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Abstract

The multiplier-penalty approach is one of the classical methods for the solu-
tion of constrained optimization problems. This method was generalized to
the solution of quasi-variational inequalities by Pang and Fukushima (Com-
putational Management Science 2, 2005, pp. 21-56). Based on the recent
improvements achieved for the multiplier-penalty approach for optimization,
we generalize the method by Pang and Fukushima for quasi-variational in-
equalities in several respects: a) We allow to compute inexact KKT-points of
the resulting subproblems; b) We improve the existing convergence theory; c)
We investigate some special classes of quasi-variational inequalities where the
resulting subproblems turn out to be easy to solve. Some numerical results
indicate that the corresponding method works quite reliable in practice.

Key Words: Quasi-variational inequalities; Global convergence; Multiplier-penalty
method; Augmented Lagrangian; Extended Mangarasarian-Fromovitz constraint
qualification; Constant positive linear independence constraint qualification; Mono-
tone mappings.



1 Introduction

Let F : Rn → Rn, gP : R2n → Rm and gI : Rn → Rl be given vector-valued
functions, and let K : Rn ⇒ Rn be the set-valued mapping defined by

K(x) :=
{
y ∈ Rn | gP (y, x) ≤ 0, gI(y) ≤ 0

}
, (1)

where gP denotes the parameterized constraints and gI the independent (indepen-
dent of the parameter x) or individual ones. Note that also equality constraints can
be included, but to keep the notation simple, we consider only inequality constraints.
Then the finite-dimensional quasi-variational inequality problem QVI(F, gP , gI) or,
simply, QVI consists of finding a point x ∈ K(x) such that

F (x)T (y − x) ≥ 0 ∀y ∈ K(x). (2)

If the set K(x) is independent of x, i.e. K(x) = K for all x ∈ Rn with the constant
set

K :=
{
y ∈ Rn | gI(y) ≤ 0

}
, (3)

then the QVI reduces to the standard variational inequality (VI) problem, cf. [23]
for a comprehensive treatment.

Historically, the QVI was introduced in the paper [7] by Bensoussan, Goursat,
and Lions in the context of impulse control problems. Bensoussan and Lions pro-
vide some further material in their subsequent papers [8, 9]. Soon after, the QVI
turned out to be a powerful tool to model several complex equilibrium situations
arising in different fields like generalized Nash equilibrium problems [6, 27], mechan-
ics [5, 10, 30, 37, 44, 45], economics [33, 53], statistics [36], transportation [13, 17, 50],
biology [26], or stationary problems in superconductivity, thermoplasticity, and elec-
trostatics [31, 32, 38]. The reader is also referred to the two monographs [39] by
Mosco and [5] by Baiocchi and Capelo for a more comprehensive analysis of QVIs.

Due to the complicated structure of QVIs, the numerical solution of (finite-
dimensinal) QVIs is a very challenging problem. To the best of our knowledge,
the first approach is due to Chan and Pang [14], where a projection-type method
is used to solve the special class of QVIs in which K(x) = c(x) + Q with a fixed,
convex set Q ⊆ Rn and c : Rn → Rn a suitable mapping. The majority of the
subsequent algorithmic works consider similar projection or fixed-point approaches,
again mainly for the above class of QVIs, cf. [40, 42, 43, 49, 51]. Fukushima [25]
presents a reformulation of QVIs as an optimization problem based on the idea of
gap functions. Improvements and modifications of this approach can be found in
[28, 29]. But also the gap function idea is capable to deal with special classes of
QVIs only, and usually leads to either a nonsmooth optimization problem or an
optimization problem where the objective function is expensive to evaluate.

Pang and Fukushima [48] were the first who provide a convergence theory for
a general class of QVIs. Their method is based on the multiplier-penalty or aug-
mented Lagrangian-type idea known from optimization, but lacks from the fact that,
in general, the resulting subproblems are difficult to solve. Finally, there is the idea
of solving general QVIs based on the corresponding KKT or related optimality con-
ditions. This point of view has been taken by Facchinei et al. [22] where a potential
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reduction interior-point approach with a quite satisfactory global convergence the-
ory has been developed, as well as in [20] where a semismooth Newton-type method
is investigated which, under suitable assumptions, is globally and locally fast conver-
gent. Purely locally convergent Newton methods are also considered by Outrata and
co-workers [44, 45, 46]. In general, however, one can say that the local convergence
theory requires relatively strong assumptions.

In this paper, we follow the multiplier-penalty approach by Pang and Fukushima
[48]. These authors include the difficult parameterized constraints to the original
function F and leave the individual constraints as they are, hence they solve a
sequence of standard variational inequalities. This idea is taken from the field of
optimization, where the multiplier-penalty method is one of the standard algorithms
for constrained optimization problem, cf. [11, 41]. Successful implementations of the
multiplier-penalty method are provided by LANCELOT [16] and, more recently,
ALGECAN [12].

From a theoretical point of view, there are some recent contributions that im-
prove the existing convergence theory of multiplier-penalty methods for constrained
optimization problems. The classical assumption for global convergence is the ex-
tended Mangasarian-Fromovitz constraint qualification (EMFCQ) that was also used
by Pang and Fukushima [48] in their QVI-counterpart of the augmented Lagrangian
approach. The paper [1] by Andreani et al. generalizes the convergence theory by
replacing EMFCQ by the constant positive linear dependence (CPLD) constraint
qualifcation. Subsequently, Andreani et al. [2, 3] show that CPLD can be replaced
even by some weaker assumptions. All these conditions imply a local error bound.
Based on this observation, Izmailov et al. [34] then prove a convergence result for
augmented Lagrangian-type methods using an error bound condition, but they also
require an additional technical assumption to get convergence.

Note, however, that some of these papers (have to) assume that a limit point is
feasible for the optimization problem, though a characterization of infeasible points
can also be given, see, for example, the book [12] which summarizes some of the
recent contributions on augmented Lagrangian methods for constrained optimization
problems.

Our first aim is to improve Pang and Fukushima’s multiplier-penalty approach for
the solution of QVIs [48] by adapting the more recent results known for optimization
problems to the setting of QVIs. The second aim is to get a better understanding of
some classes of QVIs for which it can be guaranteed that they can be solved by the
multiplier-penalty scheme. In particular, the following are the main contributions
of this paper:

• We only need to compute KKT points (not necessarily solutions) of the re-
sulting VIs that arise at each iteration.

• We need to compute inexact KKT points only.

• We generalize the convergence theory provided by Pang and Fukushima [48] by
using weaker assumptions and allowing the penalty parameter to stay finite.

• We investigate some special classes of QVIs for which the resulting VIs are
”simple” in the sense that, e.g., they yield monotone VIs.
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Some numerical results will also be presented to illustrate the behaviour of the
augmented Lagrangian approach.

The paper is organized in the following way: Section 2 states some background
material, in particular on suitable constraint qualifications that will play an essential
role in the subsequent analysis. Section 3 gives a precise statement of the multiplier-
penalty method for QVIs together with a refined convergence analysis that gener-
alizes the corresponding result from [48]. Section 4 then investigates several special
classes of QVIs, as introduced in the paper [22], and provides assumptions under
which, e.g., these classes of QVIs yield monotone VI-subproblems in our augmented
Lagrangian approach. Some numerical results are presented in Section 5, and we
close with some final remarks in Section 6.

Notation: The symbol ‖ · ‖ denotes the Euclidean vector norm or its associated
matrix norm, Br(x) is the (closed) Euclidean ball of radius r > 0 around a given
point x; on the other hand, ‖ · ‖∞ indicates the maximum norm. For a differentiable
mapping F : Rn → Rm, we denote its Jacobian at x by F ′(x) or JF (x), whereas
∇F (x) stands for the transposed Jacobian. Given a smooth mapping g(y, x) of two
arguments (like gP ), say g : Rn×Rm → Rl, we write ∇yg(y, x) and ∇xg(y, x) for the
corresponding partial transposed Jacobians with respect to y and x, respectively.

2 Preliminaries

This section recalls some standard terminology, states some known results, and
introduces the notion of an ε-stationary point for variational inequalities. We begin
with some constraint qualifications that will play an essential role in our subsequent
analysis.

Definition 2.1 Consider a set X := {x ∈ Rn | gi(x) ≤ 0 (i = 1, . . . , l)} described
by a finite number of inequality constraints, where each function gi : Rn → R is
assumed to be continuously differentiable.

(a) Given a point x∗ ∈ Rn and a subset I ⊆ {1, . . . , l}, we call the gradients
∇gi(x∗) (i ∈ I) positively linearly independent if the implication[∑

i∈I

λi∇gi(x∗) = 0, λi ≥ 0 (i ∈ I)
]

=⇒ λi = 0 (i ∈ I)

holds; otherwise, the gradients are called positively linearly dependent.

(b) A feasible point x∗ ∈ X satisfies the Mangasarian-Fromovitz constraint qual-
ification (MFCQ) if the gradients ∇gi(x∗) (i : gi(x

∗) = 0) of the active con-
straints are positively linearly independent.

(c) A (not necessarily feasible) point x∗ ∈ Rn satisfies the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ) if the gradients ∇gi(x∗) (i :
gi(x

∗) ≥ 0) of the active and violated constraints are positively linearly in-
dependent.

(d) A feasbile point x∗ ∈ X satisfies the constant positive linear dependence con-
dition (CPLD) if for any subset I ⊆ {i | gi(x∗) = 0} such that the gradients
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∇gi(x∗) (i ∈ I) are positively linearly dependent, there exists a neighbourhood
N(x∗) such that the gradients ∇gi(x) (i ∈ I) are linearly dependent for all
x ∈ N(x∗).

MFCQ is a standard assumption used in the optimization literature. The closely
related EMFCQ condition is often used to guarantee feasibility of limit points in the
context of penalty-type methods. The CPLD condition is less known and goes back
to [47], where it was used to investigate the convergence properties of SQP-type
methods. The fact that CPLD is a constraint qualification was shown later in [4];
note that CPLD is obviously weaker than MFCQ, moreover it covers the CRCQ
(constant rank constraint qualification) condition. There are some recent general-
izations of CPLD, cf. [2, 3] for more details. In principle, it should be possible to
replace the CPLD condition by these weaker conditions in our convergence analysis,
but one of these weaker conditions is actually equivalent to CPLD since, for no-
tational convenience, we consider inequality constraints only, and the other would
require some more technical overhead so that we prefer to keep dealing with CPLD.

Our convergence analysis needs the following Carathéodory-type result whose
proof may be found, e.g., in [12, Lem. 3.1] and [52, Lem A.1].

Lemma 2.2 Assume that a given vector w ∈ Rn has a representation of the form

w =

p∑
j=1

µju
j +

m∑
i=1

λiv
i

with uj, vi ∈ Rn, λi ≥ 0 and µj ∈ R for all i = 1, . . . ,m and j = 1, . . . , p. Then there
exist index sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , p} as well as scalars λ̃i ≥ 0 (i ∈ I)
and µ̃j ∈ R (j ∈ J) such that

w =
∑
j∈J

µ̃ju
j +
∑
i∈I

λ̃iv
i

and such that the vectors uj (j ∈ J), vi (i ∈ I) are linearly independent.

We next consider the QVI defined by (2) with the set K(x) given by (1). The
following smoothness assumptions are required for the remaining part of this paper.

Assumption 2.3

(a) The function F is continuous on Rn.

(b) The function gI : Rn → Rl is continuously differentiable on Rn.

(c) The function gP : R2n → Rm is continuously differentiable on R2n.

To derive the KKT conditions of the QVI from (2), (1), let x∗ be a solution of this
QVI. Then we have x∗ ∈ K(x∗) and

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ K(x∗).

This means that

F (x∗)T (x− x∗) ≥ 0 ∀x : gP (x, x∗) ≤ 0, gI(x) ≤ 0.
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Setting f∗(x) := F (x∗)T (x − x∗), it therefore follows that x∗ is a solution of the
(parameterized) optimization problem

min
x

f∗(x) s.t. gPi (x, x∗) ≤ 0 ∀i = 1, . . . ,m,

gIj (x) ≤ 0 ∀j = 1, . . . , l.
(4)

Assuming that a suitable constraint qualification (like MFCQ, CPLD etc.) holds at
the solution x∗, it follows that there exist some Lagrange multipliers such that the
triple (x∗, λ∗, µ∗) satisfies the following KKT conditions:

∇f∗(x∗) +
m∑
i=1

λ∗i∇yg
P
i (x∗, x∗) +

l∑
j=1

µ∗j∇gIj (x∗) = 0,

λ∗i ≥ 0, gPi (x∗, x∗) ≤ 0, λ∗i g
P
i (x∗, x∗) = 0 ∀i = 1, . . . ,m,

µ∗j ≥ 0, gIj (x
∗) ≤ 0, µ∗jg

I
j (x
∗) = 0 ∀j = 1, . . . , l.

Since ∇f∗(x∗) = F (x∗), this justifies the following terminology.

Definition 2.4 Consider the QVI defined by (2) with K(x) given by (1). Then the
system

F (x) +
m∑
i=1

λi∇yg
P
i (x, x) +

l∑
j=1

µj∇gIj (x) = 0,

λi ≥ 0, gPi (x, x) ≤ 0, λig
P
i (x, x) = 0 ∀i = 1, . . . ,m,

µj ≥ 0, gIj (x) ≤ 0, µjg
I
j (x) = 0 ∀j = 1, . . . , l

is called the KKT conditions of the underlying QVI. Every triple (x∗, λ∗, µ∗) satis-
fying these KKT conditions is called a KKT point of the QVI.

Note that there is a very close relation between the QVI and the corresponding
KKT conditions. This comes from the observation that the objective function in
the previous derivation of the KKT conditions is always linear (hence convex), so
that the KKT conditions are automatically sufficient optimality conditions if, in
addition, the constraints are convex. This follows from the standard theory for
nonlinear programs. We summarize our observations in the following result.

Theorem 2.5 The following statements hold:

(a) If x∗ is a solution of the QVI defined by (2), (1) and any standard constraint
qualification holds at x∗, then there exist multipliers λ∗, µ∗ such that (x∗, λ∗, µ∗)
is a KKT point of the QVI.

(b) Conversely, if (x∗, λ∗, µ∗) is a KKT point of the QVI (2), (1) such that the
constraints gPi (·, x) are convex for any fixed x ∈ Rn and all components i =
1, . . . ,m and such that gIj (·) are also convex for all j = 1, . . . , l, then x∗ is a
solution of the QVI.
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This close relationship between the QVI and its KKT points plays a central role in
our approach since, in the end, we will try to compute KKT points.

More precisely, our aim is to compute such a KKT point by solving a related
sequence of standard variational inequalities (VIs). In order to save computation
time and to be more realistic, we allow inexact solutions of the VIs. To this end,
consider the VI

F (x∗)T (x− x∗) ≥ 0 ∀x ∈ X, (5)

where F : Rn → Rn is continuous and the feasible set X := {x ∈ Rn | gj(x) ≤ 0 (j =
1, . . . , l)} is described by a finite number of continuously differentiable inequality
constraints. The following definition introduces our notion of an ε-stationary point
of this VI.

Definition 2.6 Consider the VI from (5), and let ε ≥ 0. We call (x̄, µ̄) ∈ Rn × Rl

an ε-inexact KKT point of the VI if the following inequalities hold:

∥∥∥F (x̄) +
l∑

j=1

µ̄j∇gj(x̄)
∥∥∥
∞
≤ ε,

µ̄j ≥ −ε, gj(x̄) ≤ ε,
∣∣µ̄jgj(x̄)

∣∣ ≤ ε, ∀j = 1, . . . , l.

Note that for ε = 0 an ε-inexact KKT point of a VI is a standard KKT point. We
further note that this notion of an ε-inexact KKT point is very general, and many
times it is possible to find an approximate KKT point which satisfies all the above
conditions with, in addition, µ̄j ≥ 0 for all j = 1, . . . , l. The more general condition
from Definition 2.6 turns out to be sufficient to prove a global convergence result
under the EMFCQ assumption, whereas our refined convergence analysis requires
that, in addition, we have the nonnegativity of all µ̄j.

3 Algorithm and Convergence

This section is divided into three parts: We first derive our algorithm in Section 3.1.
A global convergence result under the EMFCQ condition is provided in Section 3.2.
A more refined analysis under the CPLD condition is then given in Section 3.3.

3.1 Statement of Algorithm

Consider the QVI from (2) with the set K(x) defined by (1). Throughout this
section, we suppose that Assumption 2.3 holds.

In order to solve the QVI, we follow the approach from [48] where the authors
try to compute a solution of the QVI by solving a sequence of suitable VIs. The
idea comes from the augmented Lagrangian/multiplier-penalty approach which is a
prominent tool for optimization problems, cf. [41].

To motivate the algorithm, let x∗ be a (fixed) solution of the QVI from (2),
(1). As indicated in the previous section, this implies that x∗ is also a solution of
the optimization problem (4) with f∗(x) := F (x∗)T (x − x∗). Applying the stan-
dard multiplier-penalty approach to the parameterized constraints and leaving the
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functions gIj explicitly in the constraints yields the optimization problem

min
x

La(x, u, ρ) := f∗(x) +
1

2ρ

m∑
i=1

[
max2

{
0, ui +ρgPi (x, x∗)

}
− (ui)

2
]

s.t. x ∈ K,

(6)
where K is defined by (3), ρ > 0 is a suitable penalty parameter, and u denotes
an estimate for the multipliers λi associated to the functions gPi . Following the
classical multiplier-penalty idea, we therefore try to compute a solution x∗ of the
QVI by minimizing (6). The corresponding (primal) optimality conditions lead to
the standard variational inequality[

F (x) +
m∑
i=1

max{0, uki + ρkg
P
i (x, x)}∇yg

P
i (x, x)

]T
(y − x) ≥ 0, ∀y ∈ K.

The successive solution of these problems gives us the following multiplier-penalty
or sequential variational inequality approach for the solution of QVIs. It differs from
[48] especially by allowing inexact KKT points at each subproblem.

Algorithm 3.1 (Sequential Variational Inequality Approach for QVIs)

(S.0) Let umax ∈ Rm, τ ∈ (0, 1), γ > 1. Choose (x0, λ0, µ0) ∈ Rn × Rm × Rl,
u0 ∈ [0, umax], ε0 > 0, ρ0 > 0, and set k := 0.

(S.1) If (xk, λk, µk) is a KKT point of the QVI (2): STOP.

(S.2) Compute an εk-inexact KKT point (xk+1, µk+1) of the VIk, which is to find
x ∈ K such that[

F (x) +
m∑
i=1

max{0, uki + ρkg
P
i (x, x)}∇yg

P
i (x, x)

]T
(y − x) ≥ 0, ∀y ∈ K,

(7)

and define λk+1
i := max

{
0, uki + ρkg

P
i (xk+1, xk+1)

}
for all i = 1, . . . ,m.

(S.3) If ∥∥min
{
− gP (xk+1, xk+1), λk+1

}∥∥
∞ ≤ τ

∥∥min
{
− gP (xk, xk), λk

}∥∥
∞,

then set ρk+1 := ρk, else set ρk+1 := γρk.

(S.4) Choose uk+1 ∈ [0, umax], εk+1 ≤ εk, set k ← k + 1, and go to (S.1).

Note that, by construction, the sequence {uk} generated by Algorithm 3.1 is nonneg-
ative and bounded. A natural choice would be something like uk+1 := min{λk+1, umax},
i.e. it is a kind of safe-guarded Lagrange multiplier update to keep uk bounded. This
boundedness will play an essential role in the subsequent convergence analysis, see
also Example 3.3 below which illustrates the necessity of the boundedness of the
sequence {uk}.

We further note that our updating of the penalty parameter ρk is different from
most other papers in the optimization context. A classical updating of ρk typically
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depends on the size of the infeasibility max{0, gP (xk+1, xk+1)} only. The description
of the ALGECAN software in [12] as well as the underlying theoretical papers by
Andreani et al. [1, 2, 3] use gP (xk+1, xk+1) and uk+1 instead of gP (xk+1, xk+1) and
λk+1 in our context. The only paper which seems to have an identical updating rule
in the optimization context is Izmailov et al. [34].

Note also that the multiplier-penalty method for QVIs described by Pang and
Fukushima [48] has no particular updating rule for ρk. These authors assume from
the very beginning that a sequence {ρk} is given that converges to infinity. Dealing
with the possibility that {ρk} remains bounded, however, is extremely important
from a numerical point of view in order to avoid an unnecessary ill-conditioning of
the VI-subproblems.

3.2 Convergence Properties under EMFCQ

In the following theorem, we show that every accumulation point of a sequence
generated by Algorithm 3.1 is a KKT point of the QVI provided that an EMFCQ
condition holds at this limit point.

Theorem 3.2 Let Assumption 2.3 hold, let {xk} be a sequence generated by Algo-
rithm 3.1 with εk ↓ 0, and let x∗ be an accumulation point of {xk} such that the
following EMFCQ condition holds at x∗:∑

i∈α

λi∇yg
P
i (x∗, x∗) +

∑
j∈γ

µj∇gIj (x∗) = 0,

λi ≥ 0, ∀i ∈ α,
µj ≥ 0, ∀j ∈ γ

⇒ λi = µj = 0, ∀i ∈ α, ∀j ∈ γ, (8)

where
α := {i | gPi (x∗, x∗) ≥ 0}, γ := {j | gIj (x∗) = 0}. (9)

Then there exist multipliers (λ∗, µ∗) ∈ Rm×Rl such that (x∗, λ∗, µ∗) is a KKT point
of the QVI.

Proof: By construction, (xk+1, µk+1) is an εk-inexact stationary point of VIk for
each k ∈ N. Together with the definition of λk+1, we therefore have

∥∥F (xk+1) +
m∑
i=1

λk+1
i ∇yg

P
i (xk+1, xk+1) +

l∑
j=1

µk+1
j ∇gIj (xk+1)

∥∥
∞ ≤ εk (10)

and
µk+1
j ≥ −εk, gIj (x

k+1) ≤ εk,
∣∣µk+1
j gIj (x

k+1)
∣∣ ≤ εk ∀j = 1, . . . , l. (11)

Let us define the index sets

αk :=
{
i | gPi (xk, xk) ≥ 0

}
and γk :=

{
j | gIj (xk) = 0

}
.

Furthermore, let K ⊆ N be an infinite subset such that the subsequence {xk+1}k∈K
converges to x∗. Then

αk+1 ⊆ α and γk+1 ⊆ γ ∀k ∈ K sufficiently large;
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indeed, since xk+1 →K x∗, for each i 6∈ α, we have gPi (x∗, x∗) < 0, and the continuity
of gPi therefore implies gPi (xk+1, xk+1) < 0 for all k ∈ K sufficiently large. This means
that i 6∈ αk+1 and shows that the inclusion αk+1 ⊆ α holds. In a similar way, we
can show that γk+1 ⊆ γ holds for all k ∈ K large enough.

We now consider two cases.
Case 1: The sequence {ρk} remains bounded. Then (S.3) implies that

min
{
− gPi (xk+1, xk+1), λk+1

i

}
→ 0 ∀i = 1, . . . ,m, k →∞. (12)

Since {xk+1}K → x∗ and gi(x
∗, x∗) < 0 for all i 6∈ α, we therefore get λk+1

i → 0 =:
λ∗i (i 6∈ α). Using

∣∣µk+1
j gIj (x

k+1)
∣∣ ≤ εk, we also see that

∣∣µk+1
j

∣∣ ≤ εk/
∣∣gIj (xk+1)

∣∣ →K

0 =: µ∗j (j 6∈ γ). We claim that also the remaining sequence of multipliers{((
λk+1
i

)
i∈α,

(
µk+1
j

)
j∈γ

)}
k∈K

is bounded. Suppose the contrary, say∥∥((λk+1
i

)
i∈α,

(
µk+1
j

)
j∈γ

)∥∥→K ∞.

Then we may assume without loss of generality that the corresponding normalized
sequence converges:((

λk+1
i

)
i∈α,

(
µk+1
j

)
j∈γ

)∥∥((λk+1
i

)
i∈α,

(
µk+1
j

)
j∈γ

)∥∥ →K

((
λi
)
i∈α,

(
µj
)
j∈γ

)
for some nonzero and nonnegative limit point

((
λi
)
i∈α,

(
µj
)
j∈γ

)
. Hence, dividing

(10) by
∥∥((λk+1

i

)
i∈α,

(
µk+1
j

)
j∈γ

)∥∥ and taking the limit k →K ∞, we obtain∑
i∈α

λi∇yg
P
i (x∗, x∗) +

∑
j∈γ

µj∇gIj (x∗) = 0

with λi ≥ 0 (i ∈ α) and µj ≥ 0 (j ∈ γ). Using (8), we therefore get λi = 0 (i ∈ α)

and µj = 0 (j ∈ γ), but this contradicts the fact that
∥∥((λi)i∈α, (µj)j∈γ)∥∥ = 1.

Consequently, the sequences {λk+1
i }K (i ∈ α) and {µk+1

j }K (j ∈ γ) are bounded.
Subsequencing if necessary, we may assume that they converge, say

λk+1
i →K λ∗i (i ∈ α) and µk+1

j →K µ∗j (j ∈ γ).

Hence, taking the limit k →K ∞ in (10), (11), and (12), and using the fact that
λ∗i = 0 (i 6∈ α), µ∗j = 0 (j 6∈ γ), we obtain

F (x∗) +
m∑
i=1

λ∗i∇yg
P
i (x∗, x∗) +

l∑
j=1

µ∗j∇gIj (x∗) = 0,

µ∗j ≥ 0, gIj (x
∗) ≤ 0, µ∗jg

I
j (x
∗) = 0 ∀j = 1, . . . , l,

min
{
− gPi (x∗, x∗), λ∗

}
= 0 ∀i = 1, . . . ,m.

Since the last equations are equivalent to λ∗i ≥ 0, gPi (x∗, x∗) ≤ 0 and λ∗i g
P
i (x∗, x∗) = 0

for all i = 1, . . . ,m, it follows that (x∗, λ∗, µ∗) is a KKT point of the QVI (2).
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Case 2: The sequence {ρk} is unbounded, hence {ρk} → ∞ for k → ∞. Since
{xk+1} →K x∗, gPi (x∗, x∗) < 0 for all i 6∈ α, {uki } is bounded, and ρk → ∞ for
k → ∞, it follows that uki + ρkg

P
i (xk+1, xk+1) ≤ 0 for all i 6∈ α and all k ∈ K

sufficiently large. This yields λk+1
i = 0 for all i 6∈ α and all k ∈ K large enough.

Furthermore, similar to Case 1, we obtain
∣∣µk+1
j

∣∣ ≤ εk/
∣∣gIj (xk+1)

∣∣→ 0 for k →K ∞
and for all j 6∈ γ. Exploiting EMFCQ, we therefore obtain in the same way as
in Case 1 that the remaining sequence of multipliers

{((
λk+1
i

)
i∈α,

(
µk+1
j

)
j∈γ

)}
is

bounded. Once again, we may therefore assume that this subsequence converges on
the set K, say {

λk+1
i

}
→K λ∗i (i ∈ α) and

{
µk+1
j

}
→K µ∗j (j ∈ γ).

But the convergence of {λk+1
i } for all i = 1, . . . ,m (recall that λk+1

i →K 0 =: λ∗i for
all i 6∈ α) together with the definition λk+1

i = max
{

0, uki + ρkg
P
i (xk+1, xk+1)

}
and

the boundedness of {uki } implies that gPi (x∗, x∗) ≤ 0 for all i = 1, . . . ,m. Since we
already noted that µk+1

j →K 0 =: µ∗j (j 6∈ γ), we obtain from (10) and (11) together
with our previous discussion that

F (x∗) +
m∑
i=1

λ∗i∇yg
P
i (x∗, x∗) +

l∑
j=1

µ∗j∇gIj (x∗) = 0

as well as

µ∗j ≥ 0, gIj (x
∗) ≤ 0, µ∗jg

I
j (x
∗) = 0 ∀j = 1, . . . , l,

λ∗i ≥ 0, gPi (x∗, x∗) ≤ 0, λ∗i g
P
i (x∗, x∗) = 0 ∀i = 1, . . . ,m.

This shows that (x∗, λ∗, µ∗) is a KKT point of the QVI (2) also in the second case. �

Note that the previous result generalizes the corresponding convergence theorem
from [48]. The latter corresponds to the case where εk = 0 for all k ∈ N (and
ρk → ∞ for k → ∞). Since the subproblems VIk are nonlinear, it is unrealistic to
compute an exact KKT point of these subproblems; in addition, it might be much
less time consuming to compute only inexact KKT points, especially in the first
iterations.

The convergence theorem exploits the fact that the sequence {uk} is bounded.
This assumption is not crucial at all since it is up to the user to choose this sequence.
Nevertheless, it is interesting to see that the boundedness of {uk} is crucial for the
convergence analysis. This is illustrated by the following counterexample.

Example 3.3 Consider the QVI with n = 2, m = 1, l = 0, and

F (x) := x, gP (y, x) := y2 − x1.

Note that we write gP instead of gP1 since there is just a single parameterized con-
straint in this example. Further note that Assumption 2.3 holds, and EMFCQ is
satisfied at any point since the partial gradient ∇yg

P (x, x) = (0, 1)T is linearly inde-
pendent. A simple calculation shows that x∗ := (0, 0)T together with the multiplier
λ∗ := 0 is the unique KKT point of the given QVI.

12



Consider the subproblem VIk. Since there are no individual constraints, this
subproblem reduces to a nonlinear system of equations Fk(x) = 0, where Fk is given
by

Fk(x) :=

(
x1
x2

)
+ max

{
0, uk + ρk(x2 − x1)

}(0

1

)
.

Given ρk > 0, and choosing uk := 1+ρk, it is not difficult to see that xk+1 := (0,−1)T

is a solution of Fk(x) = 0. Obviously, for k → ∞, this sequence converges to
(0,−1)T , but this limit point does not correspond to a KKT point of the given QVI.
This observation does not contradict Theorem 3.2 since, for the particular choice of
uk in this example, we have uk →∞ for ρk →∞. ♦

The next example is used to illustrate a couple of different properties of multiplier-
penalty methods and its inexact counterparts.

Example 3.4 Consider again a QVI with n = 2, m = 1, and l = 0, defined by

F (x) :=

(
x1

(x2 + 1)2

)
, gP (y, x) := y2 − x1.

The unique KKT point of this problem is given by x∗ := (0,−1)T and λ∗ := 0.
On the other hand, the corresponding subproblem VIk reduces to the nonlinear

system of equations Fk(x) = 0, where

Fk(x) :=

(
x1

(x2 + 1)2

)
+ max

{
0, uk + ρk(x2 − x1)

}(0

1

)
.

This yields the following observations:

(a) The subproblem Fk(x) = 0 has no solution for any ρk < uk although the under-
lying QVI has a unique solution.

(b) On the other hand, for ρk ≥ uk, the subproblem Fk(x) = 0 has a unique solution
xk+1 = (0,−1)T which is already a solution of the QVI; hence a finite value of ρk
leads to a solution of the QVI.

(c) The existence of εk-inexact KKT points can be guaranteed for smaller values
of ρk; in particular, an elementary calculation shows that, for example, xk+1 :=
(εk,−1)T is an εk-inexact KKT point for all ρk ≥ uk−εk

1+εk
. ♦

An interesting question is now, if there exists a finite penalty parameter ρ, for which
the solution of the VI is already a solution of the QVI. The proof of Theorem 3.2
as well as the previous example seem to indicate that such a result might hold.
However, the following counterexample shows that this is not true even in very
favourable situations where all functions are linear and F is strongly monotone.

Example 3.5 Let n = 2,m = 1, l = 0 and consider the corresponding QVI given
by

F (x) :=

(
x1

x2 − 1

)
, gP (y, x) := y2 − x1.

13



Note that this example satisfies the implication (8). An elementary calculation
shows that there is a unique KKT point given by x∗ := (0, 0)T with corresponding
Lagrange multiplier λ∗ := 1.

Since there are no individual constraints, the resulting VIk-subproblem reduces
to the nonlinear system of equations Fk(x) = 0, where

Fk(x) :=

(
x1

x2 − 1

)
+ max

{
0, uk + ρk(x2 − x1)

}(0

1

)
.

Taking uk := 0, it follows that xk :=
(
0, 1

1+ρk

)T
is the unique solution of this VIk-

subproblem. Hence we have xk → x∗ for k → ∞, but xk 6= x∗ for all k ∈ N.
♦

The existence of a limit point of the sequence {xk} is guaranteed, for example, if the
set K is bounded (hence compact due to the continuity of the functions gIj ). The
same condition also guarantees the existence of (exact) solutions of the subproblems
VIk. However, since we compute (inexact) KKT points, we still need a condition
which yields the existence of Lagrange multipliers. The following result therefore
provides a simple CPLD-type condition which shows that any solution of VIk gives
a KKT point. In particular, this result therefore guarantees the existence of inexact
KKT points.

Proposition 3.6 Let x∗ be feasible for the QVI, i.e. x∗ ∈ K(x∗), and suppose that
the gradients

∇gIj (x∗) (j ∈ γ) are positively linearly independent, (13)

where γ is defined by (9). Then there exists an ε > 0 such that the gradients
∇gIj (x) (j ∈ γ(x)) remain positively linearly independent for all x ∈ Bε(x

∗) feasible
for VIk (with arbitrary k ∈ N since the feasible set of VIk is independent of the
particular k), where γ(x) := {j | gIj (x) = 0}.

Proof: Consider VIk with a fixed index k. As in the previous proof, we can show
that γ(x) ⊆ γ holds for all x feasible with respect to VIk. Suppose that the statement
does not hold. Then there exists a sequence {xk} → x∗, with each xk being feasible
for VIk, as well as a sequence of multipliers {µkj}j∈γ(xk) such that∑

j∈γ(xk)

µkj∇gIj (xk) = 0, µkj ≥ 0 (j ∈ γ(xk))

and, without loss of generality, ‖(µkj )j∈γ(xk)‖ = 1 for all k ∈ N. Since γ(xk) ⊆ γ (at
least for all k sufficiently large), we may add some zero multipliers and therefore get∑

j∈γ

µkj∇gIj (xk) = 0 (14)

and ‖(µkj )j∈γ‖ = 1. Subsequencing if necessary, we may assume that µkj → µ∗j for
all j ∈ γ. Taking the limit k →∞, possibly only on a subsequence, we obtain from
(14) that ∑

j∈γ

µ∗j∇gIj (x∗) = 0

14



for some nonzero and nonnegative vector (µ∗j)j∈γ, but this contradicts our assump-
tion from (13). �

Note that assumption (13) holds, in particular, under the EMFCQ condition from
(8). We further note that the existence of Lagrange multipliers can also be shown
under weaker or different constraint qualifications.

3.3 Refined Convergence Analysis

Recall that the EMFCQ condition in Theorem 3.2 guarantees, in particular, that
any accumulation point of a sequence generated by Algorithm 3.1 is feasible for the
given QVI, and this property is independent of the behaviour of the sequence of
penalty parameters {ρk}, which might be bounded or unbounded.

The following result shows that we automatically get feasibility of an accumu-
lation point in the case where the sequence {ρk} remains bounded. Note that this
result is a consequence of the particular updating rule for the penalty parameter.

Lemma 3.7 Let Assumption 2.3 hold, let {xk} be a sequence generated by Algo-
rithm 3.1 with εk ↓ 0, and let x∗ be an accumulation point of {xk}. Then x∗ is fea-
sible for the QVI provided that the sequence of penalty parameters {ρk} is bounded.

Proof: Since ρk is bounded, we have ρk = ρk0 for all k ≥ k0 for some index k0 ∈ N0

and, therefore,

min
{
− gPi (xk+1, xk+1), λk+1

i )
}
→ 0 ∀i = 1, . . . ,m for k →∞. (15)

Let x∗ be an accumulation point and {xk+1}k∈K be a subsequence converging to x∗.
Suppose that there exists an index i ∈ {1, . . . ,m} such that gPi (x∗, x∗) > 0. Then,
by continuity, there exists a constant δ > 0 such that gPi (xk+1, xk+1) ≥ δ for all
k ∈ K sufficiently large. We therefore obtain from (15) that

0← min
{
− gPi (xk+1, xk+1), λk+1

i )
}
≤ −gPi (xk+1, xk+1) ≤ −δ < 0,

and this contradiction completes the proof. �

The previous result allows us to state a global convergence result under the assump-
tion that the sequence {ρk} is bounded and that we can compute εk-KKT points
(xk, µk) satisfying µk ≥ 0. Note that we still need a constraint qualification to guar-
antee the existence of Lagrange multipliers, but that the constraint qualification
used in the subsequent result is significantly weaker than EMFCQ.

Theorem 3.8 Let Assumption 2.3 hold, let {xk} be a sequence generated by Al-
gorithm 3.1 with εk ↓ 0, let x∗ be an accumulation point of {xk}, and assume
that εk-stationarity is satisfied with nonnegative multipliers µk. Suppose that {ρk}
is bounded, and that the gradient vectors ∇gIj (x∗) (j ∈ γ) satisfy CPLD, where
γ := {j | gIj (x∗) = 0}. Then there exist multipliers (λ∗, µ∗) ∈ Rm × Rl such that
(x∗, λ∗, µ∗) is a KKT point of the QVI.
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Proof: Let us write

Lk := F (xk+1) +
m∑
i=1

λk+1
i ∇yg

P
i (xk+1, xk+1) +

l∑
j=1

µk+1
j ∇gIj (xk+1). (16)

Then the εk-stationarity of (xk+1, µk+1) together with the definition of λk+1 and the
additional assumption that µk+1 ≥ 0 yields

‖Lk‖∞ ≤ εk, λk+1
i ≥ 0 ∀i = 1, . . . ,m (17)

and
µk+1
j ≥ 0, gIj (x

k+1) ≤ εk,
∣∣µk+1
j gIj (x

k+1)
∣∣ ≤ εk ∀j = 1, . . . , l. (18)

Let {xk+1}k∈K be a subsequence converging to x∗, and recall that x∗ is feasible in
view of Lemma 3.7. Since {uk} is bounded by construction, we may assume without
loss of generality that {uk}k∈K → u∗ for some limit point u∗ ∈ Rm. Moreover, the
assumed boundedness of {ρk} implies that ρk = ρk0 for all k ≥ k0 and a sufficiently
large index k0 ∈ N0. Altogether, the definition of λk+1 therefore implies that the
subsequence {λk+1}k∈K is convergent: For all i = 1, . . . ,m, we have

λk+1
i = max

{
0, uki + ρkg

P
i (xk+1, xk+1)

}
→K max

{
0, u∗i + ρk0g

P
i (x∗, x∗)

}
=: λ∗i .

We now define another sequence {µ̂k+1
j }k∈N by

µ̂k+1
j :=

{
µk+1
j , if j ∈ γ,

0, if j 6∈ γ (19)

as well as

L̂k := F (xk+1) +
m∑
i=1

λk+1
i ∇yg

P
i (xk+1, xk+1) +

l∑
j=1

µ̂k+1
j ∇gIj (xk+1)

= F (xk+1) +
m∑
i=1

λk+1
i ∇yg

P
i (xk+1, xk+1) +

∑
j∈γ

µk+1
j ∇gIj (xk+1).

(20)

Since
∣∣µk+1
j gIj (x

k+1)
∣∣ ≤ εk for all j = 1, . . . , l, it follows that µk+1

j →K 0 for all j 6∈ γ,
which in turn implies ∑

j 6∈γ

µk+1
j ∇gIj (xk+1)→K 0.

Taking into account that Lk → 0, we therefore also obtain L̂k → 0. Furthermore,
we have

L̂k − F (xk+1)−
m∑
i=1

λk+1
i ∇gPi (xk+1, xk+1) =

∑
j∈γ

µk+1
j ∇gIj (xk+1).

In view of Lemma 2.2, we may find a subset Jk ⊆ γ as well as a sequence µ̃k+1
j ≥

0 (j ∈ Jk) such that, for each k ∈ K,

L̂k − F (xk+1)−
m∑
i=1

λk+1
i ∇gPj (xk+1, xk+1) =

∑
j∈Jk

µ̃k+1
j ∇gIj (xk+1)
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and such that the gradients ∇gIj (xk+1) are linearly independent. Since there are
only finitely many subsets Jk, we may assume once again without loss of generality
that Jk = J for all k ∈ K with a fixed subset J ⊆ γ. Hence we have

L̂k − F (xk+1)−
m∑
i=1

λk+1
i ∇gPj (xk+1, xk+1) =

∑
j∈J

µ̃k+1
j ∇gIj (xk+1). (21)

We claim that the sequence {(µ̃k+1
j )j∈J}k∈K is bounded. Otherwise, suppose that∥∥{(µ̃k+1

j )j∈J}
∥∥ →K ∞. Since the corresponding normalized sequence is bounded,

we may assume that it converges, say

(µ̃k+1
j )j∈J∥∥{(µ̃k+1
j )j∈J}

∥∥ →K (µ̄j)j∈J ,

where the limit has norm one and is therefore nonzero. Furthermore, since µ̃k+1
j ≥ 0

for all k ∈ N0, it follows immediately that µ̄j ≥ 0 for all j = 1, . . . , l. Dividing
(21) by

∥∥{(µ̃k+1
j )j∈J}

∥∥, taking the limit k →K ∞ and taking into account that all
expressions on the left-hand side of (21) are bounded, we obtain

0 =
∑
j∈J

µ̄j∇gIj (x∗).

Since (µ̄j)j∈J is nonzero, it follows that the gradients ∇gIj (x∗) (j ∈ J) are positively
linearly dependent. In view of CPLD, it follows that the gradients∇gIj (xk+1) (j ∈ J)
are linearly dependent for all k ∈ K sufficiently large, a contradiction to the choice
of the index set J = Jk. Hence the sequence {µ̃k+1

j }k∈K converges for each j ∈ J ,
say

µ̃k+1
j →K µ∗j ≥ 0 ∀j ∈ J.

Using the definition of L̂k together with L̃k → 0, it follows that

0 = lim
k∈K

L̂k = F (x∗) +
m∑
i=1

λ∗i∇yg
P
i (x∗, x∗) +

∑
j∈J

µ∗j∇gIj (x∗).

Since the boundedness of the penalty parameter also implies

0 = lim
k∈K

min
{
− gPi (xk+1, xk+1), λk+1

i

}
= min

{
− gPi (x∗, x∗), λ∗i

}
∀i = 1, . . . ,m,

it follows that λ∗i ≥ 0, gPi (x∗, x∗) ≤ 0, and λ∗i g
P
i (x∗, x∗) = 0 for all i = 1, . . . ,m.

Setting µ∗j := 0 for all j 6∈ J , it also follows that µ∗jg
I
j (x
∗) = 0 for all j = 1, . . . , l,

and this completes the proof. �

The following counterexample indicates that the EMFCQ condition is really nec-
essary to get feasibility in the limit. Any other condition which is only slightly
weaker or different does not guarantee feasibility. To this end, note that the subse-
quent example violates (E)MFCQ, but satisfies CPLD and even the stronger CRCQ
condition.
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Example 3.9 Consider the QVI with n = 2,m = 2, l = 2 defined by

F (x) :=

(
x1
x22

)
,

gP1 (y, x) := y2 − x1, gP2 (y, x) := x1 − y2,
gI1(y) := −y1 − 1, gI2(y) := −y2 − 1.

Then all KKT points (x∗, λ∗, µ∗) are of the following form: x∗ = (0, 0)T is unique,
µ∗ = (0, 0)T is also unique, but the components of λ∗ are nonunique, they only have
to satisfy the relation λ∗1 = λ∗2 ≥ 0.

Now consider the corresponding VIk-subproblem. Computing the KKT points
of VIk using uk := 0 and ρk > 1, a simple calculation shows that both xk := (0, 0)T

and xk := (0,−1)T yield KKT points. While the former immediately yields the
KKT point of the given QVI, the latter converges to the point (0,−1)T for k →∞,
but this limit point is infeasible for the underlying QVI.

Note that this example satisfies CPLD (even the stronger CRCQ since we have
linear constraints only), whereas (E)MFCQ is violated (there is a hidden equality
constraint). ♦

The following result is the counterpart of Theorem 3.8 with an unbounded sequence
of penalty parameters. Note that, motivated by the previous discussion and, in
particular, by Example 3.9, it explicitly assumes feasibility of an accumulation point.

Theorem 3.10 Let Assumption 2.3 hold, let {xk} be a sequence generated by Al-
gorithm 3.1 with εk ↓ 0, let x∗ be a feasible accumulation point of {xk}, and assume
that εk-stationarity is satisfied with nonnegative multipliers µk. Suppose that {ρk}
is unbounded, and that the gradient vectors ∇gPi (x∗, x∗) (i ∈ α), ∇gIj (x∗) (j ∈ γ)
satisfy CPLD, where α := {i | gPi (x∗, x∗) = 0} and γ := {j | gIj (x∗) = 0}. Then
there exist multipliers (λ∗, µ∗) ∈ Rm × Rl such that (x∗, λ∗, µ∗) is a KKT point of
the QVI.

Proof: Most parts of the proof are similar to the one of Theorem 3.8. In particular,
let Lk denote once again the expression defined in (16). Then εk-stationarity of
(xk+1, µk+1), together with the definition of λk+1, shows that both (17) and (18) hold.
Let {xk+1}k∈K be a subsequence converging to x∗, and recall that x∗ is assumed to
be feasible for the underlying QVI.

Since ρk →∞ by assumption, {uk} is bounded by construction, gPi is continuous
and {xk+1}k∈K converges to x∗, we obtain for all k ∈ K sufficiently large that

λk+1
i = max

{
0, uki + ρkg

P
i (xk+1, xk+1)

}
= 0 ∀i 6∈ α.

Hence we have

Lk − F (xk+1) =
∑
i∈α

λk+1
i ∇yg

P
i (xk+1, xk+1) +

l∑
j=1

µk+1
j ∇gIj (xk+1)

for all k ∈ K large enough. We next define a sequence of modified multipliers
{µ̂k+1

j }k∈N as in (19) and the related sequence {L̂k}k∈N as in (20). The proof of

Theorem 3.8 shows that L̂k →K 0. Since

L̂k − F (xk+1) =
∑
i∈α

λk+1
i ∇yg

P
i (xk+1, xk+1) +

∑
j∈γ

µk+1
j ∇gIj (xk+1)
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with λk+1
i ≥ 0 (i ∈ α) (by construction) and µk+1

j ≥ 0 (j ∈ γ) (by assumption), it
follows from Lemma 2.2 that, for each k ∈ N0, there exist index sets Ik ⊆ α and
Jk ⊆ γ as well as multipliers λ̃k+1

i ≥ 0 (i ∈ Ik) and µ̃k+1
j (j ∈ Jk) such that

L̂k − F (xk+1) =
∑
i∈Ik

λ̃k+1
i ∇yg

P
i (xk+1, xk+1) +

∑
j∈Jk

µ̃k+1
j ∇gIj (xk+1),

and such that the gradient vectors ∇yg
P
i (xk+1, xk+1) (i ∈ Ik), ∇gIj (xk+1) are linearly

independent for all k ∈ N. Since there are only finitely many possible subsets Ik
and Jk, we may assume without loss of generality that I = Ik and J = Jk for all
k ∈ K with some fixed index sets I ⊆ α and J ⊆ γ. Hence, for all k ∈ K, we have

L̂k − F (xk+1) =
∑
i∈I

λ̃k+1
i ∇yg

P
i (xk+1, xk+1) +

∑
j∈J

µ̃k+1
j ∇gIj (xk+1), (22)

and the corresponding gradient vectors are linearly independent. Again following
the proof of Theorem 3.8 and exploiting the current CPLD assumption, we can see
that the sequences {λ̃k+1

i }k∈K (i ∈ I) and {µ̃k+1
j }k∈K (j ∈ J) are bounded. Without

loss of generality, we may therefore assume that they converge, say

λ̃k+1
i →K λ∗i (i ∈ I) and µ̃k+1

j →K µ∗j (j ∈ J)

with some nonnegative limits λ∗i (i ∈ I), µ∗j (j ∈ J). Setting λ∗i := 0 (i 6∈ I) and
µ∗j := 0 (j 6∈ J), taking the limit k →K ∞ in (22), exploiting the convergence of

xk+1 →K x∗, the continuity of all functions involved as well as the fact that L̂k →K 0,
we obtain

F (x∗) +
m∑
i=1

λ∗i∇yg
P
i (x∗, x∗) +

l∑
j=1

µ∗j∇gIj (x∗) = 0.

Now, it is not difficult to see that this implies that (x∗, λ∗, µ∗) is a KKT point. �

The following example shows that the assumptions used in Theorem 3.10 are indeed
weaker than the EMFCQ condition exploited in Theorem 3.2.

Example 3.11 Consider the QVI with n = 2,m = 2, l = 0 defined by

F (x) :=

(
x1

x2 + 1

)
, gP1 (y, x) := y2 − x1 ≤ 0, gP2 (y, x) := x1 − y2 ≤ 0.

Then an elementary calculation shows that the set of KKT points (x∗, λ∗) is given by
x∗ := (0, 0)T (which is unique) and λ∗ := (λ∗1, λ

∗
2)
T with λ∗1 ≥ 0 arbitrary and λ∗2 =

1 + λ∗1, hence there is an unbounded set of multipliers. Note that this assumption
satisfies the CPLD condition, but not (E)MFCQ.

Since there are no individual constraints, the corresponding subproblem VIk
reduces to the nonlinear system of equations(

x1
x2 + 1

)
+max

{
0, uk1+ρk(x2−x1)

}(0

1

)
+max

{
0, uk2+ρk(x1−x2)

}( 0

−1

)
=

(
0

0

)
.
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Taking, for simplicity, uk = (0, 0)T for all k ∈ N0, it follows that the unique solution
of VIk is given by

xk =

(
0,
−1

1 + ρk

)T
∀k ∈ N0.

For ρk → ∞, we see that xk → x∗ = (0, 0)T , i.e., in the limit, we obtain a feasible
point which is indeed the KKT point (hence solution) of the QVI, as guaranteed by
Theorem 3.10. ♦

Note that the CPLD condition required in our refined convergence analysis is satis-
fied automatically, e.g., for the case of linear constraints (whereas MFCQ or EMFCQ
might be violated for linear constraints).

We close this section by pointing out a difference between the convergence result
under the EMFCQ condition in Theorem 3.2 and under the CPLD condition in
Theorems 3.8, 3.10: Given a (sub-) sequence of {xk} converging to x∗, the former
result shows that the corresponding sequence of multipliers {(λk, µk)} generated by
Algorithm 3.1 converges to a vector (λ∗, µ∗) such that (x∗, λ∗, µ∗) satisfies the KKT
conditions; hence our algorithm automatically produces suitable estimates of the
optimal Lagrange multipliers. This is different in the latter situation, where the
convergence proofs show that the sequence {(λk, µk)} generated by our algorithm
is not necessarily convergent, since these multipliers had to be changed within the
corresponding proofs. This observation plays some role from a numerical point of
view: The most natural stopping criterion would be to check the KKT conditions
for the current triple (xk, λk, µk). However, our convergence theorems only guar-
antee (under certain assumptions) that the x-parts of this sequence convergence
to a suitable stationary point x∗. In order to get appropriate Lagrange multiplier
estimates, however, one might have to compute different approximate multipliers
in order to satisfy this termination criterion. A natural choice would be to (re-)
compute (λk+1, µk+1) as a solution of the constrained linear least squares problem

min
∥∥F (xk+1) +

m∑
i=1

λi∇yg
P
i (xk+1, xk+1) +

l∑
j=1

µj∇gIj (xk+1)
∥∥2 s.t. λ ≥ 0, µ ≥ 0.

(23)
Our actual implementation of Algorithm 3.1 will exploit this rule.

4 Solution of VI-Subproblems

The previous convergence theory for the multiplier-penalty method works, in prin-
ciple, for general QVIs provided that we are able to find (at least approximately) a
KKT point of the resulting VIk that arises at each iteration. The purpose of this
section is to identify some classes of QVIs where these VI-subproblems are “easy” to
solve in the sense that they yield monotone or even strictly/strongly monotone VIs.
To this end, we begin with a general discussion in Section 4.1. Motivated by the
subclasses of QVIs introduced in [22], we then proceed by considering four different
classes of QVIs for which suitable conditions can be given such that the resulting
VIs are “easy”.
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4.1 General Discussion

Here we discuss the question under which conditions the resulting VI-subproblems
from Step (S.2) of Algorithm 3.1 can be solved. To this end, we assume throughout
this section that the feasible set K from (3) is convex. The latter is essentially a
convexity assumption for the mappings gIj (j = 1, . . . , l) and often satisfied or easy
to verify.

The more difficult part is due to the mapping

Fk(x) := F (x) +
m∑
i=1

max
{

0, uki + ρkg
P
i (x, x)

}
∇yg

P
i (x, x) (24)

that arises in our VIk-subproblems. In order to investigate the properties of this
mapping, we first state the following (stronger) smoothness assumption.

Assumption 4.1 (a) The function F is continuously differentiable on Rn.

(b) The function gI : Rn → Rl is twice continuously differentiable Rn.

(c) The function gP : R2n → Rm is twice continuously differentiable on R2n.

This smoothness condition is assumed to hold throughout this section.
We now begin our investigation of the mapping Fk from (24). Due to the max-

term, this function is not continuously differentiable everywhere. However, it is
locally Lipschitz, and we can compute (or estimate) its generalizd Jacobian (in the
sense of Clarke [15]).

Proposition 4.2 Suppose that Assumption 4.1 holds. Then the generalized Jaco-
bian of Fk at a point x ∈ Rn satisfies the inclusion ∂Fk(x) ⊆ F ′(x) +Gk(x) with

Gk(x) ⊆
m∑
i=1

max
{

0, uki + ρkg
P
i (x, x)

}[
∇2
yyg

P
i (x, x) +∇2

yxg
P
i (x, x)

]
+ρk

m∑
i=1

ski∇yg
P
i (x, x)

[
∇yg

P
i (x, x) +∇xg

P
i (x, x)

]T
,

where

ski


= 1, if uki + ρkg

P
i (x, x) > 0,

∈ [0, 1], if uki + ρkg
P
i (x, x) = 0,

= 0, if uki + ρkg
P
i (x, x) < 0.

Proof: Note that the only nonsmoothness in the definition of the mapping Fk comes
from the max-terms. Since these nonsmooth terms are compositions of a smooth
and a convex (hence regular mapping in the sense of Clarke [15]) function, we can
apply the corresponding sum, product, and chain rules for the Clarke generalized
gradient and Jacobian, cf. [15]. This immediately yields the desired formula. �

In view of the previous result, the generalized Jacobian of Fk can be estimated by
∂Fk(x) ⊆ F ′(x) + Gk(x), i.e., we have the sum of the (unique) Jacobian F ′(x) and
the (multivalued) matrix Gk(x). The remainder of this section will concentrate on
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conditions which guarantee that the elements of Gk(x) are positive semidefinite.
Then the positive semidefiniteness of F ′(x), a standard assumption for variational
inequalities, yields the monotonicity of the mapping Fk due to a result in [35]. This,
in turn, means that there are plenty of methods available for the solution of the
resulting VI-subproblem within our multiplier-penalty approach. Other methods
might require the stronger assumption that the elements in ∂Fk(x) are positive
definite, but this is also implied by the positive semidefiniteness of Gk(x) provided
that the Jacobian F ′(x) is positive definite. Therefore, the question under which
we get “easy” VI-subproblems within the multiplier-penalty method boils down to
the question under which the elements in Gk(x) are positive semidefinite. This is
precisely the question we want to answer in our subsequent analysis.

A first and general result in this direction can be obtained by writing

hi(x) := gPi (x, x) ∀i = 1, . . . ,m. (25)

Then we may simplify the previous estimate of the set Gk(x) as

Gk(x) ⊆
m∑
i=1

max
{

0, uki + ρkhi(x)
}
Jx
(
∇yg

P
i (x, x)

)
+ρk

m∑
i=1

ski∇yg
P
i (x, x)Jhi(x)

since

Jhi(x) =
(
∇yg

P
i (x, x) +∇xg

P
i (x, x)

)T
and

Jx
(
∇yg

P
i (x, x)

)
= ∇2

yyg
P
i (x, x) +∇2

yxg
P
i (x, x),

where the meaning of the expression ∇2
yxg

P
i (x, x) should be clear from the context.

This yields the following result.

Theorem 4.3 Suppose that Assumption 4.1 holds. Assume further that the matri-
ces

∇yg
P
i (x, x)Jhi(x) ∀i : uki + ρkhi(x) ≥ 0

and
Jx
(
∇yg

P
i (x, x)

)
∀i : uki + ρkhi(x) > 0

are positive semidefinite. Then all elements in Gk(x) are positive semidefinite.

Proof: The above representation of Gk(x) together with our assumptions imply
that each element of Gk(x) is a nonnegative sum of positive semidefinite matrices
and, therefore, positive semidefinite itself. �

The following subsections consider special classes of QVIs and verify either directly
or by using the condition from Theorem 4.3 that the matrices in Gk(x) are positive
semidefinite under suitable assumptions.
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4.2 Jointly Convex GNEPs

We now examine the case where we get a QVI by reformulation of a generalized
Nash equilibrium problem (GNEP). In such a GNEP, we have the players ν =
1, . . . N , each controlling his variables xν ∈ Rnν and trying to solve their personal
optimization problem

min
xν

θν(x
ν , x−ν) s.t. gν(xν , x−ν) ≤ 0, hν(xν) ≤ 0 (26)

with given functions θν : Rn → R, gν : Rn → Rmν , and hν : Rn → Rpν for
ν = 1, . . . , N , where n := n1 + . . .+nN and x−ν subsumes the variables of all players
except xν . This GNEP is called player-convex if all component functions hνi are
convex, and θν(·, x−ν) as well as each of the components gνi (·, x−ν) are convex in xν

(for every fixed x−ν). The GNEP is called jointly-convex if g1 = g2 = . . . = gN =:
gNE and gNE is convex in the entire variable x (NE stands for Nash equilibrium).

The player-convex GNEP is the most general type of Nash equilibrium problems
that one typically finds in the literature. It is known to be equivalent to the QVI
defined by

F (x) :=

 ∇x1θ1(x))
...

∇xN θN(x)

 (27)

and
K(x) := K1(x

−1)×K2(x
−2)× . . .×KN(x−N),

where
Kν(x

−ν) :=
{
xν | gν(xν , x−ν) ≤ 0, hν(xν) ≤ 0

}
denotes the (parameterized) feasible set of player ν, ν = 1, . . . , N , cf. [27] and the
survey papers [19, 24] on GNEPs. Hence the mappings gP and gI in our general
QVI-notation are given by

gP (y, x) :=

 g1(y1, x−1)
...

gN(yN , x−N)

 , gI(y) :=

 h1(y1)
...

hN(yN)

 ,

repectively. In particular, in the case of a jointly-convex GNEP, we therefore have

gP (y, x) :=

 gNE(y1, x−1)
...

gNE(yN , x−N)

 with gNE(x) :=

 gNE1 (x)
...

gNEm (x)

 (28)

with gNE being repeated N times.
For the rest of this section, we consider only this jointly-convex case. Our aim is

to show that the corresponding VI-subproblems arising in Algorithm 3.1 are mono-
tone in this case. First note that gP is a mapping from R2n to RmN in this case,
where m := m1 = . . . = mN . The partial (with respect to y) transposed Jacobian
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of gP is a matrix in Rn×mN and has the following block structure:

∇yg
P (x, x) =


∇x1g

NE
1 (x) · · · ∇x1g

NE
m (x) 0 0 · · · 0

0 · · · 0
. . .

...
...

...
...

. . . 0 · · · 0
0 · · · 0 0 ∇xNg

NE
1 (x) · · · ∇xNg

NE
m (x)

 ,

(29)
where

∇xνg
NE
i (x) ∈ Rnν×1 ∀i = 1, . . . ,m, ∀ν = 1, . . . , N.

Exploiting this structure, we get the following result.

Proposition 4.4 Consider the jointly-convex GNEP, let gP be defined by (28), ρ >
0 an arbitrary parameter, and assume that ui = um+i = . . . = u(N−1)m+i holds for
all i = 1, . . . ,m. Then the function

G(x) :=
mN∑
i=1

max
{

0, ui + ρgPi (x, x)
}
∇yg

P
i (x, x)

is monotone on Rn.

Proof: Exploiting the representation (29), we can rewrite the mapping G in the
following way:

G(x) =
mN∑
i=1

max
{

0, ui + ρgPi (x, x)
}
∇yg

P
i (x, x)

= ∇yg
P (x, x) max

{
0, u+ ρgP (x, x)

}
=


∑m

i=1∇x1g
NE
i (x) max

{
0, ui + ρgNEi (x)

}
...∑m

i=1∇xNg
NE
i (x) max

{
0, ui + ρgNEi (x)

}
 ,

where the maximum in the second line is taken component-wise, and the third line
exploits the assumption regarding the vector u. This immediately yields(
G(x)−G(z)

)T
(x− z)

=



m∑
i=1

∇x1g
NE
i (x) max

{
0, ui + ρgNEi (x)

}
−

m∑
i=1

∇x1g
NE
i (z) max

{
0, ui + ρgNEi (z)

}
...

m∑
i=1

∇xNg
NE
i (x) max

{
0, ui + ρgNEi (x)

}
−

m∑
i=1

∇xNg
NE
i (z) max

{
0, ui + ρgNEi (z)

}



T

(x− z)

=

( m∑
i=1

∇gNEi (x) max
{

0, ui + ρgNEi (x)
}
−

m∑
i=1

∇gNEi (z) max
{

0, ui + ρgNEi (z)
})T

(x− z)

=
m∑
i=1

(
∇gNEi (x) max

{
0, ui + ρgNEi (x)

}
−∇gNEi (z) max

{
0, ui + ρgNEi (z)

})T
(x− z)
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≥ 0

for all x, z ∈ Rn. Here, the nonnegativity comes from the following observation:
Since each gNEi is convex by assumption, it follows that max{0, ui + ρgNEi (x)} is
nonnegative and convex, too. Hence 1

2ρ
max2

{
0, ui + ρgNEi (x)

}
is still convex, and

differentiable due to the assumed differentiability of gNEi . Hence the gradient of this
convex function is a montone mapping; but this gradient is given by

∇
(

1

2ρ
max2

{
0, ui + ρgNEi (x)

})
= max

{
0, ui + ρgNEi (x)

}
∇gNEi (x),

and this concludes the proof. �

A simple consequence of this proposition is the following monotonicity result.

Theorem 4.5 Consider the jointly-convex GNEP with F and gP being defined by
(27) and (28), respectively. Then the corresponding mapping Fk from (24) with
an arbitrary ρk > 0 is monotone provided that F ′(x) is positive semidefinite and
uki = ukm+i = . . . = uk(N−1)m+i holds for all i = 1, . . . , N .

Note that the positive semidefiniteness of the matrix F ′(x), for which the name
“Jaco-Hessian” was coined in [18], is a very common condition in the framework of
(jointly-convex) GNEPs. Furthermore, the assumption on the choice of the param-
eters uk is rather natural, it just requires those components to be equal for which
the corresponding components of the mapping gP from (28) are identical, too.

The following counterexample shows that monotonicity of Fk cannot be expect
for GNEPs which are not jointly convex. More precisely, this counterexample shows
that the monotonicity of Fk may not hold even in the case where the functions gν

are convex in the entire variable x.

Example 4.6 Consider a GNEP with N = 2 players, and let xi denote the (single)
variable of player i. Let the feasible sets of the two players be given by

K1(x2) :=
{
x1 | g1(x) := x1 + x2 ≤ 0

}
,

K2(x1) :=
{
x2 | g2(x) := x1 − x2 ≤ 0

}
.

Then the mapping gP associated to the corresponding QVI is given by

gP (y, x) :=

(
g1(y1, x−1)
g2(y2, x−2)

)
=

(
y1 + x2
x1 − y2

)
,

hence we have

∇yg
P (x, x) =

(
1 0
0 −1

)
.

We verify the nonmonotonicity of the mapping

G(x) =
m∑
i=1

max
{

0, ui + ρgPi (x, x)
}
∇yg

P
i (x, x)
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= ∇yg
P (x, x) max

{
0, u+ ρgP (x, x)

}
.

Take x = 0, u = 0, ρ > 0 arbitrary and let z ∈ R2 be unspecified for the moment.
Then

G(x) =

(
0
0

)
since both max-terms vanish, and

G(z) = ρ

(
1 0
0 −1

)(
max{0, z1 + z2}
max{0, z1 − z2}

)
=

(
ρmax{0, z1 + z2}
−ρmax{0, z1 − z2}

)
.

This implies(
G(x)−G(z)

)T
(x− z) = G(z)T z

= ρz1 max{0, z1 + z2} − ρz2 max{0, z1 − z2}.

In particular, for z = (−1, 2)T , we therefore obtain(
G(x)−G(z)

)T
(x− z) = −ρ ∀ρ > 0,

hence Fk(x) = F (x) +G(x) is nonmonotone regardless of the properties of F (e.g.,
even for strongly monotone mappings F ), since ρ can be chosen arbitrarily large. ♦

The following example also shows that Theorem 4.5 does not hold for jointly convex
GNEPs without the additional assumption on the choice of the vector uk.

Example 4.7 Consider again a GNEP with two players, and let xi denote the
(single) variable of player i. Let the feasible sets be given by

K1(x2) :=
{
x1 | g1(x) := x1 + x2 ≤ 0

}
,

K2(x1) :=
{
x2 | g2(x) := x1 + x2 ≤ 0

}
.

Since g := g1 = g2 is a linear function, it is convex in all variables, furthermore,
the same function is used for both players, hence we are in the situation of a jointly
convex GNEP. The corresponding QVI-mapping gP is given by

gP (y, x) =

(
g(y1, x−1)
g(y2, x−2)

)
=

(
y1 + x2
x1 + y2

)
.

This implies

∇yg
P (y, x) =

(
1 0
0 1

)
.

This, in turn, yields

G(x) = ∇yg
P (x, x) max

{
0, u+ ρgP (x, x)

}
=

(
1 0
0 1

)(
max{0, u1 + ρ(x1 + x2)}
max{0, u2 + ρ(x1 + x2)}

)
=

(
max{0, u1 + ρ(x1 + x2)}
max{0, u2 + ρ(x1 + x2)}

)
.
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Let x := (0, 0)T , z := (1,−2)T , ρ > 0 arbitrary and u = (u1, u2)
T unspecified for the

moment. Then

G(x) =

(
max{0, u1}
max{0, u2}

)
and G(z) =

(
max{0, u1 − ρ}
max{0, u2 − ρ}

)
.

This implies(
G(x)−G(z)

)T
(x− z)

=

(
max{0, u1} −max{0, u1 − ρ}
max{0, u2} −max{0, u2 − ρ}

)T ( −1
2

)
= −max{0, u1}+ max{0, u1 − ρ}+ 2 max{0, u2} − 2 max{0, u2 − ρ}.

In particular, for any vector u = (u1, u2)
T with 0 < u1 < ρ and u2 = 0, we obtain(

G(x)−G(z)
)T

(x− z) = −u1 < 0.

This shows that G is not monotone, hence Fk = F + G is also nonmonotone in
general. ♦

4.3 The Moving Set Case

One of the most studied instances of QVIs considers feasible sets of the form

K(x) := c(x) +Q

for a continuously differentiable function c : Rn → Rn and a fixed set Q ⊆ Rn which
we assume to be given by

Q := {x ∈ Rn | q(x) ≤ 0},

where q : Rn → Rm is twice continuously differentiable with each qi being convex;
in particular, Q is then a convex set. This class of QVIs is sometimes called the
“moving set case” since, geometrically, the fixed set Q moves along the trajectory
defined by the mapping c.

Monotonicity of the corresponding subproblems in Algorithm 3.1 can be guar-
anteed under the conditions of the following result.

Theorem 4.8 Consider a QVI of the moving set case, and let x ∈ Rn. Further

assume that c is given by c(x) =
(
c1(x1), . . . , cm(xm)

)T
such that c′i(xi) < 1 for all

i = 1, . . . ,m. Then all elements from the set Gk(x) (cf. Theorem 4.2) are positive
semidefinite.

Proof: We prove the assertion by verifying the sufficient conditions from Theo-
rem 4.3. To this end, we first observe that the moving set case corresponds to our
general setting using the functions

gPi (y, x) := qi(y − c(x)), hi(x) := qi(x− c(x)).
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We therefore have

∇yg
P
i (x, x) = ∇qi(x− c(x)) and ∇xg

P
i (x, x) = −Jc(x)T∇qi(x− c(x)).

This implies

Jhi(x) =
(
∇yg

P
i (x, x) +∇xg

P
i (x, x)

)T
= ∇qi(x− c(x))T −∇qi(x− c(x))TJc(x)

= ∇qi(x− c(x))T
(
I − Jc(x)

)
.

Consequently, we get

∇yg
P
i (x, x)Jhi(x) = ∇qi(x− c(x))∇qi(x− c(x))T

(
I − Jc(x)

)
.

In view of our assumptions, S := I − Jc(x) is a positive definite diagonal matrix
which we can factorize as S = DD with another positive definite diagonal matrix
D. We then obtain

vT∇yg
P
i (x, x)Jhi(x)v = vT∇qi(x− c(x))∇qi(x− c(x))TDDv

= vTDD−1∇qi(x− c(x))∇qi(x− c(x))TDDv
w:=Dv

= wTD−1∇qi(x− c(x))∇qi(x− c(x))TDw

≥ 0

for all v ∈ Rn since ∇qi(x − c(x))∇qi(x − c(x))T and, therefore, also the similar
matrix D−1∇qi(x− c(x))∇qi(x− c(x))TD are symmetric positive semidefinite.

A direct computation also shows that

Jx
(
∇yg

P
i (x, x)

)
=
(
I − Jc(x)

)T∇2qi(x− c(x)).

Since qi is convex, its Hessian is symmetric positive semidefinite everywhere. Hence,
similar to the previous case, one can also show that Jx

(
∇yg

P
i (x, x)

)
is positive

semidefinite. The statement therefore follows directly from Theorem 4.3. �

We note that the previous proof goes through for the case where I−Jc(x) is symmet-
ric positive definite, in particular, the functions ci can depend on the whole vector x,
but the “off-diagonal elements” must be sufficiently small. However, the symmetry
plays a central role here. This is indicated by the following counterexample.

Example 4.9 Let n = 2, q(x) := x1, and c(x) := (ε(x1 + x2), 0)T with ε > 0. Then
we have

I − Jc(x) = I −
(
ε ε
0 0

)
=

(
1− ε −ε

0 1

)
.

Hence this matrix may be viewed as an arbitrary small perturbation of a diagonal
matrix. Moreover, it turns out to be positive definite for all sufficiently small ε > 0;
more precisely, for ε < 2/3, we obtain for all nonzero v ∈ R2

vT
(
I − Jc(x)

)
v = (1− ε)v21 − εv1v2 + v22
≥ (1− ε)v21 + (1− ε)v22 − ε|v1| |v2|
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= (1− ε)
(
v21 + v22 −

ε

1− ε
|v1| |v2|

)
≥ (1− ε)

(
v21 + v22 − 2|v1| |v2|

)
= (1− ε)

(
|v1| − |v2|

)2
≥ 0,

and it is not difficult to see that at least one of the inequalities must be strict for
every v 6= 0.

Nevertheless, the nonsymmetry of Jc(x) destroys the monotonicity of Fk. To see
this, it suffices to verify the nonmonotonicity of the corresponding mapping

G(x) :=
m∑
i=1

max
{

0, uki + ρkg
P
i (x, x)

}
∇yg

P
i (x, x).

In this example, we have m = 1 and

gP (y, x) = q(y − c(x)) = y1 − εx1 − εx2 =⇒ ∇yg
P (x, x) =

(
1
0

)
which, in turn, yields the representation

G(x) = max
{

0, uk1 + ρk((1− ε)x1 − εx2)
}( 1

0

)
.

Using

ε < 1, ρk = 1, uk1 = 0, x = (1, 0)T , z = (0, z2)
T with z2 <

ε− 1

ε
(< 0),

we obtain(
G(x)−G(z)

)T
(x− z)

=
(

max
{

0, uk1 + ρk((1− ε)x1 − εx2)
}
−max

{
0, uk1 + ρk((1− ε)z1 − εz2)

})
(x1 − z1)

= max{0, 1− ε} −max{0,−εz2}
= 1− ε+ εz2

< 0,

where the last inequality follows from the choice of z2. This indicates that we cannot
expect Fk to be monotone in this case. ♦

The corresponding result in [22] is somewhat different from our result: Both are
similar since, in some sense, they require ‖Jc(x)‖ to be small. On the other hand,
[22] does not need a symmetry assumption for this matrix, but requires F ′(x) to
be nonsingular in order to provide conditions for the nonsingularity of a suitable
matrix related to the interior-point-type method discussed in that reference.
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4.4 Bilinear Case

In this subsection, we consider the case where the constraints gP and gI are defined
as follows

gP (y, x) :=

 xTQ1y − γ1
...

xTQmy − γm

 and gI(y) :=

 q1(y)
...

ql(y)

 , (30)

where each mapping qi : Rn → R is twice continuously differentiable and convex,
Qi ∈ Rn×n are symmetric positive semidefinite matrices for all i = 1, . . . ,m, and
γi ∈ R are given real numbers. In this case, we get the following result.

Theorem 4.10 Let x ∈ Rn arbitrarily given, and let gP be defined as in (30). Then
all elements in Gk(x) are positive semidefinite.

Proof: For an arbitrary i ∈ {1, . . . ,m}, we have

∇yg
P
i (x, x)Jhi(x) = (Qix)(2Qix)T and Jx(∇yg

P
i (x, x)) = Qi.

Since all these matrices are positive semidefinite (either as a dyadic product of a
vector with itself or by assumption), the statement follows immediately from Theo-
rem 4.3. �

4.5 Binary Constraints

In this subclass, the constraints gPi each depend only on a single pair (yj, xj) of
variables for some j ∈ {1, . . . , n}. Since this index j depends on the particular
component i, we write j(i) thoughout this section. This means that the QVIs
discussed here are defined by a feasible set K(x) given as follows:

K(x) := {y ∈ Rn | gPi (yj(i), xj(i)) ≤ 0, i = 1, . . . ,m}. (31)

Individual constraints are also allowed, but are suppressed here since they play no
role for the monotonicity of the operator Fk.

At first we will give a general result for this class of problems and then we
investigate some special cases.

Theorem 4.11 Let gP be defined as in (31), and let x ∈ Rn be given. Assume that

∇yj(i)g
P
i (xj(i), xj(i)) · h′i(xj(i)) ≥ 0 ∀i = 1, . . . ,m (32)

and
∇xj(i)

(
∇yj(i)gi(xj(i), xj(i))

)
≥ 0 ∀i = 1, . . . ,m (33)

hold. Then all elements in Gk(x) are positive semidefinite.
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Proof: Again, we verify the statement using the general criterion from Theorem 4.3
to prove the statement. First note that the gradient of gPi with respect to y is given
by

∇yg
P
i (x, x) =



0
...
0

∇yj(i)g
P
i (xj(i), xj(i))

0
...
0


,

where the only possibly nonzero entry is in position j(i). Hence the Jacobian
Jx
(
∇yg

P
i (x, x)

)
is a matrix with the entry∇xj(i)

(
∇yj(i)g

P
i (xj(i), xj(i))

)
at the diagonal

position (j(i), j(i)) and all other entries equal to zero. In view of (33), this matrix
is positive semidefinite.

Furthermore, we obtain

Jhi(x) =
(
0, . . . , 0,∇yj(i)g

P
i (xj(i), xj(i)) +∇xj(i)g

P
i (xj(i), xj(i)), 0, . . . , 0

)
with the nonzero entry also at position j(i). Hence the product ∇yg

P
i (x, x)Jhi(x)

is again a diagonal matrix with all elements being zero except the one at position
j(i) which is given by

∇yj(i)g
P
i (xj(i), xj(i))

(
∇yj(i)g

P
i (xj(i), xj(i)) +∇xj(i)g

P
i (xj(i), xj(i))

)
.

But this expression is nonnegative due to (32). Altogether, the statement therefore
follows from Theorem 4.3. �

We now consider a special case of constraints with variable right hand side that are
also binary constraints, namely a feasible set K(x) that is defined by

K(x) :=
{
y ∈ Rn | gPi (y, x) := qi(yj(i))− ci(xj(i)) ≤ 0 , i = 1, . . . ,m

}
, (34)

where all functions qi are convex and twice continuously differentiable, whereas the
functions ci are assumed to be continuously differentiable only. Then we have

∇yj(i)g
P
i (y, x) = q′i(yj(i)),

∇xj(i)

(
∇yj(i)gi(xj(i), xj(i))

)
= q′′i (xj(i)),

h′i(xj(i)) = q′i(xj(i))− c′i(xj(i)).

Since q′′i (xj(i)) ≥ 0 by the assumed convexity of qi, we immediately obtain the
following result from Theorem 4.11.

Corollary 4.12 Let gi be defined as in (34), and let x ∈ Rn be arbitrarily given.
Assume that

q′i(xj(i))
(
q′i(xj(i))− c′i(xj(i))

)
≥ 0 ∀i = 1, . . . ,m. (35)

Then all elements in Gk(x) are positive semidefinite.
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Note that condition (35) holds automatically if qi is monotonically increasing with
q′i ≥ c′i for all i = 1, . . . ,m.

There is a whole class of problems, where the feasible set is of the form (34),
namely problems with so called box constraints (with variable right hand side). For
this class of problems, the feasible set is defined by

K(x) := {y ∈ Rn | yi − αixi − γi ≤ 0 , i = 1, . . . ,m := n} . (36)

Taking into account the very special structure of these constraints, we directly obtain
the following consequence of Corollary 4.12.

Corollary 4.13 Let gPi be defined as in (36), and let x ∈ Rn be arbitrarily given.
Assume that αi ≤ 1 for all i = 1, . . . , n. Then all elements in Gk(x) are positive
semidefinite.

5 Numerical Results

In this section, we want to present some numerical results for the multiplier-penalty
method, also compared to some other possible methods. The aim is mainly to
verify the reliability of the method, not to show its efficiency. In general, since we
have to solve VI-subproblems at each iteration, the method takes more time than
other methods which only need to solve linear systems of equations. Of course, one
could improve the efficiency significantly by using a fancy solver for the resulting
VI-subproblems, but this solver then depends very much on the particular class
of QVIs which we are solving. We eventually decided to apply a (nonmonotone)
semismooth Newton method in order to compute an (inexact) KKT point of the
VI-subproblems.

The parameters chosen for Algorithm 3.1 are

γ := 5, τ := 0.9, umax := 1010e,

where e := (1, . . . , 1)T . Furthermore, we take εk := 10−8 for all k ∈ N0, hence the
inexact KKT points are computed with a relatively high accuracy at each iteration.
Our termination criterion is given by∥∥∥∥∥∥

 F (xk) +
∑m

i=1 λ
k
i∇yg

P
i (xk, xk) +

∑l
j=1 µ

k
j∇gIj (xk)

min
{
µk,−gI(xk)

}
min

{
λk,−gP (xk, xk)

}
∥∥∥∥∥∥

∞

≤ tol := 10−4,

where the min-operator is taken component-wise, i.e., we check whether the KKT
conditions are satisfied within a certain accuracy. Since these KKT conditions de-
pend on the current multiplier estimates, we do not use the multipliers from the
statement of Algorithm 3.1, but, for reasons explained at the end of Section 3.3,
re-compute these multipliers by solving the linear least-squares problem (23) at the
end of each outer iteration.

The starting point is (x0, λ0, µ0) := (0, 0, 0) for all test examples. We further
use the initial penalty parameter ρ0 := 1 and use u0 := 0, while uk+1 in (S.4) is
updated by uk+1 := min{λk+1, umax}. The test examples themselves are chosen
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from the QVILIB test problem collection [21], their names and dimension are given
in Table 1. This table contains the results (in terms of number of iterations) of four
different methods:

(a) semismooth Newton method: Semi

(b) multiplier-penalty method: Mult-Pen

(c) multiplier-penalty method with semismooth Newton preprocessor: Mult-Pen-
Pre

(d) potential-reduction algorithm: PRA (note that this solver uses a different
starting vector, cf. [22] for more details).

The semismooth Newton method is a simple implementation of the algorithm pre-
sented in [20]; this method applies the standard semismooth Newton method to a
nonsmooth reformulation of the KKT conditions of the QVI based on the Fischer-
Burmeister function. The method is globalized by an Armijo-type line search.
Method (b) is the multiplier-penalty method as described before. The third method
is again our multiplier-penalty algorithm, but with the semismooth Newton method
as a preprocessor. This means that we apply at most 20 iterations of the semismooth
Newton method to each test problem; some (easy) test problems are actually solved
by this preprocessor. We switch from this preprocessor to the multiplier-penalty
method if either the preprocessor generates a stepsize that is too small, or when
there is no significant progress (in terms of the reduction of the function value of
the corresponding merit function) or if the maximum number of 20 iterations for
this preprocessor is reached. Method (d) is the potential-reduction method from
[22] which we view as the best method that is currently available for the solution of
QVIs.

Table 1 shows that the semismooth Newton method Semi is not a reliable choice
and leads to many failures. We admit that the implementation is a very simple one,
with no enhancements like a nonmonotonicity strategy etc. Nevertheless, the overall
picture is similar to the one given in [20]. However, it is interesting to see that
the semismooth Newton method has no problems in solving the two test examples
BiLin* for which the multiplier-penalty algorithm has difficulties.

The reliability of the other three methods Mult-Pen, Mult-Pen-Pre, and
PRA is much better; these methods produce 3, 2, and 4 failures on the test set,
respectively, hence from that point of view, the two multiplier-penalty approaches
are even better than the potential-reduction interior-point algorithm from [22]. De-
spite this fact, it is interesting to see that these methods sometimes have a com-
pletely different behaviour on various test examples: The multiplier-penalty tech-
nique has difficulties in solving the BiLin* examples, which can be solved easily by
the potential-reduction code, whereas the latter has severe problems in solving the
four RHS* examples which turn out to be extremely easy for the multiplier-penalty
technique.

We also note that we start the multiplier-penalty phase within the method Mult-
Pen-Pre by using the final point provided from the preprocessing phase. This
might not be a good idea in general when the preprocessing was stopped due to
some difficulties in the semismooth Newton method, because this indicates some
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test problem n m l Semi Mult-Pen Mult-Pen-Pre PRA
BiLin1A 5 3 10 17 – 17 + 0 13
BiLin1B 5 3 10 36 – – 10
Box1A 5 10 0 6 37 6 + 0 8
Box1B 5 10 0 – – – –
Box2A 500 1000 0 – 11 4 + 13 19
Box2B 500 1000 0 75 13 20 + 13 23
Box3A 500 1000 0 – 11 20 + 29 18
Box3B 500 1000 0 – 12 6 + 15 25
KunR11 2500 2500 0 – 11 0 + 11 14
KunR12 4900 4900 0 – 11 0 + 11 22
KunR21 2500 2500 0 – 1 0 + 1 21
KunR22 4900 4900 0 – 1 0 + 1 23
KunR31 2500 2500 0 – 23 0 + 23 –
KunR32 4900 4900 0 – 21 0 + 21 –
MovSet1A 5 1 0 8 31 8 + 0 10
MovSet1B 5 1 0 – 31 2 + 41 16
MovSet2A 5 1 0 7 36 7 + 0 12
MovSet2B 5 1 0 44 44 20 + 53 36
MovSet3A1 1000 1 0 10 3 10 + 0 11
MovSet3A2 2000 1 0 11 3 11 + 0 11
MovSet3B1 1000 1 0 13 3 13 + 0 11
OutKZ31 62 62 62 – 7 0 + 7 18
OutKZ41 82 82 82 – 8 0 + 8 20
OutZ40 2 2 4 5 1 5 + 0 8
OutZ41 2 2 4 5 1 5 + 0 18
OutZ42 4 4 4 16 4 16 + 0 8
OutZ43 4 4 0 34 4 20 + 4 8
OutZ44 4 4 0 12 4 12 + 0 8
RHS1A1 200 199 0 1 1 1 + 0 87
RHS1B1 200 199 0 1 1 1 + 0 –
RHS2A1 200 199 0 1 1 1 + 0 71
RHS2B1 200 199 0 1 1 1 + 0 84
Scrim21 2400 2400 2400 – 24 20 + 24 17
Scrim22 4800 4800 4800 – 24 20 + 24 17

Table 1: Number of iterations for four different methods. The entries of the form
a + b for two numbers a, b ∈ N0 in column Mult-Pen-Pre indicate the number
of preprocessing semismooth Newton steps and the subsequent number (if any) of
multiplier-penalty iterations, respectively.
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singularity-type problems, hence, from a practical point of view, it might be better
to start the multiplier-penalty phase with the original starting point. In our table,
however, we would re-obtain the results from the column Mult-Pen and therefore
would not get new insights. Apart from this, it is interesting to observe that,
many times, when we start the multiplier-penalty method using the final point
from the semismooth Newton preprocessor, the multiplier-penalty technique has
no difficulties in solving the resulting VIk-subproblem which indicates that these
subproblems have significantly better properties than the linearized problems arising
from the semismooth Newton method. On the other hand, there exist also a couple
of examples where it was not easy to solve the VIk-subproblems. In particular,
all (3 + 2 = 5) failures within the two multiplier-penalty methods are due to the
fact that a minimum step size was reached within the solution procedure for the
VIk-subproblems.

Altogether, it follows that the multiplier-penalty technique yields a very reliable
solver for QVIs that should at least be viewed as a promising alternative to existing
methods, especially since its behaviour is sometimes very much different from the
one of existing codes.

6 Final Remarks

In this paper, we have studied the global convergence properties of a multiplier-
penalty method for the solution of quasi-variational inequalities. Based on some
recent developments for this class of methods within the framework of optimization
problems, we were able to improve the existing results for QVIs considerably. In
principle, it is possible to slightly improve our results by using another constraint
qualification introduced in [3]. From our point of view, however, a more interesting
future project would be to generalize the convergence theory under an error bound
condition like the one used in [34] for optimization problems. There are two questions
which arise in this context: a) Besides the error bound itself, the paper [34] requires
an additional technical condition which needs to be translated to and interpreted
for QVIs in a suitable way; b) Is it possible to get rid of this additional condition
and thus to prove global convergence under the error bound condition alone?
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