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Abstract: A reformulation of the mixed complementarity problem as a box constrained
overdetermined system of semismooth equations or, equivalently, a box constrained non-
linear least squares problem with zero residual is presented. Based on this reformulation,
a trust region method for the solution of mixed complementarity problems is consid-
ered. This trust region method contains elements from different areas: A projected
Levenberg-Marquardt step in order to guarantee local fast convergence under suitable
assumptions, affine scaling matrices which are used to improve the global convergence
properties, and a multidimensional filter technique to accept a full step more frequently.
Global convergence results as well as local superlinear/quadratic convergence is shown
under appropriate assumptions. Moreover, numerical results for the MCPLIB indicate
that the overall method is quite robust.

Keywords: Complementarity problems, nonlinear least squares reformulation, semi-
smooth functions, trust region methods, filter method, Cauchy step, global convergence,
quadratic convergence.



1 Introduction

Let m ≥ n and a semismooth function Φ : O → Rm be given which is defined on an open
neighbourhood O ⊆ Rn of a box B := [l, u], where the lower bounds l = (l1, . . . , ln)T

and upper bounds u = (u1, . . . , un)T satisfy −∞ ≤ li < ui ≤ +∞ for all i = 1, . . . , n.
We consider the box constrained overdetermined system

Φ(x) = 0, x ∈ B, (1)

which is equivalent to the bound constrained least squares problem

min
1

2
‖Φ(x)‖2 s.t. x ∈ B (2)

provided that this problem has a zero residual at the solution. If all bounds are infinite,
this includes the unconstrained least squares problem.

Our motivation for considering this kind of problem comes from a recent reformula-
tion of the mixed complementarity problem as an (unconstrained and semismooth) least
squares problem, see [27]. This reformulation is different from the many existing formu-
lations of the (mixed) complementarity problem as a square system of equations (both
unconstrained and constrained), see, for example, [1, 3, 7, 13, 14, 23, 24, 25, 36, 37].
While all these reformulations as a square system of equations typically lead to some
efficient algorithms, it is our experience, however, that the nonsquare reformulation
from [27] is significantly more robust than the corresponding counterpart based on a
reformulation with m = n.

In this paper, we therefore try to improve the method from [27] further. To this end,
we incorporate two additional features: First, we add the bound constraints explicitly
into the reformulation so that all iterates stay feasible with respect to these constraints.
This should improve the robustness of the method from [27] since this avoids spurious
stationary points outside the box B, for example. Second, we add a filter in our trust
region method in order to improve the efficiency of the method. In fact, preliminary
numerical experiments showed that the local method behaves very good, so we try to
accept the full (Levenberg-Marquardt-type) step as often as possible.

Compared with standard methods for constrained or unconstrained least squares
problems (see [10, 2] and references therein), we note that our problem (1), (2) has
two special properties that have to be taken into account and that will be exploited
in our approach: On the one hand, the mapping Φ from (1) is only semismooth and
not continuously differentiable. This point is important when we apply our approach
to mixed complementarity problems where Φ is not differentiable everywhere. On the
other hand, a solution x∗ of (1) gives a zero residual for the least squares formulation in
(2), i.e., we have ‖Φ(x∗)‖ = 0. This property is quite unusual for general least squares
problems.

The organization of this paper is as follows: We begin by considering the abstract
problem (1), (2) without referring to any specific reformulation of the mixed comple-
mentarity problem. The local projected Levenberg-Marquardt-type method for the
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solution of (1), (2) is discussed in Section 2. An affine-scaling trust region globaliza-
tion of this local method is presented in Section 3. The global and local convergence
properties of this method are investigated in Sections 4 and 5, respectively. We then
incorporate the filter technique into the globalized method in Section 6 and show that
all global and local convergence results still hold for this filter trust region method. The
application to mixed complementarity problems is presented in Section 7 where we give
the details of a reformulation of such a mixed complementarity problem as a problem
of the form (1), (2). Numerical results are then presented in Section 8, and we conclude
with some final remarks in Section 9.

A word on notation: Rn denotes the n-dimensional real vector space. The Euclidean
vector norm or its associated matrix norm are denoted by ‖ · ‖, while ‖ · ‖∞ is used
for the maximum norm in Rn. The open ball with radius ε > 0 around a point x∗ is
denoted by Bε(x

∗), where the radius is taken with respect to the Euclidean norm. If
G : Rn → Rm is a vector-valued mapping, Gi is used for its ith component function.
If G is continuously differentiable, we write G′(x) for the Jacobian of G at a point
x ∈ Rn, whereas ∇G(x) denotes the transposed Jacobian. In particular, if m = 1,
∇G(x) is the gradient, which is considered to be a column vector. On the other hand,
if G : Rn → Rm is locally Lipschitz only, then ∂G(x) is the generalized Jacobian of G
at x in the sense of Clarke [4]. The Euclidean projection of a vector x ∈ Rn onto the
feasible set B will be denoted by PB. We make frequent use of the Landau symbols O(·)
and o(·) which are defined as follows: Given two sequences {αk} and {βk} converging
to zero, we write αk = O(βk) if lim supk→∞ αk/βk < ∞, whereas αk = o(βk) means
that limk→∞ αk/βk = 0. We also assume that the reader is familiar with the notion of a
(strongly) semismooth function. On of the central properties of a semismooth function
G is that, for any sequence {xk} converging to some point x∗ and any sequence {Hk}
with Hk ∈ ∂G(xk), we have∥∥G(xk)−G(x∗)−Hk(x

k − x∗)
∥∥ = o(‖xk − x∗‖). (3)

Similarly, a strongly semismooth function has the related property∥∥G(xk)−G(x∗)−Hk(x
k − x∗)

∥∥ = O(‖xk − x∗‖2). (4)

For more details on (strongly) semismooth functions, the reader is referred to [34, 33,
32, 12].

2 Local Projected Levenberg-Marquardt Method

In this section, we present a local method for the box constrained overdetermined system
of equations (1) and the related nonlinear least squares problem (2). To motivate our
method, recall that (2) is an unconstrained least squares problem if all bounds are
infinite. The standard (nonsmooth) Levenberg-Marquardt method for this class of
problems is an iterative procedure of the form

xk+1 := xk + pk
LM , k = 0, 1, . . . ,
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where pk
LM is the solution of the linear system(

HT
k Hk + νkI

)
pLM = −HT

k Φ(xk), Hk ∈ ∂Φ(xk). (5)

Now, if all or some of the bounds are finite, we consider the following projected
Levenberg-Marquardt method:

xk+1 := xk + pk
PLM , k = 0, 1, . . . , (6)

where
pk

PLM := PB(x
k + pk

LM)− xk (7)

and pk
LM denotes the unconstrained Levenberg-Marquardt direction from (5). Formally,

we therefore obtain the following method, see also [28].

Algorithm 2.1 (Projected Levenberg-Marquardt Method)

(S.0) Choose x0 ∈ B, and set k := 0.

(S.1) If xk satisfies a suitable termination criterion: STOP.

(S.2) Choose Hk ∈ ∂Φ(xk), νk > 0, and compute pk
LM from (5).

(S.3) Compute pk
PLM from (7).

(S.4) Set xk+1 = xk + pk
PLM , k ← k + 1, and go to (S.1).

Note that Algorithm 2.1 is well-defined, and that all iterates xk stay in the box B. Of
course, Algorithm 2.1 is a local method only. In order to state the local convergence
properties of this method, we need the following result which follows from the upper
semicontinuity of the generalized Jacobian.

Lemma 2.2 Let Φ be semismooth and x∗ be a solution of problem (1) such that all
elements from ∂Φ(x∗) have full rank. Then there exist constants ε > 0 and c > 0 such
that

‖(HT H)−1‖ ≤ c

for all H ∈ ∂Φ(x) and all x ∈ Rn with x ∈ Bε(x
∗).

Proof. The proof is similar to the one of [27, Lemma 2.5], so we skip the details here. �

We are now in the position to state the main local convergence properties of Algorithm
2.1. Later, this result will facilitate the local convergence analysis of a trust-region
globalization of this method.

Theorem 2.3 Let Φ be semismooth and x∗ be a solution of (1) such that all matrices
H∗ ∈ ∂Φ(x∗) have full rank. Then the following statements hold:
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(a) There exist constants ε > 0 and ν̂ > 0 such that, for every x0 ∈ B∩Bε(x
∗) and all

νk ∈ (0, ν̂], Algorithm 2.1 generates a sequence {xk} converging at least Q-linearly
to x∗.

(b) The rate of convergence is Q-superlinear if, in addition, νk → 0.

(c) The rate of convergence is Q-quadratic if, in addition, νk = O(‖Φ(xk)‖) and Φ is
strongly semismooth.

Proof. Lemma 2.2 implies that there are constants ε1 > 0 and c > 0 such that∥∥(HT H + νI)−1
∥∥ ≤ c ∀x ∈ Bε1(x

∗), ∀H ∈ ∂Φ(x), ∀ν > 0.

Furthermore, from the upper semicontinuity of the generalized Jacobian, we obtain the
existence of constants ε2 > 0 and α > 0 with

‖HT‖ ≤ α ∀x ∈ Bε2(x
∗), ∀H ∈ ∂Φ(x).

Moreover, the semismoothness of Φ implies that there is a constant ε3 > 0 with∥∥Φ(x)− Φ(x∗)−H(x− x∗)
∥∥ ≤ 1

4αc
‖x− x∗‖ ∀x ∈ Bε3(x

∗), ∀H ∈ ∂Φ(x),

see (3). Now take

ε := min{ε1, ε2, ε3} and ν̂ :=
1

4c
.

Suppose that the kth iterate xk ∈ B belongs to the ball Bε(x
∗) (in the beginning, this

is true since we choose x0 ∈ Bε(x
∗)). Then we have the following identity:(

HT
k Hk + νkI

)
(xk + pk

LM − x∗) =
(
HT

k Hk + νkI
)
(xk − x∗) +

(
HT

k Hk + νkI
)
pk

LM

=
(
HT

k Hk + νkI
)
(xk − x∗)−HT

k Φ(xk)

= −HT
k

(
Φ(xk)− Φ(x∗)−Hk(x

k − x∗)
)

+ νk(x
k − x∗).

Premultiplying with (HT
k Hk + νkI)−1 and taking norms, we therefore obtain

‖xk + pk
LM − x∗‖

≤
∥∥(HT

k Hk + νkI)−1
∥∥[
‖HT

k ‖ ‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖+ νk‖xk − x∗‖

]
≤ c

[
α‖Φ(xk)− Φ(x∗)−Hk(x

k − x∗)‖+ ν̂‖xk − x∗‖
]

≤ c
(
α

1

4αc
+

1

4c

)
‖xk − x∗‖

=
1

2
‖xk − x∗‖.

This implies

‖xk+1 − x∗‖ = ‖xk + pk
PLM − x∗‖
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= ‖PB(xk + pk
LM)− x∗‖

= ‖PB(xk + pk
LM)− PB(x

∗)‖
≤ ‖xk + pk

LM − x∗‖

≤ 1

2
‖xk − x∗‖

since the projection operator is nonexpansive. In particular, this shows that xk+1 also
belongs to the ε-ball around x∗, and using an induction argument, it follows that

‖xk+1 − x∗‖ ≤ 1

2
‖xk − x∗‖ ∀k ∈ N.

This shows that the sequence {xk} converges to x∗ at least Q-linearly.
The local Q-superlinear convergence can be verified by using a similar chain of

inequalities. Indeed, using νk → 0 and the semismoothness of Φ, we obtain

‖xk+1 − x∗‖ = ‖xk + pk
PLM − x∗‖

≤ ‖xk + pk
LM − x∗‖

≤ c
[
α‖Φ(xk)− Φ(x∗)−Hk(x

k − x∗)‖+ νk‖xk − x∗‖
]

= o(‖xk − x∗‖).

The Q-quadratic rate of convergence can be verified in a similar way using

νk = O(‖Φ(xk)‖) = O(‖Φ(xk)− Φ(x∗)‖) = O(‖xk − x∗‖),

where the last inequality follows from the local Lipschitz property of Φ, and by noting
that the strong semismoothness of Φ implies

‖Φ(xk)− Φ(x∗)−Hk(x
k − x∗)‖ = O(‖xk − x∗‖2),

cf. (4). This completes the proof. �

We close this section with the following interesting note.

Remark 2.4 Suppose Φ is continuously differentiable with a locally Lipschitzian Ja-
cobian Φ′, and suppose that we choose νk := ν‖Φ(xk)‖2 for some constant ν > 0 in
Algorithm 2.1. Then it was shown in [28] that the sequence {xk} generated by Al-
gorithm 2.1 is locally quadratically convergent under an error bound condition. This
condition is weaker than the full rank assumption made in Theorem 2.3 and might also
hold in some situations where the solution set is not (locally) unique. However, in the
present paper we are mainly interested in a nonsmooth mapping Φ, and whether the
result from [28] holds in this situation is not clear.
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3 Globalized Projected Levenberg-Marquardt Method

We now want to develop a globalized version of Algorithm 2.1 for the solution of problem
(1). To this end, we exploit the relation to the nonlinear least squares formulation from
(2), and make the following assumption.

(A) The mapping Ψ(x) := 1
2
‖Φ(x)‖2 is continuously differentiable with gradient∇Ψ(x) =

HT Φ(x) for an arbitrary H ∈ ∂Φ(x).

This assumption certainly holds if Φ itself is continuously differentiable, but we will see
that it also holds in some situations where Φ is a nonsmooth mapping, cf. Section 7.
In view of Assumption (A), the Levenberg-Marquardt direction pk

LM may equivalently
be computed by solving the linear system(

HT
k Hk + νkI

)
pLM = −∇Ψ(xk),

see (5).
Our globalized method is a trust-region algorithm that contains elements from affine-

scaling methods. In fact, we exploit an observation by Coleman and Li [5] who noted
that the first-order optimality conditions of the least squares problem (2) are equivalent
to the nonlinear system of equations

G(x) = 0 with G(x) := D(x)r∇Ψ(x),

where r > 0 and
D(x) := diag

(
d1(x), . . . , dn(x)

)
is a suitable scaling matrix satisfying the following conditions:

di(x)


= 0, if xi = li and [∇Ψ(x)]i > 0,
= 0, if xi = ui and [∇Ψ(x)]i < 0,
≥ 0, if xi ∈ {li, ui} and [∇Ψ(x)]i = 0,
> 0, else.

i = 1, . . . , n. (8)

Several different scaling matrices may be found in the literature, see, e.g., [5, 26, 39].
For the sake of simplicity, we will always use the following scaling matrix in this paper:

di(x) :=


min{1, xi − li}, if [∇Ψ(x)]i > 0,
min{1, ui − xi}, if [∇Ψ(x)]i < 0,
min{1, xi − li, ui − xi}, if [∇Ψ(x)]i = 0.

i = 1, . . . , n. (9)

This scaling matrix was suggested by Ulbrich [37] and satisfies some additional prop-
erties that will be used in our convergence analysis, see Lemmas 4.2 and 4.7. We note,
however, that other choices are possible, too, like the one from [26].

For notational convenience, we write

Dk := D(xk) and gk := ∇Ψ(xk).
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Let

qk(p) := pT gk +
1

2
pT

(
HT

k Hk + νkI
)
p

be a quadratic approximation of Ψ(xk+p)−Ψ(xk), where xk denotes the current iterate.
We then compute a search direction pk as an approximate solution of the trust region
subproblem

min qk(p) s.t. xk + p ∈ B, ‖p‖∞ ≤ ∆k (10)

for some trust region radius ∆k > 0. Note that this is a box constrained quadratic
program with feasible set

Xk := [l − xk, u− xk] ∩ [−∆k, +∆k]
n. (11)

Whether xk + pk can be accepted as the new iterate xk+1 then depends on the ratio

rk :=
aredk(p

k)

predk(p
k)

(12)

of the actual and predicted reductions

aredk(p) := Ψ(xk)−Ψ(xk + p) and predk(p) := −qk(p),

respectively. In order to guarantee nice global convergence results, the approximate
solution pk of the trust region subproblem (10) has to satisfy at least the feasibility
condition

pk ∈ Xk ⇐⇒ xk + pk ∈ B, ‖pk‖∞ ≤ ∆k, (13)

and the fraction of Cauchy decrease condition

qk(p
k) ≤ αqk(p

k
C), (14)

where α ∈ (0, 1] is a given constant, and pk
C = p(tk) denotes the scaled Cauchy step,

where tk is defined as the solution of the one-dimensional subproblem

mint qk

(
p(t)

)
s.t. p(t) = −tD2

kg
k, t ≥ 0,

‖p(t)‖∞ ≤ ∆k, xk + p(t) ∈ B.
(15)

Note that, since qk(p
k
C) ≤ qk(0) = 0, we may take the Cauchy step pk = pk

C itself in order
to get a suitable approximate solution of the trust region subproblem (10) satisfying
(14). The overall method is as follows.

Algorithm 3.1 (Scaled Trust Region Method)

(S.0) Choose x0 ∈ B, ∆0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, ε ≥ 0, η ∈
(0, 1), ∆min > 0, α ∈ (0, 1], and set k := 0.

(S.1) If ‖Dkg
k‖ ≤ ε: STOP.

9



(S.2) Choose Hk ∈ ∂Φ(xk), νk > 0, and compute pk
LM using (5).

(S.3) Compute pk
PLM from (7). If ‖Φ(xk + pk

PLM)‖ ≤ η‖Φ(xk)‖ holds, set xk+1 :=
xk + pk

PLM , ∆k+1 := max{∆min, σ2∆k}, and go to step (S.6); otherwise go to step
(S.4).

(S.4) Compute an approximate solution pk of the trust region subproblem (10) satis-
fying (13) and (14), and define rk by (12). If rk ≥ ρ1, we call the iteration k
successful and set xk+1 := xk + pk; otherwise we set xk+1 := xk.

(S.5) Update the trust region radius as follows:

∆k+1 :=


σ1∆k, if rk < ρ1,
max{∆min, ∆k}, if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k}, if rk ≥ ρ2.

(S.6) Set k ← k + 1, and go to (S.1).

Throughout the rest of this paper, we denote by

ĝk := Dkg
k

the scaled gradient. Using this notation, we can state the following result which is stan-
dard for trust region methods and provides a lower bound for the predicted reduction
predk, cf. [5, Lemma 3.1].

Lemma 3.2 Let pk be an approximate solution of the subproblem (10) satisfying the
fraction of Cauchy decrease condition (14). Then

predk(p
k) ≥ 1

2
α‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
, ∆k, 1

}
.

Proof. For the sake of completeness, we include a proof here. Consider a fixed iterate
xk ∈ B, and recall that the Cauchy step pk

C = p(tk) is given by the solution tk of the
one-dimensional problem (15) in the variable t = tk. By definition, the stepsize t ≥ 0
has to satisfy the two requirements

‖tDkĝ
k‖∞ ≤ ∆k and l − xk ≤ −tDkĝ

k ≤ u− xk.

Let t∆ and tB denote the maximum stepsizes such that these two conditions hold. Then
an elementary calculation shows that

t∆ =
∆k

‖Dkĝk‖∞
and

tB = min
{

min
i:[Dk ĝk]i<0

ui − xk
i

−[Dkĝk]i
, min
i:[Dk ĝk]i>0

xk
i − li

[Dkĝk]i

}
10



(note that Dkĝ
k = D2

kg
k 6= 0 since otherwise Algorithm 3.1 would have stopped at

iteration k in step (S.1), hence the two maximum stepsizes are finite numbers).
Now, the definition (9) of the scaling matrix Dk implies that, for all i such that

[Dkĝ
k]i < 0, we have di(x

k) = min{1, ui − xk
i } and therefore

ui − xk
i

−[Dkĝk]i
=

ui − xk
i

−di(xk)ĝk
i

≥ di(x
k)

di(xk)|ĝk
i |

=
1

|ĝk
i |
≥ 1

‖ĝk‖∞
.

In a similar way, we obtain for all i such that [Dkĝ
k]i > 0 the lower bound

xk
i − li

[Dkĝk]i
=

xk
i − li

di(xk)ĝk
i

≥ di(x
k)

di(xk)|ĝk
i |

=
1

|ĝk
i |
≥ 1

‖ĝk‖∞
.

Consequently, we have tB ≥ 1
‖ĝk‖∞ . Using the definition (9) of the scaling matrix Dk

once again, we get ‖Dkĝ
k‖∞ ≤ ‖Dk‖∞‖ĝk‖∞ ≤ ‖ĝk‖∞. Therefore, we obtain the

following lower bound for the maximum stepsize t̄ of the one-dimensional subproblem
(15):

t̄ = min{t∆, tB} ≥
1

‖ĝk‖∞
min{1, ∆k}. (16)

We now derive an upper bound for qk(p
k). Using the fraction of Cauchy decrease

condition (14) and the choice of the optimal stepsize tk, we have

qk(p
k) ≤ αqk(p

k
C) = αqk(p(tk)). (17)

Further recall that the one-dimensional objective function is given by

qk

(
p(t)

)
= −t(gk)T Dkĝ

k +
1

2
t2(ĝk)T Dk(H

T
k Hk + νkI)Dkĝ

k = −t‖ĝk‖2 +
1

2
t2µk,

where
µk := (ĝk)T Dk(H

T
k Hk + νkI)Dkĝ

k > 0,

where the strict inequality follows from the fact that Dkĝ
k = D2

kg
k 6= 0 (otherwise we

would have stopped in step (S.1) of Algorithm 3.1) together with the positive definite-
ness of the matrix HT

k Hk + νkI. Obviously, this quadratic function attains its global
unconstrained minimum at tmin = ‖ĝk‖2/µk. Then we either have tk < tmin (if tmin > t̄)
or tk = tmin (if tmin ≤ t̄).

We consider these two cases separately. If tk < tmin, we have tk = t̄ < ‖ĝk‖2
µk

and

therefore, using (16),

qk

(
p(tk)

)
= −t̄‖ĝk‖2 +

1

2
t̄2µk < −1

2
t̄‖ĝk‖2 ≤ −1

2

‖ĝk‖2

‖ĝk‖∞
min{∆k, 1}.

On the other hand, if tk = tmin, we have tk = ‖ĝk‖2/µk and therefore

qk

(
p(tk)

)
= −tmin‖ĝk‖2 +

1

2
t2minµk = −1

2
tmin‖ĝk‖2 = −1

2

‖ĝk‖4

µk

≤ −1

2

‖ĝk‖2

‖HT
k Hk + νkI‖

.
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Here, we used the fact that µk ≤ ‖ĝk‖2‖Dk‖2‖HT
k Hk + νkI‖ ≤ ‖ĝk‖2‖HT

k Hk + νkI‖
since ‖Dk‖ ≤ 1 in view of (9).

Since ‖ĝk‖∞ ≤ ‖ĝk‖, we obtain from the last two inequalities that

qk

(
p(tk)

)
≤ −1

2
‖ĝk‖min

{
∆k, 1,

‖ĝk‖
‖HT

k Hk + νkI‖

}
.

The statement now follows from (17). �

As a direct consequence of Lemma 3.2, we have that Algorithm 3.1 is well-defined since
the denominator predk(p

k) = −qk(p
k) in the definition of rk is nonzero for all k ∈ N

because otherwise the algorithm would have stopped at step (S.1). More precisely,
Lemma 3.2 shows that the denominator predk(p

k) is always positive. This, in turn,
implies that Ψ(xk+1) ≤ Ψ(xk) for all iterations k ∈ N for which the test in step (S.3)
does not hold. On the other hand, if this test is satisfied, we also have Ψ(xk+1) ≤ Ψ(xk).
Consequently, the entire sequence {Ψ(xk)} is monotonically decreasing. We will use this
fact several times in our subsequent convergence analysis.

Moreover, the proof of Lemma 3.2 clearly shows how the scaled Cauchy step pk
C can

be computed in practice.

4 Global Convergence

The aim of this section is to prove some global convergence results for Algorithm 3.1.
To this end, we assume that Algorithm 3.1 does not terminate after a finite number
of iterations. Furthermore, we recall that Algorithm 3.1 uses two different search di-
rections, namely the projected Levenberg-Marquardt step pk

PLM and the Cauchy-like
step pk. The former will be used in order to prove fast local convergence, whereas the
latter is the main tool for proving global convergence results. Our first result basically
shows that the global convergence properties are not destroyed by using the projected
Levenberg-Marquardt direction.

Theorem 4.1 If the direction pk
PLM is accepted an infinite number of times in step

(S.3) of Algorithm 3.1, we have

lim
k→∞
‖Φ(xk)‖ = 0.

Proof. We already observed that the entire sequence {Ψ(xk)} is monotonically
decreasing. Obviously, this implies that the whole sequence {‖Φ(xk)‖} is also mono-
tonically decreasing. Since the test ‖Φ(xk + pk

PLM)‖ ≤ η‖Φ(xk)‖ is accepted an infinite
number of times in view of our assumptions, we therefore get ‖Φ(xk)‖ → 0 for k →∞
since η ∈ (0, 1). �
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For a complete convergence analysis of Algorithm 3.1, it remains to consider the case
where the direction pk

PLM from step (S.3) is accepted only a finite number of times. In
the following global convergence analysis, we therefore assume without loss of generality
that the direction pk

PLM is never accepted in step (S.3). Hence, in all iterations k ∈ N,
we take the approximate solution pk from step (S.4).

The technique of proof is similar to the one in [24, 29] for a square system of
equations. In addition, we present another convergence result which is based on a
stronger smoothness property of the mapping x 7→ D(x)∇Ψ(x). To this end, we first
note that ∇Ψ is continuous on O since Ψ is continuously differentiable on this set by
Assumption (A). However, the scaling x 7→ D(x) is discontinuous at certain points x.
Nevertheless, our first result states that the mapping x 7→ D(x)∇Ψ(x) is continuous,
see also [37, Lemma 6.1].

Lemma 4.2 The mapping x 7→ D(x)∇Ψ(x) is continuous on O.

Proof. Let x ∈ O be given, and let i ∈ {1, . . . , n} be an arbitrary component. If
either [∇Ψ(x)]i > 0 or [∇Ψ(x)]i < 0, then it follows immediately from the definition
(9) of the scaling matrix D(x) that the mapping x 7→ [D(x)∇Ψ(x)]i = di(x)[∇Ψ(x)]i is
continuous in x. Hence it remains to consider the case where [∇Ψ(x)]i = 0. To this end,
let {xk} denote an arbitrary sequence converging to x. Since ∇Ψ is continuous and the
scaling matrix D(x) is bounded, we then obtain [D(xk)∇Ψ(xk)]i → 0 = [D(x)∇Ψ(x)]i,
and this completes the proof. �

From now on, we always assume that, in addition to Assumption (A), the following
condition is satisfied.

(B) The sequence {νk} is bounded.

The following result will be used in order to show that every accumulation point of a
sequence generated by Algorithm 3.1 is a KKT-point of (2).

Lemma 4.3 Let {xk} be a sequence generated by Algorithm 3.1, and let {xk}K be a
subsequence converging to a point x∗ ∈ B. If x∗ is not a KKT-point of (2), then
lim infk→∞,k∈K ∆k > 0.

Proof. Let K̄ := {k − 1 | k ∈ K}. Then {xk+1}k∈K̄ → x∗, and we have to show that
lim infk→∞,k∈K̄ ∆k+1 > 0. Assume this is not true. Subsequencing if necessary, we may
suppose that

lim
k→∞,k∈K̄

∆k+1 = 0. (18)

In view of the updating rules for ∆k+1 in step (S.5), this implies that none of the
iterations k ∈ K̄, with k sufficiently large, is successful. Hence we have

rk < ρ1 (19)
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and xk = xk+1 for all k ∈ K̄ large enough. Consequently, we also have {xk}k∈K̄ → x∗.
Moreover, since ∆k+1 = σ1∆k for all k ∈ K̄ sufficiently large, it follows from (18) that

lim
k→∞,k∈K̄

∆k = 0. (20)

Since x∗ is not a KKT-point of (2) by assumption, it follows from Lemma 4.2 that there
exists a constant β1 > 0 such that

‖ĝk‖ ≥ β1, (21)

for all k ∈ K̄. From the upper semicontinuity of the generalized Jacobian and Assump-
tion (B), we get the existence of a constant β2 > 0 such that

‖HT
k Hk + νkI‖ ≤ β2 (22)

for all k ∈ K̄. Using Lemma 3.2, (20), (21), and (22), we obtain

predk(p
k) ≥ α

2
‖ĝk‖min

{ ‖ĝk‖
‖HT

k Hk + νkI‖
, ∆k, 1

}
≥ α

2
β1 min

{β1

β2

, ∆k, 1
}

(20)
=

α

2
β1∆k

(13)

≥ α

2
β1‖pk‖∞

≥ αβ1

2
√

n
‖pk‖

(23)

for all k ∈ K̄ sufficiently large. Since Ψ is continuously differentiable by Assumption
(A), there exists, for each k ∈ N, a vector ξk ∈ [xk, xk + pk] such that Ψ(xk + pk) =
Ψ(xk) +∇Ψ(ξk)T pk. This implies

|rk − 1| =

∣∣∣∣aredk(p
k)

predk(p
k)
− 1

∣∣∣∣
=

∣∣Ψ(xk)−Ψ(xk + pk) + qk(p
k)

∣∣
−qk(pk)

=

∣∣Ψ(xk)−Ψ(xk + pk) +∇Ψ(xk)T pk + 1
2
(pk)T (HT

k Hk + νkI)pk
∣∣

−qk(pk)

=

∣∣(∇Ψ(xk)−∇Ψ(ξk))T pk + 1
2
(pk)T (HT

k Hk + νkI)pk
∣∣

−qk(pk)

(23)

≤ 2
√

n

αβ1

∣∣(∇Ψ(xk)−∇Ψ(ξk))T pk + 1
2
(pk)T (HT

k Hk + νkI)pk
∣∣

‖pk‖
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(22)

≤ 2
√

n

αβ1

(
‖∇Ψ(xk)−∇Ψ(ξk)‖+

1

2
β2‖pk‖

)
≤ 2

√
n

αβ1

(
‖∇Ψ(xk)−∇Ψ(ξk)‖+

1

2
β2

√
n∆k

)
K̄→ 0,

where {‖∇Ψ(xk) − ∇Ψ(ξk)‖}K̄ → 0 follows from {xk}K̄ → x∗, {ξk}K̄ → x∗ (since
‖pk‖∞ ≤ ∆k → 0 for k ∈ K̄ in view of (20)) and the continuity of ∇Ψ. Hence
{rk}k∈K̄ → 1, a contradiction to (19). �

As a direct consequence of Lemma 4.3, we now show that there are infinitely many
successful iterations (provided that Algorithm 3.1 does not terminate at a stationary
point of (2) after a finite number of iterations).

Lemma 4.4 Let {xk} be a sequence generated by Algorithm 3.1. Then there are in-
finitely many successful iterations.

Proof. Assume that the number of successful iterations in (S.4) is finite. Then there
exists an index k0 ∈ N such that rk < ρ1 and xk = xk0 for all k ≥ k0. Hence {∆k} → 0
and {xk} → xk0 . This contradicts Lemma 4.3, since ĝk0 = D(xk0)∇Ψ(xk0) 6= 0. �

We are now in the position to state our first global convergence result.

Theorem 4.5 Let {xk} be any sequence generated by Algorithm 3.1. Then every ac-
cumulation point of {xk} is a KKT-point of (2).

Proof. We first recall that, as a consequence of Theorem 4.1, we may assume without
loss of generality that the search direction is always computed by step (S.4) of Algorithm
3.1.

Let x∗ be an accumulation point of {xk}, and let {xk}K be a subsequence converging
to x∗. In view of Lemma 4.4, we can assume, without loss of generality, that all k ∈ K
are successful iterations, since xk+1 = xk for all nonsuccessful iterations k. Suppose that
x∗ is not a KKT-point of (2). Then it follows from Lemma 4.2, the upper semicontinuity
of the generalized Jacobian, and Assumption (B) that there exist suitable constants
β1 > 0 and β2 > 0 such that

‖ĝk‖ ≥ β1 and ‖HT
k Hk + νkI‖ ≤ β2 (24)

for all k ∈ K. Since the iterations k ∈ K are successful, we have rk ≥ ρ1 for all k ∈ K.
By Lemma 3.2 and the fact that the entire sequence {Ψ(xk)} is decreasing and bounded
from below, we have

Ψ(x0) ≥
∞∑

k=0

(
Ψ(xk)−Ψ(xk+1)

)
15



≥
∞∑

k=0

ρ1 predk(p
k)

≥ ρ1

∑
k∈K

predk(p
k)

≥ αρ1

2

∑
k∈K

‖ĝk‖min
{ ‖ĝk‖
‖HT

k Hk + νkI‖
, ∆k, 1

}
≥ αρ1β1

2

∑
k∈K

min
{β1

β2

, ∆k, 1
}

.

This implies {∆k}K → 0, a contradiction to Lemma 4.3. �

We want to give two additional global convergence results which are more traditional
in the context of trust region methods, see, e.g., [6]. To this end, we first introduce the
following assumption.

(C) The sequence {Hk} is bounded.

Then we can state the following result which is weaker than Theorem 4.5 in the sense
that it does not guarantee that every accumulation point is a KKT-point. However, it
will be used in the subsequent result in order to state a stronger convergence theorem.

Theorem 4.6 Suppose that Assumptions (A), (B), and (C) hold, and let {xk} be any
sequence generated by Algorithm 3.1. Then

lim inf
k→∞

‖ĝk‖ = 0. (25)

Proof. The proof is by contradiction. Suppose there exists a constant β1 > 0 such
that ‖ĝk‖ ≥ β1 for all k ∈ N. Assumptions (B) and (C) imply the existence of a
constant β2 > 0 such that ‖HT

k Hk + νkI‖ ≤ β2 for all k ∈ N. We denote the set of all
successful iterates by S and note that it has infinite cardinality by Lemma 4.4. Since
the entire sequence {Ψ(xk)} is monotonically decreasing, we get from Lemma 3.2 that

Ψ(x0) ≥
∞∑

k=0

(
Ψ(xk)−Ψ(xk+1)

)
≥

∑
k∈S

(
Ψ(xk)−Ψ(xk+1)

)
≥

∑
k∈S

ρ1 predk(p
k)

≥ αρ1

2

∑
k∈S

‖ĝk‖min
{ ‖ĝk‖
‖HT

k Hk + νkI‖
, ∆k, 1

}
≥ αρ1β1

2

∑
k∈S

min
{β1

β2

, ∆k, 1
}

.
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This implies
∑

k∈S ∆k <∞. Taking into account that ‖xk+1−xk‖∞ = ‖pk‖∞ ≤ ∆k for
all k ∈ S, we get

∑
k∈S ‖xk+1 − xk‖∞ < ∞. Since ‖xk+1 − xk‖∞ = 0 for all k /∈ S, we

obtain
∞∑

k=0

‖xk+1 − xk‖∞ <∞.

Hence {xk} is a Cauchy sequence and therefore convergent to a point x∗. Theo-
rem 4.5 then implies that x∗ is a KKT-point of (2). Consequently, we have ĝ∗ :=
D(x∗)∇Ψ(x∗) = 0. However, Lemma 4.2 implies that ĝk → ĝ∗ = 0, a contradiction to
our assumption. Hence (25) holds. �

In order to state our final convergence result, we need to introduce another assumption.

(D) The function ∇Ψ is uniformly continuous and bounded on the box B.

Note that Assumption (D) automatically holds under Assumption (A) if the box B is
a compact set. As a consequence of Assumption (D), we get the following preliminary
result, see also [37].

Lemma 4.7 Under Assumption (D), the mapping x 7→ D(x)∇Ψ(x) is uniformly con-
tinuous on B.

Proof. Let ε > 0 and i ∈ {1, . . . , n} be arbitrary. Since, by assumption, ∇Ψ is
bounded on B, there is a constant b > 0 such that ‖∇Ψ(x)‖∞ ≤ b for all x ∈ B. Since
∇Ψ is uniformly continuous, we have the existence of a constant δ̄ > 0 such that

−ε

4
≤ [∇Ψ(y)]i − [∇Ψ(x)]i ≤

ε

4
(26)

holds for all x, y ∈ B with |yi − xi| ≤ δ̄. Now define δ := min{δ̄, 3ε
4b
}, let x, y ∈ B with

‖y − x‖∞ ≤ δ be arbitrary, and set T (x, y) := D(y)∇Ψ(y)−D(x)∇Ψ(x). Then∣∣[T (x, y)]i
∣∣ =

∣∣di(y)[∇Ψ(y)]i − di(x)[∇Ψ(x)]i
∣∣

≤ di(y)
∣∣[∇Ψ(y)]i − [∇Ψ(x)]i

∣∣ +
∣∣di(y)− di(x)

∣∣ ∣∣[∇Ψ(x)]i
∣∣

(9)

≤
∣∣[∇Ψ(y)]i − [∇Ψ(x)]i

∣∣ +
∣∣di(y)− di(x)

∣∣ ∣∣[∇Ψ(x)]i
∣∣.

(27)

We now distinguish several cases.
Case 1. If [∇Ψ(x)]i = 0, we immediately obtain

∣∣[T (x, y)]i
∣∣ ≤ ε from (27) and (26).

Case 2. If [∇Ψ(x)]i > 0, we consider two subcases:
Case 2.1. If [∇Ψ(x)]i ≤ 3ε

8
we obtain

∣∣[T (x, y)]i
∣∣ ≤ ε

4
+ 23ε

8
= ε from (27).

Case 2.2. If [∇Ψ(x)]i > 3ε
8
, we obtain

[∇Ψ(y)]i =
(
[∇Ψ(y)]i − [∇Ψ(x)]i

)
+ [∇Ψ(x)]i ≥ −

ε

4
+

3ε

8
=

ε

8
> 0
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from the first inequality in (26). Hence both [∇Ψ(x)]i and [∇Ψ(y)]i are positive, and
(27) together with the definition of the scaling matrix D(x) becomes∣∣[T (x, y)]i

∣∣ ≤ ∣∣[∇Ψ(y)]i −∇Ψ(x)]i
∣∣ +

∣∣ min{1, yi − li} −min{1, xi − li}
∣∣[∇Ψ(x)]i

≤
∣∣[∇Ψ(y)]i −∇Ψ(x)]i

∣∣ +
∣∣yi − xi

∣∣ [∇Ψ(x)]i ≤
ε

4
+

3ε

4b
b = ε.

Case 3. Analogously, for [∇Ψ(x)]i < 0, we consider the following two subcases:
Case 3.1. If [∇Ψ(x)]i ≥ −3ε

8
, we obtain

∣∣[T (x, y)]i
∣∣ ≤ ε

4
+ 23ε

8
= ε from (27).

Case 3.2. If [∇Ψ(x)]i < −3ε
8
, the second inequality in (26) implies

[∇Ψ(y)]i =
(
[∇Ψ(y)]i − [∇Ψ(x)]i

)
+ [∇Ψ(x)]i ≤

ε

4
− 3ε

8
= −ε

8
< 0.

Hence [∇Ψ(x)]i and [∇Ψ(y)]i are both negative, and we obtain∣∣[T (x, y)]i
∣∣ ≤ ∣∣[∇Ψ(y)]i −∇Ψ(x)]i

∣∣ +
∣∣ min{1, ui − yi} −min{1, ui − xi}

∣∣ ∣∣[∇Ψ(x)]i
∣∣

≤
∣∣[∇Ψ(y)]i −∇Ψ(x)]i

∣∣ +
∣∣yi − xi

∣∣ ∣∣[∇Ψ(x)]i
∣∣ ≤ ε

4
+

3ε

4b
b = ε

from (27).
Summarizing all three cases, we obtain ‖T (x, y)‖∞ ≤ ε for all ‖y − x‖∞ ≤ δ. The

assertion of the lemma therefore holds. �

We are now in the position to state our final global convergence result.

Theorem 4.8 Suppose that Assumptions (A), (B), (C), and (D) hold, and let {xk} be
any sequence generated by Algorithm 3.1. Then

lim
k→∞
‖ĝk‖ = 0. (28)

Proof. Suppose that (28) does not hold. Then there is a constant ε > 0 and a
subsequence {xk}K , K ⊆ N, such that

‖ĝk‖ ≥ 2ε ∀k ∈ K. (29)

In view of Theorem 4.6, we can find, for each k ∈ K, an index `(k) > k such that

‖ĝ`‖ ≥ ε ∀k ≤ ` < `(k) and ‖ĝ`(k)‖ < ε. (30)

Let β2 > 0 be a constant such that ‖HT
k Hk + νkI‖ ≤ β2 for all k ∈ N, cf. Assumptions

(B) and (C). Given k ∈ K, take an arbitrary index ` with k ≤ ` < `(k) and suppose,
for the moment, that iteration ` is successful. Then Lemma 3.2 implies

Ψ(x`)−Ψ(x`+1) ≥ ρ1 pred`(p
`)
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≥ 1

2
αρ1‖ĝ`‖min

{ ‖ĝ`‖
‖HT

` H` + ν`I‖
, ∆`, 1

}
≥ 1

2
αρ1ε min

{ ε

β2

, ∆`, 1
}

≥ 1

2
αρ1ε min

{ ε

β2

, ‖x`+1 − x`‖∞, 1
}

.

Since {Ψ(xk)} converges, we therefore get

Ψ(x`)−Ψ(x`+1) ≥ 1

2
αρ1ε‖x`+1 − x`‖∞

for all these ` sufficiently large. Trivially, this inequality also holds for all nonsuccessful
iterations. Consequently, we get

1

2
αρ1ε‖x`(k) − xk‖∞ ≤ 1

2
αρ1ε

`(k)−1∑
`=k

‖x`+1 − x`‖∞

≤
`(k)−1∑

`=k

(
Ψ(x`)−Ψ(x`+1)

)
= Ψ(xk)−Ψ(x`(k))

for all k ∈ K. The convergence of the entire sequence {Ψ(xk)} therefore implies{
‖x`(k) − xk‖

}
K
→ 0. In view of Lemma 4.7, we then get

{
‖ĝ`(k) − ĝk‖

}
K
→ 0.

On the other hand, it follows from (29) and (30) that

‖ĝ`(k) − ĝk‖ ≥ ‖ĝk‖ − ‖ĝ`(k)‖ ≥ 2ε− ε = ε.

This contradiction completes the proof. �

5 Local Convergence

In this section, we consider the local behavior of Algorithm 3.1. Taking into account
Theorem 2.3, it follows that we only have to show that the projected Levenberg-
Marquardt direction pk

PLM from step (S.3) is automatically accepted in a neighbourhood
of a solution of (1). To this end, we begin with the following preliminary result.

Lemma 5.1 Let x∗ ∈ Rn be a solution of (1) such that all elements from ∂Φ(x∗) have
full rank, and let ν̄ > 0. Then there exist constants ε > 0 and κ > 0 such that

pT (HT H + νI)p ≥ κ‖p‖2

for all H ∈ ∂Φ(x) and all x ∈ Rn with ‖x−x∗‖ ≤ ε and all ν ∈ [0, ν̄], i.e., the matrices
HT H + νI are uniformly positive definite.
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Proof. It follows from Lemma 2.2 that there exist constants ε > 0 and c > 0 such
that

‖(HT H + νI)−1‖ ≤ c ∀x ∈ Bε(x
∗), ∀H ∈ ∂Φ(x), ∀ν ∈ [0, ν̄]. (31)

Since

‖(HT H + νI)−1‖ =
1

λmin(HT H + νI)
=:

1

λx
min

for all x ∈ Bε(x
∗), all H ∈ ∂Φ(x) and all ν ∈ [0, ν̄], we obtain from (31)

(p)T (HT H + νI)p ≥ λx
min‖p‖2 ≥

1

c
‖p‖2 ∀x ∈ Bε(x

∗), ∀H ∈ ∂Φ(x), ∀ν ∈ [0, ν̄].

Hence the assertion holds with κ := 1
c
. �

We also need the following result in order to establish our main local convergence
theorem.

Lemma 5.2 Let x∗ ∈ Rn be a solution of problem (1) such that all elements from
∂Φ(x∗) have full rank. Then there exist constants ε > 0 and γ > 0 such that

‖Φ(x)‖ ≥ γ‖x− x∗‖ for all x ∈ Bε(x
∗).

Proof. Lemma 5.1 implies that there are constants ε1 > 0 and κ > 0 such that

‖H(x− x∗)‖2 = (x− x∗)T HT H(x− x∗) ≥ κ‖x− x∗‖2 (32)

holds for all x ∈ Bε1(x
∗) and all H ∈ ∂Φ(x) . Furthermore, the semismoothness of Φ

implies that there is a constant ε2 > 0 such that

‖Φ(x)− Φ(x∗)−H(x− x∗)‖ ≤
√

κ

2
‖x− x∗‖ (33)

holds for all x ∈ Bε2(x
∗) and all H ∈ ∂Φ(x), cf. (3). Setting ε := min{ε1, ε2}, we obtain

from (32) and (33) that, for all x ∈ Bε(x
∗) and all H ∈ ∂Φ(x), we have

‖Φ(x)‖ =
∥∥H(x− x∗) +

(
Φ(x)− Φ(x∗)−H(x− x∗)

)∥∥
≥ ‖H(x− x∗)‖ − ‖Φ(x)− Φ(x∗)−H(x− x∗)‖

≥
√

κ‖x− x∗‖ −
√

κ

2
‖x− x∗‖

=

√
κ

2
‖x− x∗‖.

The statement therefore holds with γ :=
√

κ
2

. �

We are now in the position to state the main convergence result of this section.
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Theorem 5.3 Suppose that Assumptions (A), (B) hold, and let {xk} be a sequence
generated by Algorithm 3.1. Assume that x∗ ∈ B is an accumulation point of {xk} such
that x∗ is a solution of problem (1) and such that all elements from ∂Φ(x∗) have full
rank. Then the following statements hold:

(a) The entire sequence {xk} converges to x∗.

(b) The direction pk
PLM in (S.3) is always accepted for k sufficiently large so that the

next iterate is given by xk+1 = xk + pk
PLM , provided that νk → 0.

(c) The rate of convergence is Q-superlinear if νk → 0.

(d) The rate of convergence is Q-quadratic if νk = O(‖Φ(xk)‖) and, in addition, Φ is
strongly semismooth.

Proof. (a) To establish that the entire sequence {xk} converges to x∗, we first
note that x∗ is an isolated solution of (1). This follows immediately from Lemma 5.2.
Since Algorithm 3.1 generates a decreasing sequence {Ψ(xk)} and x∗ is a zero of Φ
(and Ψ), it follows that the entire sequence {Ψ(xk)} converges to zero. Hence every
accumulation point of the sequence {xk} is a solution of (1). Consequently, x∗ is an
isolated accumulation point of the sequence {xk}.

Now let {xk}K denote any subsequence converging to x∗, and note that Φ(x∗) = 0
and, therefore, ∇Ψ(x∗) = 0 .

For all k ∈ N with the search direction pk
PLM coming from (S.3), we have

‖xk+1 − xk‖ = ‖pk
PLM‖ = ‖PB(xk + pk

LM)− xk‖
= ‖PB(xk + pk

LM)− PB(x
k)‖

≤ ‖xk + pk
LM − xk‖

= ‖ − (HT
k Hk + νkI)−1∇Ψ(xk)‖

≤ ‖(HT
k Hk + νkI)−1‖ ‖∇Ψ(xk)‖.

(34)

We now consider the iterates k ∈ N where the search direction is the Cauchy-like step
pk coming from (S.4). Using Lemma 5.1, it follows that there is a constant κ > 0 such
that

κ‖pk‖2 ≤ (pk)T (HT
k Hk + νkI)pk (35)

for all k ∈ K sufficiently large. On the other hand, since qk(p
k) ≤ 0, we get

1

2
(pk)T (HT

k Hk + νkI)pk ≤ −∇Ψ(xk)T pk. (36)

From (35), (36), and the Cauchy-Schwarz inequality, we obtain

κ‖pk‖2 ≤ 2‖∇Ψ(xk)‖ ‖pk‖.
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This implies

‖xk+1 − xk‖ ≤ ‖pk‖ ≤ 2

κ
‖∇Ψ(xk)‖. (37)

Since {∇Ψ(xk)}K → ∇Ψ(x∗) = 0, we obtain from (34), (37), and the boundedness of
the sequence {‖(HT

k Hk + νkI)−1‖} (see Lemma 2.2) that {‖xk+1 − xk‖}K → 0. Hence
statement (a) follows from [30, Lemma 4.10].

(b), (c), (d) We only have to prove statement (b), since (c) and (d) then follow directly
from Theorem 2.3.

To this end, we first recall from the proof of Theorem 2.3 that

‖xk + pk
LM − x∗‖ = o(‖xk − x∗‖), (38)

provided that νk → 0. Furthermore, Lemma 5.2 implies that there is a constant γ > 0
such that

‖Φ(xk)‖ ≥ γ‖xk − x∗‖ (39)

for all k ∈ N sufficiently large. Using (39) and (38), we obtain

‖Φ(xk + pk
LM)‖

‖Φ(xk)‖
≤ ‖Φ(xk + pk

LM)‖
γ‖xk − x∗‖

=
‖Φ(xk + pk

LM)− Φ(x∗)‖
γ‖xk − x∗‖

≤ L‖xk + pk
LM − x∗‖

γ‖xk − x∗‖
→ 0,

where L > 0 denotes the local Lipschitz constant of Φ (note that Φ is semismooth and
therefore, in particular, locally Lipschitzian). Hence we have

‖Φ(xk + pk
LM)‖ = o(‖Φ(xk)‖). (40)

Using the definition of pk
PLM and exploiting the definition of the projection PB, we

obtain

‖pk
PLM − pk

LM‖ = ‖PB(xk + pk
LM)− (xk + pk

LM)‖
x∗∈B
≤ ‖x∗ − (xk + pk

LM)‖
(38)
= o(‖xk − x∗‖)

(39)
= o(‖Φ(xk)‖).

(41)

From (41) and (40), we now get

‖Φ(xk + pk
PLM)‖ ≤ ‖Φ(xk + pk

PLM)− Φ(xk + pk
LM)‖+ ‖Φ(xk + pk

LM)‖
≤ L‖pk

PLM − pk
LM‖+ ‖Φ(xk + pk

LM)‖
= o(‖Φ(xk)‖),
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and this shows that the test in (S.3) is passed by the direction pk
PLM for all k ∈ N

sufficiently large. �

6 A Projected Filter Trust Region Method

In this section, we present a variant of Algorithm 3.1 by adding a filter technique
into our projected Levenberg-Marquardt trust region method. We will show that this
method has essentially the same global and local convergence properties as Algorithm
3.1 itself. However, the filter allows a nonmonotone behaviour of the sequence {Ψ(xk)}
by accepting the full projected Levenberg-Marquardt step even in some situations where
we get no decrease of the merit function Ψ.

Originally, filter methods were proposed in the year 2002 by Fletcher and Leyffer
[19] for the solution of constrained optimization problems, see also [18, 22, 38, 40] for
some further developments in this direction. Extensions of the filter idea to the solution
of nonlinear systems of equations can be found in Fletcher and Leyffer [20] as well as
in Gould et al. [22]. Here we adapt the multidimensional filter approach from [22] and
incorporate that idea into our method for the solution of problem (1).

More precisely, we simplify the approach from [22] to some extent and present a
special case of that filter approach only. This version is tailored to the case where we
apply our method to mixed complementarity problems in the following sections.

To describe the filter idea, let r ∈ {1, . . . ,m−1} be any given number, and partition
the mapping Φ : Rn → Rm into

Φ(x) :=

(
ΦA(x)
ΦB(x)

)
with ΦA : Rn → Rr, ΦB : Rn → Rm−r.

Then define a mapping θ : Rn → R2 by

θ(x) :=
(
θ1(x), θ2(x)

)T
:=

(
‖ΦA(x)‖, ‖ΦB(x)‖

)T
.

We say that a vector x ∈ Rn dominates another vector y ∈ Rn if θi(x) ≤ θi(y) for both
i = 1 and i = 2. Now suppose that we are at the kth iteration of a suitable method
and that we have generated certain iterates x0, x1, . . . , xk. Then a filter Fk at the kth
iteration is a subset

Fk ⊆
{
θ(x0), θ(x1), . . . , θ(xk)

}
such that none of the elements θ(xl) ∈ Fk dominates another element from the set Fk.

Assume that a filter Fk is given, and that we have computed a new vector y (which
we hope to become xk+1). The question is when θ(y) becomes an element of the new
filter Fk+1. A straightforward idea would be to add θ(y) to the old filter Fk if θ(y) is
not dominated by any element from Fk. However, this notion is not strong enough in
order to prove suitable convergence results.
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Following [22], we therefore call y acceptable for the filter Fk if there is a constant
γθ > 0 such that, for each element θ(xl) ∈ Fk, there is an index j ∈ {1, 2} with

θj(y) ≤ θj(x
l)− γθ‖θ(y)‖.

Loosely speaking, this means that θ(y) is acceptable if, for each element θ(xl) ∈ Fk,
the new candidate θ(y) is sufficiently smaller than θ(xl) in at least one of the two
components. In this case we define the new filter by

Fk+1 := Fk ∪ {θ(y)}

and remove all elements from Fk that are dominated by θ(y). Moreover, we accept
xk+1 := y as our new iterate. On the other hand, if y is not acceptable for the filter Fk,
we simply set Fk+1 := Fk.

Incorporating this filter idea into Algorithm 3.1, we obtain the following method.

Algorithm 6.1 (Scaled Filter Trust Region Method)

(S.0) Choose x0 ∈ B, ∆0 > 0, 0 < ρ1 < ρ2 < 1, 0 < σ1 < 1 < σ2, ε ≥ 0, η ∈
(0, 1), ∆min > 0, α ∈ (0, 1], M > 0, and set F0 := {θ(x0)}, k := 0.

(S.1) If ‖Dkg
k‖ ≤ ε: STOP.

(S.2) Choose Hk ∈ ∂Φ(xk), νk > 0, and compute pk
LM using (5).

(S.3) Compute pk
PLM from (7). If xk + pk

PLM is acceptable for the filter Fk and ‖Φ(xk +
pk

PLM)‖ ≤ M , set xk+1 := xk + pk
PLM , ∆k+1 := max{∆min, σ2∆k},Fk+1 := Fk ∪

{θ(xk+1)} (and remove all entries from Fk that are dominated by θ(xk+1)), and
go to step (S.7); otherwise set Fk+1 := Fk, and go to (S.4).

(S.4) If ‖Φ(xk+pk
PLM)‖ ≤ η‖Φ(xk)‖ holds, set xk+1 := xk+pk

PLM , ∆k+1 := max{∆min, σ2∆k},
and go to (S.7); otherwise, go to step (S.5).

(S.5) Compute an approximate solution pk of the trust region subproblem (10) satis-
fying (13) and (14), and define rk by (12). If rk ≥ ρ1, we call the iteration k
successful and set xk+1 := xk + pk; otherwise we set xk+1 := xk.

(S.6) Update the trust region radius as follows:

∆k+1 :=


σ1∆k, if rk < ρ1,
max{∆min, ∆k}, if rk ∈ [ρ1, ρ2),
max{∆min, σ2∆k}, if rk ≥ ρ2.

(S.7) Set k ← k + 1, and go to (S.1).
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Note that Algorithm 6.1 differs from Algorithm 3.1 only in (S.3) where we added the
filter strategy. Furthermore, note that we have a constant M which we assume to be
sufficiently large in practice such that the test ‖Φ(xk +pk

PLM)‖ ≤M is always satisfied.
From a theoretical point of view, however, this constant M is needed and plays the role
of a safeguard in order to prevent the sequence {‖Φ(xk)‖} to become too large. In fact,
we have the following simple note.

Remark 6.2 The sequence {xk} generated by Algorithm 6.1 has the property that
‖Φ(xk)‖ ≤ max

{
‖Φ(x0)‖, M

}
for all k ∈ N. This can be seen by induction. For k = 0,

this inequality holds trivially. Hence suppose that it holds for some k ≥ 0, and consider
the iterate xk+1. If this iterate is computed in step (S.3), we have ‖Φ(xk+1)‖ ≤ M .
Otherwise, we have ‖Φ(xk+1)‖ ≤ ‖Φ(xk)‖, and the statement then follows from the
induction hypothesis.

The following result shows what happens if the new vector xk + pk
PLM is accepted an

infinite number of times by our filter step in (S.3).

Theorem 6.3 Assume there are infinitely many iterations k such that xk+1 = xk +
pk

PLM is accepted in the filter step (S.3) of Algorithm 6.1. Then

lim
k→∞
‖Φ(xk)‖ = 0.

Proof. Let K ⊆ N denote the infinite subset such that xk+1 = xk + pk
PLM is accepted

for all k ∈ K in step (S.3) of Algorithm 6.1. In the first part of the proof, we show that

lim
k∈K
‖θ(xk+1)‖ = 0. (42)

Suppose this is not true. Then we may assume that there is a infinite subset K̄ ⊆ K
and a constant ε > 0 such that

‖θ(xk+1)‖ ≥ ε ∀k ∈ K̄. (43)

In view of step (S.3) of Algorithm 6.1, the sequence {θ(xk+1)}k∈K̄ is bounded. Hence
there is another subset K̂ ⊆ K̄ with

lim
k∈K̂

θ(xk+1) = θ∗ (44)

for some number θ∗ ∈ R2 satisfying ‖θ∗‖ ≥ ε.
For the moment, consider a fixed index k ∈ K̂. Furthermore, let lk ∈ K̂ denote the

index in K̂ previous to k. Since xk+1 was acceptable for the filter Fk, we have

θj(x
k+1) ≤ θj(x

lk+1)− γθ‖θ(xk+1)‖ (45)

for at least one index j ∈ {1, 2}. This statement does not depend on θ(xlk+1) still being
in the filter Fk. Indeed, if θ(xlk+1) /∈ Fk, it must be dominated by an entry θ(xl) in the
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filter Fk. Since xk+1, k ∈ K̂, is acceptable for θ(xl) ∈ Fk, there is an index j ∈ {1, 2}
such that

θj(x
k+1) ≤ θj(x

l)− γθ‖θ(xk+1)‖ ≤ θj(x
lk+1)− γθ‖θ(xk+1)‖,

where the last inequality holds since θ(xl) dominates θ(xlk+1). Hence (45) holds. To-
gether with (43), we obtain

θj(x
k+1)− θj(x

lk+1) ≤ −γθε

for at least one index j ∈ {1, 2}. However, the left-hand side converges to zero for at
least one index j ∈ {1, 2} because of (44). This contradiction shows that (42) holds.

As an immediate consequence of (42), we also obtain limk∈K ‖Φ(xk+1)‖ = 0. How-
ever, for all k /∈ K, we have ‖Φ(xk+1)‖ ≤ ‖Φ(xk)‖. Hence we obtain limk→∞ ‖Φ(xk)‖ =
0, and this completes the proof. �

Theorem 6.3 shows that every accumulation point of a sequence generated by Algorithm
6.1 is actually a solution of (1) and not just a stationary point of (2), provided the filter
is accepted an infinite number of times. Hence we get a very strong global convergence
result in this case. Moreover, it is easy to see that all statements of the local convergence
result from Theorem 5.3 remain true in this case.

On the other hand, if the filter is accepted only a finite number of times, then
Algorithm 6.1 eventually reduces to Algorithm 3.1, and in this case Algorithm 6.1 has
precisely the same convergence properties of Algorithm 3.1 as described in the previous
sections.

7 Application to Mixed Complementarity Problems

In this section, we present the reformulation of the mixed complementarity problem that
fits into the framework (1), (2) discussed in the previous sections. We also note that
the assumptions for local or global convergence hold under appropriate conditions. The
reformulation we use here is taken from [27] except that we add the bound constraints
explicitly in the present paper.

In order to introduce the mixed complementarity problem, it is convenient to con-
sider the variational inequality problem first, see [11] for more details. Given a function
F : Rn → Rn and a nonempty, closed and convex set X ⊆ Rn, the variational inequality
problem consists in finding a point x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ X.

If the feasible set X is a box of the form X = [l, u] with lower bounds l = (l1, . . . , ln)T

and upper bounds u = (u1, . . . , un)T satisfying −∞ ≤ li < ui ≤ +∞ for all i ∈
{1, . . . , n}, we obtain the mixed complementarity problem.
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In order to present a reformulation of this mixed complementarity problem, let us
introduce the following partition of the index set I := {1, . . . , n}:

Il := {i ∈ I | −∞ < li < ui =∞},
Iu := {i ∈ I | −∞ = li < ui <∞},
Ilu := {i ∈ I | −∞ < li < ui <∞},
If := {i ∈ I | −∞ = li < ui =∞}.

Furthermore, let φ : R2 → R denote the Fischer-Burmeister function

φ(a, b) :=
√

a2 + b2 − a− b,

which has the interesting property that

φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

see [16]. We now define the operator Φ : Rn → R2n componentwise as follows (i =
1, . . . , n):

Φi(x) :=


λφ(xi − li, Fi(x)) if i ∈ Il,

−λφ(ui − xi,−Fi(x)) if i ∈ Iu,

λφ(xi − li, φ(ui − xi,−Fi(x))) if i ∈ Ilu,

−λFi(x) if i ∈ If ,

Φn+i(x) :=


(1− λ)φ+(xi − li, Fi(x)) if i ∈ Il,

(1− λ)φ+(ui − xi,−Fi(x)) if i ∈ Iu,

(1− λ)(φ+(xi − li, Fi(x)) + φ+(ui − xi,−Fi(x))) if i ∈ Ilu,

−(1− λ)Fi(x) if i ∈ If .

Then it was noted in [27] that the overdetermined system of equations Φ(x) = 0 is
equivalent to the mixed complementarity problem. Obviously, the same holds for the
box constrained reformulation Φ(x) = 0, x ∈ [l, u], which we prefer here because this
avoids some problems like mappings F which are not defined outside the feasible region
X = [l, u] or possible stationary points outside this set. Hence we arrive at a problem
of the form (1). Moreover, it was noted in [27] that the corresponding merit function
Ψ(x) := 1

2
‖Φ(x)‖2 is continuously differentiable.

Furthermore, Φ is semismooth if F is continuously differentiable, and strongly semis-
mooth if, in addition, F ′ is locally Lipschitzian. The full rank assumption for all ele-
ments in the generalized Jacobian ∂Φ(x∗) at a solution x∗ of the mixed complementarity
is satisfied under a condition that is called R-regularity in [27]. Finally, we note that,
in a very natural way, the definition of Φ leads to the partition Φ = (ΦA, ΦB), where
ΦA denotes the first n components and ΦB the last n components of Φ. Hence we can
apply our filter technique from the previous section with r := n to this reformulation
of mixed complementarity problems.
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8 Numerical Results

We implemented Algorithm 6.1 in MATLAB and tested the algorithm on a number
of mixed complementarity problems from the MCPLIB collection (see [9]) using the
reformulation from the previous section.

Preliminary numerical experiments showed that the local method behaves extremely
good. We therefore decided to use the local method as a preprocessor before starting
the main algorithm. More precisely, we first allow at most 20 iterations of the local
method, and then switch to the globalized trust-region filter method from Algorithm
6.1. Moreover, we follow an idea by Ulbrich [37] and compute xk+1 in a slightly different
way, replacing the formula

xk+1 = xk + pk
PLM = PB(x

k + pk
LM) = xk + PB−xk(pk

LM)

from (6) by
xk+1 = xk + PXk

(pk
LM),

where Xk denotes the set from (11). Note that, locally, this does not change anything
since pk

LM → 0 whereas the trust-region radius ∆k ≥ ∆min is bounded away from zero.
In particular, neither the global nor the local convergence theory is affected by this
modification.

We next describe the initialization of our method: The starting point x0 is the one
from the MCPLIB collection. It always belongs to the box B, so there is no need to
project it onto the feasible set. The Levenberg-Marquardt parameter νk is chosen as
follows: For smaller problems with n < 100, we first estimate the condition number
of the matrix HT

k Hk. If this estimated condition number is larger than 1025, we set
νk := 10−6/(k + 1), otherwise we set νk := 10−16. In all other cases, we take νk := 0.
(Note the the condition estimator becomes expensive for larger problems, so we do not
use it for problems with n ≥ 100.) We terminate our iteration if one of the following
conditions hold:

Ψ(xk) ≤ 10−10 or ‖ĝ(xk)‖ ≤ 10−6 or k > 500 or ∆k ≤ 10−12.

The remaining parameters used by our method are λ = 0.1, α = 10−4, ρ1 = 10−4, ρ2 =
0.75, σ1 = 0.5, σ2 = 2, ∆0 = 10, and ∆min = 10−6.

If the preprocessor is not able to solve a problem or if ‖pk
PLM‖ ≤ 10−12, we switch to

Algorithm 6.1 starting with the best point computed so far. We then test whether our
projected step pk

PLM is acceptable for the current filter or satisfies the descent condition
in (S.4). If this is not the case and pk

PLM also fails to satisfy the fraction of Cauchy
decrease condition, we compute pk in (S.5) by solving the trust-region subproblem (10)
exactly. Here, the QP-solver MINQ from Neumaier [31] is used. This is a MATLAB
program for bound constrained quadratic programs, and we allow at most n inner
iterations for each call of this QP-solver. Unfortunately, we sometimes do not succeed in
solving the trust-region subproblem even with a higher number of inner QP-iterations.
The number of errors produced by MINQ grows with the dimension n of the mixed
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complementarity problem. For this reason, we exclude from our test all problems of
the MCPLIB with size n > 160. Alternatively, we could compute an approximate
solution of the trust-region subproblem like a Cauchy step or a simple dogleg step,
however, according to our numerical tests, it is better to solve (or try to solve) the
QP-subproblem exactly.

Our numerical results are summarized in Table I. In this table the first column
gives the name of the problem; itot gives the total number of outer iterations (adding
the iteration numbers from the preprocessor and the main algorithm). The entry ’–’
is used to indicate that the algorithm terminated unsuccessfully; Ψ(xf ) and ‖ĝ(xf )‖
denote the values of Ψ(x) and ‖ĝ(x)‖ at the final iterate x = xf ; ifil gives the number
of filter steps taken and ides the number of descent steps satisfying the criterion in
(S.4) of Algorithm 6.1. The remaining two columns contain nonzero numbers only
if we solve our QP-subproblem using MINQ. The entries of column iTR report the
number of successful (left) and the number of unsuccessful trust-region steps (right);
moreover, column iQP gives the number of QP-problems that were solved successfully
(left) and unsuccessfully (right). In the latter case, we do not stop our iteration if the
final approximate solution provided by MINQ satisfies the fraction of Cauchy decrease
condition.

Table I: Numerical results for MCPLIB test problems

Problem itot Ψ(xf ) ‖ĝ(xf )‖ ifil ides i TR i QP

succ unsucc solv unsolv

badfree 4 1.589642e-14 3.088351e-08 0 0 0 0 0 0
bertsekas 11 1.276482e-11 3.156252e-05 0 0 0 0 0 0
billups – 2.000000e-06 0.000000e+00 0 0 0 0 0 0
choi 5 2.649619e-16 4.405966e-10 0 0 0 0 0 0
colvdual 14 9.073964e-11 9.450997e-05 0 0 0 0 0 0
colvnlp 6 4.885855e-16 4.901420e-08 0 0 0 0 0 0
cycle 4 8.921959e-12 4.224224e-07 0 0 0 0 0 0
degen 4 3.151895e-17 1.122835e-09 0 0 0 0 0 0
duopoly – 5.163723e+00 4.977950e-07 14 0 22 5 14 13
ehl k40 12 1.511446e-13 1.842138e-04 0 0 0 0 0 0
ehl k60 15 3.103870e-11 6.406644e-04 0 0 0 0 0 0
ehl k80 14 9.474365e-13 3.872440e-03 0 0 0 0 0 0
ehl kost 17 5.651902e-12 1.512516e-02 0 0 0 0 0 0
electric 52 1.745588e-11 1.238040e-02 23 0 4 5 4 0
explcp 4 7.407629e-14 3.849074e-08 0 0 0 0 0 0
freebert 11 4.545773e-11 5.974924e-05 0 0 0 0 0 0
gafni 10 6.420657e-13 9.795657e-06 0 0 0 0 0 0
games 13 4.384397e-13 1.618921e-05 0 0 0 0 0 0
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Table I: Numerical results for MCPLIB test prob-
lems (continued)

Problem itot Ψ(xf ) ‖ĝ(xf )‖ ifil ides i TR i QP

succ unsucc solv unsolv

hanskoop 14 1.231700e-11 3.573738e-06 0 0 0 0 0 0
hydroc06 7 5.792347e-19 1.566474e-09 0 0 0 0 0 0
hydroc20 10 2.322843e-16 5.090809e-05 0 0 0 0 0 0
jel 8 3.651083e-18 1.601171e-08 0 0 0 0 0 0
josephy 2 2.989144e-11 6.436729e-05 0 0 0 0 0 0
kojshin 2 3.004186e-11 6.452607e-05 0 0 0 0 0 0
mathinum 4 3.024771e-12 6.673325e-07 0 0 0 0 0 0
mathisum 8 2.199503e-16 1.559264e-08 0 0 0 0 0 0
methan08 4 6.252855e-13 2.274457e-02 0 0 0 0 0 0
nash 4 2.354633e-19 7.457045e-09 0 0 0 0 0 0
ne-hard 20 5.337625e-11 1.323158e-04 0 0 0 0 0 0
pgvon106 69 1.387117e-12 1.325755e-01 4 0 11 34 42 3
pies 29 1.739675e-13 1.328305e-03 8 0 0 1 0 0
powell 4 5.659114e-11 7.740843e-06 0 0 0 0 0 0
powell mcp 2 2.728284e-13 6.048681e-06 0 0 0 0 0 0
qp 2 1.603357e-31 1.025472e-15 0 0 0 0 0 0
scarfanum 3 3.605079e-12 1.796300e-06 0 0 0 0 0 0
scarfasum 3 3.604872e-12 2.255827e-06 0 0 0 0 0 0
scarfbsum 120 1.507297e-11 9.669907e-04 7 1 57 35 89 2
shubik – 1.407769e-07 4.303409e-03 74 8 161 237 290 91
simple-ex 25 1.079537e-13 4.142756e-07 5 0 0 0 0 0
simple-red 10 2.173645e-11 5.866415e-06 0 0 0 0 0 0
sppe 3 4.251553e-11 1.849914e-04 0 0 0 0 0 0
tinloi 6 7.639515e-12 7.292264e-04 0 0 0 0 0 0
tobin 2 1.474605e-14 1.352957e-05 0 0 0 0 0 0

Table I shows that our method was able to solve the majority of all test examples.
Most of them were solved in less than 20 iterations and, therefore, by our preproces-
sor which turns out to be very effective. We have failures only on three problems,
namely billups, duopoly, and shubik. For billups and duopoly, we terminate with
a stationary point, whereas the function value in the final iteration of shubik is very
small, but does not satisfy our termination criterion. We also stress that we have a
relatively high number of unsolved QP-subproblems for the two examples duopoly and
shubik which might be the reason for the failure of the overall algorithm. However,
we also tried some other QP-solvers, but, in general, MINQ seems to be a good choice
for bound constrained quadratic programs. Finally, we mention that we changed ex-
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ample pgvon106 slightly by adding a small number to the lower bounds. This prevents
difficulties in computing the function value F (x) when x is close to the lower bounds.

9 Final Remarks

We have presented a filter trust-region method for the solution of semismooth least
squares problems with box constraints and applied this method to a corresponding
reformulation of mixed complementarity problems that was recently introduced in [27].
The method has similar convergence properties as the one from [27], but it generated
feasible iterates in contrast to the method from [27]. In particular, the projected local
method used in this paper seems to be very efficient and surprisingly robust, and
many of the test examples from the MCPLIB can be solved successfully in this way.
Some problems arise as soon as we have to find a solution of our QP-subproblems. In
particular, solving these QP-subproblems is time-consuming, so we do not suggest to
apply this approach to large-scale problems.

However, by combining the two approaches from [27] and this paper, it is possible to
get a method that is efficient and extremely robust both for small- and large-dimensional
problems. For example, if we use the preprocessor from this paper and then switch to
the unconstrained method from [27], we are able to solve all test problems (including the
larger ones) from the MCPLIB collection with the only exception of problems duopoly
and bishop. This is a significant improvement over existing methods, possibly with the
exception of the PATH solver (see [8]) whose newer versions, however, use restarts and
several other techniques so that a direct comparison is not possible.
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[2] Å. Björck (1996): Numerical Methods for Least Squares Problems. SIAM, Philadel-
phia, PA.

[3] B. Chen, X. Chen, and C. Kanzow (2000): A penalized Fischer-Burmeister NCP-
function. Math. Program., 88, pp. 211–216.

[4] F.H. Clarke (1983): Optimization and Nonsmooth Analysis. John Wiley & Sons,
New York (reprinted by SIAM, Philadelphia, 1990).

[5] T.F. Coleman and Y. Li (1996): An interior trust region approach for nonlinear
minimization subject to bounds. SIAM J. Optim., 6, pp. 418–445.

[6] A.R. Conn, N.I.M. Gould, and Ph.L. Toint (2000): Trust-Region Methods. SIAM,
Philadelphia, PA.

31



[7] T. De Luca, F. Facchinei, and C. Kanzow (1996): A semismooth equation approach
to the solution of nonlinear complementarity problems. Math. Program., 75, pp.
407–439.

[8] S.P. Dirkse and M.C. Ferris (1995): The PATH solver: A non-monotone stabi-
lization scheme for mixed complementarity problems. Optim. Meth. Soft., 5, pp.
123–156.

[9] S.P. Dirkse and M.C. Ferris (1995): MCPLIB: A collection of nonlinear mixed
complementarity problems. Optim. Meth. Soft., 5, pp. 319–345.

[10] J.E. Dennis and R.B. Schnabel (1983): Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ.

[11] F. Facchinei and J.-S. Pang (2003): Finite-Dimensional Variational Inequalities
and Complementarity Problems, Volume I. Springer, New York.

[12] F. Facchinei and J.-S. Pang (2003): Finite-Dimensional Variational Inequalities
and Complementarity Problems, Volume II. Springer, New York.

[13] F. Facchinei and J. Soares (1997): A new merit function for nonlinear complemen-
tarity problems and a related algorithm. SIAM J. Optim., 7, pp. 225–247.

[14] M.C. Ferris, C. Kanzow, and T.S. Munson (1999): Feasible descent algorithms for
mixed complementarity problems. Math. Program., 86, pp. 475–497.

[15] M.C. Ferris and J.S. Pang (1997): Engineering and economic applications of com-
plementarity problems. SIAM Rev., 39, pp. 669–713.

[16] A. Fischer (1992): A special Newton-type optimization method. Optim., 24, pp.
269–284.

[17] A. Fischer (1997): Solution of monotone complementarity problems with locally
Lipschitzian functions. Math. Program., 76, pp. 513–532.

[18] R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, and A. Wächter (2002):
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