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Abstract. The generalized Nash equilibrium problem is a Nash game which, in contrast to
the standard Nash equilibrium problem, allows the strategy sets of each player to depend
on the decision variables of all other players. It was recently shown by the authors that
this generalized Nash equilibrium problem can be reformulated as both an unconstrained
and a constrained optimization problem with continuously differentiable objective func-
tions. This paper further investigates these approaches and shows, in particular, that the
objective functions are SC1-functions. Moreover, conditions for the local superlinear con-
vergence of a semismooth Newton method being applied to the unconstrained optimization
reformulation are also given. Some numerical results indicate that this method works quite
well on a number of problems coming from different application areas.

Key Words: Generalized Nash equilibrium, normalized Nash equilibrium, joint con-
straints, regularized Nikaido-Isoda function, implicit function, semismooth function, su-
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1 Introduction

In the recent paper [17], the authors introduced reformulations of the generalized Nash
equilibrium problem (GNEP for short) as continuously differentiable optimization prob-
lems. However, these optimization reformulations are, in general, not twice differentiable.
This paper investigates some further properties of these reformulations and, in particular,
shows that they are sufficiently smooth so that locally superlinearly convergent Newton-
type methods can be applied in order to solve the underlying GNEP.

To be more specific, let us first recall the definition of a standard Nash equilibrium
problem (NEP for short): There are N players, each player ν ∈ {1, . . . , N} controls the
variables xν ∈ Rnν . Let x = (x1, . . . , xN)T ∈ Rn be the vector comprised by all these
decision variables, where n := n1 + . . . + nN . To emphasize the νth player’s variables
within the vector x, we sometimes write x = (xν , x−ν)T , where x−ν subsumes all the other
players’ variables.

Let θν : Rn → R be the νth player’s payoff (or loss or utility) function, and let Xν ⊆
Rnν be the strategy set of player ν. Then x∗ = (x∗,1, . . . , x∗,N)T ∈ Rn is called a Nash
equilibrium or a solution of the NEP if each block component x∗,ν is a solution of the
optimization problem

min
xν

θν(x
ν , x∗,−ν) s.t. xν ∈ Xν ,

i.e., x∗ is a Nash equilibrium if no player can improve his situation by unilaterally changing
his strategy.

The characteristic feature of a standard NEP is therefore that the utility function θν

of player ν depends both on the decision variables xν of this player and on the decision
variables x−ν of all other players, whereas the strategy sets Xν depend on xν only. In
fact, this is the main difference to the GNEP, where the strategy set is allowed to depend
on the choice of the other players, too. More precisely, the GNEP is defined by the
utility functions θν : Rn → R of player ν and a common strategy set X ⊆ Rn. A vector
x∗ = (x∗,1, . . . , x∗,N)T ∈ Rn is then called a generalized Nash equilibrium or a solution of
the GNEP if each block component x∗,ν is a solution of the optimization problem

min
xν

θν(x
ν , x∗,−ν) s.t. (xν , x∗,−ν) ∈ X.

Throughout this paper, we assume that the set X can be represented as

X = {x ∈ Rn | g(x) ≤ 0} (1)

for some function g : Rn → Rm. Additional equality constraints are also allowed, but for
notational simplicity, we prefer not to include them explicitly. In many cases, a player ν
might have some additional constraints of the form hν(xν) ≤ 0 depending on his decision
variables only. However, these additional constraints may simply be viewed as part of the
joint constraints g(x) ≤ 0, with some of the component functions gi of g depending on the
block component xν of x only.

Throughout this paper, we make the following blanket assumptions.
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Assumption 1.1 (a) The utility functions θν are twice continuously differentiable and,
as a function of xν alone, convex.

(b) The function g is twice continuously differentiable, its components gi are convex (in
x), and the corresponding strategy space X defined by (1) is nonempty.

The convexity assumptions are absolutely standard when considering (generalized) Nash
equilibrium problems, and the smoothness assumptions are also very natural since our
aim is to develop locally fast convergent methods for the solution of GNEPs. Note that
Assumption 1.1 (b) implies that the strategy space X is nonempty, closed, and convex. In
contrast to some other papers on GNEPs, we do not assume that X is compact.

The previous description of a GNEP follows the one from the seminal paper by Rosen
[35], who also suggested a projected gradient-type method for the solution of GNEPs. Mo-
tivated by the fact that a standard NEP can be reformulated as a variational inequality
problem (VIP for short), see, for example, [9], both Bensousson [2] and Harker [16] char-
acterize the GNEP as a quasi-variational inequality (abbreviated as QVI in the following).
However, since there are essentially no efficient methods for solving QVIs, such a char-
acterization is less interesting from a practical point of view. On the other hand, it was
noted in [13, 7], for example, that certain solutions of the GNEP (the normalized Nash
equilibria, to be defined later) can be found by solving a suitable standard VIP associated
to the GNEP. A discussion of some local issues related to this formulation is given in [8]
(in fact, this paper also considers a more general class of GNEPs). A globally convergent
augmented Lagrangian-type VIP method is presented in [29].

Another approach for the solution of GNEPs is based on the so-called Nikaido-Isoda-
function (see [27]), cf. Section 3 for a formal definition. Relaxation methods using this
Nikaido-Isoda-function are investigated in [38, 20] (see also [1, 23]) for some similar ideas),
and a proximal-like method on the basis of the Nikaido-Isoda-function is presented in [13].
A regularized version of the Nikaido-Isoda-function, first introduced in [15] for standard
NEPs (see also [25, 39] for related approaches in the context of equilibrium program-
ming problems) and then further investigated in [17] for GNEPs, is the basis of suitable
reformulations of the GNEP as both an unconstrained and a constrained optimization
reformulation of the GNEP in [17].

Here we further investigate the properties of these optimization reformulations. We
believe that these reformulations, together with the VIP-based methods, are currently
the most promising approaches for the solution of GNEPs. A discussion including the
advantages and disadvantages of these two different techniques will be given at the end of
this paper, since this requires a better knowledge of certain properties, with some of them
to be shown in this paper.

The organization of the paper is as follows: We first recall some basic facts and recent
results from nonsmooth analysis in Section 2. We then give the details of our optimization
reformulations of the GNEP in Section 3 and show that these are SC1 reformulations,
i.e., the objective functions are continuously differentiable with a semismooth gradient.
We then show in Section 4 that this fact can be used in order to get locally superlinearly
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convergent Newton-type methods for the solution of GNEPs. Some numerical results are
then presented in Section 5, and we close with some final remarks in Section 6.

Notation: Given a differentiable function g : Rn → Rm, g′(x) ∈ Rm×n or Dg(x) denotes
the Jacobian of g at x, whereas∇g(x) ∈ Rn×m is the transposed Jacobian. In particular, for
m = 1, the gradient ∇g(x) is viewed as a column vector. Several times, we also consider
partial derivatives of a real-valued function f : Rn → R with respect to certain block
components of x only, and this will be denoted by using suitable subscripts, e.g., ∇xνf(x)
denotes the partial gradient of f at x, where the derivatives are taken with respect to the
components of the block vector xν only. Second-order partial derivatives with respect to
certain block components are written in a similar way as ∇2

xνxµf(x), for example, meaning
that we first differentiate with respect to xν and then with respect to xµ. For a matrix
A ∈ Rm×n and a subset I ⊆ {1, . . . , n} we denote by AI the submatrix of A consisting of
the columns ai, i ∈ I.

2 Preliminaries

In this section, we first recall some basic definitions and results from nonsmooth analysis,
and then state some preliminary results that will be used in our subsequent analysis. To
this end, let F : Rn → Rm be a locally Lipschitzian mapping. According to Rademacher’s
theorem (see [33]), it follows that F is almost everywhere differentiable. Let DF denote
the set of all differentiable points of F . Then we call

∂BF (x) :=
{
H ∈ Rm×n

∣∣ ∃{xk} ⊆ DF : xk → x, F ′(xk) → H
}

the B-subdifferential of F at x. Its convex hull

∂F (x) := conv∂BF (x)

is Clarke’s generalized Jacobian of F at x, see [3]. In case of m = 1, we call this set also
the generalized gradient of F at x which, therefore, is a set of row vectors. Furthermore,
we call the set

∂CF (x) :=
(
∂F1(x)T × . . .× ∂Fm(x)T

)T

the C-subdifferential of F at x, i.e., the C-subdifferential is the set of matrices whose ith
rows consist of the elements of the generalized gradient of the ith component functions Fi.
According to [3, Proposition 2.6.2], the following inclusions hold:

∂BF (x) ⊆ ∂F (x) ⊆ ∂CF (x). (2)

Based on the generalized Jacobian, we next recall the definition of a semismooth function.

Definition 2.1 Let F : Rn → Rm be locally Lipschitz continuous. Then F is called
semismooth at x if F is directionally differentiable at x and

‖Hd− F ′(x; d)‖ = o(‖d‖)
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holds for all d → 0 and all H ∈ ∂F (x + d).

In the following, we often call a mapping F : Rn → Rm semismooth if it is semismooth
at every point x ∈ Rn. The notion of a semismooth function was originally introduced
by Mifflin [26] for functionals, and later extended by Qi and Sun [32] to vector-valued
mappings.

Note that there are many different notions of semismooth functions available in the
literature, and we would like to give some comments here. First of all, our definition
of a semismooth function is not the original one from [32], however, it follows from [32,
Theorem 2.3] that it is equivalent to the original definition (note that the assumption of
directional differentiability is missing in that result). Another very popular reformulation
of the semismoothness of a locally Lipschitz and directionally differentiable function is that
it satisfies

‖F (x + d)− F (x)−Hd‖ = o(‖d‖) (3)

for all d → 0 and all H ∈ ∂F (x + d). Sun [37] calls this the superlinear approximation
property of F at x since it is central in order to prove local superlinear convergence of certain
Newton-type methods, see also the general scheme in Kummer [21, 22]. The equivalence
of this superlinear approximation property to our definition of semismoothness can be
found, e.g., in [10, Theorem 7.4.3] and is based on the fact that a locally Lipschitz and
directionally differentiable function is automatically B-differentiable, see [36] for details.
On the other hand, property (3) can be defined also for mappings that are not necessarily
directionally differentiable. In fact, Gowda [14] takes this property of a locally Lipschitz
function as the definition of semismoothness. In order to avoid confusion with the existing
definition of semismoothness, Pang et al. [30] suggested the name G-semismoothness (with
the ’G’ referring to Gowda).

We stress that the previous discussion on semismoothness is somewhat crucial for our
later analysis since we want to apply a suitable implicit function theorem for semismooth
functions. However, there are different implicit function theorems available in the litera-
ture, and they are based on different notions of a semismooth (or related) function, see,
[37, 14] and, in particular, the corresponding discussion in [30].

We next state a simple result that will play an important role in later sections, in
particular, the equivalence between statements (a) and (d).

Lemma 2.2 Let F : Rn → Rm be locally Lipschitz continuous and directionally differen-
tiable, and let x ∈ Rn be an arbitrary point. Then the following statements are equivalent:

(a) F is semismooth at x, i.e., ‖Hd − F ′(x; d)‖ = o(‖d‖) for all d → 0 and all H ∈
∂F (x + d).

(b) ‖Hd− F ′(x; d)‖ = o(‖d‖) for all d → 0 and all H ∈ ∂BF (x + d).

(c) ‖Hd− F ′(x; d)‖ = o(‖d‖) for all d → 0 and all H ∈ ∂CF (x + d).

(d) Fi is semismooth for all components i = 1, . . . ,m, i.e., ‖hid−F ′
i (x; d)‖ = o(‖d‖) for

all d → 0, all hi ∈ ∂Fi(x + d), and all i = 1, . . . ,m.
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Proof. The implications (c) =⇒ (a) =⇒ (b) follow directly from the fact that ∂BF (x +
d) ⊆ ∂F (x + d) ⊆ ∂CF (x + d), cf. (2).

The implication (b) =⇒ (a) is a consequence of Carathéodory’s theorem. To see this,
let dk → 0 and Hk ∈ ∂F (x + dk) be given arbitrarily. Then, for all k ∈ N, we can find at
most r := nm + 1 matrices Hk

j ∈ ∂BF (x + dk) and numbers λk
j ≥ 0 satisfying

r∑
j=1

λk
j = 1 and Hk =

r∑
j=1

λk
j H

k
j .

Using (b), we therefore obtain

‖Hkdk − F ′(x; dk)‖ =
∥∥ r∑

j=1

λk
j H

k
j dk − F ′(x; dk)

∥∥
≤

r∑
j=1

λk
j‖Hk

j dk − F ′(x; dk)‖ = o(‖dk‖)

in view of the boundedness of λk
j .

The implication (a) =⇒ (d) can be verified in the following way: Using the chain
rule from [3, Theorem 2.6.6], the composite mapping f := g ◦ F with the continuously
differentiable function g(z) := zi has the generalized gradient

∂Fi(x) = ∂f(x) = ∂g
(
F (x)

)
∂F (x) = eT

i ∂F (x)

= {hi | hi is the ith row of some H ∈ ∂F (x)}.

Therefore, if we assume that (a) holds, and if we take an arbitrary d ∈ Rn as well as any
component i ∈ {1, . . . ,m}, it follows that for any hi ∈ ∂Fi(x+d), we can choose an element
H ∈ ∂F (x + d) such that its ith row is equal to hi. Then we get∣∣F ′

i (x; d)− hid
∣∣ =

∣∣eT
i (F ′(x; d)−Hd)

∣∣ ≤ ‖F ′(x; d)−Hd‖ = o(‖d‖),

hence Fi is semismooth at x.
Finally, (d) =⇒ (c) is an immediate consequence of the definition of the C-subdifferential.
Altogether, we have shown that (c) =⇒ (a) =⇒ (d) =⇒ (c) and (a) ⇐⇒ (b), implying

that all four statements are indeed equivalent. �

Some parts of the previous result are known, for example, [32, Corollay 2.4] shows that
the semismoothness of all component functions implies the semismoothness of F itself.
The fact that the converse also holds seems to be around in the community, but we were
not able to find an explicit reference. Furthermore, [14, page 447] already observed the
equivalence of statements (a) and (b) in Lemma 2.2, albeit in the slightly different context
of G-semismoothness.

We next want to state an implicit function theorem for semismooth mappings that will
be used in order to show local fast convergence of our Newton-type method for generalized
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Nash equilibrium problems. To this end, consider a mapping H : Rm×Rn → Rn, (x, y) 7→
H(x, y). Then πy∂H(x, y) denotes the set of all n × n matrices M such that, for some
n×m matrix N , the n× (m + n) matrix [N, M ] belongs to ∂H(x, y). The set πx∂H(x, y)
is defined in a similar way.

Theorem 2.3 Suppose that H : Rm × Rn → Rn is locally Lipschitz and semismooth in
a neighbourhood of a point (x̄, ȳ) satisfying H(x̄, ȳ) = 0, and assume that all matrices
in πy∂H(x̄, ȳ) are nonsingular. Then there exists an open neighborhood X of x̄ and a
function g : X → Rn which is Lipschitz and semismooth on X such that g(x̄) = ȳ and
H(x, g(x)) = 0 for all x ∈ X.

Proof. Since this particular implicit function theorem does not seem to be available in
the literature, we derive it from a suitable inverse function theorem. To this end, consider
the mapping F : Rm × Rn → Rm × Rn defined by

F (x, y) :=

(
x− x̄

H(x, y)

)
.

Then

∂F (x̄, ȳ) ⊆
(

Im 0
πx∂H(x̄, ȳ) πy∂H(x̄, ȳ)

)
,

and our assumptions imply that all elements from the generalized Jacobian ∂F (x̄, ȳ) are
nonsingular. Noting that a continuously differentiable function is always semismooth and
recalling that the mapping H is semismooth by assumption, it follows from Lemma 2.2
that F is also semismooth. Hence we can apply the inverse function theorem from [30,
Theorem 6] and obtain open neighbourhoods U of (x̄, ȳ) and W of (0, 0) = F (x̄, ȳ) such
that F : U → W is a homeomorphism and has a locally Lipschitz and semismooth inverse
G : W → U . Since W is open, the set

X := {x ∈ Rm | (x− x̄, 0) ∈ W}

is also open as a subset of Rm. We now show that there is a locally Lipschitz and semis-
mooth function g : X → Rn such that g(x̄) = ȳ and H(x, g(x)) = 0 for all x ∈ X.

To this end, let x ∈ X be arbitrarily given. Then (x − x̄, 0) ∈ W , and because
F : U → W is a homeomorphism, the definition of the mapping F implies that there is
a unique vector y such that (x, y) ∈ U and F (x, y) = (x − x̄, 0). Consequently, we have
H(x, y) = 0. Note that this unique vector y depends on x. Setting g(x) := y then gives us
a mapping g : X → Rn such that H(x, g(x)) = 0 for each x ∈ X. This implies

F (x, g(x)) =

(
x− x̄

H(x, g(x))

)
=

(
x− x̄

0

)
∀x ∈ X.

Applying the inverse mapping G on both sides gives(
x

g(x)

)
= G(x− x̄, 0) ∀x ∈ X.
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This shows that g coincides with certain component functions of G. Since the inverse
function G is semismooth, it therefore follows from Lemma 2.2 that g is also semismooth.
This completes the proof of our implicit function theorem. �

A related implicit function theorem was stated in Sun [37]. However, he only assumes that
H has the local superlinear approximation property, and states that the implicit function
has the superlinear approximation property, too. A similar result was also stated by
Gowda [14] in the framework of H-differentiable functions. Note also that the assumption
on the nonsingularity of all elements from πy∂H(x̄, ȳ) (corresponding to the strongest
possible condition in the inverse function theorem from [30]) can be weakened, but that
this (relatively strong) condition will be satisfied in our context.

We close this section with the definition of an SC1-function that will become important
in the next section.

Definition 2.4 A mapping f : Rn → R is called an SC1-function if it is continuously
differentiable and its gradient ∇f is semismooth.

3 SC1-Optimization Reformulations

Consider the GNEP from Section 1 with utility functions θν and a joint strategy set X
satisfying the requirements from Assumption 1.1. Our aim is to show that the GNEP
can then be reformulated as an SC1 optimization problem (both constrained and uncon-
strained). This SC1-reformulation is based on the approach given by the authors in [17].
To this end, we first recall the basic ingredients from that approach, and then present our
new results.

A basic tool for both the theoretical analysis and the numerical solution of (generalized)
Nash equilibrium problems is the corresponding Nikaido-Isoda-function (sometimes also
called the Ky-Fan-function)

Ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
,

see, e.g., [27, 12, 13]. We first use this function in order to define an important subclass of
all the solutions of a GNEP.

Definition 3.1 A vector x∗ ∈ X is called a normalized Nash equilibrium of the GNEP if
supy∈X Ψ(x∗, y) = 0 holds, where Ψ denotes the Nikaido-Isoda-function.

The above definition of a normalized Nash equilibrium corresponds to one given in, e.g.,
[13, 38]. Note that it is slightly different from the original definition of a normalized
equilibrium given in [35], see, however, the corresponding results in [13, 7]. It is not difficult
to see that a normalized Nash equilibrium is always a solution of the GNEP, whereas the
converse is not true in general. In fact, simple examples show that a GNEP might have
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infinitely many solutions, but just a single normalized Nash equilibrium, see, e.g., [7]. On
the other hand, for a standard NEP, there is no difference between Nash equilibria and
normalized Nash equilibria.

By adding a suitable regularization term depending on a parameter γ > 0, we obtain
the regularized Nikaido-Isoda-function

Ψγ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)− γ

2
‖xν − yν‖2

]
=

N∑
ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
− γ

2
‖x− y‖2

= Ψ(x, y)− γ

2
‖x− y‖2

(4)

that was first introduced in [15] in the context of standard NEPs, and then further exploited
by the authors [17] in the context of GNEPs, see also the discussion in [25] for the class of
equilibrium programming problems. We now define the corresponding value function by

Vγ(x) := max
y∈X

Ψγ(x, y) = Ψγ

(
x, yγ(x)

)
, (5)

where yγ(x) denotes the unique solution of the uniformly concave maximization problem

max
y

Ψγ(x, y) s.t. y ∈ X. (6)

As noted in [17], the function Vγ is continuously differentiable with gradient given by

∇Vγ(x) = ∇xΨγ(x, y)
∣∣
y=yγ(x)

. (7)

Moreover, it was noted that x∗ is a normalized Nash equilibrium of the GNEP if and only
if it solves the constrained optimization problem

min Vγ(x) s.t. x ∈ X (8)

with optimal function value Vγ(x
∗) = 0. Taking two parameters 0 < α < β and denoting by

Vα, Vβ the corresponding value functions, it was also shown in [17] that x∗ is a normalized
Nash equilibrium of the GNEP if and only if x∗ solves the unconstrained optimization
problem

min Vαβ(x), x ∈ Rn, (9)

with optimal function value Vαβ(x∗) = 0, where

Vαβ(x) := Vα(x)− Vβ(x) (10)

denotes the difference of two regularized Nikaido-Isoda functions.
Unfortunately, Vγ is, in general, not twice continuously differentiable, hence neither

the constrained optimization problem (8) nor the unconstrained optimization problem (9)
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are twice continuously differentiable. However, in view of Assumption 1.1, we see that
the regularized Nikaido-Isoda-function Ψγ(x, y) is twice continuously differentiable. Using
the fact that the composition of semismooth functions is again semismooth, see [11], it
therefore follows immediately from the representation (7) of the gradient ∇Vγ that Vγ

(hence also Vαβ) is an SC1-function if the mapping x 7→ yγ(x) is semismooth. Our aim in
this section is therefore to prove the semismoothness of this mapping.

To this end, we first consider a more general (parameterized) optimization problem of
the form

min
y

f(x, y) s.t. y ∈ X (11)

where f : Rn × Rn → R is twice continuously differentiable and uniformly convex with
respect to the variable y (for every fixed x). The feasible set X is given by a number of
inequalities as in (1) such that Assumption 1.1 (b) holds. Then the Lagrangian of the
optimization problem (11) is given by

L(x, y, λ) = f(x, y) +
m∑

i=1

λigi(y),

where, again, x ∈ Rn is supposed to be fixed. Let y = y(x) be the unique solution of the
optimization problem (11). Then, under a suitable constraint qualification (like the Slater
condition), it follows that there exists a Lagrange multiplier λ = λ(x) ∈ Rm such that
(y, λ) (together with the fixed x) solves the KKT system

∇yL(x, y, λ) = ∇yf(x, y) +∇g(y)λ = 0, 0 ≤ λ ⊥− g(y) ≥ 0. (12)

Using the minimum function ϕ : R× R → R, ϕ(a, b) := min{a, b}, we can reformulate the
KKT system (12) as a system of nonlinear equations Φ(x, y, λ) = 0 via the function

Φ(x, y, λ) :=

(
∇yL(x, y, λ)
φ
(
− g(y), λ

)) (13)

with
φ
(
− g(y), λ

)
:=

(
ϕ(−g1(y), λ1), . . . , ϕ(−gm(y), λm)

)T ∈ Rm.

Our first result gives a representation of the B-subdifferential and the generalized Jacobian
of the mapping Φ.

Lemma 3.2 Suppose that f and g are C2-functions. Let w = (x, y, λ) ∈ Rn+n+m. Then,
each element H ∈ ∂Φ(w)T can be represented as follows:

H =

∇2
yxL(x, y, λ)T 0
∇2

yyL(x, y, λ) −∇g(y)Da(y, λ)
∇g(y)T Db(y, λ)


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where Da(y, λ) := diag(a1(y, λ), . . . , am(y, λ)), Db(y, λ) = diag(b1(y, λ), . . . , bm(y, λ)) ∈
Rm×m are diagonal matrices whose ith diagonal elements are given by

ai(y, λ) =


1, if − gi(y) < λi,

0, if − gi(y) > λi,

µi, if − gi(y) = λi,

and bi(y, λ) =


0, if − gi(y) < λi,

1, if − gi(y) > λi,

1− µi, if − gi(y) = λi,

for any µi ∈ [0, 1]. The elements H ∈ ∂BΦ(w)T are obtained by choosing µi ∈ {0, 1}.

Proof. The first n components of the vector function Φ are continuously differentiable
and Φ is continuously differentiable with respect to x, so the expression for the first n rows
and columns of H readily follows. To compute the remaining entries of H, we use the fact
that each element of the generalized Jacobian of φ can be represented by an element of the
C-subdifferential of φ, that is

∂φ(−g(y), λ)T ⊆ ∂ϕ(−g1(y), λ1)
T × · · · × ∂ϕ(−gm(y), λm)T .

If i is such that −gi(y) 6= λi, then ϕ is continuously differentiable at (−gi(y), λi) and the
expression for the (n + i)th column of H follows. If instead −gi(y) = λi, then, using the
definition of the B-subdifferential, it follows that

∂Bϕ(−gi(y), λi)
T =

{
(−∇gi(y)T , 0), (0, eT

i )
}
.

Taking the convex hull, we therefore get

∂ϕ(−gi(y), λi)
T = {(−µi∇gi(y)T , (1− µi)e

T
i ) | µi ∈ [0, 1]}.

(Note that this representation cannot be obtained by directly applying [3, Theorem 2.3.9
(iii)] since the min-function is not regular in the sense of [3, Definition 2.3.4].) This gives
the representation of H ∈ ∂Φ(w)T . �

Our next aim is to establish conditions for the nonsingularity of all elements in π(y,λ)∂Φ(w)T

at a point w = (x, y, λ) satisfying Φ(w) = 0. By definition, taking the continuous differ-
entiability of Φ with respect to x into account, the elements V ∈ π(y,λ)∂Φ(w)T can be
obtained by deleting the first n rows of the matrices H from Lemma 3.2. In order to get a
more detailed description of the matrices V ∈ π(y,λ)∂Φ(w)T , let us partition the index set
{1, . . . ,m} into

I0 := {i | gi(y) = 0} and I< := {i | gi(y) < 0},

where both the set of active constraints I0 and the set of inactive constraints I< depend
on the current vector y. The set of active constraints can be further divided into

I00 := {i ∈ I0 | λi = 0} and I+ := {i ∈ I0 | λi > 0},

10



with both sets depending on y and λ. The set I00 will further be partitioned into

I01 := {i ∈ I00 | µi = 1}, I02 := {i ∈ I00 | µi ∈ (0, 1)}, I03 := {i ∈ I00 | µi = 0}.

Note that these index sets also depend (via µi) on the particular element taken from the
generalized Jacobian of Φ(w).

With these index sets, and using a suitable reordering of the constraints, every element
V ∈ π(y,λ)∂Φ(x, y, λ)T has the following structure (the dependence on w = (x, y, λ) is
suppressed for simplicity):

V =


∇2

yyL −∇g+ −∇g01 −∇g02(Da)02 0 0
∇gT

+ 0 0 0 0 0
∇gT

01 0 0 0 0 0
∇gT

02 0 0 (Db)02 0 0
∇gT

03 0 0 0 I 0
∇gT

< 0 0 0 0 I

 , (14)

where (Da)02 and (Db)02 are positive definite diagonal matrices, and where we used the
abbreviations ∇g+,∇g01 etc. for the matrices ∇gI+ ,∇gI01 etc.

In order to obtain a suitable nonsingularity result, let us introduce the matrices

M(J) :=

∇2
yyL −∇g+ −∇gJ

∇gT
+ 0 0

∇gT
J 0 0

 ,

where J is any subset of I00. Using these matrices, we next define the concept of strong
regularity for the parameterized optimization problem (11). This name comes from the
fact that our condition corresponds to Robinson’s strong regularity assumption (see [34])
in the context of ordinary nonlinear programs, cf. [24, 6].

Definition 3.3 A triple w∗ = (x∗, y∗, λ∗) satisfying Φ(w∗) = 0 is called strongly regular
for the optimization problem (11) if the matrices M(J) have the same nonzero orientation
for all J ⊆ I00.

According to Robinson [34], strong regularity holds if the strong second order sufficiency
condition and the linear independence constraint qualification (LICQ for short) hold, where
LICQ means that the gradients ∇gi(x

∗) (i : gi(x
∗) = 0) of the active inequality constraints

are linearly independent (note that LICQ is also a necessary condition for strong regularity).
In particular, it therefore follows that all matrices M(J) have the same nonzero orientation
if ∇2

yyL is positive definite and LICQ holds. This is the situation we are particularly
interested in. In fact, in this case, there is an easy way to see that strong regularity holds
at w∗ = (x∗, y∗, λ∗). To this end, write

M(J) =

(
H −AJ

AT
J 0

)
with H := ∇2

yyL and AJ :=
(
∇g+,∇gJ

)
.

11



Using block Gaussian elimination, it follows that

M(J) =

(
I 0

AT
J H−1 I

) (
H −AJ

0 AT
J H−1AJ

)
.

Consequently, we get

det
(
M(J)

)
= det

(
H −AJ

0 AT
J H−1AJ

)
= det(H) det

(
AT

J H−1AJ

)
> 0 ∀J ⊆ I00

since H is positive definite and AJ has full column rank for all J ⊆ I00.
We next state our main result on the nonsingularity of the elements of the projected

generalized Jacobian π(y,λ)∂Φ(x∗, y∗, λ∗). Its proof is similar to one given in [6] which, how-
ever, uses a different reformulation of the KKT system arising from variational inequalities.

Theorem 3.4 Consider the optimization problem (11) with f : Rn × Rn → R and g :
Rn → Rm being twice continuously differentiable. Let w∗ = (x∗, y∗, λ∗) ∈ Rn+n+m be a
solution of the system Φ(w) = 0, and suppose that the strong regularity condition holds at
w∗. Then all elements V ∈ π(y,λ)∂Φ(w∗) are nonsingular.

Proof. Consider an arbitrary but fixed element in π(y,λ)∂Φ(w∗)T . This element has the
structure indicated in (14) and is obviously nonsingular if and only if the following matrix
is nonsingular:

V =


∇2

yyL −∇g+ −∇g01 −∇g02

∇gT
+ 0 0 0

∇gT
01 0 0 0

∇gT
02 0 0 (Db)02(Da)

−1
02

 . (15)

The matrix (15) can be written as the sum of the matrix M(J), with J = I01 ∪ I02, and
the diagonal matrix

D :=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 (Db)02(Da)

−1
02

 .

Given a square matrix Ā of dimension r and a diagonal matrix D̄ of the same dimension,
it follows from [5, p. 60] that

det(D̄ + Ā) =
∑

α

detD̄ααdetĀᾱᾱ,

where the summation ranges over all subsets α of {1, . . . , r} (with complements ᾱ =
{1, . . . , r}\α), and where it is assumed that the determinant of an “empty” matrix is
equal to 1. Exploiting this formula, the determinant of (15) can be written as

detM(J) +
∑

∅6=α⊆I02

detDααdetM(J)ᾱᾱ, (16)

12



where the first term corresponds to α = ∅. Moreover, we have taken into account that
if α contains an element which does not belong to I02, then the determinant of Dαα is
0. Since the nonzero diagonal elements of the matrix D are all positive, it follows that
the determinants of Dαα in (16) are all positive. Then to show that the determinant of
(15) is nonzero and hence to conclude the proof, it will now be sufficient to show that the
determinants of M(J) and of all M(J)ᾱᾱ in (16) never have opposite signs, and that at
least one of them is nonzero. But this is a direct consequence of Definition 3.3. �

Now we are able to apply Theorem 2.3 to the optimization problem (11).

Corollary 3.5 Let the assumptions of Theorem 3.4 be satisfied. Then there exists a neigh-
bourhood U of x∗ and a semismooth function G : U → Rn+m, x 7→

(
y(x), λ(x)

)
such that

Φ(x, G(x)) = 0 holds for all x ∈ U . In particular, the mapping x 7→ y(x) is semismooth.

Proof. The existence and semismoothness of the implicit function x 7→ G(x) =(
y(x), λ(x)

)
is an immediate consequence of Theorems 2.3 and 3.4. Using Lemma 2.2,

this, in particular, implies the local semismoothness of the mapping x 7→ y(x). �

We now get back to our GNEP and the mapping Vγ defined in (5). The following is the
main result of this section.

Theorem 3.6 Let x∗ be a solution of the generalized Nash equilibrium problem, and as-
sume that LICQ holds at yγ(x

∗). Then Vγ is an SC1-function in a neighbourhood of x∗.

Proof. In view of the introductory remarks of this section, we have to show that the
mapping x 7→ yγ(x) is semismooth in a neighbourhood of x∗. By definition, yγ(x) is the
solution of the optimization problem

max
y

Ψγ(x, y) s.t. y ∈ X := {y ∈ Rn | g(y) ≤ 0}, (17)

cf. (6). This is an optimization problem of the form (11) with f(x, y) := −Ψγ(x, y).
Here, the mapping f is uniformly convex with respect to y due to the regularization
term in the definition of the regularized Nikaido-Isoda-function and the assumed convexity
of the mappings θν with respect to the variables xν . Corollary 3.5 therefore gives the
semismoothness of the mapping x 7→ yγ(x) provided that the strong regularity assumption
holds at

(
x∗, yγ(x

∗), λγ(x
∗)

)
, where yγ(x

∗) denotes the solution of problem (17) with x = x∗

and λγ(x
∗) is the corresponding unique (due to LICQ) multiplier.

Since LICQ holds at yγ(x
∗), it suffices to show that the Hessian (with respect to y) of

the corresponding Lagrangian

Lγ(x, y, λ) = −Ψγ(x, y) +
m∑

i=1

λigi(y)
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is positive definite at (x, y, λ) =
(
x∗, yγ(x

∗), λγ(x
∗)

)
, see the comments after Definition 3.3.

However, we already observed that −Ψγ(x, y) is uniformly convex with respect to y, hence
its Hessian is (uniformly) positive definite. Furthermore, ∇2gi(yγ(x

∗)) is positive semidef-
inite due to the assumed convexity of the functions gi. Hence the assertion follows from
the fact that λ = λγ(x

∗) is nonnegative (as a multiplier corresponding to an inequality
constraint). �

Note that, if, in addition to the assumptions of Theorem 3.6, strict complementarity holds
at yγ(x

∗), then yγ is continuously differentiable and Vγ is a C2-function in a neighbourhood
of x∗. This follows directly from the previous derivation by using the standard implicit
function theorem in place of Theorem 2.3.

Furthermore, we would like to point out that the assertion of Theorem 3.6 holds at all
x ∈ Rn such that LICQ is satisfied at yγ(x).

4 Newton-type Methods

In view of Theorem 3.6, both the constrained optimization reformulation (8) and the
unconstrained reformulation (9) of the GNEP are SC1 optimization problems. Hence it is
reasonable to believe that locally superlinearly convergent Newton-type methods can be
derived for the solution of GNEPs via the solution of these optimization problems. Here
we focus on the unconstrained reformulation (9) and show that one can indeed expect local
fast convergence of a nonsmooth Newton-type method under suitable assumptions. The
constrained reformulation (8) will be considered in a separate paper.

The nonsmooth Newton-type method from [32, 31] for the minimization of the uncon-
strained function Vαβ from (10) is an iterative procedure of the form

xk+1 := xk + dk, k = 0, 1, 2, . . . , (18)

where x0 ∈ Rn is a starting point and dk is a solution of the linear system

Hkd = −∇Vαβ(xk) for some Hk ∈ ∂2Vαβ(xk), (19)

where ∂2Vαβ(xk) denotes the generalized Hessian of Vαβ at xk in the sense of [18], i.e.,
∂2Vαβ(xk) is the generalized Jacobian in the sense of Clarke [3] of the locally Lipschitz
mapping F := ∇Vαβ.

In order to compute the gradient and (generalized) Hessian matrix of the mapping Vαβ,
we need several (partial) derivatives of the mapping Ψγ from (4). These derivatives are
summarized in the following result whose proof is omitted since it follows from standard
calculus rules.

Lemma 4.1 The mapping Ψγ from (4) is twice continuously differentiable with (partial)
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derivatives

∇xΨγ(x, y) =
N∑

ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν , x−ν)

]
+

 ∇x1θ1(y
1, x−1)

...
∇xN θN(yN , x−N)

− γ(x− y),

∇yΨγ(x, y) = −

 ∇x1θ1(y
1, x−1)

...
∇xN θN(yN , x−N)

 + γ(x− y),

∇2
xxΨγ(x, y) =

N∑
ν=1

[
∇2θν(x

ν , x−ν)−∇2θν(y
ν , x−ν)

]

+

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θN(yN , x−N)

...
. . .

...
∇2

xNx1θ1(y
1, x−1) · · · ∇2

xNxN θN(yN , x−N)


+

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θ1(y

1, x−1)
...

. . .
...

∇2
xNx1θN(yN , x−N) · · · ∇2

xNxN θN(yN , x−N)


−diag

 ∇2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(yN , x−N)

− γI,

∇2
xyΨγ(x, y) = −

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θN(yN , x−N)

...
. . .

...
∇2

xNx1θ1(y
1, x−1) · · · ∇2

xNxN θN(yN , x−N)


+diag

 ∇2
x1x1θ1(y

1, x−1)
. . .

∇xNxN θN(yN , x−N)

 + γI,

∇2
yxΨγ(x, y) = ∇2

xyΨγ(x, y)T

= −

 ∇2
x1x1θ1(y

1, x−1) · · · ∇2
x1xN θ1(y

1, x−1)
...

. . .
...

∇2
xNx1θN(yN , x−N) · · · ∇2

xNxN θN(yN , x−N)


+diag

 ∇2
x1x1θ1(y

1, x−1)
. . .

∇xNxN θN(yN , x−N)

 + γI,

∇2
yyΨγ(x, y) = −diag

 ∇2
x1x1θ1(y

1, x−1)
. . .

∇2
xNxN θN(yN , x−N)

− γI.
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We next consider the problem of how to implement the nonsmooth Newton-type method.
To this end, we have to compute, at each iterate xk, an element Hk ∈ ∂2Vαβ(xk). Since
this is not an easy task, we first assume that Vα and Vβ are both twice continuously
differentiable at xk, hence Vαβ is twice continuously differentiable at x := xk with Hessian

∇2Vαβ(x) = ∇2Vα(x)−∇2Vβ(x). (20)

Hence we need to calculate the Hessians ∇2Vγ(x) for γ ∈ {α, β}. Therefore, let γ ∈ {α, β}
be fixed and recall that Vγ is given by (5) with gradient ∇Vγ(x) = ∇xΨγ

(
x, yγ(x)

)
, cf. (7),

where yγ(x) denotes the solution of the optimization problem (6). Using the chain rule,
we therefore get

∇2Vγ(x) = ∇2
xxΨγ

(
x, yγ(x)

)
+∇2

xyΨγ

(
x, yγ(x)

)
Dyγ(x), (21)

where Dyγ(x) ∈ Rn×n denotes the usual Jacobian (with respect to x) of the mapping yγ.
Expressions for the matrices ∇2

xxΨγ

(
x, yγ(x)

)
and ∇2

xyΨγ

(
x, yγ(x)

)
are given in Lemma

4.1. At a nondifferentiable point, we have the following result.

Lemma 4.2 The following inclusion holds at an arbitrary point x ∈ Rn:

∇2
xxΨγ(x, yγ(x)) +∇2

xyΨγ(x, yγ(x))∂Byγ(x) ⊆ ∂2
BVγ(x).

Proof. Let x ∈ Rn be arbitrarily given, and let Y ∈ ∂Byγ(x). Then there is a sequence
{ξk} → x such that yγ is differentiable at each ξk and Dyγ(ξ

k) → Y for k →∞. Then the
representation (7) of ∇Vγ shows that Vγ is twice differentiable at each ξk, and we therefore
obtain, taking the continuity of yγ and the twice continuous differentiability of Ψγ into
account:

∇2Vγ(ξ
k) = ∇2

xxΨγ(ξ
k, yγ(ξ

k)) +∇2
xyΨγ(ξ

k, yγ(ξ
k))Dyγ(ξ

k)

→ ∇2
xxΨγ(x, yγ(x)) +∇2

xyΨγ(x, y(x))Y.

This shows that the right-hand side belongs to ∂2
BVγ(x). �

Hence we only need to consider the computation of ∂Byγ(x). By definition, yγ(x) is the
unique solution of the optimization problem

min
y
−Ψγ(x, y) s.t. y ∈ X :=

{
y ∈ Rn | g(y) ≤ 0

}
.

Assume that LICQ holds at yγ(x), and let

Lγ(x, y, λ) := −Ψγ(x, y) +
m∑

i=1

λigi(y)
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be the Lagrangian of this optimization problem. Since LICQ holds at yγ(x), it follows
that there exist unique multipliers λγ(x) such that the following KKT conditions hold at
(x, y, λ) =

(
x, yγ(x), λγ(x)

)
:

∇yLγ(x, y, λ) = 0, λ ≥ 0, g(y) ≤ 0, λT g(y) = 0.

Here we have

∇yLγ(x, y, λ) = −∇yΨγ(x, y) +
m∑

i=1

λi∇gi(y).

Therefore, assuming, for the moment, that strict complementarity holds, we then ob-
tain from the standard implicit function theorem that the implicit function G(x) :=(
yγ(x), λγ(x)

)
satisfies (locally) the system of equations

Φγ

(
x, G(x)

)
= 0, where Φγ(x, y, λ) :=

(
∇yLγ(x, y, λ)
min{−g(y), λ}

)
. (22)

Differentiating this system therefore gives

0 = DxΦγ(x, G(x)) = DxΦγ(x, G(x)) + D(y,λ)Φγ(x, G(x))DxG(x),

from which we obtain DxG(x) =
(
Dxyγ(x), Dxλγ(x)

)
by solving the linear system

D(y,λ)Φγ(x, G(x))DxG(x) = −DxΦγ(x, G(x)). (23)

Note, however, that we are only interested in the first part of DxG(x) (namely Dxyγ(x))).
This expression for DxG(x) is helpful for the computation of an element from ∂Byγ(x).

Lemma 4.3 Let x ∈ Rn and Θ ∈ π(y,λ)∂BΦγ(x, yγ(x), λγ(x)) be arbitrarily given, where
π(y,λ)∂BΦγ(x, yγ(x), λγ(x)) denotes the projection of the B-subdifferential ∂BΦγ(x, yγ(x), λγ(x))
onto the (y, λ)-space. Suppose that LICQ holds at yγ(x), and let

Y :=
{
Θ−1

}
{1,...,n}×{1,...,n}∇

2
yxΨγ(x, yγ(x)),

where
{
Θ−1

}
{1,...,n}×{1,...,n} denotes the upper left n × n submatrix of Θ−1. Then Y ∈

∂Byγ(x).

Proof. First consider an arbitrary point ξ such that Φγ is differentiable at ξ and LICQ
holds at yγ(ξ). Then, locally, we have Φγ(ξ, yγ(ξ), λγ(ξ)) = 0. As before, differentiation
therefore yields

0 = DxΦγ(ξ, yγ(ξ), λγ(ξ)) + D(y,λ)Φγ(ξ, yγ(ξ), λγ(ξ))

(
Dxyγ(x)
Dxλγ(x)

)
.

Taking a closer look at the function Φγ, we see that

DxΦγ(ξ, yγ(ξ), λγ(ξ)) =

(
−∇2

yxΨγ(ξ, yγ(ξ))
0

)
.
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Noting that D(y,λ)Φγ(ξ, yγ(ξ), λγ(ξ)) is nonsingular in view of LICQ (cf. the proof of The-
orems 3.4, 3.6), we therefore obtain(

Dyγ(x)
Dλγ(x)

)
= −

(
D(y,λ)Φγ(ξ, yγ(ξ), λγ(ξ))

)−1
(
−∇2

yxΨγ(ξ, yγ(ξ))
0

)
=

{(
D(y,λ)Φγ(ξ, yγ(ξ), λγ(ξ))

)−1}
{1,...,n+m}×{1,...,n}∇

2
yxΨγ(ξ, yγ(ξ)).

This implies

Dyγ(x) =
{(

D(y,λ)Φγ(ξ, yγ(ξ), λγ(ξ))
)−1}

{1,...,n}×{1,...,n}∇
2
yxΨγ(ξ, yγ(ξ)). (24)

Now let x ∈ Rn be arbitrarily given and Θ ∈ π(y,λ)∂BΦγ(x, yγ(x), λγ(x)). Then there is a se-
quence {ξk} → x such that Φγ is differentiable at each ξk with D(y,λ)Φγ(ξ

k, yγ(ξ
k), λγ(ξ

k)) →
Θ. Since ∇2

yxΨγ, yγ, and λγ are continuous and all elements in π(y,λ)∂BΦγ(x, yγ(x), λγ(x))
are nonsingular in view of LICQ (see, once again, the proof of Theorems 3.4, 3.6), it follows
from the first part of the proof that

Dyγ(ξ
k) =

{(
D(y,λ)Φγ(ξ

k, yγ(ξ
k), λγ(ξ

k))
)−1}

{1,...,n}×{1,...,n}∇
2
yxΨγ(ξ

k, yγ(ξ
k))

→
{
Θ−1

}
{1,...,n}×{1,...,n}∇

2
yxΨγ(x, yγ(x)).

Consequently, the right-hand side belongs to ∂Byγ(x). �

Note that the element Θ ∈ π(y,λ)∂BΦγ(x, yγ(x), λγ(x)), that is required for the computation
of an element from ∂Byγ(x) in Lemma 4.3, can be computed via Lemma 3.2.

The following is the central local convergence result for our nonsmooth Newton-type
method for the solution of the GNEP.

Theorem 4.4 Let x∗ be a normalized Nash equilibrium of the GNEP such that all elements
V ∈ ∂2Vαβ(x∗) are nonsingular. Then the nonsmooth Newton-type method from (18), (19)
is locally superlinearly convergent to x∗.

Proof. Since Vαβ is an SC1-function in view of Theorem 3.6, the result follows immedi-
ately from [32]. �

There are a number of comments that we would like to add in the following remark.

Remark 4.5 (a) Theorem 4.4 remains true if we replace the assumption that all ele-
ments of ∂2Vαβ(x∗) are nonsingular by the weaker condition that all elements from the
smaller set ∂2

BVαβ(x∗) are nonsingular, where ∂2
BVαβ(x∗) denotes the B-subdifferential

of the locally Lipschitz continuous mapping F (x) := ∇Vαβ(x). This follows immedi-
ately from a result in [31].
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(b) Theorem 4.4 is a local convergence result only. However, since Vαβ is continuously
differentiable, it is easy to globalize this method by either a line search or a trust-
region strategy. These globalized methods typically find a stationary point of Vαβ

only, and a sufficient condition for such a stationary point to be a normalized Nash
equilibrium of the GNEP is given in [17].

(c) Theorem 4.4 gives a local superlinear rate of convergence. It is also possible to get
a locally quadratically convergent method by our approach. To this end, we have to
strengthen Assumption 1.1 to some extend and assume that, in addition, the Hessian
matrices ∇2θν and ∇2gi are locally Lipschitz around a solution x∗ of the GNEP.
Moreover, one has to use another implicit function theorem like the one from Sun
[37] in order to guarantee a local quadratic approximation property (as defined in
[37]) or to modify Theorem 2.3 in a suitable way.

(d) A simple sufficient condition for the nonsingularity of all elements from ∂2Vαβ(x∗)
(or ∂2

BVαβ(x∗)) is as follows: Suppose that the solution x∗ from Theorem 4.4 is lo-
cally unique (for which there are simple sufficient conditions like LICQ and a suitable
second-order condition) and satisfies strict complementarity, i.e., the corresponding
vectors yγ(x

∗) and λγ(x
∗) satisfy the strict complementarity condition. Then the

standard implicit function theorem guarantees that Vαβ is twice continuously differ-
entiable around x∗. Therefore, the local uniqueness of the normalized solution x∗

implies that the Hessian ∇2Vαβ(x∗) is positive definite. Note, however, that this
technique of proof cannot be used in the case where strict complementarity does not
hold, cf. [18] for a counterexample (in a different context).

5 Numerical Results

We implemented a semismooth Newton-type method for the solution of generalized Nash
equilibrium problems via the unconstrained optimization reformulation (9). To this end,
we compute the elements from ∂2

BVαβ(x) in a way outlined in Lemmas 4.2 and 4.3, and
we use a simple Armijo-type line search in order to globalize this method. Moreover, we
switch to the steepest descent direction whenever the generalized Newton direction is not
computable or does not satisfy a sufficient decrease condition. In our experiments, however,
we were always able to take the generalized Newton direction. The method is terminated
whenever Vαβ(xk) ≤ ε with ε := 10−8 and uses the two parameters α = 0.01, β = 0.05 for
the definition of Vαβ. The implementation is done in MATLAB, using the build-in function
fmincon from the Optimization Toolbox in order to calculate yγ(x

k) at each iteration k.

Example 5.1 This test problem is the river basin pollution game taken from [20]. Re-
markably, the problem is solved in one iteration only, see Table 1. This seems to indicate
that our objective function Vαβ is quadratic, though we have not calculated it by hand.
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k xk
1 xk

2 xk
3 Vαβ(xk) ‖∇Vαβ(xk)‖

0 0.0000000000 0.0000000000 0.0000000000 10.297117 0.8614643071
1 21.1448955742 16.0278402662 2.7258866516 0.0000000010 0.0000044546

Table 1: Numerical results for Example 5.1

Example 5.2 This test problem is an internet switching model introduced by Kesselman
et al. [19] and also analysed by Facchinei et al. [8]. We modify this example slightly
and add the additional constraint xν ≥ 0.01, ν = 1, . . . , N in order to avoid possible
domain violations of the utility functions (which contain logarithmic terms). This does
not alter the solution. We set N = 10 (and B = 1 in the description of the model in
[8]) and use the starting point x0 = (0.1, . . . , 0.1)T . The exact solution of this problem
is x∗ = (0.9, . . . , 0.9)T . We only state the first two components of the iteration vector in
Table 2.

k xk
1 xk

2 Vαβ(xk) ‖∇Vαβ(x)‖
0 0.100000 0.100000 0.000512031434 0.0331501603
1 0.092101 0.092101 0.000021749587 0.0068259609
2 0.090046 0.090046 0.000000010343 0.0001459690

Table 2: Numerical results for Example 5.2

Example 5.3 This test problem is the Cournot oligopoly problem with shared constraints
and nonlinear payoff functions as described in Outrata et al. [28, p. 233]. Our results
(using different values for the parameter P from [28]) are given in Table 3. Note that our
solutions are different from those presented in [28]. We therefore checked some additional
termination criteria which showed that our computed solutions seem to be correct.

Example 5.4 Here we solve the electricity market problem suggested by Contreras et al.
[4]. This model involves three power generating companies with one, two, and three power
plants, respectively. We consider the game where restriction is only imposed on the power
production of each power plant, which corresponds to Case Study 1 in [4]. Note that this
is a standard Nash equilibrium problem. The corresponding numerical results are given in
Table 4.

Example 5.5 Here we consider a simple two-player game originally suggested by Rosen [35].
The solution violates strict complementarity. More precisely, our example has the two pay-
off functions

θ1(x1, x2) = 0.5x2
1 − x1x2 and θ2(x1, x2) = x2

2 + x1x2
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k xk
1 xk

2 xk
3 xk

4 xk
5 Vαβ(xk) ‖∇Vαβ(xk)‖

P = 75
0 10.00000 10.00000 10.00000 10.00000 10.00000 2.6786204345 0.43990983
1 11.02142 13.09565 15.14096 16.94890 18.38387 0.0065309982 0.01476791
2 10.40614 13.03456 15.40627 17.38103 18.77081 -0.0000000644 0.00018618

profits 359.0655 472.6096 584.9635 688.6138 773.1191 — —
P = 100

0 10.00000 10.00000 10.00000 10.00000 10.00000 40.1459577318 1.78414125
1 26.21177 28.81211 30.81873 31.84833 31.46531 0.1143197642 0.06811610
2 23.59919 28.67806 32.02794 33.28246 32.41732 0.0000028000 0.00029325
3 23.58896 28.68095 32.02596 33.28957 32.41520 0.0000005150 0.00015646
4 23.58873 28.68424 32.02141 33.28740 32.41821 -0.0000000195 0.00001219

profits 288.9038 392.1367 481.3594 543.9701 571.7381 — —
P = 150

0 10.00000 10.00000 10.00000 10.00000 10.00000 10.1939346932 0.88576221
1 15.43209 17.97838 20.32408 22.22361 23.33434 0.0330976856 0.03454114
2 14.05544 17.79522 20.90496 23.11128 24.13275 0.0000003336 0.00012263
3 14.05014 17.79917 20.90723 23.11018 24.13270 0.0000000225 0.00003063
4 14.05012 17.79836 20.90715 23.11144 24.13290 -0.0000000000 0.00000048

profits 333.6345 451.6328 563.3555 657.3081 720.5298 — —
P = 200

0 10.00000 10.00000 10.00000 10.00000 10.00000 90.0826591342 2.68177086
1 38.41325 40.11679 41.03357 40.81589 39.08101 0.1307246076 0.07614674
2 35.78794 40.74931 42.80285 41.96721 38.69809 -0.0000002203 0.00012314

profits 209.1723 290.5175 358.5510 403.7686 422.5701 — —

Table 3: Numerical results for Example 5.3

and the joint constraints given by

X := {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1}.

The unique normalized Nash equilibrium of this GNEP is x∗ = (1, 0)T and does not
satisfy strict complementarity since an easy calculation shows that yγ(x

∗) = (1, 0)T and
λγ(x

∗) = (0, 0, 1)T , hence strict complementarity does not hold in the second component.
Table 5 shows our results using the starting point x0 := (1, 1)T . We also tried a variety of
other starting points, each of which gives convergence in just one iteration. Hence we still
observe very fast convergence although strict complementarity is violated.

6 Final Remarks and Discussion

We further investigated the properties of suitable optimization reformulations of the gen-
eralized Nash equilibrium problem and showed that these optimization problems are SC1-

21



k xk
1 xk

2 xk
3 Vαβ(xk) ‖∇Vαβ(xk)‖

0 0.000000 0.000000 0.000000 285.800638776273 7.2816852177
1 79.999386 15.420192 10.119499 9.860455473615 1.3148442024
2 46.659109 22.110930 12.341396 0.000000646648 0.0004393538
3 46.654084 22.110549 12.342651 -0.000008339256 0.0104832874

Table 4: Numerical results for Example 5.4

k xk
1 xk

2 Vαβ(xk) ‖∇Vαβ(xk)‖
0 1.000000 1.000000 0.020000000000 0.0400000000
1 1.000000 0.000000 -0.000000000000 0.0000000000

Table 5: Numerical results for Example 5.5 using x0 = (1, 1)T

problems. This paves the way to locally superlinearly convergent methods for the solution
of GNEPs, and one such (Newton-type) method for an unconstrained optimization refor-
mulation was analyzed in some more detail.

We believe that, in the moment, the two most promising approaches for the solution of
GNEPs are

• the Newton-type methods based on the (regularized) Nikaido-Isoda-function as dis-
cussed in this paper and its predecessor [17] (NI-approach for short)

• the Newton-type methods based on a VIP-reformulation as outlined, for example, in
[7, 8] (VIP-approach for short).

Both methods have its advantages and disadvantages. They both allow application of
suitable Newton-type methods in order to get local fast convergence. The NI-approach
is more expensive than the VIP-approach since it requires the solution of a constrained
optimization problem in order to evaluate the mapping Vγ. Hence it is very tempting to say
that the VIP-approach is more promising. On the other hand, the VIP-approach gives local
fast convergence in (x, λ) (with λ being a suitable Lagrange multiplier), whereas the NI-
approach gives local fast convergence in x alone which is a stronger property. Moreover, the
level sets of Vαβ are automatically compact for, e.g., compact strategy sets X, cf. [17], thus
guaranteeing global convergence results, whereas such a nice boundedness property is not
known for Newton-type methods applied to the VIP-approach. Moreover, a globalization
of the VIP-approach from [8] has not been investigated in the literature so far, neither
theoretically nor numerically. This has certainly to be done in the near future in order to
see which approach is really more promising from a practical point of view.

Finally, though this is less important for this paper, we would like to point out that
the NI-approach can also be used for the case of continuous utility functions, whereas
the VI-approach needs these mappings to be continuously differentiable. In such a case,
however, we also have to minimize the (regularized) Nikaido-Isoda function by derivative-
free methods.
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