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1 Introduction

In the past few years, interest in formulating and solving large scale nonlinear mixed comple-
mentarity problems (MCP) has become significant and continues to grow. Many theoretical
algorithms have been postulated with numerical successes being reported for a variety of
them on certain problem classes. Much current research focusses on nonsmooth Newton and
smoothing-type methods, which typically have strong theoretical foundations and perform
quite well on many test examples. On the other hand, the most widely used algorithms
remain those based on successive linearization, which solve linear complementarity subprob-
lems using generalizations of the Lemke pivoting algorithm. These linearization algorithms
were proven locally quadratically convergent, and in practice seem to work extremely well.
However, they typically require strong theoretical assumptions in order to guarantee that
the subproblems are solvable.

The aim of this paper is twofold. First, we give a theoretical framework for the globaliza-
tion of linearization and related algorithms. Second, we apply our theory to one particular
linearization method, namely the PATH solver, to demonstrate viability. In fact, our modi-
fication of the PATH code has better numerical behaviour than all previous versions of this
code.

Merit functions are used extensively in the development of globalization theory and the
implementation of robust algorithms. Broadly speaking, merit functions summarize how
close the current iterate is to a solution of the problem under consideration with a single
number. In complementarity problems and nonlinear systems of equations, the merit func-
tions are normally nonnegative, and zero precisely at a solution to the original problem. Each
merit function is typically used in a globalization strategy that involves searching between
the current iterate and the Newton point (the solution of the linearization).

The classical example of a merit function in nonlinear equation solving is the square
of the two-norm residual that measures the sum of squares of the errors in satisfying the
equations. This merit function has one additional property to those listed above: namely, it
is everywhere differentiable provided that the equation itself is everywhere differentiable.

In complementarity, the two classical merit functions are based on the natural residual
[25] and the normal map [32]. Both the natural residual and the normal map provide
reformulations of the complementarity problem as a system of equations; unfortunately,
the systems and corresponding residual merit functions are nonsmooth. Even with this
drawback, Ralph [30] showed how to construct an extension of the line search procedure
for smooth nonlinear equations that enables fast local convergence of linearization methods
under conditions that are exact generalizations of those required in smooth systems. This
procedure has been implemented and successfully used in the PATH code described in [10,
15].

A key implementational difficulty remains what to do when the linearization subproblem
has no solution. The theory assumes this situation does not happen. In practice, this occurs
frequently, particularly if the user of the code does not provide a good initial starting point.
In nonlinear equations, an algorithm can resort to taking a steepest descent direction for the
merit function, guaranteeing progress toward a stationary point of the merit function. Since
the merit function used in the PATH solver is not guaranteed to be differentiable, heuristics
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need to be implemented to overcome these cases. While these heuristics are quite successful
in practice, this situation is nonetheless unsatisfactory and prone to failure. This paper is
an attempt to provide a theoretically justifiable escape mechanism by using a completely
different merit function for the mixed complementarity problem in conjunction with the
direction generated by a linearization method.

In order to outline the details of the paper, we first recall the definition of the mixed
complementarity problem. Let li ∈ IR ∪ {−∞} and ui ∈ IR ∪ {∞} be given lower and
upper bounds with li < ui for all i ∈ I, where I is used throughout this paper to denote
the index set {1, . . . , n}. Let l and u be the n-dimensional vectors with components li and
ui and assume that F : [l, u] → IRn is a given function, continuously differentiable in a
neighbourhood of the feasible set [l, u]. The mixed complementarity problem consists of
finding a vector x∗ ∈ [l, u] such that exactly one of the following holds:

x∗i = li and Fi(x
∗) > 0,

x∗i = ui and Fi(x
∗) < 0,

x∗i ∈ [li, ui] and Fi(x
∗) = 0.

The first component of this paper, described in Section 2, is a reformulation of the mixed
complementarity problem, based on the Fischer-Burmeister function [17]. This results in an
equivalent nonsmooth system of equations Φ(x) = 0 where the corresponding merit function

Ψ(x) :=
1

2
Φ(x)TΦ(x) =

1

2
‖Φ(x)‖2

is continuously differentiable. This fact, along with other pertinent properties of Ψ is the
subject of Section 3.

In the special case of nonlinear complementarity problems, both Φ and Ψ are used to
design unconstrained algorithms for the solution of the problem. Unfortunately, in many
practical situations, the imposed bounds, l and u, on the variables of the mixed comple-
mentarity problem are important not only for the problem definition but also because the
complementarity function F (or its derivative) may not be defined outside of these bounds.
For example, applications that include fractional powers can cause severe difficulties if the
function is evaluated outside the feasible region.

The basic algorithmic framework of this paper does not consider Φ directly, but instead
attempts to solve the bound constrained optimization reformulation

min Ψ(x) s.t. x ∈ [l, u].

Section 3 also shows that a constrained stationary point is already a solution of the mixed
complementarity problem under exactly the same assumptions that are used in order to
prove a similar result for unconstrained stationary points of Ψ.

In Section 4 we present our algorithmic framework and prove that it is well-defined as
well as globally and locally fast convergent under very weak assumptions. The theory only
assumes a pre-existing feasible method that is locally well-defined and superlinearly con-
vergent; it is not limited to linearization methods or to the PATH solver. Our algorithmic
framework generates iterates that lie within the bounds, resorting to a projected gradient
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step for the bound constrained problem whenever the pre-existing method fails to provide
sufficient decrease. We show, however, that our method remains locally superlinearly con-
vergent.

To demonstrate the practicality of our theory, we give a brief description of an imple-
mentation and computational results for a particular instance of our class of algorithms in
Section 5. The implementation is based on a modification of the PATH solver; the results
indicate that the modified PATH solver is more robust than all previous versions of PATH.

Before proceeding, we give a few words about our notation. If F is any vector-valued
function, we denote its Jacobian at a point x by F ′(x) and let ∇F (x) signify the transposed
Jacobian. The gradient of a real-valued function f will be denoted by ∇f and will always
be viewed as a column vector.

2 Equation Reformulation of MCP

In this section, we first define the mapping Φ, which produces a reformulation of the mixed
complementarity problem as a nonlinear system of equations Φ(x) = 0, and then investigate
the properties of this mapping. These properties are extensions of some known ones for the
standard nonlinear complementarity problem where li = 0 and ui = +∞ for all i ∈ I (see,
in particular, [9, 14]). Our generalizations will be important in the analysis of subsequent
sections.

Let us first define the mapping φ : IR2 → IR by

φ(a, b) :=
√

a2 + b2 − a− b.

This function was introduced by Fischer [17] (and attributed to Burmeister) and is widely
used in the context of nonlinear complementarity problems. The function’s most interesting
property is the fact that it is an NCP-function, i.e.,

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

To use this NCP-function for the solution of the more general mixed complementarity prob-
lem, we first introduce a partition of I:

Il := {i ∈ I | −∞ < li < ui = +∞},
Iu := {i ∈ I | −∞ = li < ui < +∞},
Ilu := {i ∈ I | −∞ < li < ui < +∞},
If := {i ∈ I | −∞ = li < ui = +∞},

i.e., Il, Iu, Ilu and If denote the set of indices i ∈ I where there are finite lower bounds only,
finite upper bounds only, finite lower and upper bounds and no finite bounds on the variable
xi, respectively.

We now follow an idea by Billups [2, 3] and define the operator Φ : IRn → IRn compo-
nentwise as follows:

Φi(x) :=


φ(xi − li, Fi(x)) if i ∈ Il,
−φ(ui − xi,−Fi(x)) if i ∈ Iu,
φ(xi − li, φ(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If .
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The reader may ask why we use the minus sign for indices i ∈ Iu or i ∈ If . In fact, all
results of this paper would be true without the minus sign. However, the following lemma
motivates why we use it in the definition of Φi for i ∈ Iu ∪ If . A different motivation has
recently been given by Billups [3].

Lemma 2.1 Let x ∈ IRn be fixed. Then the following limits hold:

(a) limli→−∞ φ(xi − li, φ(ui − xi,−Fi(x))) = −φ(ui − xi,−Fi(x)).

(b) limui→∞ φ(xi − li, φ(ui − xi,−Fi(x))) = φ(xi − li, Fi(x)).

(c) limli→−∞ limui→∞ φ(xi − li, φ(ui − xi,−Fi(x))) = −Fi(x).

Proof. Let {ak} ⊆ IR be any sequence converging to∞ and let b ∈ IR be any fixed number.
Then

φ(ak, b) =
√

(ak)2 + b2 − ak − b

=

(√
(ak)2 + b2 − (ak + b)

) (√
(ak)2 + b2 + (ak + b)

)
√

(ak)2 + b2 + (ak + b)

=
−2akb√

(ak)2 + b2 + (ak + b)

=
−2b√

1 + (b/ak)2 + 1 + b/ak

→ −b.

From this observation, the three statements follow immediately by simple continuity argu-
ments. 2

To prove the following characterization of the mixed complementarity problem is straight-
forward. The proof is a simple extension of that given in Billups [2, Proposition 3.2.7].

Proposition 2.2 x∗ ∈ IRn is a solution of the mixed complementarity problem if and only
if x∗ solves the nonlinear system of equations Φ(x) = 0.

The function Φ is not differentiable everywhere. However, it is locally Lipschitzian and
therefore has a nonempty generalized Jacobian in the sense of Clarke [8]. We next present
an overestimation of this generalized Jacobian (see Billups [2, Lemma 3.2.10]).

Proposition 2.3 We have

∂Φ(x)T ⊆ {Da(x) +∇F (x)Db(x)},

where Da(x) ∈ IRn×n and Db(x) ∈ IRn×n are diagonal matrices whose diagonal elements are
defined as follows:
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(a) If i ∈ Il, then if (xi − li, Fi(x)) 6= (0, 0),

(Da)ii(x) =
xi − li

‖(xi − li, Fi(x))‖
− 1,

(Db)ii(x) =
Fi(x)

‖(xi − li, Fi(x))‖
− 1

but if (xi − li, Fi(x)) = (0, 0),

((Da)ii(x), (Db)ii(x)) ∈ {(ξ − 1, ρ− 1) ∈ IR2| ‖(ξ, ρ)‖ ≤ 1}.

(b) If i ∈ Iu, then if (ui − xi,−Fi(x)) 6= (0, 0),

(Da)ii(x) =
ui − xi

‖(ui − xi,−Fi(x))‖
− 1,

(Db)ii(x) =
−Fi(x)

‖(ui − xi,−Fi(x))‖
− 1

but if (ui − xi,−Fi(x)) = (0, 0),

((Da)ii(x), (Db)ii(x)) ∈ {(ξ − 1, ρ− 1) ∈ IR2| ‖(ξ, ρ)‖ ≤ 1}.

(c) If i ∈ Ilu, then

(Da)ii(x) = ai(x) + bi(x)ci(x), (Db)ii(x) = bi(x)di(x).

Here, if (xi − li, φ(ui − xi,−Fi(x))) 6= (0, 0),

ai(x) =
xi − li

‖(xi − li, φ(ui − xi,−Fi(x)))‖
− 1,

bi(x) =
φ(ui − xi,−Fi(x))

‖(xi − li, φ(ui − xi,−Fi(x)))‖
− 1

but if (xi − li, φ(ui − xi,−Fi(x))) = (0, 0),

(ai(x), bi(x)) ∈ {(ξ − 1, ρ− 1) ∈ IR2| ‖(ξ, ρ)‖ ≤ 1}.

Further, if (ui − xi,−Fi(x)) 6= (0, 0), then

ci(x) =
xi − ui

‖(ui − xi,−Fi(x))‖
+ 1, di(x) =

Fi(x)

‖(ui − xi,−Fi(x))‖
+ 1

but if (ui − xi,−Fi(x)) = (0, 0),

(ci(x), di(x)) ∈ {(ξ + 1, ρ + 1) ∈ IR2| ‖(ξ, ρ)‖ ≤ 1}.

(d) If i ∈ If , then (Da)ii(x) = 0, (Db)ii(x) = −1.
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Note that the statement of Proposition 2.3 is rather lengthy because we have to take into
account the definition of Φ using the four different index sets Il, Iu, Ilu and If ; its proof is
straightforward and therefore omitted here. However, Proposition 2.3 is extremely important
for our subsequent analysis and will be used several times within the proofs of some important
results established in this and the next section.

The remainder of this section is devoted to proving Theorem 2.7. The motivation for
this result is to establish the local convergence of the algorithm that we propose in Section
4. To that end, let x∗ ∈ IRn be a solution of the mixed complementarity problem and let us
introduce another partition of I:

α := {i | li < x∗i < ui, Fi(x
∗) = 0},

β := {i |x∗i ∈ {li, ui}, Fi(x
∗) = 0},

γ := {i |x∗i ∈ {li, ui}, Fi(x
∗) 6= 0}.

Then we obtain the following result as a simple consequence of Proposition 2.3.

Lemma 2.4 Let x∗ ∈ IRn be a solution of the mixed complementarity problem. Furthermore,
let H ∈ ∂Φ(x∗) be any fixed matrix, H = Da(x

∗) + Db(x
∗)F ′(x∗) with diagonal matrices

Da(x
∗) and Db(x

∗) as specified in Proposition 2.3. Then these diagonal matrices have the
following properties:

(a) (Da)ii(x
∗) = 0 and (Db)ii(x

∗) = −1 for all i ∈ α.

(b) (Da)ii(x
∗) ≤ 0, (Db)ii(x

∗) ≤ 0, and (Da)ii(x
∗) + (Db)ii(x

∗) < 0 for all i ∈ β.

(c) (Da)ii(x
∗) = −1 and (Db)ii(x

∗) = 0 for all i ∈ γ.

Proof. If i ∈ α, then we immediately obtain statement (a) from Proposition 2.3 by consid-
ering the four possible cases i ∈ Il, i ∈ Iu, i ∈ Ilu and i ∈ If separately.

Next consider statement (c), i.e., assume that i ∈ γ. Then we either have x∗i = li and
Fi(x

∗) > 0 or we have x∗i = ui and Fi(x
∗) < 0.

First assume that x∗i = li and Fi(x
∗) > 0. Then the index i necessarily belongs to Il or

to Ilu. If i ∈ Il, we obtain from Proposition 2.3 that (Da)ii(x
∗) = −1 and (Db)ii(x

∗) = 0. On
the other hand, if i ∈ Ilu, we get from Proposition 2.3, together with the observation that
φ(a, b) > 0 outside the nonnegative orthant, that

(Da)ii(x
∗) = ai(x

∗) + bi(x
∗)ci(x

∗) = −1 + 0 · ci(x
∗) = −1

and
(Db)ii(x

∗) = bi(x
∗)di(x

∗) = 0 · di(x
∗) = 0.

The case x∗i = ui and Fi(x
∗) < 0 can be proven in a similar manner. Furthermore,

statement (b) also follows by using an identical argument. 2

We next restate a useful characterization of Robinson’s [31] strong regularity condition in
the context of mixed complementarity problems. A proof may be found in [13]. We stress
that, in the case of a nonlinear complementarity problem (i.e., li = 0 and ui = ∞ for all
i ∈ I), this characterization reduces to a standard characterization from Robinson [31].
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Proposition 2.5 The following two statements are equivalent:

(a) x∗ is a strongly regular solution of the mixed complementarity problem.

(b) The submatrix F ′(x∗)αα is nonsingular, and the Schur-complement

F ′(x∗)α∪β,α∪β(x∗)/F ′(x∗)αα := F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1
ααF ′(x∗)αβ

is a P -matrix.

In order to establish a nonsingularity result for the generalized Jacobian ∂Φ(x∗) at a strongly
regular solution of the mixed complementarity problem, we also need the following result
whose proof can be found in [22, Proposition 2.7], see also [19] for several extensions.

Proposition 2.6 A matrix of the form

Da + DbM

is nonsingular for all negative semidefinite diagonal matrices Da, Db ∈ IRm×m such that
Da + Db is negative definite if and only if M ∈ IRm×m is a P -matrix.

Based on the previous results, we are able to prove the main result of this section.

Theorem 2.7 If x∗ is a strongly regular solution of the mixed complementarity problem,
then all elements H ∈ ∂Φ(x∗) are nonsingular.

Proof. Let H ∈ ∂Φ(x∗). By Proposition 2.3, there exist diagonal matrices Da(x
∗), Db(x

∗) ∈
IRn×n such that

H = Da(x
∗) + Db(x

∗)F ′(x∗). (1)

Hence, if we write

Da(x
∗) =

 (Da)αα(x∗) 0 0
0 (Da)ββ(x∗) 0
0 0 (Da)γγ(x

∗)

 ,

Db(x
∗) =

 (Db)αα(x∗) 0 0
0 (Db)ββ(x∗) 0
0 0 (Db)γγ(x

∗)


and

F ′(x∗) =

 F ′(x∗)αα F ′(x∗)αβ F ′(x∗)αγ

F ′(x∗)βα F ′(x∗)ββ F ′(x∗)βγ

F ′(x∗)γα F ′(x∗)γβ F ′(x∗)γγ


and if we take into account Lemma 2.4, the homogeneous linear system Hd = 0 can be
rewritten as

F ′(x∗)ααdα + F ′(x∗)αβdβ + F ′(x∗)αγdγ = 0α, (2)

(Da)ββ(x∗)dβ + (Db)ββ(x∗) [F ′(x∗)βαdα + F ′(x∗)ββdβ + F ′(x∗)βγdγ] = 0β, (3)

−dγ = 0γ. (4)
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Since dγ = 0 by (4) and F ′(x∗)αα is nonsingular by assumption and Proposition 2.5, we
obtain from (2):

dα = −F ′(x∗)−1
ααF ′(x∗)αβdβ. (5)

Substituting (4) and (5) into (3), we obtain after some rearrangements:

[(Da)ββ(x∗) + (Db)ββ(x∗)(F ′(x∗)α∪β,α∪β/F ′(x∗)αα)] dβ = 0β. (6)

Since the Schur complement F ′(x∗)α∪β,α∪β/F ′(x∗)αα is a P -matrix by assumption and Propo-
sition 2.5 and since, by Lemma 2.4 (b), the diagonal matrices (Da)ββ(x∗) and (Db)ββ(x∗)
are negative semidefinite with a negative definite sum, it follows from Proposition 2.6 that
the coefficient matrix in (6) is nonsingular. Hence we obtain dβ = 0β. This, in turn, implies
dα = 0α by (5). Because of (4), this shows that d = 0 so that H is nonsingular. 2

3 Smooth Merit Function for MCP

We now investigate the properties of the residual merit function

Ψ(x) =
1

2
Φ(x)TΦ(x)

associated with the equation operator Φ.
Despite the fact that Φ is nondifferentiable in general, it turns out that the merit function

Ψ is continuously differentiable everywhere. More precisely, we have the following result.

Proposition 3.1 The function Ψ is continuously differentiable with gradient ∇Ψ(x) =
HTΦ(x) for an arbitrary H ∈ ∂Φ(x).

Proof. The proof is essentially the same as that given for Proposition 3.4 by Facchinei and
Soares [14] for the special case of a nonlinear complementarity problem. 2

We next provide a stationary point result for the unconstrained reformulation

min Ψ(x), x ∈ IRn,

of the mixed complementarity problem. To this end, we need the following characterization
of P0-matrices, see [7] as well as [19] for some generalizations (note the difference between
this result and the related statement in Proposition 2.6).

Proposition 3.2 A matrix of the form

Da + DbM

is nonsingular for all negative definite diagonal matrices Da, Db ∈ IRm×m if and only if
M ∈ IRm×m is a P0-matrix.
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Proposition 3.2 enables us to prove the first major result of this section. In this result and in
the remaining part of this section, we use the short-hand notation ∇F (x∗)ff to denote the
submatrix ∇F (x∗)If If

. A similar notation is used for submatrices and subvectors defined by
other index sets.

Theorem 3.3 Let x∗ ∈ IRn be a stationary point of Ψ. Assume that

(a) the principal submatrix ∇F (x∗)ff is nonsingular, and

(b) the Schur complement ∇F (x∗)/∇F (x∗)ff is a P0-matrix.

Then x∗ is a solution of the mixed complementarity problem.

Proof. Let x∗ be a stationary point of Ψ. Then, by Proposition 3.1, we have

HTΦ(x∗) = ∇Ψ(x∗) = 0 (7)

for an arbitrary H ∈ ∂Φ(x∗). By Proposition 2.3, there exist diagonal matrices Da(x
∗), Db(x

∗) ∈
IRn×n such that

H = Da(x
∗) + Db(x

∗)F ′(x∗).

Therefore, (7) becomes

[Da(x
∗) +∇F (x∗)Db(x

∗)] Φ(x∗) = 0. (8)

Writing

Da(x
∗) =

(
(Da)ff (x

∗) 0
0 (Da)f̄ f̄ (x

∗)

)
,

Db(x
∗) =

(
(Db)ff (x

∗) 0
0 (Db)f̄ f̄ (x

∗)

)
and

∇F (x∗) =

(
∇F (x∗)ff ∇F (x∗)ff̄

∇F (x∗)f̄f ∇F (x∗)f̄ f̄

)
,

where If̄ := I \ If , and taking into account that

(Da)ii(x
∗) = 0 ∀i ∈ If ,

(Db)ii(x
∗) = −1 ∀i ∈ If

by Proposition 2.3, we can rewrite (8) as

−∇F (x∗)ffΦ(x∗)f +∇F (x∗)ff̄ (Db)f̄ f̄ (x
∗)Φ(x∗)f̄ = 0f , (9)

(Da)f̄ f̄ (x
∗)Φ(x∗)f̄ −∇F (x∗)f̄fΦ(x∗)f +∇F (x∗)f̄ f̄ (Db)f̄ f̄ (x

∗)Φ(x∗)f̄ = 0f̄ . (10)

Due to the assumed nonsingularity of ∇F (x∗)ff , we obtain from (9):

Φ(x∗)f = ∇F (x∗)−1
ff∇F (x∗)ff̄ (Db)f̄ f̄ (x

∗)Φ(x∗)f̄ . (11)

Substituting this expression into (10) and rearranging terms gives[
(Da)f̄ f̄ (x

∗) + (∇F (x∗)/∇F (x∗)ff )(Db)f̄ f̄ (x
∗)

]
Φ(x∗)f̄ = 0f̄ . (12)

Since
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(i) the diagonal matrices (Da)f̄ f̄ (x
∗) and (Db)f̄ f̄ (x

∗) have nonpositive entries,

(ii) a diagonal element of (Da)f̄ f̄ (x
∗) or (Db)f̄ f̄ (x

∗) can be zero only if the corresponding
component of Φ(x∗)f̄ is zero, and

(iii) the diagonal matrices (Da)f̄ f̄ (x
∗) and (Db)f̄ f̄ (x

∗) are always postmultiplied by Φ(x∗)f̄

in the system (9), (10),

we can assume without loss of generality that all diagonal entries of Da(x
∗) and Db(x

∗) are
negative. But then Proposition 3.2 and the assumption of our theorem show that the coef-
ficient matrix in (12) is nonsingular. Hence we get Φ(x∗)f̄ = 0f̄ from (12). But then (11)
implies Φ(x∗)f = 0f . Hence Φ(x∗) = 0, i.e., x∗ is a solution of the mixed complementarity
problem by Proposition 2.2. 2

Our next aim is to provide a sufficient condition for a stationary point of the constrained
reformulation of the mixed complementarity problem

min Ψ(x) s.t. x ∈ [l, u] (13)

to be a global minimum. In fact, this result is of much more importance for this paper than
the unconstrained stationary point result given in Theorem 3.3. However, Theorem 3.3 is
of interest on its own and will also be used in order to establish our constrained stationary
point result. Before doing this, we first prove another technical result.

Lemma 3.4 Let x ∈ IRn be arbitrary and H ∈ ∂Φ(x), H = Da(x) + Db(x)F ′(x) with diag-
onal matrices Da(x), Db(x) ∈ IRn×n as defined in Proposition 2.3. Then the following two
statements hold:

(a) For all i ∈ I, [Da(x)Φ(x)]i[Db(x)Φ(x)]i ≥ 0 .

(b) For each i 6∈ If , [Da(x)Φ(x)]i = 0⇐⇒ [Db(x)Φ(x)]i = 0⇐⇒ Φi(x) = 0 .

Proof. (a) By considering the four possible cases i ∈ Il, i ∈ Iu, i ∈ Ilu and i ∈ If , it is easy
to see that (Da)ii(x) ≤ 0 and (Db)ii(x) ≤ 0 for all i ∈ I. Hence

[Da(x)Φ(x)]i[Db(x)Φ(x)]i = (Da)ii(x)(Db)ii(x)Φi(x)2 ≥ 0

for all i ∈ I.

(b) If Φi(x) = 0, we immediately have

[Da(x)Φ(x)]i = 0 and [Db(x)Φ(x)]i = 0.

Conversely, assume that [Da(x)Φ(x)]i = 0 for some index i 6∈ If (the proof is analogous if
[Db(x)Φ(x)]i = 0). Then

(Da)ii(x) = 0 or Φi(x) = 0.

11



In the latter case, there is nothing to show. So suppose that (Da)ii(x) = 0. Due to the
definition of Da(x), we distinguish three cases.

Case 1: i ∈ Il.
If (xi − li, Fi(x)) = (0, 0), then Φi(x) = 0 follows immediately from the definition of the
operator Φ. Otherwise Proposition 2.3 (a) gives

0 = (Da)ii(x) =
xi − li

‖(xi − li, Fi(x))‖
− 1.

This implies xi − li > 0 and Fi(x) = 0, so that Φi(x) = 0 in view of the very definition of Φ
and the NCP-property of the function φ.

Case 2: i ∈ Iu.
The proof of this case is very similar to the one given for Case 1 and we therefore omit the
details.

Case 3: i ∈ Ilu.
If (xi−li, φ(ui−xi,−Fi(x)) = (0, 0), we are done. So assume that (xi−li, φ(ui−xi,−Fi(x)) 6=
(0, 0). Then Proposition 2.3 (c) gives

0 = (Da)ii(x) = ai(x) + bi(x)ci(x) (14)

with certain numbers ai(x), bi(x) and ci(x) specified in Proposition 2.3 (c). Since it follows
immediately from this Proposition that

ai(x) ≤ 0, bi(x) ≤ 0 and ci(x) ≥ 0,

the right-hand side of (14) is the sum of two nonpositive expressions which can therefore be
equal to zero only if ai(x) = 0. This, however, implies xi− li > 0 and φ(ui− xi,−Fi(x)) = 0
in view of the definition of ai(x) given in Proposition 2.3 (c). Hence Φi(x) = 0 by the NCP-
property of the function φ. 2

Note that Lemma 3.4 (b) does not hold for indices i ∈ If since (Db)ii(x) = −1 for all i ∈ If

in view of Proposition 2.3 (d).
We are now able to prove the main result of this section.

Theorem 3.5 Let x∗ ∈ IRn be a stationary point of the constrained reformulation (13) of
the mixed complementarity problem. Assume that

(a) the principal submatrix ∇F (x∗)ff is nonsingular, and

(b) the Schur complement ∇F (x∗)/∇F (x∗)ff is a P0-matrix.

Then x∗ is a solution of the mixed complementarity problem.

12



Proof. Since x∗ is a stationary point of the reformulation (13), it satisfies the following
conditions (which themselves form a mixed complementarity problem):

x∗i = li =⇒ [∇Ψ(x∗)]i ≥ 0,
x∗i = ui =⇒ [∇Ψ(x∗)]i ≤ 0,

x∗i ∈ (li, ui) =⇒ [∇Ψ(x∗)]i = 0.
(15)

The main part in proving that x∗ is already a solution of the mixed complementarity problem
consists in showing that we actually have [∇Ψ(x∗)]i = 0 for all i ∈ I.

The proof is by contradiction, so assume that ∇Ψ(x∗) 6= 0. Since ∇Ψ(x∗) can be written
as

∇Ψ(x∗) = HTΦ(x∗) = Da(x
∗)Φ(x∗) +∇F (x∗)Db(x

∗)Φ(x∗)

for a matrix H ∈ ∂Φ(x∗) and certain diagonal matrices Da(x
∗), Db(x

∗) ∈ IRn×n by Proposi-
tions 2.3 and 3.1, and since we necessarily have

[∇Ψ(x∗)]f = 0f

because of (15), we can follow the argument used in the proof of Theorem 3.3 in order to
show that

Φ(x∗)f = ∇F (x∗)−1
ff∇F (x∗)ff̄ (Db)f̄ f̄ (x

∗)Φ(x∗)f̄ .

Substituting this into the expression for [∇Ψ(x∗)]f̄ and rearranging terms, we obtain

[∇Ψ(x∗)]f̄ = (Da)f̄ f̄ (x
∗)Φ(x∗)f̄ + (∇F (x∗)/∇F (x∗)ff )(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ . (16)

Since ∇Ψ(x∗) 6= 0 by assumption, there exists an index i ∈ If̄ such that either

x∗i = li and [∇Ψ(x∗)]i > 0 (17)

or
x∗i = ui and [∇Ψ(x∗)]i < 0. (18)

Now it follows easily from Proposition 2.3 that if x∗i = li, then

[(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i ≤ 0

and that if x∗i = ui,
[(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i ≥ 0.

Therefore, if we premultiply [∇Ψ(x∗)]i in (17) and (18) by [(Db)f̄ f̄Φ(x∗)f̄ ]i and substitute
the ith component from the expression (16) for [∇Ψ(x∗)]i, we obtain in both cases that

[(Da)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i[(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i+

[(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i[(∇F (x∗)/∇F (x∗)ff )(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i ≤ 0. (19)

Note that this inequality holds for all indices i ∈ If̄ such that [∇Ψ(x∗)]i 6= 0. In addition,
we can show in a similar way that the equality

[(Da)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i[(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i+

[(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i[(∇F (x∗)/∇F (x∗)ff )(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i = 0 (20)
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holds for all indices i ∈ If̄ with [∇Ψ(x∗)]i = 0.
Since ∇Ψ(x∗) 6= 0 by assumption and since we already know that [∇Ψ(x∗)]f = 0, it

follows immediately from (16) and Lemma 3.4 (b) that (Db)f̄ f̄ (x
∗)Φ(x∗)f̄ is a nonzero vector.

Therefore, since the Schur complement ∇F (x∗)/∇F (x∗)ff is a P0-matrix by assumption,
there exists an index i0 ∈ If̄ such that

[(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i0 6= 0 and

[(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i0 [(∇F (x∗)/∇F (x∗)ff )(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i0 ≥ 0. (21)

Now Lemma 3.4 (a), (19), (20) and (21) imply that

0 = [(Da)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i0 [(Db)f̄ f̄ (x

∗)Φ(x∗)f̄ ]i0

and therefore [(Db)f̄ f̄ (x
∗)Φ(x∗)f̄ ]i0 = 0 by Lemma 3.4 (b). This, however, contradicts the

choice of the index i0 in (21).
Hence we must have ∇Ψ(x∗) = 0, so that Theorem 3.3 gives the desired result that x∗ is

a solution of the mixed complementarity problem. 2

We note that, if we apply the main results of this section to the standard nonlinear com-
plementarity problem, then we obtain some known properties of the merit function Ψ, see
[9, 14, 18]. We also believe that appropriate modifications of the above theory will enable
us to use other merit functions such as those described in [6, 29, 35].

4 Algorithmic Framework

In this section, we present our class of algorithms for the solution of the mixed comple-
mentarity problem and the corresponding global and local convergence theory. In our class
of methods, we assume we have a basic algorithm, let us call it Algorithm A, with the
following two properties:

(a) Given any point xk ∈ [l, u], if Algorithm A is able to compute a search direction
dk ∈ IRn, then this direction satisfies xk + dk ∈ [l, u];

(b) Given any sequence {xk} converging to a strongly regular solution x∗ of the mixed
complementarity problem, Algorithm A is able to compute a search direction dk for all
xk sufficiently close to x∗, and this direction has the property that ‖xk + dk − x∗‖ =
o(‖xk − x∗‖).

Property (a) is a very weak assumption; it does not even assume that Algorithm A is able
to do anything at an arbitrary given point xk (e.g., Algorithm A might not be well-defined
due to inconsistent subproblems). However, if Algorithm A is able to compute a search
direction, we assume that it computes a search direction such that, if we take the full step,
then the new point xk + dk stays in the feasible set [l, u]. Note that, due to the convexity of
our feasible set [l, u], this guarantees that all the points xk + tkd

k, tk ∈ [0, 1] are feasible, too.
On the other hand, property (b) states that, under Robinson’s strong regularity condition,
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Algorithm A is locally well-defined and generates a locally superlinearly convergent search
direction. Hence we view Algorithm A as a feasible and locally superlinearly convergent
method for the solution of the mixed complementarity problem. Note, however, that the
above two conditions say nothing about the way in which we generate the sequence {xk}.

Several methods satisfy the above two conditions. For example, one may take the
Josephy-Newton method as Algorithm A, see Josephy [20, 26]. Alternatively, the method
suggested by Ralph [30] has these two properties. Note that this method is the basis for the
PATH solver by Dirkse and Ferris [10], to which we will come back in our numerical section.
The NE/SQP method by Pang and Gabriel [28] is another possible candidate for Algorithm
A as is the inexact QP-based solver by Kanzow [21] (these two methods have been used
to solve the standard complementarity problem only, but it is not difficult to extend both
methods to mixed complementarity problems, see, e.g., [2, 4]).

Our class of algorithms globalizes Algorithm A as follows. We use the merit function
Ψ to measure any progress. If the point generated by Algorithm A has a function value of
Ψ sufficiently smaller than the previous one, it is accepted as the new iterate. Otherwise a
projected gradient step for our smooth merit function Ψ is taken. In this way, we guarantee
that all iterates stay in the feasible set [l, u]. In effect, our class of methods is an algorithmic
framework for the solution of the box constrained optimization problem

min Ψ(x) s.t. x ∈ [l, u]. (22)

We now give a detailed statement of our class of methods, where the projection of an
arbitrary point z ∈ IRn on the feasible set [l, u] is denoted by [z]+.

Algorithm 4.1 (General Descent Framework)

(S.0) (Initialization)
Choose x0 ∈ [l, u], s > 0, β ∈ (0, 1), γ ∈ (0, 1) and set k := 0.

(S.1) (Termination Criterion)
If xk is a stationary point of (22): STOP.

(S.2) (Compute Fast Search Direction)
Use Algorithm A to compute a search direction dk. If this is not possible or if the
condition

Ψ(xk + dk) ≤ γΨ(xk) (23)

is not satisfied, go to Step (S.4), else go to Step (S.3).

(S.3) (Accept Fast Search Direction)
Set xk+1 := xk + dk, k ← k + 1, and go to Step (S.1).

(S.4) (Take Projected Gradient Step)
Compute tk = max{sβ`| ` = 0, 1, 2, . . .} such that

Ψ(xk(tk)) ≤ Ψ(xk)− σ∇Ψ(xk)T (xk − xk(tk)), (24)

where xk(t) := [xk − t∇Ψ(xk)]+. Set xk+1 := xk(tk), k ← k + 1, and go to Step (S.1).
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Other methods have attempted to use projected gradient steps in conjunction with steps
that give fast local convergence. See for example, Ferris and Ralph [16]. Unfortunately,
these hybrid algorithms are difficult to implement and numerical testing has therefore only
been carried out on small test examples. A key difference in the approach outlined here is
that the implementation can be achieved as a minor modification of an existing code.

We now investigate the convergence properties of our class of methods 4.1. To this end,
we always assume implicitly that Algorithm 4.1 does not terminate in a finite number of
steps, i.e., none of the iterates xk is a stationary point of (22).

We begin with the global convergence analysis that consists of two parts. We first show
that the algorithm is well-defined, and then we prove that any accumulation point of a
sequence {xk} generated by Algorithm 4.1 is at least a stationary point of the bound con-
strained optimization problem

min Ψ(x) s.t. x ∈ [l, u]. (25)

Recall that Theorem 3.5 gives a relatively mild condition for a stationary point of (25) to be
a solution of the mixed complementarity problem.

Theorem 4.2 Algorithm 4.1 is well-defined for an arbitrary mixed complementarity problem
with a continuously differentiable function F defined on an open set containing the rectangle
[l, u].

Furthermore, every accumulation point of a sequence {xk} generated by Algorithm 4.1 is
a stationary point of (25).

Proof. To prove the algorithm is well-defined, we only have to show that the projected
gradient step can be carried out at each iteration, i.e., that we can always find a finite
steplength tk > 0 satisfying condition (24). However, since we assume that none of the
iterates xk is a stationary point of (22), this follows, e.g., from Proposition 2.3.3 (a) in
Bertsekas [1].

For the second part of the theorem, let x∗ be a stationary point of the sequence {xk},
and assume that {xk}K is a subsequence converging to x∗. Suppose there are infinitely many
k ∈ K such that xk+1 is generated by using a projected gradient step for all these k. Since
the iterates xk belong to the feasible set [l, u] for all k ∈ IN and since the sequence {Ψ(xk)}
is monotonically decreasing, it is not difficult to see that the proof of Proposition 2.3.3 (b) in
Bertsekas [1] can be adapted in a straightforward manner to establish that x∗ is a stationary
point of the constrained reformulation (25).

Hence we can assume without loss of generality that all iterates k ∈ K satisfy the descent
condition (23). Due to the monotone decrease of the sequence {Ψ(xk)}, this implies that the
entire sequence {Ψ(xk)} converges to 0. In particular, in view of the definition of our merit
function, we see that the accumulation point x∗ is a solution of the mixed complementarity
problem and hence also a stationary point of problem (25). 2

We next want to show that Algorithm 4.1 is locally Q-superlinearly convergent under Robin-
son’s [31] strong regularity condition.
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The proof is in two parts. We first show that the entire sequence generated by Algorithm
4.1 converges to a solution x∗ if this solution satisfies the strong regularity assumption. The
critical tool to establish this result is the following proposition of Moré and Sorensen [27].

Proposition 4.3 Assume that x∗ is an isolated accumulation point of a sequence {xk} (not
necessarily generated by Algorithm 4.1) such that {‖xk+1 − xk‖}K → 0 for any subsequence
{xk}K converging to x∗. Then the whole sequence {xk} converges to x∗.

Once convergence is established, we then determine the rate of convergence. The basic
device used to show Q-superlinear convergence of our class of methods given in 4.1 is to
prove that eventually there are no projected gradient steps, so our method inherits the local
convergence properties of the locally superlinearly convergent Algorithm A used in Step (S.2)
of Algorithm 4.1. To simplify the proof, we invoke the following proposition from [23] (see
also [14] for a similar result).

Proposition 4.4 Let G : IRn → IRn be locally Lipschitzian, x∗ ∈ IRn with G(x∗) = 0 be
such that all elements in ∂G(x∗) are nonsingular, and assume that there are two sequences
{xk} ⊆ IRn and {dk} ⊆ IRn (not necessarily generated by Algorithm 4.1) with {xk} → x∗

and ‖xk + dk − x∗‖ = o(‖xk − x∗‖). Then ‖G(xk + dk)‖ = o(‖G(xk)‖).

We are now in the position to state our main local convergence result for Algorithm 4.1. The
convergence rate established here depends critically on the main result of Section 2, namely
Theorem 2.7.

Theorem 4.5 Let {xk} ⊆ IRn be a sequence generated by Algorithm 4.1. Assume that this
sequence has an accumulation point x∗ which is a strongly regular solution of the mixed
complementarity problem. Then the entire sequence {xk} converges to this point, and the
rate of convergence is Q-superlinear.

Proof. To establish convergence, we first note that a strongly regular solution is an isolated
solution of the mixed complementarity problem, see [31]. Since Algorithm 4.1 generates a
decreasing sequence {Ψ(xk)} and x∗ is a solution of the mixed complementarity problem, the
entire sequence {Ψ(xk)} converges to zero. Hence every accumulation point of the sequence
{xk} must be a solution of the mixed complementarity problem. Therefore, the assumed
strong regularity of x∗ implies that x∗ is an isolated accumulation point of the sequence
{xk}.

Now let {xk}K denote any subsequence converging to x∗. Assume first that we take a
projected gradient step for all k ∈ K. Then we obtain, using the nonexpansive property of
the projection operator:

‖xk+1 − xk‖ = ‖xk(tk)− xk‖
= ‖[xk − tk∇Ψ(xk)]+ − xk‖
= ‖[xk − tk∇Ψ(xk)]+ − [xk]+‖
≤ ‖tk∇Ψ(xk)‖
≤ s‖∇Ψ(xk)‖
→ 0

(26)
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since x∗ solves the mixed complementarity problem so that x∗ is a global minimizer and
hence a stationary point of our merit function Ψ.

On the other hand, if we calculate the search direction dk by using Algorithm A for
infinitely many k ∈ K, our assumptions on Algorithm A and the assumed strong regularity
imply that {dk} → 0 on this infinite subsequence, so that the updating rules from Algorithm
4.1 show that

‖xk+1 − xk‖ = ‖dk‖ → 0 (27)

on this subsequence. Combining (26) and (27), we immediately obtain that

{‖xk+1 − xk‖}K → 0.

Hence the assumptions of Proposition 4.3 are satisfied, and convergence follows from that
result.

In order to establish the Q-superlinear rate, we note that the strong regularity of the
solution x∗ and Theorem 2.7 show that all elements in ∂Φ(x∗) are nonsingular. Since, in
view of our assumptions about the search directions dk generated by Algorithm A, we have
‖xk + dk − x∗‖ = o(‖xk − x∗‖) for these search directions, Proposition 4.4 implies that

‖Φ(xk + dk)‖ = o(‖Φ(xk)‖)

and therefore
Ψ(xk + dk) = o(Ψ(xk)).

This shows that the descent condition

Ψ(xk + dk) = γΨ(xk)

is eventually satisfied in Step (S.2) of Algorithm 4.1, i.e., for all k ∈ IN sufficiently large,
Algorithm 4.1 does not take any projected gradient steps. Hence Algorithm 4.1 has the same
local convergence properties as Algorithm A. Since xk+1 = xk + dk, this means that {xk}
converges Q-superlinearly to x∗. 2

Obviously, if the basic Algorithm A is locally Q-quadratically convergent, the class of Al-
gorithms given in 4.1 is also locally Q-quadratically convergent. Typically, this holds if we
assume in addition that the Jacobian of F is locally Lipschitzian.

5 Computational Results

The computational results in this section were carried out by extending the PATH 3.0 solver
to allow use of a different merit function and projected gradient steps. The coding was
done in ANSI-C and enabled these extensions based on setting the option merit function

fischer.
The PATH solver is described in detail in [10, 15]. The code is extensively used by

economists for solving general equilibrium problems and is well known to be robust and effi-
cient on the majority of the mixed complementarity problems it encounters. The algorithm
successively linearizes the normal map [32] associated with the MCP, defined by

F ([y]+) + y − [y]+
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where [y]+ represents the projection of y onto [l, u] in the Euclidean norm, thereby gener-
ating a sequence of linear mixed complementarity problems. These subproblems are solved
by generating a path between the current iterate and the solution of the linear subproblem;
the precise details of this generation scheme can be found for example in [10]. A nonmono-
tone backtracking search is performed on this path to garner sufficient decrease in its merit
function, the norm of the residual of the normal map. It is known that the solutions of the
subproblem will eventually provide descent for the merit function and that local superlinear
or quadratic convergence will occur under appropriate conditions. A crash procedure [12] is
used to quickly identify an approximation to the active set at the solution; this is based on
a projected Newton step for the normal map, but the direction produced is not known to be
a descent direction for the merit function used.

The PATH 3.0 code was modified to incorporate the extensions that are outlined in this
paper. Two implementational points are of interest. Firstly, a backtracking search was
implemented instead of the simple test given as (23). This search inspected points that form
the following arc, parametrized by t ∈ (0, 1]:

[xk + t(xN − xk)]+

where xN is the projection of yN , the solution of the linearized normal map, onto [l, u]. Note
that, in general, this is not the line segment joining xk to xN . A projected gradient step was
only taken if suitable descent did not occur for some minimum steplength allowed. This line
search was chosen to be consistent with that used in the projected gradient step given as
(24). Secondly, the gradient of the merit function required for (24) was calculated using the
formulas detailed in Propositions 3.1 and 2.3.

In the following two tables, we give the number of successes and failures of our new code,
PATH-FB, and the PATH 3.0 code from all starting points in the MCPLIB collection of
test problems [11]. Two tables are presented by splitting the problems into standard MCP
models (Table 1) and models that were generated using the MPSGE preprocessor [33, 34]
in GAMS (Table 2). In order to condense the information in Table 1, we have grouped
several similar models together whenever this grouping results in no loss of information; for
example, problems colvdual and colvnlp are grouped together as example colv* in Table
1.

It was noted in [15] that restarting PATH 3.0 from the user provided starting point
after the algorithm failed to find a solution on the first attempt significantly improved the
robustness of the code. In the results reported in Table 1, we use exactly the same restart
parameter settings in both codes (see [15]), with the exception that the PATH-FB code is
able to carry out at most 5 projected gradient steps when the direction provided by the
linear subproblem is poor. This factor can be changed by setting the gradient step limit

option to a suitable constant. Since the merit function in PATH 3.0 is nonsmooth, there is
no possibility of carrying out a similar scheme in this code. We note that several heuristic
procedures were described and tested in [12]; all of these appear not to be beneficial to
PATH.

MPSGE models are generated differently by GAMS [5], and thus a solver can distinguish
them from general MCP models. We have used this information to choose different default
options for MPSGE models both in PATH 3.0 and PATH-FB. For PATH-FB, by default there
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Problem Without Restarts With Restarts
PATH 3.0 PATH-FB PATH 3.0 PATH-FB

asean9a,hanson 3(0) 3(0) 3(0) 3(0)
badfree,degen,qp 3(0) 3(0) 3(0) 3(0)
bert oc 4(0) 4(0) 4(0) 4(0)
bertsekas,gafni 9(0) 9(0) 9(0) 9(0)
billups 0(3) 0(3) 0(3) 0(3)
bishop 1(0) 1(0) 1(0) 1(0)
bratu,obstacle 9(0) 9(0) 9(0) 9(0)
choi,nash 5(0) 5(0) 5(0) 5(0)
colv* 10(0) 10(0) 10(0) 10(0)
cycle,explcp 2(0) 2(0) 2(0) 2(0)
duopoly 0(1) 0(1) 1(0) 1(0)
ehl k* 6(6) 7(5) 11(1) 12(0)
electric 0(1) 0(1) 1(0) 1(0)
force* 2(0) 2(0) 2(0) 2(0)
freebert 7(0) 7(0) 7(0) 7(0)
games 16(9) 25(0) 23(2) 25(0)
hanskoop 10(0) 10(0) 10(0) 10(0)
hydroc*,methan08 3(0) 3(0) 3(0) 3(0)
jel,jmu 3(0) 3(0) 3(0) 3(0)
josephy,kojshin 15(1) 16(0) 16(0) 16(0)
lincont 1(0) 1(0) 1(0) 1(0)
mathi* 11(2) 13(0) 13(0) 13(0)
ne-hard 1(0) 1(0) 1(0) 1(0)
opt cont* 5(0) 5(0) 5(0) 5(0)
pgvon* 6(4) 4(6) 6(4) 6(4)
pies 1(0) 1(0) 1(0) 1(0)
powell* 12(0) 12(0) 12(0) 12(0)
scarf* 12(0) 11(1) 12(0) 12(0)
shubik 38(10) 41(7) 48(0) 47(1)
simple-* 1(1) 1(1) 1(1) 1(1)
sppe,tobin 7(0) 7(0) 7(0) 7(0)
tinloi 56(8) 55(9) 63(1) 63(1)
trafelas 2(0) 2(0) 2(0) 2(0)
Total 261(46) 273(34) 295(12) 297(10)

Table 1: Results for regular models
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Problem Without Restarts With Restarts
PATH 3.0 PATH-FB PATH 3.0 PATH-FB

box 340(21) 359(2) 355(6) 361(0)
denmark 31(9) 40(0) 40(0) 40(0)
eppa 8(0) 8(0) 8(0) 8(0)
eta2100 1(0) 1(0) 1(0) 1(0)
mrtmge 0(1) 1(0) 0(1) 1(0)
multi-v 3(0) 3(0) 3(0) 3(0)
olg 0(1) 1(0) 1(0) 1(0)
romer 0(1) 0(1) 0(1) 1(0)
trade12 2(0) 2(0) 2(0) 2(0)
uruguay 7(0) 7(0) 7(0) 7(0)
Total 392(33) 422(3) 417(8) 425(0)

Table 2: Results for MPSGE models

is no crash, we use a linesearch, and the nonmonotone search criteria are more stringent;
namely, the memory size is reduced to 4 and the initial reference factor is 5. The first restart
for the MPSGE models is to crash using the projected Newton technique, use a linesearch,
and leave the memory size and initial reference factor at 4 and 5 respectively. The remaining
restart procedures (that are not used for any problem on our test set) are identical to those
documented in [15].

As can be seen from the results of Tables 1 and 2, PATH-FB is considerably better
than PATH 3.0 when the codes are not allowed to restart. The projected gradient steps
allow progress to be made in this code, which cannot occur in PATH 3.0. We note that the
total number of projected gradient steps over the total of 732 runs was 274, indicating our
preference to take such steps only as a last resort. When restarts are allowed, it still seems
that PATH-FB is more robust; however the margin is significantly smaller, in part due to
the fact that most of the problems are already solved by PATH 3.0. On the MPSGE models,
however, restarts allow us to solve all the models in the test collection.

To conclude this section, Table 3 provides more complete information for the algorithm
PATH-FB on a subset of the test problems. These problems were selected by taking every
10th run in an alphabetical ordering of all the test problems considered. However, we only
report the first three instances of any given problem. We believe this is an unbiased sample
of our test results. A complete listing of the results is available from

http : //www.cs.wisc.edu/math− prog/tech− reports

The columns of Table 3 indicate the number of starting points (SP), number of major
iterations (MI), crash iterations (CI), restarts (R) and projected gradient steps (PG) taken.
The final column of this table reports the time for PATH-FB in seconds, with the time for
PATH 3.0 added in parentheses. All runs were carried out on a Sun UltraSparc 300 MHz
processor with 256MB RAM. A “*” indicates failure of the method.

It is hard to draw firm conclusions from Table 3. It indicates that the solution times of
both algorithms are comparable, with some smaller times for PATH-FB and some for PATH
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Problem SP MI CI R PG T
bert oc 3 0 3 0 0 0.5 (0.4)
billups 3 290 2 3 24 * (*)
box 9 3 0 0 0 0.0 (0.0)
box 19 4 0 0 0 0.0 (0.0)
box 29 3 0 0 0 0.0 (0.0)
colvnlp 2 3 1 0 0 0.0 (0.0)
denmark 4 11 0 0 0 8.3 (25.2)
denmark 14 11 0 0 0 8.5 (25.1)
denmark 24 8 0 0 0 7.6 (10.3)
ehl k40 3 172 1 1 1 13.0 (*)
electric 1 60 1 1 6 2.8 (1.3)
explcp 1 1 1 0 0 0.0 (0.0)
gafni 1 3 1 0 0 0.0 (0.0)
games 8 5 1 0 0 0.0 (0.0)
games 18 29 1 0 0 0.2 (0.3)
hanskoop 3 15 1 0 0 0.0 (0.0)
hydroc06 1 4 1 0 0 0.0 (0.0)
josephy 6 9 1 0 0 0.0 (0.0)
kojshin 8 1 1 0 0 0.0 (0.0)
mathisum 3 6 1 0 0 0.0 (0.0)
nash 1 5 1 0 0 0.0 (0.0)
obstacle 6 0 10 0 0 1.5 (1.3)
pgvon105 2 55 1 1 1 2.6 (0.1)
powell 1 6 1 0 0 0.0 (0.0)
powell mcp 5 28 1 0 0 0.0 (0.0)
scarfasum 2 3 1 0 0 0.0 (0.0)
shubik 4 3 0 0 0 0.0 (0.0)
shubik 14 13 1 0 0 0.0 (0.1)
shubik 24 53 1 1 6 0.4 (0.1)
tinloi 1 1 1 0 0 0.0 (0.0)
tinloi 11 1 2 0 0 0.0 (0.0)
tinloi 21 1 2 0 0 0.0 (0.0)
trafelas 1 8 18 0 0 7.8 (6.3)

Table 3: Selected full results

22



3.0. There are only 5 problems in this subset which use projected gradient steps and restarts,
the vast majority of the problems being solved without invoking these strategies.

Overall, the theoretical extensions outlined in this paper result in an improvement in
robustness of PATH 3.0 without any noticeable change in the accuracy or speed of the code.
Further testing on even more challenging problems is required to fully determine the effects
of different merit functions within the PATH code. This will be the subject of future research.

Acknowledgement. The authors would like to thank Roman Snajder for pointing out the
relation of some of our results with reference [19].
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