ(ȳ, λ̄J).

Since the function yα is continuous, we have yα(xk) → yα(x̄) = ȳ. Hence
yα(xk) ∈ NJ(ȳ) for all k sufficiently large. On the other hand, for every xk

with associated yα(xk) and λJ(xk), we have from (16)

∇yψα(xk, yα(xk)) +
∑
i∈J

λJ
i (xk)∇gi(yα(xk)) = 0, (23)

λJ
i (xk) = 0, i ∈ Ĵ

for all k. The continuity of the functions ∇yψα, yα and ∇gi, together with
the linear independence of the vectors ∇gi(ȳ) (i ∈ J), which is again a
consequence of the CRCQ, implies that the sequence {λJ(xk)} is convergent.

12

Let λ̃J be the corresponding limit point. Taking the limit in (23) therefore
gives

∇yψα(x̄, ȳ) +
∑
i∈J

λ̃J
i ∇gi(ȳ) = 0

as well as λ̃J
i = 0 for all i ∈ Ĵ . Then the CRCQ implies that λ̃J is the only

vector satisfying these equations. However, by definition, λ̄J also satisfies
these equations, so it follows that λ̃J = λ̄J .

Hence λJ(xk) converges to λ̄J , meaning that λJ(xk) ∈ NJ(λ̄J) for all k
sufficiently large. Therefore we have(

yα(xk), λJ(xk)
)
∈ NJ(ȳ)×NJ(λ̄J) ⊆ NJ(ȳ, λ̄J)

for all k sufficiently large, a contradiction to (22). �

Since there are only finitely many possible index sets J ⊆ {1, . . . ,m}, it
follows from Lemma 3.5 that, given any point x in a sufficiently small neigh-
bourhood of x̄, the function yα(·) is equal to one of the finitely many functions
y(· ; J) and, therefore, piecewise smooth. However it is not necessarily easy
to compute an element of the B-subdifferential of yα at x, which is defined
by

∂Byα(x) := {G ∈ Rn×n | G = lim
xk→x

∇yα(xk)T , {xk} ⊆ Ω},

where Ω := {x ∈ Rn | yα(·) is differentiable at x}. Lemma 3.5 then suggests
to use, in place of the B-subdifferential, the following modification of a gen-
eralized Jacobian, which we call the computable generalized Jacobian of yα(·)
at x:

∂Cyα(x) :=
{
∇y(x; J)T | J ∈ B(x)

}
, (24)

where B(x) is defined by (15). Note that computing an element of ∂Cyα(x)
amounts to finding an index set J ∈ B(x), which is implementable in practice.
While the inclusion ∂Byα(x) ⊆ ∂Cyα(x) holds at any x, the converse is not
true in general, see [9, Example 11]. Under additional assumptions, however,
it can be shown that these two sets coincide; see, in particular, [28, Corollary
3.2.2] or [8, Theorem 3.3].

To conclude this section, we consider the special case of a GNEP with
quadratic cost functions and linear constraints. Here the function yα(·) turns
out to be piecewise linear (or piecewise affine, to be more precise).

Proposition 3.6 Consider the case where the cost functions θν are quadratic,
i.e.,

θν(x) =
1

2
(xν)TAννx

ν +
N∑

µ=1
µ6=ν

(xν)TAνµx
µ

13

for ν = 1, . . . , N . Suppose that the feasible set X is given by linear inequal-
ities, i.e., X := {x ∈ Rn | Bx ≤ b} for some matrix B ∈ Rm×n and vector
b ∈ Rm. Let x̄ ∈ X be arbitrarily given. Then there exists a neighbourhood
U(x̄) of x̄ such that for every x ∈ U(x̄) and every J ∈ B(x), there exist a ma-
trix V J ∈ Rn×n and a vector wJ ∈ Rn such that yα(x) = y(x; J) = V Jx+wJ .

Proof. Since X is polyhedral, the CRCQ holds at every point x ∈ X.
By Lemma 3.5, there exists a neighbourhood N(x̄) of x̄ such that for all
x ∈ N(x̄), we have B(x) ⊆ B(x̄) and yα(x) = y(x; J) for all J ∈ B(x), where
y(· ; J) is the function defined in Lemma 3.4.

Now consider an arbitrary index set J ∈ B(x̄), and let y(· ; J) be the
corresponding function. Furthermore, let Ā denote the n × n matrix Ā =
(Aνµ)N

ν,µ=1 and diag(Aνν) denote the block-diagonal matrix with block compo-
nent matrices Aνν , ν = 1, . . . , N . From Lemma 3.4, y(· ; J) is a continuously
differentiable function on N(x̄) with Jacobian

V J := ∇y(x; J)T = C−1A− C−1D(DTC−1D)−1DTC−1A,

where A := −Ā + diag(Aνν) + αI, C := diag(Aνν) + αI and D := BT
J . The

assumptions on the cost functions θν and the set X imply that the matrix
V J is constant. Consequently, y(· ; J) is an affine function, i.e., there is a
vector wJ such that y(x; J) = V Jx+ wJ . �

Note that it follows from the above proof that we have

yα(x) ∈ {V Jx+ wJ | J ∈ B(x̄)}

for all x in a sufficiently small neighbourhood of x̄, i.e., yα(·) is a piecewise
affine function.

4 Newton’s Method for Computing Normal-

ized Equilibria

For the computation of a NoE, we use the nonsmooth Newton method from
[20] and apply it to the system of equations

F (x) := yα(x)− x = 0.

From the current iterate xk, the next iterate xk+1 is computed by

xk+1 = xk −H−1
k F (xk), (25)

14

where Hk is an element of the nonempty computable generalized Jacobian

∂CF (xk) = ∂Cyα(xk)− I = {∇y(xk; J)T − I | J ∈ B(xk)}. (26)

In this section, we give sufficient conditions for the matrices Hk to be nonsin-
gular and show local superlinear/quadratic convergence of this nonsmooth
Newton method.

For convenience, we write

M(x, y) :=

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θ1(y

1, x−1)
...

. . .
...

∇2
xNx1θN(yN , x−N) · · · ∇2

xNxN θN(yN , x−N)

 .

This notation also facilitates the comparison with Newton methods from [11]
which are based on a variational inequality formulation of the GNEP.

The following assumption will be needed to establish fast local conver-
gence of the nonsmooth Newton method (25).

Assumption 4.1 For each J ∈ B(x) and λ ∈M(x), we have

dT
(
M(x, yα(x)) +

∑
i∈J

λi∇2gi(yα(x))
)
d 6= 0 ∀d ∈ T J(x), d 6= 0, (27)

where T J(x) is defined by

T J(x) := {d ∈ Rn | ∇gi(yα(x))Td = 0 ∀i ∈ J}. (28)

The condition (27) is a kind of second-order sufficiency condition. We will
revisit this condition after showing the following nonsingularity result.

Lemma 4.2 Let x̄ ∈ X and ȳ := yα(x̄). Suppose that Assumptions 3.1 and
4.1 hold at x̄. Then the matrix ∇y(x̄; J)T − I is nonsingular for any index
set J ∈ B(x̄).

Proof. Assume that there exists an index set J ∈ B(x̄) such that the matrix
∇y(x̄; J)T − I is singular. Let λ̄ ∈ M(x̄) be the corresponding Lagrange
multiplier, which is unique by Lemma 3.3 under Assumption 3.1, such that
φα(x̄, ȳ, λ̄; J) = 0 holds. Furthermore, let y(· ; J) and λ(· ; J) be the functions
defined in Lemma 3.4; in particular, recall that we have y(x̄; J) = ȳ and
λ(x̄; J) = λ̄.

Since ∇y(x̄; J)T − I is singular, there exists a nonzero vector v ∈ Rn such
that

(
∇y(x̄; J)T − I

)
v = 0, which is equivalent to saying that ∇y(x̄; J)T has

15

an eigenvalue equal to one with eigenvector v. From Lemma 3.4, along with
the fact that y(x̄; J) = ȳ and λ(x̄; J) = λ̄, we have the formula

∇y(x̄; J)T = C−1A− C−1D(DTC−1D)−1DTC−1A, (29)

with

A = A(x̄; J) := −∇2
yxψα(x̄, ȳ),

C = C(x̄; J) := ∇2
yyψα(x̄, ȳ) +

∑
i∈J

λ̄i∇2gi(ȳ),

D = D(x̄; J) := ∇gJ(ȳ).

This expression of ∇y(x̄; J)T reveals immediately that DT∇y(x̄; J)T = 0m×n,
which implies that

0 = DT∇y(x̄; J)Tv = DTv = ∇gJ(ȳ)Tv

holds, and thus,
v ∈ T J(x̄), (30)

where T J(x̄) is given by (28) with x = x̄. Therefore, multiplication of equa-
tion (29) from the left side with vTC and from the right side with v gives,
using the fact that v is an eigenvector of the matrix∇y(x̄; J)T with eigenvalue
1 once again,

vTCv = vTAv. (31)

Note that the matrices C and A are expressed as

C = ∇2
yyψα(x̄, ȳ) +

∑
i∈J

λ̄i∇2gi(ȳ)

=

 ∇2
x1x1θ1(ȳ

1, x̄−1)
. . .

∇2
xNxN θN(ȳN , x̄−N)


+ αI +

∑
i∈J

λ̄i∇2gi(ȳ)

and

A = −∇2
yxψα(x̄, ȳ)

= −

 ∇2
x1x1θ1(ȳ

1, x̄−1) · · · ∇2
x1xN θ1(ȳ

1, x̄−1)
...

. . .
...

∇2
xNx1θN(ȳN , x̄−N) · · · ∇2

xNxN θN(ȳN , x̄−N)


16

+

 ∇2
x1x1θ1(ȳ

1, x̄−1)
. . .

∇2
xNxN θN(ȳN , x̄−N)

 + αI.

Hence we have
C − A = M(x̄, ȳ) +

∑
i∈J

λ̄i∇2gi(ȳ). (32)

On the other hand, by (27) in Assumption 4.1 and (30), we have

vT
(
M(x̄, ȳ) +

∑
i∈J

λ̄i∇2gi(ȳ)
)
v 6= 0.

This together with (32) contradicts (31). �

Recall [11] that x̄ is a NoE if and only if it satisfies the variational inequality

Θ(x∗)T (x− x∗) ≥ 0 ∀x ∈ X,

where Θ : Rn → Rn is defined by

Θ(x) :=

 ∇x1θ1(x)
...

∇xN θN(x)

 . (33)

Since we have x∗ = y∗ := yα(x∗) at a NoE by Proposition 2.4, the Jacobian
of function Θ evaluated at x∗ is precisely the matrix M(x∗, y∗), and the
second-order condition (27) for the fixed multiplier λ ∈ M(x∗) corresponds
to the standard second-order sufficiency condition for optimization problems.
(Note, however, that we only require 6= 0 in (27) since we are not in an
optimization setting.)

In the case of quadratic cost functions, there is a simple sufficient condi-
tion for Assumption 4.1 to hold.

Corollary 4.3 Suppose that the cost functions θν are given by

θν(x) =
1

2
(xν)TAννx

ν +
N∑

µ=1
µ6=ν

(xν)TAνµx
µ

for ν = 1, . . . , N . Then Assumption 4.1 holds provided that the matrix A :=
(Aνµ)N

ν,µ=1 is positive definite.

17

Next we prove that the matrices Hk provide a superlinear approximation for
the function F .

Lemma 4.4 Let x∗ be a NoE. Suppose that Assumption 3.1 holds at x∗.
Then we have for any H ∈ ∂CF (x)

F (x)− F (x∗)−H(x− x∗) = o(‖x− x∗‖). (34)

Furthermore if the second derivatives of all θν and all gi are Lipschitz con-
tinuous around x∗, then

F (x)− F (x∗)−H(x− x∗) = O(‖x− x∗‖2). (35)

Proof. By Lemma 3.4, for each J ∈ B(x∗), there is a neighbourhood NJ(x∗)
of x∗ and a continuously differentiable function y(· ; J) defined on NJ(x∗)
such that y(x∗; J) = yα(x∗) = x∗. Let ε > 0 be arbitrarily given. Then the
continuous differentiability of y(· ; J) on NJ(x∗) ensures the existence of a
δ(ε, J) > 0 such that

‖y(x; J)− y(x∗; J)−∇y(x; J)T (x− x∗)‖
‖x− x∗‖

< ε (36)

holds whenever ‖x− x∗‖ < δ(ε, J). Let δ̄(ε) := minJ∈B(x∗) δ(ε, J) > 0. Then
(36) holds for any x such that ‖x− x∗‖ < δ̄(ε) and any J ∈ B(x∗).

Now consider an arbitrary sequence {xk} converging to x∗ and pick any
Hk ∈ ∂CF (xk). By the definition (26) of ∂CF (x), Hk can be written as
Hk = ∇y(xk, Jk)

T − I for some Jk ∈ B(xk) ⊆ B(x∗). Hence, from the
preceding argument, we have

‖F (xk)− F (x∗)−Hk(x
k − x∗)‖

‖xk − x∗‖

=
‖yα(xk)− yα(x∗)−∇y(xk; Jk)

T (xk − x∗)‖
‖xk − x∗‖

=
‖y(xk; Jk)− y(x∗; Jk)−∇y(xk; Jk)

T (xk − x∗)‖
‖xk − x∗‖

< ε

for all k such that ‖xk − x∗‖ < δ̄(ε). Since {xk} and ε are arbitrary, we may
conclude that (34) holds.

If all functions θν and gi have Lipschitz continuous second derivatives,
then for all J ∈ B(x∗) the function ∇y(· ; J) is locally Lipschitz continuous.
This follows from formula (18) and the fact that the sum and the product of
locally Lipschitz continuous functions again lead to a locally Lipschitz con-
tinuous function. Then it is not difficult to derive (35) in a similar manner

18

to the above. �

Summarizing the above arguments, we are now in a position to state the
main local convergence result which shows that our method is locally su-
perlinearly/quadratically convergent. Note that this result holds under the
CRCQ condition which is weaker than the linear independence constraint
qualification.

Theorem 4.5 Let x∗ be a NoE and suppose that Assumptions 3.1 and 4.1
hold at x∗. Then there is a neighbourhood N(x∗) of x∗ such that for an
arbitrary initial point x0 ∈ N(x∗), the sequence generated by the nonsmooth
Newton method (25) converges to x∗ superlinearly. Furthermore, if all the
functions θν and gi have Lipschitz continuous second derivatives, then the
convergence rate is quadratic.

Proof. By Lemma 4.2, eachH ∈ ∂CF (x∗) = {∇y(x∗; J)T−I | J ∈ B(x∗)} is
nonsingular. Since the functions ∇y(· ; J) (J ∈ B(x∗)) are continuous, there
exists a neighbourhood N(x∗) of x∗ such that B(xk) ⊆ B(x∗) and hence the
matrices Hk ∈ ∂CF (xk) = {∇y(xk; J)T − I | J ∈ B(xk)} are nonsingular for
all xk ∈ N(x∗). The rest of the proof consists of standard arguments based
on Lemma 4.4 and the definition of the nonsmooth Newton method (25). �

Our final result shows that the nonsmooth Newton method enjoys a local
one-step convergence property if the GNEP is described by quadratic cost
functions and linear constraints.

Proposition 4.6 Suppose that the cost functions and the constraints are
given as in Proposition 3.6 and that the matrix A := (Aµν)

N
µ,ν=1 is positive

definite. Let x∗ be a NoE. Then there is a neighbourhood N(x∗) of x∗ such
that, once xk enters N(x∗), the next iterate xk+1 coincides with x∗.

Proof. By Lemma 3.5, there exists a neighbourhood N(x∗) of x∗ such
that for every x ∈ N(x∗) and every J ∈ B(x), we have yα(x) = y(x; J) and
B(x) ⊆ B(x∗). Moreover, from Proposition 3.6, we have y(x; J) = V Jx+wJ

for all x ∈ N(x∗) with V J and wJ being some constant matrix and vector,
respectively. Define the function F (· ; J) on N(x∗) by F (x; J) := y(x; J)−x.

Let xk ∈ N(x∗) and Jk ∈ B(xk). Since y(· ; Jk) is an affine function on
N(x∗), Taylor’s formula yields

F (x∗; Jk) = F (xk; Jk) + F ′(xk; Jk)(x
∗ − xk), (37)

19

where F ′(· ; Jk) = V Jk − I is the Jacobian of F (· ; Jk), which is nonsin-
gular from Lemma 4.2 and Corollary 4.3. Since B(xk) ⊆ B(x∗), we have
F (x∗; Jk) = y(x∗; Jk)− x∗ = yα(x∗)− x∗ = F (x∗) = 0 by Lemma 3.5 (c) and
Proposition 2.4. Exploiting the nonsingularity of F ′(xk; J), we then obtain
from (37) that

x∗ = xk − F ′(xk; Jk)
−1F (xk; Jk).

The right-hand side is precisely the Newton iteration at xk, and hence xk+1

coincides with the NoE x∗. �

5 Numerical Results

In order to compare the performance of the Newton method proposed in
this paper with other methods from [22, 21, 14, 15, 16], we run the Newton
method on a number of test problems that can be found in the literature.

We implemented the Newton method using MATLAB. In each iteration,
the algorithm has to solve a nonlinear optimization problem in order to com-
pute the value of yα(xk). We use the solver SNOPT from the TOMLAB
package and report the number of iterations the SNOPT solver requires in
order to compute the value of yα(xk) in the column ’InnerIt’.

The parameter α is set to 10−4 for all test runs and the iteration is stopped
whenever ‖yα(xk)− xk‖ < 10−12, hence we require a very high precision
which cannot be reached by some of the other methods since their local rate
of convergence is not sufficiently fast.

To calculate an element of the computable generalized Jacobian of yα at
xk, we need to find an index set J ∈ B(xk) together with a corresponding
multiplier λk. This is an easy task if the linear independence constraint
qualification (LICQ) holds at the minimum yα(xk). In this case, we can
take, for example, J := I0(x

k), where I0(x) is defined by (13). However,
since LICQ is not needed in our convergence theory, we have to find a way
to compute J and λk under the weaker CRCQ assumption. To this end,
consider the linear program

min
λ

∑
i∈I0

λi

s.t. ∇g(yα(xk))λ = −∇yψα(xk, yα(xk)), (38)

λi ≥ 0 ∀ i ∈ I0,
λi = 0 ∀ i ∈ {1, . . . ,m} \ I0,

20

where I0 := I0(x
k). Since CRCQ holds at yα(xk), it follows that M(xk)

is nonempty, and hence (38) has at least one feasible point. Moreover, the
objective function is obviously bounded from below on the feasible set. Stan-
dard linear programming theory then shows that (38) is solvable; moreover,
at least one of the vertices of the polyhedron defined by the feasible set of
(38) is also a solution. Now, let λk be such a vertex solution of (38). Then,
again by standard results for linear programs, it follows that the gradients
∇gi(yα(xk)) corresponding to the positive components λk

i > 0 are linearly
independent. This proves the following result.

Lemma 5.1 Suppose that the CRCQ (or any other constraint qualification)
holds at yα(xk). Let λk be a vertex solution of the linear program (38) and
define J := {i ∈ I0 | λk

i > 0}. Then J belongs to B(xk).

Note that, in principle, a vertex solution of the linear program (38) can
be calculated by the simplex method. It should be noted, however, that
the linear program (38) is not given in standard form since the rows of the
constraint matrix may be linearly dependent. Typically, implementations
of the simplex method deal with this problem automatically. Alternatively,
one could modify (38) like in the Big-M method to get an equivalent linear
program which satisfies the full row rank condition.

Example 5.2 This test problem is the river basin pollution game taken from
[22]. The cost functions in this game5 are quadratic with linear constraints
and of the structure defined in Corollary 4.3 with positive definite matrix
A. In view of Proposition 4.6, we may expect that the algorithm terminates
after a finite number of iterations. We actually observe convergence in just
one step, cf. Table 1 for the corresponding numerical results.

k xk
1 xk

2 xk
3 ‖yα(xk)− xk‖ InnerIt

0 10.000000 10.000000 10.000000 12.0479757781438828 0
1 21.144791 16.027846 2.725969 0.0000000000000000 6

Table 1: Numerical results for Example 5.2

5For some of the examples used in our numerical experiments, the players’ optimiza-
tion problems are stated as maximization problems in their original references. Here those
problems are converted to minimization problems by negating the utility or payoff func-
tions in the original formulations.

21

Example 5.3 This test problem is the internet switching model introduced
by Kesselman et al. [19] and further analyzed by Facchinei et al. [11]. The
cost function of each user is given by

θν(x) =
xν

B
− xν∑N

ν=1 x
ν
,

with constraints xν ≥ 0.01, ν = 1, . . . , N and
∑N

ν=1 x
ν ≤ B. The constraints

have been slightly modified from those in [19] to ensure that the cost functions
θν are defined on the whole feasible set. In the solution, all components are
equal. This implies that our matrix M(x∗, yα(x∗)) is symmetric (whereas, in
general, it is asymmetric at an arbitrary point x). In fact, this matrix turns
out to be positive definite. To see this, recall that M(x∗, yα(x∗)) is equal to
the Jacobian Θ′(x∗) (at the solution x∗), where Θ is the function defined by
(33). Using [11, Eq. (26)], we obtain the following expression for this matrix:

M(x∗, yα(x∗)) = Θ′(x∗) = −P/X 3,

where X := x∗,1 + · · ·+ x∗,N and

P := −

 a · · · a
...

. . .
...

a · · · a

− diag
(
X , . . . ,X

)
with a := (N − 1)x∗,ν for an arbitrary ν (recall that all components of
the solution vector x∗ are equal). Thus P is the sum of a negative semi-
definite rank-one matrix and a negative definite diagonal matrix. Hence P is
negative definite, implying that M(x∗, yα(x∗)) itself is positive definite. This
ensures that Assumption 4.1 holds at x∗ and we can expect local quadratic
convergence of our Newton-type method.

For our numerical tests, we set N = 10 (and B = 1 in the description of
the model in [11]) and use the starting point x0 = (0.1, . . . , 0.1)T . We also
use the starting point x0 = (0.1, 0.11, 0.12, . . . , 0.19), since the relaxation
method [16] failed with this starting point. The exact solution of this problem
is x∗ = (0.09, . . . , 0.09)T . We only show the first two components of the
iteration vectors in Table 2 (all components are equal at each iteration) and
the first four components in Table 3 for the second starting point.

Example 5.4 We consider a modification of a simple two-player game orig-
inally suggested by Rosen [32]. The solution violates strict complementarity,

22

k xk
1 xk

2 ‖yα(xk)− xk‖ InnerIt
0 0.100000 0.100000 0.1622713514699797 0
1 0.090238 0.090238 0.0037589337871505 4
2 0.090000 0.090000 0.0000000000000000 3

Table 2: Numerical results for Example 5.3 using x0 = (0.1, 0.1, . . . , 0.1)T

k xk
1 xk

2 xk
3 xk

4 ‖yα(xk)− xk‖ InnerIt
0 0.100000 0.110000 0.120000 0.130000 0.4364630568571630 0
1 0.010000 0.010000 0.010000 0.010000 0.2846049894364130 1
2 0.100000 0.100000 0.100000 0.100000 0.1622713515888371 1
3 0.090238 0.090238 0.090238 0.090238 0.0037589338084981 4
4 0.090000 0.090000 0.090000 0.090000 0.0000000000000000 3

Table 3: Numerical results for Example 5.3 using x0 = (0.1, 0.11, . . . , 0.19)T

and with our modification, LICQ does not hold, whereas CRCQ is satisfied.
More precisely, this example has the two players’ cost functions

θ1(x1, x2) =
1

2
x2

1 − x1x2 and θ2(x1, x2) = x2
2 + x1x2

and the common constraints given by

x1 ≥ 1, x2 ≥ 0, x1 + x2 ≥ 1.

The unique normalized Nash equilibrium of this GNEP is x∗ = (1, 0)T . Since
this game involves quadratic cost functions and linear constraints, we expect
(locally) one-step convergence to the exact solution. Indeed, this is clearly
observed from our numerical results shown in Table 4.

k xk
1 xk

2 ‖yα(xk)− xk‖ InnerIt
0 1.000000 1.000000 0.9999999999353941 0
1 1.000000 0.000000 0.0000000000000000 1

Table 4: Numerical results for Example 5.4 using x0 = (1, 1)T

Example 5.5 This test problem is the Cournot oligopoly problem with
shared constraints and nonlinear cost functions as described in Outrata et al.
[27, p. 233]. Our results (using different values for the parameter P from [27])
are given in Table 5. Although the objective functions are non-quadratic (in
fact, highly nonlinear), our method converges to a solution in 2 or 3 iterations
only, and the accuracy of the computed solution, displayed in the second last
column, is very high in all instances of this problem.

23

k xk
1 xk

2 xk
3 xk

4 xk
5 ‖yα(xk)− xk‖ InnerIt

P = 75
0 10.000000 10.000000 10.000000 10.000000 10.000000 11.5863027186178531 0
1 10.727996 13.099087 15.304209 17.218265 18.650443 0.2667545777621945 7
2 10.403967 13.035818 15.407354 17.381555 18.771306 0.0000000000000000 4
P = 100
0 10.000000 10.000000 10.000000 10.000000 10.000000 22.5856681233344716 0
1 14.742243 17.889842 20.649363 22.776440 23.942112 0.5830566903965523 7
2 14.050339 17.798223 20.907147 23.111451 24.132840 0.0002091129151843 5
3 14.050091 17.798381 20.907187 23.111428 24.132914 0.0000000000000000 2
P = 150
0 10.000000 10.000000 10.000000 10.000000 10.000000 44.8079718213763485 0
1 24.666020 28.638950 31.530397 32.884666 32.279967 0.9504256360932131 9
2 23.588783 28.684250 32.021532 33.287256 32.418178 0.0000000000000000 7
P = 200
0 10.000000 10.000000 10.000000 10.000000 10.000000 67.1154610852267837 0
1 36.770882 40.503658 42.325655 41.769703 38.630101 0.9181893886394852 10
2 35.785304 40.748979 42.802485 41.966390 38.696842 0.0000305348293455 7
3 35.785335 40.748961 42.802484 41.966378 38.696841 0.0000000000000000 2

Table 5: Numerical results for Example 5.5

Example 5.6 We solve the electricity market problem suggested by Contr-
eras et al. [5]. This model involves three power generating companies with
one, two, and three power plants, respectively. We consider the game where
restriction is only imposed on the power production of each power plant,
which corresponds to Case Study 1 in [5]. Note that this is a standard Nash
equilibrium problem. This is a game with quadratic cost functions and linear
constraints and it was shown in [5] that the game satisfies assumption (a)
of Corollary 4.3. Hence we can expect that the algorithm terminates at the
exact solution in a finite number of iterations. Table 6 shows that this is
true.

k xk
1 xk

2 xk
3 xk

4 xk
5 ‖yα(xk)− xk‖ InnerIt

0 0.000000 0.000000 0.000000 0.000000 0.000000 123.1607329584486052 0
1 80.000000 23.535935 12.590457 15.420678 10.118619 22.3691107475859674 32
2 46.661602 32.154064 15.003098 22.107038 12.339619 0.0000706604000202 12
3 46.661605 32.154015 15.003146 22.107028 12.339634 0.0000001040070503 4
4 46.661605 32.154015 15.003146 22.107028 12.339634 0.0000000000000000 2

Table 6: Numerical results for Example 5.6

24

6 Final Remarks

For a generalized Nash game with shared constraints, this paper exploits a
(regularized) fixed point characterization of the normalized Nash equilibrium
problem and develop a Newton-type method for its solution. This Newton-
type method does not use Clarke’s generalized Jacobian since this object is
very difficult to compute in our case. Instead, we use a computable gener-
alized Jacobian, which has the additional advantage that the constant rank
constraint qualification (together with a second-order condition) suffices to
prove local quadratic convergence (and even local one-step convergence for
a game with quadratic cost functions and linear constraints). The numer-
ical results indicate that the method is able to find a solution with very
high precision. We therefore believe that this method is very promising, and
an interesting future research topic is a suitable globalization of our locally
convergent method.

References

[1] E. Allgower and K. Georg: Simplicial and continuation methods
for approximating fixed points and solutions to systems of equations.
SIAM Review 22, 1980, pp. 28–85.

[2] K.J. Arrow and G. Debreu: Existence of an equilibrium for a com-
petitive economy. Econometrica 22, 1954, pp. 265–290.

[3] J.-P. Aubin: Mathematical Methods of Game and Economic Theory.
North-Holland, Amsterdam, 1979.

[4] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley,
New York, 1983 (reprinted by SIAM, Philadelphia, 1990).

[5] J. Contreras, M. Klusch, and J.B. Krawczyk: Numerical so-
lutions to Nash-Cournot equilibria in coupled constraint electricity mar-
kets. IEEE Transactions on Power Systems 19, 2004, pp. 195–206.

[6] R.W. Cottle, J.-S. Pang, and R.E. Stone: The Linear Comple-
mentarity Problem. Academic Press, Boston, 1992.

[7] G. Debreu: A social equilibrium existence theorem. Proceedings of the
National Academy of Sciences 38 (10), 1952, pp. 886–893.

25

[8] S. Dempe and D. Pallaschke: Quasidifferentiability of optimal so-
lutions in parametric nonlinear optimization. Optimization 40, 1997, pp.
1-24.

[9] S. Dempe and S. Vogel: The generalized Jacobian of the optimal
solution in parametric optimization. Optimization 50, 2001, pp. 387–
405.

[10] F. Facchinei and C. Kanzow: Generalized Nash equilibrium prob-
lems. 4OR – A Quarterly Journal of Operations Research 5, 2007,
pp. 173–210.

[11] F. Facchinei, A. Fischer, and V. Piccialli: Generalized Nash
equilibrium problems and Newton methods. Mathematical Programming
117, 2009, pp. 163–194.

[12] M. Fukushima: Restricted generalized Nash equilibria and controlled
penalty algorithm. Technical Report 2008-007, Department of Applied
Mathematics and Physics, Graduate School of Informatics, Kyoto Uni-
versity, July, 2008.

[13] G. Gürkan and J.-S. Pang: Approximations of Nash equilibria.
Mathematical Programming 117, 2009, pp. 223–253.

[14] A. von Heusinger and C. Kanzow: Optimization reformulations of
the generalized Nash equilibrium problem using Nikaido-Isoda-type func-
tions. Computational Optimization and Applications, available online
under DOI 10.1007/s10589-007-9145-6.

[15] A. von Heusinger and C. Kanzow: SC1 optimization reformula-
tions of the generalized Nash equilibrium problem. Optimization Meth-
ods and Software 23, 2008, pp. 953–973.

[16] A. von Heusinger and C. Kanzow: Relaxation methods for gen-
eralized Nash equilibrium problems with inexact line search. Journal of
Optimization Theory and Applications, to appear.

[17] W.W. Hogan: Point-to-set maps in mathematical programming. SIAM
Review 15, 1973, pp. 591–603.

[18] R. Janin: Directional derivative of the marginal function in nonlinear
programming. Mathematical Programming Study 21, 1984, pp. 110–126.

26

[19] A. Kesselman, S. Leonardi, and V. Bonifaci: Game-theoretic
analysis of internet switching with selfish users. Lecture Notes in Com-
puter Science 3828, 2005, pp. 236–245.

[20] M. Kojima and S. Shindo: Extension of Newton and Quasi-Newton
methods to systems of PC1 equations. Journal of the Operations Re-
search Society of Japan 29, 1986, pp. 352–372.

[21] J.B. Krawczyk: Coupled constraint Nash equilibria in environmental
games. Resource and Energy Economics 27, 2005, pp. 157–181.

[22] J.B. Krawczyk and S. Uryasev: Relaxation algorithms to find Nash
equilibria with economic applications. Environmental Modeling and As-
sessment 5, 2000, pp. 63–73.

[23] K. Nabetani, P. Tseng and M. Fukushima: Parametrized vari-
ational inequality approaches to generalized Nash equilibrium problems
with shared constraints. Technical Report 2008-011, Department of Ap-
plied Mathematics and Physics, Kyoto University, October 2008.

[24] J. Nash: Non-cooperative games. Annals of Mathematics 54, 1951, pp.
286–295.

[25] H. Nikaido and K. Isoda: Note on noncooperative convex games.
Pacific Journal of Mathematics 5, 1955, pp. 807–815.

[26] J.M. Ortega and W.C. Rheinboldt: Iterative Solution of Nonlin-
ear Equations in Several Variables. Academic Press, New York, 1970.

[27] J. Outrata, M. Kocvara, and J. Zowe: Nonsmooth Approach to
Optimization Problems with Equilibrium Constraints. Kluwer Academic
Press, Dordrecht, 1998.

[28] J. Outrata and J. Zowe: A numerical approach to optimization
problems with variational inequality constraints. Mathematical Program-
ming 68, 1995, pp. 105-130.

[29] J.-S. Pang and D. Ralph: Piecewise smoothness, local invertibility,
and parametric analysis of normal maps. Mathematics of Operations
Research 21, 1996, pp. 401–426.

[30] L. Qi: Convergence analysis of some algorithms for solving nonsmooth
equations. Mathematics of Operations Research 18, 1993, pp. 227–244.

27

[31] R.T. Rockafellar and R.J.-B. Wets: Variational Analysis.
Springer, Berlin, 2004.

[32] J.B. Rosen: Existence and uniqueness of equilibrium points for concave
N-person games. Econometrica 33, 1965, pp. 520–534.

[33] D. Sun, M. Fukushima, and L. Qi: A computable generalized Hes-
sian of the D-gap function and Newton-type methods for variational in-
equality problems. Complementarity and Variational Problems: State of
the Art, M.C. Ferris and J.-S. Pang (eds.), SIAM, Philadelphia, 1997,
pp. 452-472.

28

