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Abstract: We consider the solution of generalized Nash equilibrium problems by concate-
nating the KKT optimality conditions of each player’s optimization problem into a single
KKT-like system. We then propose two approaches for solving this KKT system. The first
approach is rather simple and uses a merit-function/equation-based technique for the solution
of the KKT system. The second approach, partially motivated by the shortcomings of the
first one, is an interior-point-based method. We show that this second approach has strong
theoretical properties and, in particular, that it is possible to establish global convergence
under sensible conditions, this probably being the first result of its kind in the literature. We
discuss the results of an extensive numerical testing on four KKT-based solution algorithms
showing that the new interior-point method is efficient and very robust.

Key Words: Generalized Nash equilibrium problem, KKT conditions, merit function, interior-
point method, global convergence.



1 Introduction

We consider the generalized Nash equilibrium problem (GNEP for short) where player ν (ν =
1, . . . , N) controls xν ∈ Rnν and tries to solve the optimization problem

min
xν

θν(xν , x−ν) s.t. gν(xν , x−ν) ≤ 0 (1)

with given θν : Rn → R and gν : Rn → Rmν . Here, n := n1 + . . . + nN denotes the total
number of variables, m := m1 + . . .+mN will be the total number of (inequality) constraints,
and (xν , x−ν) is a short-hand notation for the full vector x := (x1, x2, . . . , xN ), so that x−ν

subsumes all the block vectors xµ with µ 6= ν. A vector x = (x1, . . . , xN ) is called feasible
for the GNEP if it satisfies the constraints gν(x) ≤ 0 for all players ν = 1, . . . , N . A feasible
point x̄ is a solution of the GNEP if, for all players ν = 1, . . . , N , we have

θν(x̄ν , x̄−ν) ≤ θν(xν , x̄−ν) ∀xν : gν(xν , x̄−ν) ≤ 0,

i.e. if, for all players ν, x̄ν is the solution of the ν-th player’s problem, when the other players
set their variables to x̄−ν .

In this paper we assume that the following blanket assumptions always hold:

A1 θν(·, x−ν) and gνi (·, x−ν) are convex for every x−ν , and for every ν = 1, . . . , N and
i = 1, . . . ,mν ;

A2 θν and gν are C2 functions for every ν = 1, . . . , N .

This is a very general form of a GNEP, and finding a solution of such a GNEP is a very hard
problem, see [14, 19] for a detailed discussion. In fact, the solution of a GNEP in this general
form is still little investigated. Due to its daunting difficulty, only very few results are available
for the solution of a GNEP at the level of generality described above, see [9, 13, 16, 22, 28, 29]
for some different approaches. Some subclasses, in particular jointly convex Nash equilibrium
problems (where g1 = g2 = . . . = gN are the same convex functions, defining the same joint
constraints for all players) and pure Nash equilibrium problems (where gν depends on xν

alone for all ν = 1, . . . , N), have been more widely investigated and some reasonably efficient
methods for the solution of these latter problems have been proposed, see [14, 20].

The main aim of this paper is to study and give convergence results based on the use
of the KKT conditions of the general GNEP (1) (see next section). This has been done
previously in [13, 28], where the authors were mainly interested in the local convergence
behaviour of suitable Newton-type methods. In particular, it is shown in [13] that one has to
expect difficulties in solving the KKT system due to some singularity problems, hence local
fast convergence cannot be obtained in many standard situations. Apart from these papers,
the KKT approach is also part of the folklore in the engineering world, but in spite of this,
there is still a lack of any serious analysis dealing with the solution of this peculiar KKT-like
system. In fact, the study of this system is not trivial at all, and deriving convergence results
for methods based on the solution of the KKT system turns out to be a rather involved issue.

Here we fill this gap and provide sound results establishing the viability of the KKT
approach, both at the theoretical and numerical level, and with a special emphasis on the
global behaviour of the methods. In particular, we provide conditions under which the global
convergence is guaranteed. These conditions are reasonable and, to the best of our knowledge,
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they are the first set of explicit conditions on a general GNEP under which global convergence
can be established. Regarding global convergence, we are only aware of two other papers
where this issue has been positively handled. One is [30], where however only a problem
arising from a very specific telecommunication application is considered. The techniques and
methods used in [30] are peculiar to the problem considered there and their generalization to
a wider class of problems seems very difficult. Global convergence results are also discussed
in [17], where a penalty technique for the solution of a general GNEP is proposed. Although
the results in [17] are of great interest, global convergence for genuine GNEPs can only be
established under restrictive conditions. These conditions depend on the unknown value of a
(penalty) parameter and so their application appears to be problematic in practice.

In this paper, we consider two different approaches and introduce two rather distinct
classes of algorithms for the solution of the GNEP KKT conditions. In the first approach,
we use an equation reformulation of the KKT conditions and a corresponding merit function,
while the second approach is based on interior-point ideas. Although both approaches have
been proposed and successfully used for the solution of the KKT systems arising in the solution
of optimization or variational inequality problems, we will see, somewhat surprisingly, that
the interior-point approach seems definitely superior in our setting.

The paper is organized in the following way: We begin with the formulation of the KKT
conditions of a GNEP in a compact form. Then in Section 3 we consider the optimization
reformulation of the KKT system and give conditions guaranteeing stationary points to be
solutions of the GNEP and further show a coercivity result. In order to give a concrete algo-
rithm for the solution of GNEPs and to get a more problem-tailored approach we introduce
in Section 4 an interior point method with its convergence theory. In Section 5 we discuss
the numerical behavior of the different approaches on several test problems.

A few words regarding our notation: Rn denotes the n-dimensional Euclidean vector space,
Rn

+ and Rn
++ denote the corresponding subsets consisting of all vectors whose components

are nonnegative and positive, respectively. Given a differentiable mapping H : Rn → Rm, we
denote by JH(z) the Jacobian of H at a given point z ∈ Rn, whereas ∇H(z) is the transposed
Jacobian. If the set of variables z can be splitted into two (or more) groups, say z = (x, y),
then JxH(x, y) denotes the Jacobian of H at (x, y) with respect to x alone, and the transposed
matrix is again ∇xH(x, y). Given a nonsingular matrix M ∈ Rn×n, we write M−T for the
inverse of MT , which is identical to the transposed of M−1. Furthermore, diag(w) denotes
the diagonal matrix of appropriate dimension with the vector w on its diagonal. A matrix
M ∈ Rn×n is called a P0-matrix if det(Mαα) ≥ 0 for all α ⊆ {1, 2, . . . , n}. Note that the class
of P0-matrices strictly includes the positive semidefinite matrices, see [5] for more details. The
symbol ‖ · ‖ always denotes the Euclidean vector norm or the corresponding induced matrix
norm. Sometimes, we also write explicitly ‖ · ‖2 for this norm in order to avoid any confusion.
Finally, the symbol B(x, r) denote the open (Euclidean) ball centered in x and with radius
r > 0, whereas cl B(x, r) is the corresponding closed ball.

2 The KKT Conditions

Let x̄ be a solution of the GNEP (1). Assuming any standard constraint qualification holds, it
is well known that the following KKT conditions will be satisfied for every player ν = 1, . . . , N :

∇xνθν(x̄ν , x̄−ν) +
mν∑
i=1

λνi∇xνgνi (x̄ν , x̄−ν) = 0, (2)
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λνi ≥ 0, gνi (x̄ν , x̄−ν) ≤ 0, λνi g
ν
i (x̄ν , x̄−ν) = 0 ∀i = 1, . . . ,mν ,

where λν is the vector of Lagrange multipliers of player ν. Vice versa, recalling that the
player’s problems are convex (see A1), we have that if a point x̄ satisfies, together with a
suitable vector of multipliers λ := (λ1, λ2, . . . , λN ), the KKT conditions (2) for every ν, then
x̄ is a solution of the GNEP. It then seems rather natural to try to solve the GNEP by solving
the system obtained by concatenating the N systems (2). In order to use a more compact
notation, we introduce some further definitions.

We denote by Lν(x, λν) := θν(xν , x−ν) +
∑mν

i=1 λ
ν
i g
ν
i (xν , x−ν) the Lagrangian of player

ν. If we set F(x,λ) := (∇xνLν(x, λν))Nν=1 and g(x) := (gν(x))Nν=1, the concatenated KKT
system can be written as

F(x,λ) = 0, λ ≥ 0, g(x) ≤ 0, λTg(x) = 0. (3)

There is a huge literature on reformulating the KKT conditions of an optimization problem
or of a variational inequality as a (constrained) system of equations or as a (constrained)
optimization problem; and these reformulations are the bases for many efficient algorithms
for the solution of these problems, see [18]. However, probably due to the difficulty of the
analysis, to date there are no meaningful results showing if and when these techniques will
lead to useful results in the case of the KKT system of a GNEP. The main aim of this paper
is therefore to derive sound theoretical results related to system (3) and to define some new
solution methods. More specifically, we will analyze a merit function approach and an interior
point method for the solution of the KKT system (3). These two approaches can be viewed
as natural extensions of the corresponding methods for the solution of the KKT system of an
optimization problem. We will explore the theoretical properties of the methods and perform
extensive numerical experiments.

3 Merit Function Approach

In order to solve the concatenated KKT system, an approach that has been very widely used
in the optimization and VI communities and that has lead to invaluable developments, see
[11, 18], is to reduce it to a system of equations through the use of a complementarity function.
More specifically, let φ : R2 → R be any function such that φ(a, b) = 0 if and only if a ≥ 0,
b ≥ 0, and ab = 0. Then, it is immediate to see that the concatenated KKT system can be
rewritten as

F(x,λ) = 0, Φ(x,λ) = 0,

where

Φ(x,λ) :=



φ(λ1
1,−g1

1(x))
...

φ(λ1
m1
,−g1

m1
(x))

φ(λ2
1,−g2

1(x))
...

φ(λNmN ,−g
N
mN

(x))


∈ Rm.

There exist many types of complementarity functions φ, but the two most prominent ones
are the minimum-function φ(a, b) := min{a, b} and the Fischer-Burmeister function

φ(a, b) :=
√
a2 + b2 − (a+ b).
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The minimum-function is used in the developments of local Newton methods discussed in [13].
However, when it comes to the development of globally convergent algorithms, the Fischer-
Burmeister function has the distinctive advantage of giving rise to continuously differentiable
merit functions. Therefore, we only use the Fischer-Burmeister function in this paper, i.e., φ
always denotes this complementarity function.

Once the concatenated KKT system has been reformulated as a system of equations, we
can solve the resulting system by finding a (global) minimum of the natural merit function

Θ(x,λ) :=
1
2

∥∥∥∥∥
(

F(x,λ)

Φ(x,λ)

)∥∥∥∥∥
2

.

Note that Φ (using the Fischer-Burmeister function) is not differentiable in general, because
the Fischer-Burmeister complementarity function is obviously nondifferentiable at (0,0). How-
ever, it is by now very well known that Θ is once (though not twice) continuously differentiable.
Hence we can use standard optimization software to attempt to (globally) minimize Θ and
find in this way a solution of the GNEP.

This is a well-established path and it is well understood that the two key issues that need
to be addressed are (a) conditions guaranteeing that unconstrained stationary points of Θ
are global solutions and (b) conditions under which Θ can be shown to be coercive. Once
this has been done, one can safely attempt to solve the KKT system (3) by performing the
unconstrained minimization of Θ. Unfortunately, while in the optimization and VI fields
“reasonable” conditions guaranteeing the above mentioned results can be identified, see [18],
the situation becomes much more involved in the case of system (3). Nevertheless, some
meaningful results can still be established.

3.1 Stationarity Conditions

For the sake of notational simplicity, it is useful to introduce the matrix

E(x) :=

 ∇x1g1(x) 0
. . .

0 ∇xN gN (x)

 with ∇xνgν(x) ∈ Rnν×mν . (4)

Using the chain rule from [4] and some standard calculations, we obtain that the gradient of
Θ is given by

∇Θ(x,λ) =
(

JxF(x,λ) E(x)
−Dg(x,λ) Jxg(x) Dλ(x,λ)

)T ( F(x,λ)

Φ(x,λ)

)
,

where the matrices Dλ and Dg are m × m diagonal matrices

Dλ(x,λ) := diag ( a1(x, λ1) , . . . , aN (x, λN ) ),
Dg(x,λ) := diag ( b1(x, λ1) , . . . , bN (x, λN ) ),

with vectors aν(x, λν), bν(x, λν) ∈ Rmν whose entries are given by

( aνi (x, λνi ), bνi (x, λνi ) )


= (λνi ,−gνi (x))√

(λνi )
2+gνi (x)2

− (1, 1), if (λνi , −gνi (x)) 6= (0, 0),

∈ cl B(0, 1) − (1, 1), if (λνi , −gνi (x)) = (0, 0)
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for all i = 1, . . . ,mν and for all ν = 1, . . . , N . Note that, in spite of the fact that the
matrix appearing in the expression of ∇Θ is not uniquely defined, the gradient of Θ itself is
uniquely determined because the possibly multivalued elements of the generalized Jacobian
are cancelled by corresponding zero entries in Φ(x,λ).

Based on this expression it is possible to establish a result, giving a sufficient condition
for a stationary point of Θ to be a solution of the GNEP.

Theorem 3.1 Let (x̄, λ̄) ∈ Rn ×Rm be a stationary point of Θ, and suppose that JxF(x̄, λ̄)
is nonsingular and

M(x̄, λ̄) := Jxg(x̄) JxF(x̄, λ̄)−1E(x̄)

is a P0-matrix. Then x̄ is a solution of the GNEP.

Proof. Being (x̄, λ̄) a stationary point of Θ, it holds that

∇xF(x̄, λ̄)F(x̄, λ̄)−∇xg(x̄)Dg(x̄, λ̄)Φ(x̄, λ̄) = 0, (5)
E(x̄)TF(x̄, λ̄) +Dλ(x̄, λ̄)Φ(x̄, λ̄) = 0. (6)

By the nonsingularity of ∇xF(x̄, λ̄), we obtain from (5)

F(x̄, λ̄) = ∇xF(x̄, λ̄)−1∇xg(x̄)Dg(x̄, λ̄)Φ(x̄, λ̄),

and substituting this into (6), we get

E(x̄)T∇xF(x̄, λ̄)−1∇xg(x̄)Dg(x̄, λ̄)Φ(x̄, λ̄) +Dλ(x̄, λ̄)Φ(x̄, λ̄)
=
[
M(x̄, λ̄)TDg(x̄, λ̄) +Dλ(x̄, λ̄)

]
Φ(x̄, λ̄) = 0. (7)

Now, let us recall that aνi (x̄, λ̄νi ), bνi (x̄, λ̄νi ) are nonpositive with (aνi (x̄, λ̄νi ), bνi (x̄, λ̄νi )) 6= (0, 0)
for all i, ν, and that aνi (x̄, λ̄νi ) = 0 or bνi (x̄, λ̄νi ) = 0 can happen only if we have φ(λ̄νi ,−gνi (x̄)) =
0. Since, in the previous equations, both elements aνi (x̄, λ̄νi ) and bνi (x̄, λ̄νi ) are always post-
multiplied by φ(λ̄νi ,−gνi (x̄)) = 0, we do not change these equations if we assume without
loss of generality that both diagonal matrices Dλ(x̄, λ̄) and Dg(x̄, λ̄) are negative definite.
Since M(x̄, λ̄) is assumed to be a P0-matrix, it is then easy to see that

(
M(x̄, λ̄)TDg(x̄, λ̄) +

Dλ(x̄, λ̄)
)

is nonsingular. Hence by (7) it follows that Φ(x̄, λ̄) = 0. This immediately implies
F(x̄, λ̄) = 0 by (5) and the nonsingularity of ∇xF(x̄, λ̄). Then we obtain the thesis. �

This result is particularly simple to verify when the constraints of the problem are all linear. In
fact, in this case the matrix M(x,λ) does not actually depend on the values of the multipliers.
The situation becomes still simpler for games with quadratic objective functions and linear
constraints. In fact, in this case the matrix M(x,λ) is actually independent of (x,λ) and the
condition in the theorem reduces to the verification of the nonsingularity and P0 property of
two matrices.

Example 3.2 Consider a GNEP with three players ν = 1, 2, 3, where player ν controls the
single variable xν ∈ R, and the problem is given by

Player 1: min
x1

1
2

(x1 − 1)2 − x1x2 s.t. x1 + x2 + x3 ≤ 1,

Player 2: min
x2

1
2

(x2 − 1)2 + x1x2 s.t. x1 + x2 + x3 ≤ 1,

Player 3: min
x3

1
2

(x3 − 1)2 s.t. 0 ≤ x3 ≤ x1 + x2.
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Then we have JxF(x,λ) =

1 −1 0
1 1 0
0 0 1

, which is nonsingular, and we get

M(x,λ) =


1 1 1
1 1 1
0 0 −1
−1 −1 1


 1

2
1
2 0

−1
2

1
2 0

0 0 1

1 0 0 0
0 1 0 0
0 0 −1 1

 =


0 1 −1 1
0 1 −1 1
0 0 1 −1
0 −1 −1 1

 .
An elementary calculation shows that det

(
M(x,λ)αα

)
≥ 0 holds for all α ⊆ {1, 2, 3, 4}, hence

M(x,λ) is a P0-matrix. Consequently, Theorem 3.1 can be applied and guarantees that every
stationary point of Θ is a solution of the GNEP.

This example also indicates a limitation of Theorem 3.1 if the constraints are not linear. In
this case, the nonsingularity of JF(x,λ) and the P0 property of M(x,λ) must hold even
for negative values of λ, and it is apparent that this won’t be the case in general. In fact,
JF(x,λ) will contain block-diagonal terms of the type λνi∇2

xνxνg
ν
i (x), which will be negative

definite if λνi is negative, and can lead to a singular matrix JF(x,λ).

Example 3.3 Consider a 2-player game where each player controls a single variable, given
by

Player 1: min
x1

1
2
x2

1 +
32
5
x1 s.t.

1
6
x2

1 + x2 −
5
2
≤ 0,

Player 2: min
x2

1
2
x2

2 + x1x2 −
4
5
x2 s.t. x2 ∈ R.

Then we have JxF(x,λ) =
[
1 + 1

3λ 0
1 1

]
which is nonsingular for all λ 6= −3. But if we

consider the point x = (3,−3) together with λ = −3, we obtain

∇Θ(x, λ) =

1 + 1
3λ 1 −1

3x1b(x, λ)
0 1 −b(x, λ)

1
3x1 0 a(x, λ)

 x1 + 32
5 + 1

3x1λ
x2 + x1 − 4

5
φ(λ,−1

6x
2
1 − x2 + 5

2)

 =

0
0
0

 .

Hence we have a stationary point that is certainly not a solution of the GNEP, since Θ(x,λ) =
1
2‖(

32
5 ,−

4
5 , 4)‖ 6= 0.

This example might suggest that negativity of the multipliers is the reason for the failure
of a stationary point being a solution. Therefore one could wish to solve the problem by
considering a constrained minimization of Θ, i.e. by solving the problem

min Θ(x,λ) s.t. λ ≥ 0. (8)

This leads to successful results in the optimization/VI case, see [12, 18]. Unfortunately, also
this approach leads to problems in our game setting. This is illustrated by the following
example.

Example 3.4 Consider an apparently well-behaved game where each player controls a single
variable, and the players’ problems are given by

Player 1: min
x1

x1 s.t. x2
1 + x2 ≤ 1, Player 2: min

x2

1
2
x2

2 s.t. x2 ∈ R.
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It is not difficult to show that the point (−1, 0) together with λ = 1
2 is the only generalized

Nash equilibrium. However, it is easy to see that the point (0, 0) together with λ = 0 is an
unconstrained stationary point of Θ, and also a stationary point of the constrained problem
(8).

The conditions of Theorem 3.1 are not easy to grasp, probably due to the fact that we are not
too familiar with the structure of the KKT system of a GNEP. In case the feasible sets of the
players do not depend on the rival’s strategies, so that we have a standard Nash equilibrium
problem (NEP), we can obtain results that look more familiar.

Theorem 3.5 Consider a NEP. Let (x̄, λ̄) ∈ Rn×Rm be a stationary point of Θ, and suppose
that JxF(x̄, λ̄) is positive semidefinite and it holds that

dTJxF(x̄, λ̄) d > 0 ∀d 6= 0 : E(x̄)T d = 0.

Then x̄ is a solution of the NEP.

Proof. In a NEP we have ∇xg(x) = E(x). Taking the two stationarity conditions (5)
and (6), multiplying the first with F(x̄, λ̄)T and substituting the second one in the resulting
expression, we get

F(x̄, λ̄)T ∇xF(x̄, λ̄) F(x̄, λ̄) + Φ(x̄, λ̄)T Dλ(x̄, λ̄)Dg(x̄, λ̄) Φ(x̄, λ̄) = 0.

By the positive semidefiniteness of JxF(x̄, λ̄) and since we may assume, without loss of gen-
erality, that both diagonal matrices Dλ(x̄, λ̄) and Dg(x̄, λ̄) have negative entries (cf. the
proof of Theorem 3.1), we get Φ(x̄, λ̄) = 0. Then equations (5) and (6), together with
dTJxF(x,λ) d > 0 ∀d 6= 0 : E(x̄)T d = 0, imply F(x̄, λ̄) = 0, which completes the proof.

�

At first glance, the previous result looks very standard. We stress, however, that this is not
so since the tangent cone in the assumptions of the theorem {d | E(x̄)T d = 0} is (in general)
much smaller than the usual tangent cone. To this end, note that this tangent cone may be
rewritten as T (x) =

{
d = (d1, . . . , dN ) | ∇gνi (xν)Tdν = 0 ∀i = 1, . . . ,mν ∀ν = 1, . . . , N

}
, i.e.,

this set contains all vectors d whose block components dν are orthogonal to the gradients of
all constraints gνi (xν) ≤ 0 and not just to the active ones. Hence the requirement in Theorem
3.5 is significantly weaker than the usual one.

3.2 Coercivity

The previous results provide conditions under which a stationary point of Θ is a solution of
the underlying GNEP. Now, suppose we use a suitable descent method for the minimization
of Θ. Then, any reasonable method has the property that each of its accumulation points
is a stationary point of Θ and, therefore, a global minimum under the conditions given in
our previous results. Hence, the main question that remains to be answered, at least from
a theoretical point of view, is under which assumptions a sequence {(xk,λk)}, generated
by a descent method, is guaranteed to be bounded, so that an accumulation point exists. A
sufficient condition would be the boundedness of the level sets of Θ. Unfortunately, these level
sets are typically unbounded, even under very restrictive assumptions. However, a closer look
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at our merit function Θ shows that this has mainly to do with the behaviour of the sequence
{λk}. On the other hand, it is possible to show that the sequence {xk} remains bounded
under very reasonable assumptions.

To this end, consider a GNEP that is defined via the optimization problems

min
xν

θν(xν , x−ν) s.t. gν(xν , x−ν) ≤ 0, hν(xν) ≤ 0, ν = 1, . . . , N,

with functions hνj : Rnν → R and gνi : Rn → R for j = 1, . . . , pν , i = pν + 1, . . . ,mν , that are
assumed to be convex in xν , i.e. here we distinguish, for each player ν = 1, . . . , N , between
those constraints hν that depend on his own variables xν only, and those constraints gν that
are allowed to depend on all variables. We then define the set X0 := {x ∈ Rn | hν(xν) ≤
0 ∀ν = 1, . . . , N}. The set X0 is closed and convex since the contraints hν are convex by
assumption. If we assume boundedness of the set X0, we can show boundedness of the
x-iterates.

Proposition 3.6 Suppose hνj : Rnν → R is convex for all ν = 1, . . . , N, j = 1, . . . , pν and
the set X0 is nonempty and bounded. Furthermore, let {(xk, λk)} be any sequence such that
Θ(xk, λk) ≤ Θ(x0, λ0) for all k ∈ N. Then the sequence {xk} is bounded.

Proof. Let us define hmax(x) := max
{
h1

1(x1), . . . , h1
p1(x1), h2

1(x2), . . . , hNpN (xN )
}
. Being the

maximum of convex functions, it follows that hmax itself is also convex. Moreover hνj (xν) ≤
γ ∀j = 1, . . . , pν ∀ν = 1, . . . , N ⇐⇒ hmax(x) ≤ γ for any given γ ∈ R. In particular, we can
rewrite the set X0 as X0 = {x ∈ Rn | hmax(x) ≤ 0}. Since hmax is a single convex function, it
follows from our assumptions on X0 together with [31, Corollary 8.7.1] that the level sets

Xγ := {x ∈ Rn | hmax(x) ≤ γ} = {x ∈ Rn | hνj (xν) ≤ γ ∀j = 1, . . . , pν ∀ν = 1, . . . , N}

are also bounded for any γ ∈ R. Now, assume that the sequence {xk} is unbounded, say
{‖xk‖} → ∞. Since Xγ is bounded for each γ ∈ R, we can therefore find, for any given
γ = k, k ∈ N, an index `(k) ∈ N such that x`(k) 6∈ Xk. This means that, for every k ∈ N, there
are indices ν(k) ∈ {1, . . . , N} and j(k) ∈ {1, . . . , pν(k)} such that hν(k)j(k) (x`(k)) > k. Since there
are only a finite number of players and constraints, there exist fixed indices ν ∈ {1, . . . , N}
and j ∈ {1, . . . , pν}, independent of k ∈ N, such that hνj (x`(k)) > k on a suitable subsequence,
say, for all k ∈ K. Exploiting this fact, it follows from the definition of the Fischer-Burmeister
function that

φ((λ`(k))νj ,−hνj (x`(k))) =
√

(hνj (x`(k)))2 + ((λ`(k))νj )2 − (λ`(k))νj + hνj (x`(k))

≥hνj (x`(k)) > k

and thus we obtain Θ(x`(k), λ`(k)) ≥ 1
2φ

2((λ`(k))νj ,−hνj (x`(k)))> 1
2k

2.Hence we have Θ(x`(k), λ`(k))→
∞ for k →K ∞, contradicting the assumption that Θ(xk, λk) ≤ Θ(x0, λ0) for all k ∈ N. �

In spite of its theoretical interest, the above proposition is of limited practical use, since an
unbounded multiplier typically produces a failure of any suitable method for the minimization
of Θ. In the next section we will see that, when using an interior point method, we will be
able to guarantee the boundedness of all variables involved.
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4 Interior Point Method

The results in the previous section are certainly valuable, but also have their limitations which,
apparently, are essentially due to the “λ part” of the variables. We already discussed that a
straightforward treatment of the sign constraints for the multipliers is not likely to be helpful
in the merit function approach. One therefore has to look for suitable alternatives, and this
leads naturally to the consideration of an interior point approach to the solution of the GNEP
KKT system. Furthermore, and besides the considerations above, interior point methods are
well known to be efficient methods for solving KKT systems arising from optimization or VI
problems. We therefore devote this section to the analysis of an interior point method for
the solution of the KKT system (3). To this end, we formulate this system as a constrained
nonlinear system of equations (CE) of the form

H(z) = 0, z ∈ Z (9)

for a given function H : Rl → Rl and a given set Z ⊆ Rl that we define below.
We introduce slack variables w := (wν)Nν=1 , where wν ∈ Rmν , and set λ◦w :=

(
λ1

1w
1
1, . . . , λ

N
mN

wNmN
)T
.

Then we define

H(z) := H(x,λ,w) :=

 F(x,λ)
g(x) + w

λ ◦w

 (10)

and
Z := {z = (x,λ,w) | x ∈ Rn,λ ∈ Rm

+ ,w ∈ Rm
+}. (11)

It is immediate to verify that a point (x,λ) solves the KKT system (3) if and only if this
point, together with a suitable w, solves the constrained equation defined by (10) and (11).

In order to solve this constrained equation problem, we use an interior point approach
that generates points in the interior of Z. In other words, our method will generate a sequence
(xk,λk,wk) with λk > 0 and wk > 0 for every k.

The particular method that we base our analysis on is the potential reduction method
from [25], also discussed in detail in [18]. We generalize this potential reduction method by
allowing inexact solutions of the subproblems and study in detail its implication in the case
of our specific system (10) and (11).

To this end, we define the following subset of the range of H on Z: S := Rn×R2m
+ as well

as a potential function on S

p(u, v) := ζ log(‖u‖2 + ‖v‖2)−
2m∑
i=1

log(vi), (u, v) ∈ Rn × R2m
++, ζ > m.

The properties of this function are well known from the literature on interior point methods.
Basically, the function p is defined in the interior of S and penalizes points that are near the
boundary of S, but are far from the origin.

Based on p, we obtain a potential function for the CE which is defined on the nonempty
set

ZI := H−1(intS) ∩ intZ by setting ψ(z) := p(H(z)) for z ∈ ZI .

Throughout this section, p and ψ always denote these two potential functions.
We are now in the position to formulate our interior point method. The core of this

approach is the calculation of a Newton-type direction for the system H(z) = 0. According
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to standard procedures in interior point methods, the Newton direction is “bent” in order to
follow the central path. Operatively this means that the search direction used in this method
is the solution of the system

H(zk) + JH(zk)dk = σk
aTH(zk)
‖a‖2

a (12)

(the constant vector a is defined below). Once this direction has been calculated, a line-search
is performed by using the potential function ψ. The version we describe and analyze below
is a variant where we allow the possibility of an inaccurate solution of system (12).

Algorithm 4.1 (Inexact Potential Reduction Method for GNEPs)

(S.0) Choose z0 ∈ ZI , β, γ ∈ (0, 1), and set k := 0, σ̄ = 1, aT = (0Tn, 1
T
2m).

(S.1) If H(zk) = 0: STOP.

(S.2) Choose σk ∈ [0, σ̄), ηk ≥ 0, and compute a vector dk ∈ Rl such that

∥∥H(zk) + JH(zk)dk − σk
aTH(zk)
‖a‖2

a
∥∥ ≤ ηk‖H(zk)‖ and (13)

∇ψ(zk)Tdk < 0. (14)

(S.3) Compute a stepsize tk := max
{
β` | ` = 0, 1, 2, . . .

}
such that

zk + tkd
k ∈ ZI and (15)

ψ(zk + tkd
k) ≤ ψ(zk) + γtk∇ψ(zk)Tdk. (16)

(S.4) Set zk+1 := zk + tkd
k, k ← k + 1, and go to (S.1).

Remark 4.2 (a) By construction, all iterates zk generated by Algorithm 4.1 belong to the
set ZI , hence we have zk ∈ intZ and H(zk) ∈ intS for all k ∈ N.

(b) If JH(zk) is a nonsingular (n+ 2m)× (n+ 2m) matrix for all k, it follows that the linear
system of equations (12) always has an exact solution d̂k. In particular, this exact solution
satisfies the inexactness requirement from (13) for an arbitrary number ηk ≥ 0. Furthermore,
this exact solution also satisfies the descent property ∇ψ(zk)T d̂k < 0, see [18]. It therefore
follows that one can always find a vector dk satisfying the two requirements (13) and (14),
i.e. (S.2) is well-defined.

(c) Since, by induction, we have zk ∈ ZI for an arbitrary fixed iteration k ∈ N and since ZI is
an open set, we see that the test (15) holds for all sufficiently small stepsizes tk. Furthermore,
the Armijo line search from (16) is eventually satisfied since dk is a descent direction of the
potential function ψ in view of the construction in (S.2), cf. (14). In particular, this means
that (S.3) is also well-defined.

The following is the main convergence result for Algorithm 4.1, where, implicitly, we assume
that Algorithm 4.1 does not terminate within a finite number of iterations with a solution of
the constrained nonlinear system CE(H,Z).
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Theorem 4.3 Assume that JH(z) is nonsingular for all z ∈ ZI , and that the two sequences
{σk} and {ηk} from (S.2) of Algorithm 4.1 satisfy the conditions

lim sup
k→∞

σk < σ̄ and lim
k→∞

ηk = 0. (17)

Let {zk} be any sequence generated by Algorithm 4.1. Then:

(a) The sequence {H(zk)} is bounded.

(b) Any accumulation point of {zk} is a solution of (9).

Proof. We first note that our assumptions together with Remark 4.2 (b), (c) guarantee
that Algorithm 4.1 is at least well-defined. Throughout this proof, we use the abbreviation
uk := H(zk) for all k ∈ N.

(a) Suppose that {uk} is unbounded. Subsequencing if necessary, we may assume without
loss of generality that limk→∞ ‖uk‖ = ∞. Since {uk} ⊆ intS in view of Remark 4.2 (a), an
elementary calculation then shows that limk→∞ p(uk) = ∞. However, since dk is a descent
step for ψ, it follows from the definition of the potential function ψ together with the line
search rule from (16) that p(uk) = p

(
H(zk)

)
= ψ(zk) < ψ(zk−1) < . . . < ψ(z0), and this

contradiction completes the proof of part (a).

(b) Let z∞ be an accumulation point of the sequence {zk}, and let {zk}K be a corresponding
subsequence converging to z∞. Since zk ∈ intZ for all k ∈ N, cf. Remark 4.2 (a), it follows
that z∞ ∈ Z since Z is a closed set. Define u∞ := H(z∞) and assume, by contradiction, that
u∞ 6= 0. In view of part (a) and assumption (17), we may assume without loss of generality
that limk∈K σk = σ∞ for some σ∞ ∈ [0, σ̄) and limk∈K u

k = u∞ 6= 0. Hence there exists an
ε > 0 such that ‖uk‖ ≥ ε holds for all k ∈ K. Furthermore, the proof of part (a) also shows
that p(uk) ≤ δ for all k ∈ K with δ := ψ(z0). This means that the sequence {uk} belongs
to the set Λ(ε, δ) := {u ∈ intS | p(u) ≤ δ, ‖u‖ ≥ ε}, which is a compact set. Hence we
have u∞ = H(z∞) ∈ Λ(ε, δ) ⊆ intS. Consequently, we have z∞ ∈ H−1(intS) ∩ Z. However,
since H−1(intS) ∩ bd(Z) ⊆ intZ ∩ bd(Z) = ∅, it therefore follows that z∞ belongs to the set
H−1(intS) ∩ intZ = ZI .

We now claim that the subsequence {dk}k∈K is also bounded. To this end, let us define
the residuals

rk := H(zk) + JH(zk)dk − σk
aTH(zk)
‖a‖2

a ∀k ∈ N. (18)

Then the inexactness requirement (13) can be written down as

‖rk‖ ≤ ηk‖H(zk)‖ for all k ∈ N. (19)

Since the Jacobian JH(zk) is nonsingular at zk ∈ ZI , we obtain from (18) that

dk = JH(zk)−1

[
rk −H(zk) + σk

aTH(zk)
‖a‖2

a

]
for all k ∈ N. (20)

Since {zk}k∈K → z∞, the continuity of the Jacobian implies that {JH(zk)}k∈K → JH(z∞).
However, since we already know that z∞ belongs to the set ZI , it follows that JH(z∞) is
nonsingular. This implies that there exists a constant ω > 0 such that ‖JH(zk)−1‖ ≤ ω for all
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k ∈ K sufficiently large. We then obtain from (20) and the Cauchy-Schwarz inequality that
‖dk‖ ≤ ω(ηk+1+σk)‖H(zk)‖ for all k ∈ K sufficiently large. Since {‖H(zk)‖} is bounded by
part (a), we immediately get from (17) that the sequence {dk}k∈K is also bounded. Without
loss of generality, we may therefore assume that limk∈K d

k = d∞ for some vector d∞. Using
statement (a) once again together with ηk → 0, it follows from (19) that rk → 0. On the
other hand, using the definition of the residuum rk and taking the limit k →∞ on the subset
K ⊆ N, it follows that

0 = H(z∞) + JH(z∞)d∞ − σ∞
aTH(z∞)
‖a‖2

a.

Recalling that z∞ ∈ ZI and H(z∞) = u∞ 6= 0 by assumption, we obtain that ∇ψ(z∞)Td∞ <
0, cf. Remark 4.2 (b). The convergence of {zk}k∈K to z∞ together with the continuity of ψ
on the set ZI implies that the subsequence {ψ(zk)}k∈K also converges. On the other hand,
the Armijo rule (16) implies that the entire sequence {ψ(zk)}k∈N is monotonically decreasing.
This shows that the whole sequence {ψ(zk)}k∈N converges. Using the Armijo line search rule
(16) once more, we have ψ(zk+1) − ψ(zk) ≤ γtk∇ψ(zk)Tdk < 0 for all k ∈ N. Since the
left-hand side converges to zero, we obtain limk→∞ tk∇ψ(zk)Tdk = 0. This, in turn, implies
limk∈K tk = 0 since limk∈K ∇ψ(zk)Tdk = ∇ψ(z∞)Td∞ < 0. Let `k ∈ N0 be the unique
index such that tk = β`k holds in (S.3) for all k ∈ N. Since limk∈K tk = 0, we also have
limk∈K

tk
β = 0. Since the limit point z∞ belongs to the open set ZI , it therefore follows that

the sequence {zk + tk
β d

k}k∈K also belongs to this set, at least for all sufficiently large k ∈ K.
Consequently, for these k ∈ K, the line search test in (16) fails for the stepsize tk

β = β`k−1.
We therefore have

ψ(zk + β`k−1dk)− ψ(zk)
β`k−1

> γ∇ψ(zk)Tdk

for all k ∈ K sufficiently large. Taking the limit k →∞ on the subset K, the continuous differ-
entiability of the potential function ψ on the set ZI then gives ∇ψ(z∞)Td∞ ≥ γ∇ψ(z∞)Td∞.
Since∇ψ(z∞)Td∞ < 0, this is only possible if γ ≥ 1, a contradiction to the choice of γ ∈ (0, 1).
Consequently, we have 0 = u∞ = H(z∞), i.e., z∞ is a solution of the constrained system of
nonlinear equations (9). �

Note that the previous convergence result requires the Jacobian matrices JH(z) to be non-
singular for all z ∈ ZI (an assumption that will be discussed in the next section), however, it
does not state any assumptions for the limit points that might not belong to ZI . In fact, the
above convergence result also holds when the Jacobian is singular at a limit point. Taking
this into account, we cannot expect local fast convergence of our interior point method. This
sounds like a disadvantage compared to some Newton-type methods, however, we recall that
these Newton-type methods also have severe troubles in basically all interesting situations
where at least one joint constraint is active at the solution since then singularity problems
arise, cf. [13]. Hence, also Newton’s method is not quadratically convergent, and the rate of
convergence may actually slow down dramatically, which is in contrast to our method, see
Section 5 for a numerical comparison.
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4.1 Nonsingularity Conditions

The critical issue in applying Theorem 4.3 is establishing the nonsingularity of JH. This
section is devoted to this issue. We will see that while the condition we will use in order to
establish the nonsingularity of JH are similar to those obtained in the equation reformulation
approach, they only need to be valid for positive values of λ.

The structure of JH(z) is the following

JH(z) :=

 JxF(x,λ) E(x) 0
Jxg(x) 0 I

0 diag(w) diag(λ)

 , (21)

with E defined in (4). In order to analyze the nonsingularity of this matrix, we first introduce
the following terminology, cf. [18].

Definition 4.4 A matrix Q := [M1M2M3] is said to have the mixed P0-property if M3 has
full column rank and

M1u+M2v +M3s = 0
(u, v) 6= 0

}
=⇒ uivi ≥ 0 for some i such that |ui|+ |vi| > 0.

Note that the matrix M3 in the previous definition might vanish. Then it is easy to see that a
square matrix M is a P0-matrix if and only if the pair [M − I] (with a vacuous M3-part) has
the mixed P0-property, i.e., Definition 4.4 generalizes the standard notion of a P0-matrix. A
useful characterization of the mixed P0-property is given in [18, Lemma 11.4.3] and restated
in the following result.

Lemma 4.5 Let M1 and M2 be matrices of order (n+m)×m and M3 be a matrix of order
(n + m) × n. The matrix Q := [M1M2M3] has the mixed P0-property if and only if for
every pair of m×m diagonal matrices D1 and D2 both having positive diagonal entries, the
(2m+ n)× (2m+ n) square matrix

M :=
[
D1 D2 0
M1 M2 M3

]
is nonsingular.

Note that this Lemma is immediately applicable to (21) and gives a necessary and suffi-
cient condition for the nonsingularity of JH when λ > 0 and w > 0. However, the mixed
P0-property is difficult to interprete and to verify. Therefore we now give some sufficient
conditions which are derived taking into account the GNEP structure and which lead more
easily to verification and comparison with previous results. The proofs of these results may
be carried out by referring to Lemma 4.5, however, we prefer to give direct proofs to be inde-
pendent of that result, and because the direct proofs are not really longer than those based
on Lemma 4.5.

The following theorem gives a first nonsingularity result.

Theorem 4.6 Let z = (x,λ,w) ∈ Rn ×Rm
++ ×Rm

++ be given such that JxF(x,λ) is nonsin-
gular and

M(x,λ) := Jxg(x) JxF(x,λ)−1E(x) (22)

is a P0-matrix. Then the Jacobian JH(z) is nonsingular.
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Proof. Using the structure of JH(z) the homogeneous linear system JH(z) q = 0, with
q =

(
q(1), q(2), q(3)

)
being partitioned in a suitable way, can be rewritten in the following way:

JxF(x,λ)q(1) + E(x)q(2) = 0, (23)
Jxg(x)q(1) + q(3) = 0, (24)

diag(w)q(2) + diag(λ)q(3) = 0. (25)

Since JxF(x,λ) is nonsingular by assumption, (23) yields q(1) = −JxF(x,λ)−1 E(x)q(2).
Hence we obtain q(3) = −Jxg(x) q(1) = Jxg(x) JxF(x,λ)−1E(x) q(2) = M(x,λ) q(2) from
(24) and the definition of M(x,λ). Substituting this expression into (25) gives

[
diag(w) +

diag(λ)M(x,λ)
]
q(2) = 0. Since M(x,λ) is a P0-matrix by assumption and w,λ > 0, it follows

that
[

diag(w) + diag(λ)M(x,λ)
]

is nonsingular and hence q(2) = 0. This, in turn, implies
q(1) = 0 and q(3) = 0. Consequently, JH(z) is nonsingular. �

Note that this condition is identical to the assumptions for the stationarity condition in
Theorem 3.1. The difference is that the multipliers are now guaranteed to be positive in the
interior point approach, whereas this condition was crucial in the equation/merit function
approach, cf. the corresponding discussion in Section 3. To illustrate this point, let us consider
once again Example 3.4: It is now easy to see that this example satisfies the conditions of
Theorem 4.6:

JxF(x,λ) =
(

2λ 0
0 1

)
is nonsingular for all λ > 0,M(x,λ) = 2x2

1
λ ≥ 0 for all λ > 0; hence

this example is no longer a counterexample for our interior point approach.
The following theorem gives another sufficient condition for the nonsingularity of JH.

This condition is stronger than that in Theorem 4.6, nevertheless it is interesting because it
gives a quantitative insight into what is necessary to guarantee the nonsingularity of JH. We
use the notation eigmin(A) for the smallest eigenvalue of a symmetric matrix A.

Theorem 4.7 Let z = (x,λ,w) ∈ Rn ×Rm
++ ×Rm

++ be given such that JxF(x,λ) is nonsin-
gular and

eigmin

(
1
2
E(x)T

(
JxF(x,λ)−1 + JxF(x,λ)−T

)
E(x)

)
≥

‖Jxg(x)− E(x)T‖2
∥∥JxF(x,λ)−1

∥∥
2
‖E(x)‖2 .

Then the Jacobian JH(z) is nonsingular.

Proof. For all u ∈ Rm we have

uTE(x)TJx F (x,λ)−1E(x)u =
1
2
uT
(
E(x)T

(
JxF(x,λ)−1 + JxF(x,λ)−T

)
E(x)

)
u

≥ eigmin

(
1
2
E(x)T

(
JxF(x,λ)−1 + JxF(x,λ)−T

)
E(x)

)
‖u‖22

≥ ‖Jxg(x)− E(x)T‖2
∥∥JxF(x,λ)−1

∥∥
2
‖E(x)‖2 ‖u‖

2
2

≥ |uT (Jxg(x)− E(x)T ) JxF(x,λ)−1E(x)u|
≥ −uT (Jxg(x)− E(x)T ) JxF(x,λ)−1E(x)u.
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Using the matrixM(x,λ) from (22), this implies that uTM(x,λ)u = uTJxg(x) JxF(x,λ)−1E(x)u ≥
0 for all u ∈ Rm. Therefore M(x,λ) is positive semidefinite, hence a P0-matrix, and Theorem
4.6 guarantees nonsingularity of JH(z). �

In the case of a NEP, if JxF(x,λ) is positive definite, matrix (22) is automatically P0 (actually,
positive semidefinite) since Jxg(x) = E(x)T in this case. Then it may be interesting to see
that in the case of a NEP we can relax a bit the nonsingularity assumption on JxF(x,λ) and
still get nonsingularity of JH(z). In fact, we have the following counterpart of the stationary
point condition from Theorem 3.5.

Theorem 4.8 Consider a NEP, and let z = (x,λ) ∈ Rn×Rm
++ be given such that JxF(x,λ)

is positive semidefinite and it holds that

dTJxF(x,λ) d > 0, ∀d 6= 0 : E(x̄)T d = 0.

Then the Jacobian JH(z) is nonsingular.

Proof. Consider once again the homogeneous linear system JH(z)q = 0, so that (23)–(25)
hold with Jxg(x) = E(x)T , since we are in the NEP case. Since λ ∈ Rm

++, (25) can be solved
for q(3) and we obtain

0
(23)
= (q(1))TJxF(x,λ)q(1) + (q(1))TE(x)q(2)

(24)
= (q(1))TJxF(x,λ)q(1) − (q(3))T q(2)

(25)
= (q(1))TJxF(x,λ)q(1) + (q(2))T diag(w ◦ λ−1)q(2).

Positive semidefiniteness of JxF(x,λ), together with w > 0,λ > 0, implies q(2) = 0 and
thus also q(3) = 0 by (25). Then we have from (23) and (24) (q(1))TJxF(x,λ) q(1) = 0 and
E(x)T q(1) = 0, and the assumptions show q(1) = 0, hence nonsingularity of JH(z). �

In spite of the result above, it should be pointed out that in general, in Theorem 4.6, we
do not need the matrix JxF(x,λ) to be positive (semi-) definite. This is illustrated by the
following example.

Example 4.9 Consider a GNEP with two players, each controlling a single variable. The
problem is given by

Player 1: min
x1

1
2
x2

1 − 2x1 s.t. x2
1 + x2 ≤ 0,

Player 2: min
x2

1
2
x2

2 + (2− x2
1)x2 s.t. x2 ∈ R.

It is easy to see that JxF(x, λ) =
(

1 + 2λ 0
−2x1 1

)
is nonsingular for all x ∈ R2 and all λ > 0

but it is not positive semidefinite everywhere. However, since a simple calculation shows that
Jxg(x)JxF(x, λ)−1E(x) = 8x2

1/(1 + 2λ) ≥ 0, it follows that the conditions from Theorem 4.6
are satisfied.
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4.2 Boundedness

Note that Theorem 4.3 does not guarantee the existence of an accumulation point of the
sequence generated by Algorithm 4.1. The following result therefore considers precisely this
question and provides conditions under which the entire sequence generated by our algorithm
remains bounded.

Theorem 4.10 Assume that

(a) JH(z) is nonsingular for all z ∈ ZI ;

(b) lim‖x‖→∞ ‖g+(x)‖ = +∞;

(c) The Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ)
holds for each player, i.e., for all ν = 1, . . . , N and for all x ∈ Rn,

∃dν ∈ Rnν : ∇xνg
ν
i (x)Tdν < 0 ∀i ∈ Iν≥(x), (26)

where Iν≥(x) :=
{
i ∈ {1, . . . ,mν} | gνi (x) ≥ 0

}
denotes the set of active or violated

constraints for player ν.

Then any sequence {(xk,λk,wk)} generated by Algorithm 4.1 remains bounded.

Proof. Assume the existence of a sequence {(xk,λk,wk)} ⊆ ZI such that limk→∞
‖(xk,λk,wk)‖ = ∞. We will show that this implies ‖H(xk,λk,wk)‖ → ∞ for k → ∞,
contradicting part (a) of Theorem 4.3. We consider two cases.

Case 1: ‖(xk,wk)‖ → ∞. Then either {xk} is bounded, or ‖xk‖ → ∞. If {xk} is bounded,
then ‖wk‖ → ∞, and there exists ν ∈ {1, . . . , N} such that ‖(wk)ν‖ → ∞. Since {gν(xk)}
is bounded due to the continuity of gν , we therefore obtain ‖gν(xk) + (wk)ν‖ → ∞. This,
in turn, implies ‖H(xk,λk,wk)‖ → ∞. On the other hand, if ‖xk‖ → ∞, it follows from
assumption (b) that ‖gν+(xk)‖ → ∞ for some player ν ∈ {1, . . . , N}. Moreover, since all
components of the vector wk are positive, this also implies ‖gν(xk) + (wk)ν‖ → ∞, and it
follows once again that ‖H(xk,λk,wk)‖ → ∞ also in this (sub-) case.

Case 2: ‖(xk,wk)‖ is bounded. Then we have ‖λk‖ → ∞. Let ν be a player such that
‖(λk)ν‖ → ∞, and let J be the set of indices such that (λk)νj →∞, whereas, subsequencing
if necessary, we can assume that the remaining components stay bounded. Without loss of
generality, we may also assume that xk → x̄ and wk → w̄. If, for some j ∈ J , we have
w̄νj > 0, it follows that (λk)νj (wk)νj → +∞, and therefore ‖H(xk,λk,wk)‖ → ∞. Hence it
remains to consider the case where w̄ν

j = 0 for all j ∈ J . Since (xk,λk,wk) belongs to ZI , we
have gνj (xk) + (wk)νj > 0 and, therefore, gνj (x̄) ≥ 0 for all j ∈ J . Using EMFCQ from (26),
there exists a vector dν such that ∇xνg

ν
j (x̄)Tdν < 0 ∀j ∈ J. This implies

lim
k→∞

Lν(xk, (λk)ν)Tdν = lim
k→∞

(
∇xνθν(xk) +

∑
j 6∈J

(λk)νj∇xνg
ν
j (xk)

)T
dν

+ lim
k→∞

(∑
j∈J

(λk)νj∇xνg
ν
j (xk)

)T
dν = −∞
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since the first term is bounded (because {xk} → x̄ and the functions ∇xνθν and ∇xνg
ν are

continuous, and because all sequences (λk)νj for j 6∈ J are bounded by definition of the index
set J), whereas the second term is unbounded since (λk)νj → +∞ and ∇xνg

ν
j (x̄)Tdν < 0 for

all j ∈ J . Using the Cauchy-Schwarz inequality, we therefore obtain

‖Lν(xk, (λk)ν)‖ ‖dν‖ ≥ |Lν(xk, (λk)ν)Tdν | → +∞

for k → ∞. Since dν is a fixed vector, this implies ‖Lν(xk, (λk)ν)‖ → +∞ which, in turn,
implies ‖H(xk,λk,wk)‖ → ∞ for k →∞, also in this case. �

Note that condition (b) in the theorem above is a mild boundedness assumption on the feasible
sets of the players. In particular, (b) holds in the setting of Proposition 3.6. Also condition
(c) is rather mild and common in an optimization context.

Remark 4.11 As we have seen in the previous sections, nonsingularity of JxF(x,λ) and
the P0-condition on the matrix M(x,λ) guarantee both that stationary points of the merit
function are solutions of the GNEP and that the matrix JH(z) is nonsingular. In the case of
NEPs we obtain these properties by some semi-definiteness assumptions on JxF(x,λ). Let
us recall that in the context of the interior point approach, all conditions only have to hold
for positive λ and, therefore, are less restrictive than in the merit function context.

A further advantage of the interior point approach is that Theorem 4.10 guarantees bound-
edness of the whole sequence, while in Theorem 3.6 we could only guarantee boundedness of
the x part. Note that condition (b) of Theorem 4.10 is similar to the boundedness assumption
of Theorem 3.6, but even if we additionally suppose the EMFCQ in Theorem 3.6, we can not
expect boundedness of λ, because of the possible negativity of some components of λ.

5 Numerical Results

In this section we compare numerically the approaches proposed in the previous two sections.
We should point out that in reality in Section 4 we actually proposed an algorithm, while
in Section 3 we only studied the properties of the merit function Θ, so that for each choice
of a specific minimization algorithm we will have a different algorithm. In this section we
will consider two such algorithms, therefore giving rise to two different algorithms. A third
algorithm that solves a nonlinear equation system with box constraints is considered and all
three algorithms are compared to the potential reduction method.

5.1 Test Problems and Stopping Criterion

We solve several test problems, most of all taken from the extensive numerical test library
in [16]. We also consider some further test problems from the literature. Namely Harker’s
problem (Harker) described in [23], an electricity market problem (Heu) from [24], two small
problems (NTF1, NTF2) from [26], a transportation problem from [21] in different dimensions
(Tr1a, Tr1b, Tr1c), a Spam-filtering problem (Spam) which is a multi-player version of the
2-player game described in [3], and a model for a lobbing process (Lob), see [32]. We report
in Table 1 the number of players and the total number of variables and constraints of each
problem. Some of the test problems were run more than one time, using different starting
points: the number of starting points used is reported in the column #s.p. For a detailed
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description of the problems we refer the reader to the references above, here we report just a
few more information. Problems from A.1 to Tr1c are general GNEPs, while problems from
A.11 to Spam are jointly convex GNEPs. Actually our test problem set includes four pure
NEPs: A.12, A.15, Lob and Spam. The objective functions of each player’s problems are, for
fixed x−ν , as follows:

• A.9a, A.9b : linear

• A.3, A.4, A.5, A.6, A.7, A.8, A.10a, A.10c, A.11, A.12, A.13, A.15, A.17, A.18, Harker,
NTF1, NTF2 : quadratic

• A.1, A.2, A.10b, A.10d, A.10e, A.12, A.14, A.16 (all), Heu, Lob, Spam, Tr1 (all) : non
linear.

The constraints of each player’s problem are, for fixed x−ν , as follows:

• A.1, A.2, A.3, A.4, A.5, A.7, A.8, A.11, A.12, A.13, A.14, A.15, A.16 (all), A.17, A.18,
Harker, Heu, NTF1, Lob, Spam, Tr1 (all) : linear

• A.6, A.9a, A.9b, A.10 (all), NTF2 : non linear.

Problems A.3 to A.8, A.11, A.12, A.17, Harker, NTF1, and NTF2 are purely academic
problems, while the remaining problems correspond to some kind of engineering or economic
models.

The methods discussed below use the same stopping criterion. We stopped the iterations
when the violation V (x,λ) of the KKT conditions (3) is small, i.e. we set

V (x,λ) =

∥∥∥∥∥
(

F(x,λ)

min(λ,−g(x))

)∥∥∥∥∥
2

and stopped iterations when V (xk, λk) ≤
√
n+m10−4.

5.2 Merit Function Approach

In the merit function approach we must solve the unconstrained optimization problem

min Θ(x,λ).

In order to do so we tried two different, somewhat extreme, approaches.

General purpose minimization algorithm

As a first option we used a general purpose algorithm that does not exploit in any way the
structure of the objective function Θ. This is by far the simplest choice and requires little
beyond furnishing routines that calculate the objective and gradient values. In particular we
used the MATLAB R© function fminunc from the Optimization Toolbox with option GradObj
set to ’on’. Beside the function and the gradient, this routine only requires a starting point
(x0,λ0), but no further ingredients.

In addition to the main stopping criterion described above, fminunc algorithm stops if the
relative change in function value is less than the parameter TolFun or if the maximum number
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Example N n m #s.p.

A.1 10 10 20 3

A.2 10 10 24 3

A.3 3 7 18 3

A.4 3 7 18 3

A.5 3 7 18 3

A.6 3 7 21 3

A.7 4 20 44 3

A.8 3 3 8 3

A.9a 7 56 63 1

A.9b 7 112 119 1

A.10a 8 24 33 1

A.10b 25 125 151 1

A.10c 37 222 260 1

A.10d 37 370 408 1

A.10e 48 576 625 1

Tr1a 6 18 72 2

Tr1b 6 60 228 2

Tr1c 7 80 304 2

Example N n m #s.p.

A.11 2 2 2 1

A.12 2 2 4 1

A.13 3 3 9 1

A.14 10 10 20 1

A.15 3 6 12 1

A.16a 5 5 10 1

A.16b 5 5 10 1

A.16c 5 5 10 1

A.16d 5 5 10 1

A.17 2 3 7 1

A.18 2 12 28 3

Harker 2 2 6 1

Heu 2 10 22 2

NTF1 2 2 4 1

NTF2 2 2 4 1

Lob 50 50 50 1

Spam 101 2020 4040 1

Table 1: Data on test problems

of iterations MaxIter or the maximum number of function evaluations MaxFunEvals is
reached. We set TolFun = 10−8, MaxFunEvals = 105 and MaxIter = 103. For the λ-part
of the starting vector, we always used λ0 = 0, whereas details regarding the x-part are given
in [8]. We set the Matlab option LargeScale ’off’, so that fminunc uses a BFGS line-search
algorithm for the minimization.

Semismooth-like minimization algorithm

It should be noted that the general purpose minimization algorithm just described presupposes
that the objective function is two times continuously differentiable, but Θ is not so, in fact
∇Θ is only strongly semismooth, see [18]. So, as an alternative method, we implemented
in Matlab R© the semismooth minimization algorithm from [6, 7, 18]. This is a globalized
semismooth Newton-type method which has fast local convergence. We refer the reader to
the references above for the details and here only report some relevant implementation details.
For the sake of notational simplicity we set

T (x,λ) =

(
F(x,λ)

Φ(x,λ)

)
.

In each iteration of this method, in order to find a search direction an element of the B-
subdifferential ∂BT (x,λ) is evaluated, see [18, 27]. The following theoretical procedure eval-
uates an element H belonging to ∂BT (x,λ). This procedure is analogous to that reported
in [6] and it can be proved, along lines similar to those in [6], that it actually provides an
element in the B-subdifferential. We gloss over the detailed proofs, since it is just an extension
of known techniques.

Step 1: Set β = {(ν, i) : λνi = 0 = gνi (x)}.
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Step 2: For each (ν, i) /∈ β set

aνi =
(

λνi
‖λνi ,−gνi (x)‖2

− 1
)

and bνi =
(

−gνi (x)
‖λνi ,−gνi (x)‖2

− 1
)
.

Step 3: For each (ν, i) ∈ β set aνi = −1 and bνi = −1.

Step 4: Using definitions (4)–(5), set

H =
(

JxF(x,λ) E(x)
−Dg(x,λ) Jxg(x) Dλ(x,λ)

)
.

Remark 5.1 Note that at points where β = ∅ (which are called non-degenerate points)
T (x,λ) is differentiable and then the above procedure gives the Jacobian of T (x,λ). When
the procedure is used at points where β 6= ∅ (which are called degenerate points) the compu-
tational overhead is negligible.

Semismooth Newton methods for solving nonsmooth systems, usually enjoy a superlinear/quadratic
convergence rate under mild assumptions. However, as discussed in great detail in [13], the
conditions under which superlinear convergence occur are often in jeopardy when solving re-
formulations of GNEPs. In this paper we did not discuss the local convergence properties of
any of the methods analyzed, so we cannot guarantee whether the implemented semismooth
Newton method enjoys locally fast convergence properties under reasonable assumptions,
although, in practice, a fast local convergence was often observed.

The search direction dk is computed at each iteration by solving an n + m square linear
system

Hkd = −T (xk,λk). (27)

In order to perform the linear algebra involved we used Matlab’s linear systems solver lin-
solve. In a few cases, if the Newton-like direction does not satisfy certain “sufficient descent”
conditions, the line search is performed along the antigradient of Θ. The details are as follows:
if the 1-norm condition number estimate of Hk is bigger than 1016 (that is the linear system
(27) is ill conditioned), or if ∇Θ(xk,λk)Tdk > −10−8‖dk‖2.12 (that is dk is rather orthogonal
to Θ(xk,λk) and then the succeeding linesearch will generate tiny stepsizes), then dk is taken
as −∇Θ(xk,λk).

Then we used an Armijo-type linesearch that finds the smallest ik = 0, 1, 2, . . . such that

Θ((xk,λk) + 2−i
k
dk) ≤ Θ(xk,λk) + 10−42−i

k∇Θ(xk,λk)Tdk.

Again, besides the main stopping criterion described above, the algorithm stops if the maxi-
mum number of iterations MaxIter = 103 is reached. For the λ-part of the starting vector,
we always used λ0 = 0.

5.3 Interior Point Method

We have implemented only the exact version of Algorithm 4.1, because the library of test
problems considered does not contain large scale problems.

More in detail, at step (S.2) of Algorithm 4.1 we find the search direction dk by solving
a reduced linear system of equations with σk = 0.1. Note that formally this method calls
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for the solution of an n+ 2m square linear system at each iteration. However, this system is
very structured and some simple manipulations permit to solve it by actually solving a linear
system of dimension n. More precisely, we must find a solution (d̄1, d̄2, d̄3) of the following
linear system of dimension n+ 2m JxF(x,λ) E(x) 0

Jxg(x) 0 I
0 diag(w) diag(λ)

 d1

d2

d3

 =

 b1
b2
b3

 , (28)

where all the quantities involved are defined in detail in Section 4. It is easy to verify, by
substitution and by the fact that w > 0 in ZI , that if we compute d̄1 as solution of(

JxF(x,λ) + E(x) diag(w)−1 diag(λ)Jxg(x)
)
d1 =

b1 − E(x) diag(w)−1b3 + E(x) diag(w)−1 diag(λ)b2

and d̄2 and d̄3 by d3 = b2 − Jxg(x)d1 and d2 = diag(w)−1b3 − diag(w)−1 diag(λ)d3, respec-
tively, this is indeed a solution of (28). This shows clearly that the main computational burden
in solving the linear system (28) is actually the solution of an n× n square linear system. In
order to perform the linear algebra involved we used Matlab’s linear systems solver linsolve.

Similarly to what is done in the semismooth-like approach, if the Newton-like direction
does not satisfy ∇ψ(xk,λk,wk)Tdk ≤ −10−8‖dk‖2.12 , that is if the direction dk is almost
orthogonal to ∇ψ(xk,λk,wk), then we use the antigradient −∇ψ(xk,λk,wk) as a search
direction dk.

The line search used is described in step (S.3) of Algorithm 4.1, with γ = 10−3 and ξ = 2m.
In order to stay in ZI we preliminarily rescale dk = (dkx, d

k
λ, d

k
w). First we analytically compute

a positive constant α such that λk +αdkλ and wk +αdkw are greater than 10−10. This ensures
that the last two blocks in zk +αdk are in the interior of R2m

+ . Then, if necessary, we further
reduce this α by successive bisections, until g(xk + αdkx) + wk + αdkw ≥ 10−10 thus finally
guaranteeing that zk + αdk belongs to ZI . In this latter phase, an evaluation of g is needed
for each bisection. At the end of this process, we set dk ← αdk and then proceed to perform
the Armijo line-search (16).

Again, besides the main stopping criterion described above, the algorithm stops if the
maximum number of iterations MaxIter = 103 is reached. For the (λ,w)-part of the starting
vector, we used λ0 = 10 and w0 = max(10, 5− g(x0)), so that we are sure that the starting
point is “well inside” ZI .

5.4 The STRSCNE Solver

We also considered a trust-region method for solving the constrained equation defined by
(10) and (11). To this end, we used STRSCNE (Scaled Trust-Region Solver for Constrained
Nonlinear Systems), a software freely available at http://strscne.de.unifi.it and whose
detailed description can be found in [1, 2]. Here we give a few details to make a comparison
with the other methods we tested possible. STRSCNE is essentially a suitably tailored method
that minimizes 1

2‖H(x,λ,w)‖2 over (11). The method uses ellipsoidal trust-regions defined
by an affine scaling. The scaling is determined by the nearness of the current iterate to the
box boundary and has the effect of angling the scaled steepest descent direction away from the
boundary, possibly allowing a longer step to be taken within the feasible region. At each step
of the method, a dogleg strategy is used to approximately minimize a quadratic approximation
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to the objective function over the elliptical trust-region whose shape depends on the bounds.
An important property of the proposed method is that all the iterates generated are in the
strict interior of the set defined by (11). To maintain strict feasibility, suitable restrictions of
the chosen steps are performed, if necessary. Note that although STRSCNE is not an interior-
point method in the classical sense, it does generate strictly feasible iterates only, and thus
comparison with our interior-point method appears particularly appropriate and meaningful.

The algorithm is globally convergent to a stationary point of 1
2‖H(x,λ,w)‖2 over (11).

As usual, if the stationary point so found is a global minimizer with zero value, the point is
a solution of the constrained system (10) and (11). However, we remark that conditions that
guarantee that stationary points are actually solutions of the original constrained system (10)
and (11) are not available at the moment.

We slightly modified STRSCNE implementation so that the method uses the same stop-
ping criteria employed by the other methods we tested. We underline that the dogleg strategy
used in order to approximately solve the trust region problem entails that, as in all other meth-
ods we considered, the main computational burden per iteration is the solution of a linear
system. More precisely the linear system that is solved at each iteration is exactly the same
one considered in our interior-point method.

5.5 Comparison of the Algorithms

In order to evaluate the algorithms we ran each algorithm on all test problems using, in
some cases, several starting points (see Table 1). This resulted in 57 runs for each method.
The parameters that we took into account are: the number of iterations (It.), the number of
constraint evaluations (meaning the number of times g is evaluated) (g), the number of times
the partial gradients∇xνθν are evaluated (Pg) (note that each time this counter is incremented
by one this means that the partial gradient of all players have been evaluated), the number
of times Jg is evaluated (Jg), the number of times JF is evaluated (JF). These performance
criteria give a fairly detailed picture of the computation costs of each algorithm. Note, in
particular, that at each iteration of the algorithms considered, the most costly operation is
the solution of a square linear system. These systems have dimension n+m, n+m, n+ 2m
and n+2m respectively. However, we already discussed that the system solved by the interior
point method can be easily reduced to the solution of a square system of dimension n and this
is also possible for the STRSCNE method. It could seem that similar manipulations could be
performed also for the system arising in the semismooth method. In fact, the matrix of the
linear system is (

JxF(x,λ) E(x)
−Dg(x,λ) Jxg(x) Dλ(x,λ)

)
.

The peculiarity of this matrix is that the bottom right block is diagonal. So one could think
that, similarly to what is done for the interior point method linear system, one could express
the λ variables in function of x and then solve a square n system. However, in general
the bottom right diagonal block could easily have zero or very small entries. In particular,
suppose that (x̄, λ̄) is a solution of the KKT conditions of the game. If, for example, we have
g1
1(x̄) = 0 and λ̄1

1 > 0, i.e. if the first constraint of the first player is active and has a positive
multiplier (a common case indeed), we see that the corresponding element [Dλ(x̄, λ̄)]1,1 is 0.
So, in a neighborhood of this point this entry will be either 0 or very small, and we cannot
directly exploit the diagonal structure of this block in order to reduce the dimension of the
linear system. It is clear that there will be situations (especially in early iterations, probably)
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where the diagonal elements of Dλ(x,λ) are all positive, but for the reasons exposed above
we preferred to leave the detection and handling of this diagonal block to the linear system
solver. Note that, here, the interior point method has an advantage, since the diagonal block
present in the linear system are always guaranteed to have positive diagonal elements, exactly
because we keep iterations in ZI .

The detailed description of our tests are reported in [8]; for lack of space, here we only
report some summary results. The first consideration we can make is that the unconstrained
minimization of Θ through the general purpose code fminunc is not competitive with the
other three approaches. This approach leads to very many failures (19) and the numbers for
the iterations and the other performance criteria considered are consistently higher than those
for the other algorithms. In Table 2 we report the total number of failures for the semismooth-
like algorithm, STRSCNE, and the interior point method, along with the cumulative counts
obtained by considering only runs that are solved by all three algorithms (for a total of 47
runs).

Algorithm Failures It. g Pg + Jg JF

Semismooth-like 8 1217 13018 24772 1264

STRSCNE 3 2158 2257 6625 2205

Interior Point 1 857 2103 3243 857

Table 2: Cumulative results for the semismooth-like algorithm, STRSCNE, and the interior
point method.

This table shows that the interior point method seems more reliable, in that it solves all
problems except one. The cumulative results also seem to favor the interior point method.
An analysis of the detailed results in [8] shows that actually the semismooth-like algorithm
performs marginally better on a good part of the problems, but for some problems its behavior
deteriorates greatly, which increases very much the cumulative results, and it can not solve
any of the transportation problems Tr1a, Tr1b or Tr1c.

To get a better picture of the behavior of the algorithms we also present performance
profiles [10]. We briefly recall how these profiles are defined. We consider a set A of na
algorithms, a set p of np problems and a performance measure mp,a (e.g. number of iterations,
function evaluations). We compare the performance on problem p by algorithm a with the
best performance by any algorithm on this problem using the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A}
.

Then, we obtain an overall assessment of the performance of the algorithm by defining the
following value ρa(τ) = size{p ∈ P : rp,a ≤ τ}/np, which represents the probability for
algorithm a ∈ A that the performance ratio rp,a is within a factor τ ∈ R of the best possible
ratio. The function ρa represents the distribution function for the performance ratio. Thus
ρa(1) gives the fraction of problems for which the algorithm a was the most effective, ρa(2)
gives the fraction of problems for which the algorithm a is within a factor of 2 of the best
algorithm, and so on.

In our comparison we take as performance measures the number of iterations that the
four methods take to reach a solution of the GNEP (number of linear systems solved), the
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It. g

Pg + Jg JF

Figure 1: Performance Profiles

number of times that each algorithm evaluates the constraints of the GNEP (use of 0-th order
information), the number of times that each algorithm evaluates the partial gradient of the
objective functions of each player plus the number of times that each algorithm evaluates the
Jacobian of the constraints (use of first order information) and the number of times that JF
is evaluated (use of second order information). The results are shown in Figure 1.

These profiles confirm and make the impressions described above more precise. For τ = 1
we see that the semismooth-like algorithm performs best with respect to all criteria except
g (even if the detailed results indicate that often the advantage is very slight). However,
in comparing the number of iterations one should keep in mind that the dimensions of the
linear system solved by the interior point method are, in general, smaller, as discussed at
the beginning of this section. As soon as τ is greater than 3 (more or less) the interior
point method takes the lead, thus showing that the overall performance of this method is
not too distant from that of the semismooth-like and more reliable. The performance of the
STRSCNE method is for τ < 2 about the same as for the interior point method, but for larger
τ the latter one is superior. Only for the g evaluations the STRSCNE method is superior to
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all other methods for τ < 4.
Our implementations of the semismooth and interior point method are certainly not very

sophisticated, but the results seem to indicate that these two methods are worth of further
investigation and could be the basis for an efficient solution method for GNEPs. We remark
that we are aware of only another method for which a relatively extensive numerical testing
has been performed: the solution of a general GNEP with guaranteed convergence properties;
this is the penalty approach proposed in [15]. It is not totally straightforward to compare the
results reported in [15] and those reported here. For one thing, the test set in [15] is a subset
of the problems considered in this paper and the stopping criterion is different. Nevertheless,
each minor iteration in [15] requires the solution of a linear system and, from the linear
algebra point of view, this is still the main computational effort of the penalty algorithm. A
comparison of the results in this paper and of those in [15] seems to indicate that the solution
of the KKT conditions is by far more efficient than the penalty approach.
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A Tables of Results

This appendix contains a couple of tables with some more details regarding the numerical
results presented in Section 5. More precisely,

• Tables 3 and 4 collect the results of the general purpose minimization algorithm using
fminunc. In these tables, for each problem and starting point, we report the number of
iterations (It.), the number of constraint evaluations (meaning the number of times g
is evaluated) (g), the number of times the partial gradients ∇xνθν are evaluated (Pg)
(note that each time this counter is incremented by one this means that the partial
gradient of all players have been evaluated), the number of times Jg is evaluated (Jg),
the number of times JF is evaluated (JF). In the last column, (Merit), we report the
value of V (xlast,λlast), i.e. the value of the norm of the residual of the KKT system
(3) at the last iteration. When a failure occurs, we report the value of V (xlast,λlast)
and the reason of the failure.

• The results of the semismooth-like minimization algorithm are reported in Tables 5
and 6. The meaning of the columns is the same as the one for the general purpose
minimization algorithm.

• Tables 7, 8 show our results for the interior-point method in the same way as this was
done by the previous algorithms.

• Finally, the corresponding numerical results for the STRSCNE solver are presented in
Tables 9 and 10.
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Example x0 It. g Pg Jg JF Merit

A.1 0.01 68 73 73 73 73 8.1070e-05

0.1 28 34 34 34 34 9.2395e-05

1 49 51 51 51 51 2.2322e-05

A.2 0.01 228 236 236 236 236 4.7685e-04

0.1 138 144 144 144 144 4.6122e-04

1 232 246 246 246 246 4.4157e-04

A.3 0 80 83 83 83 83 7.9130e-05

1 93 94 94 94 94 5.9786e-05

10 105 107 107 107 107 6.3333e-04

A.4 0 329 334 334 334 334 3.2220e-05

1 336 340 340 340 340 4.8636e-05

10 F TolFun 5.2120e-02

A.5 0 202 213 213 213 213 6.2380e-05

1 224 230 230 230 230 7.4926e-05

10 223 235 235 235 235 8.8037e-04

A.6 0 F Change in x small 4.6180e-02

1 F Change in x small 1.1470e-01

10 F TolFun 6.4020e-01

A.7 0 F TolFun 3.9373e-02

1 F TolFun 1.6950e-01

10 F Change in x small 2.1266e-01

A.8 0 30 32 32 32 32 5.1203e-05

1 37 39 39 39 39 4.8684e-05

10 54 61 61 61 61 5.6099e-05

A.9a 0 357 359 359 359 359 9.9853e-05

A.9b 0 566 583 583 583 583 8.7118e-05

A.10a see [16] F MaxIter 1.5758e-01

A.10b see [16] F MaxIter 1.2421e-02

A.10c see [16] F MaxIter 2.9749e-01

A.10d see [16] F MaxIter 1.6022e-02

A.10e see [16] F MaxIter 1.3170e-02

Tr1a 1 F TolFun 8.3600e-03

10 589 627 627 627 627 6.6557e-04

Tr1b 1 F TolFun 2.5961e-02

10 F TolFun 2.6097e-02

Tr1c 1 F MaxIter 2.6016e-01

10 F MaxIter 2.5582e-01

Table 3: Numerical results of fminunc for GNEPs
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Example x0 It. g Pg Jg JF Merit

A.11 0 12 13 13 13 13 9.0722e-05

A.12 0 24 25 25 25 25 1.3352e-05

A.13 0 65 81 81 81 81 8.5551e-05

A.14 0.01 9 14 14 14 14 5.6090e-04

A.15 0 118 121 121 121 121 4.3681e-05

A.16a 10 46 47 47 47 47 6.7134e-05

A.16b 10 45 47 47 47 47 9.1949e-05

A.16c 10 52 58 58 58 58 3.5536e-05

A.16d 10 84 92 92 92 92 8.2268e-05

A.17 0 39 40 40 40 40 7.4502e-06

A.18 0 78 100 100 100 100 8.1107e-05

1 75 92 92 92 92 9.4289e-05

10 71 84 84 84 84 4.7093e-05

Harker 0 43 44 44 44 44 9.5024e-05

Heu 1 F TolFun 4.0797e-01

10 F TolFun 3.4071e-01

NTF1 0 16 18 18 18 18 3.4319e-05

NTF2 0 15 17 17 17 17 1.6630e-05

Spam 1 147 150 150 150 150 9.4136e-05

Lob 0.1 53 64 64 64 64 8.6044e-05

Table 4: Numerical results of fminunc for jointly convex GNEPs
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Example x0 It. g Pg Jg JF Merit

A.1 0.01 7 16 8 16 8 1.5072e-07

0.1 4 10 5 10 5 1.5147e-07

1 5 12 6 12 6 1.5303e-07

A.2 0.01 8 19 10 19 9 5.4687e-06

0.1 5 18 12 18 6 2.6233e-05

1 9 25 15 25 10 4.3012e-06

A.3 0 1 4 2 4 2 1.4837e-15

1 1 4 2 4 2 4.5856e-15

10 8 20 11 20 9 6.4902e-07

A.4 0 6 18 11 18 7 7.5068e-05

1 14 64 49 64 15 1.1420e-05

10 14 42 27 42 15 1.2036e-06

A.5 0 6 14 7 14 7 1.9510e-07

1 6 14 7 14 7 5.4483e-07

10 8 18 9 18 9 6.6836e-07

A.6 0 10 33 22 33 11 4.4228e-06

1 10 32 21 32 11 2.7012e-06

10 F MaxIter 2.1564e+00

A.7 0 10 34 23 34 11 3.3003e-05

1 13 54 40 54 14 5.9742e-05

10 10 30 19 30 11 9.4868e-05

A.8 0 102 586 483 586 103 9.7215e-05

1 74 378 303 378 75 9.6147e-05

10 69 351 281 351 70 9.8566e-05

A.9a 0 6 14 7 14 7 6.5525e-05

A.9b 0 7 16 8 16 8 3.3142e-05

A.10a see [16] 12 32 19 32 13 1.9109e-06

A.10b see [16] 372 5842 5469 5842 373 8.2587e-05

A.10c see [16] 23 120 96 120 24 1.2230e-05

A.10d see [16] 619 10566 9946 10566 620 9.2923e-05

A.10e see [16] F MaxIter 2.0245e-01

Tr1a 1 F MaxIter 2.9159e-03

10 F MaxIter 6.9773e-03

Tr1b 1 F MaxIter 3.1641e-03

10 F MaxIter 1.3184e-01

Tr1c 1 F MaxIter 2.1022e-01

10 F MaxIter 1.8320e-03

Table 5: Numerical results of semismooth algorithm for GNEPs
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Example x0 It. g Pg Jg JF Merit

A.11 0 5 12 6 12 6 1.0762e-06

A.12 0 1 4 2 4 2 8.1079e-16

A.13 0 14 104 89 104 15 8.7420e-07

A.14 0.01 7 16 8 16 8 1.6718e-07

A.15 0 5 12 6 12 6 4.3040e-08

A.16a 10 5 12 6 12 6 5.1496e-05

A.16b 10 6 17 10 17 7 3.2108e-05

A.16c 10 6 14 7 14 7 1.2527e-05

A.16d 10 9 25 15 25 10 8.2092e-07

A.17 0 5 12 6 12 6 4.3050e-06

A.18 0 9 27 17 27 10 3.5291e-05

1 10 28 17 28 11 4.9611e-07

10 13 41 27 41 14 6.8525e-05

Harker 0 5 12 6 12 6 1.0220e-08

Heu 1 15 34 18 34 16 4.9516e-08

10 12 28 15 28 13 4.9516e-08

NTF1 0 5 12 6 12 6 1.5977e-06

NTF2 0 6 16 9 16 7 2.3858e-06

Spam 1 5 12 6 12 6 3.5083e-06

Lob 0.1 11 46 34 46 12 5.8928e-05

Table 6: Numerical results of semismooth algorithm for jointly convex GNEPs
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Example x0 It. g Pg Jg JF Merit

A.1 0.01 13 28 14 27 13 4.9392e-05

0.1 10 22 11 21 10 6.8545e-05

1 13 28 14 27 13 4.9101e-05

A.2 0.01 22 46 23 45 22 5.9176e-05

0.1 20 42 21 41 20 6.0829e-05

1 26 55 28 54 26 9.6029e-05

A.3 0 8 18 9 17 8 1.7249e-05

1 8 18 9 17 8 1.6953e-05

10 11 25 13 24 11 1.9495e-05

A.4 0 35 75 39 74 35 1.5297e-05

1 28 62 33 61 28 7.2982e-05

10 18 38 19 37 18 4.5377e-05

A.5 0 10 22 11 21 10 6.6553e-05

1 10 22 11 21 10 6.4964e-05

10 11 24 12 23 11 3.9106e-05

A.6 0 17 36 18 35 17 1.2241e-05

1 14 30 15 29 14 9.7724e-05

10 32 66 33 65 32 1.6177e-05

A.7 0 22 46 23 45 22 4.2777e-05

1 22 46 23 45 22 4.3112e-05

10 21 44 22 43 21 4.5876e-05

A.8 0 51 173 120 171 51 9.4026e-05

1 51 173 120 171 51 9.4026e-05

10 41 152 109 150 41 3.7556e-05

A.9a 0 12 26 13 25 12 3.1184e-05

A.9b 0 13 28 14 27 13 6.2418e-05

A.10a see [16] 19 41 21 40 19 2.5090e-05

A.10b see [16] 21 45 22 43 21 1.1769e-05

A.10c see [16] 52 149 96 148 52 6.8336e-05

A.10d see [16] 24 53 25 49 24 7.2248e-05

A.10e see [16] 28 62 29 57 28 4.7790e-05

Tr1a 1 30 62 31 61 30 6.9855e-05

10 31 64 32 63 31 6.4163e-05

Tr1b 1 47 96 48 95 47 4.3433e-05

10 53 110 56 109 53 2.1023e-05

Tr1c 1 59 120 60 119 59 4.3809e-05

10 F MinStep 1.3616e-02

Table 7: Numerical results of interior point method for GNEPs
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Example x0 It. g Pg Jg JF Merit

A.11 0 9 20 10 19 9 1.1102e-05

A.12 0 7 16 8 15 7 5.7685e-05

A.13 0 9 20 10 19 9 9.1989e-05

A.14 0.01 10 22 11 21 10 1.0592e-05

A.15 0 9 20 10 19 9 1.7465e-05

A.16a 10 10 22 11 21 10 9.1195e-05

A.16b 10 11 24 12 23 11 8.5879e-05

A.16c 10 12 26 13 25 12 4.5274e-05

A.16d 10 11 24 12 23 11 1.8690e-05

A.17 0 16 34 17 33 16 5.2712e-05

A.18 0 15 32 16 31 15 1.2652e-05

1 15 32 16 31 15 1.2336e-05

10 14 30 15 29 14 1.6203e-05

Harker 0 12 26 13 25 12 9.2474e-06

Heu 1 41 101 59 100 41 4.0365e-06

10 18 38 19 37 18 1.3606e-05

NTF1 0 9 20 10 19 9 1.4272e-05

NTF2 0 9 20 10 19 9 1.6203e-05

Spam 1 6 14 7 13 6 4.3613e-05

Lob 0.1 22 62 39 61 22 1.0381e-05

Table 8: Numerical results of interior point method for jointly convex GNEPs
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Example x0 It. g Pg Jg JF Merit

A.1 0.01 9 11 10 20 10 8.0333e-06

0.1 F MaxIter 3.5359e-01

1 9 11 10 20 10 2.7830e-05

A.2 0.01 19 21 20 40 20 6.8371e-05

0.1 36 41 40 77 37 5.1201e-05

1 406 408 407 814 407 9.7913e-05

A.3 0 10 12 11 22 11 5.6063e-05

1 8 10 9 18 9 6.9511e-07

10 10 12 11 22 11 7.0189e-06

A.4 0 229 231 230 460 230 2.3845e-06

1 16 18 17 34 17 5.5565e-07

10 15 17 16 32 16 7.5422e-05

A.5 0 13 15 14 28 14 1.1713e-06

1 13 15 14 28 14 2.1943e-07

10 14 16 15 30 15 4.9166e-06

A.6 0 17 19 18 36 18 1.8161e-06

1 16 18 17 34 17 2.0739e-07

10 20 22 21 42 21 1.5515e-05

A.7 0 17 19 18 36 18 2.3957e-06

1 17 19 18 36 18 7.9313e-06

10 20 22 21 42 21 2.1760e-07

A.8 0 10 12 11 22 11 8.6035e-06

1 10 12 11 22 11 4.0568e-06

10 11 13 12 24 12 4.2424e-05

A.9a 0 14 16 15 30 15 7.5906e-05

A.9b 0 16 18 17 34 17 4.2365e-05

A.10a see [16] 15 17 16 32 16 2.7951e-07

A.10b see [16] F MaxIter 4.7152e-02

A.10c see [16] 661 665 664 1326 662 9.2984e-05

A.10d see [16] 22 24 23 46 23 6.1128e-05

A.10e see [16] 47 49 48 96 48 8.1893e-05

Tr1a 1 61 63 62 124 62 4.6411e-05

10 30 32 31 62 31 2.9883e-05

Tr1b 1 935 952 951 1887 936 9.9858e-05

10 107 117 116 224 108 9.8850e-05

Tr1c 1 F MaxIter 1.3584e+01

10 33 35 34 68 34 9.3111e-05

Table 9: Numerical results of STRSCNE for GNEPs
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Example x0 It. g Pg Jg JF Merit

A.11 0 9 11 10 20 10 3.1421e-06

A.12 0 8 10 9 18 9 9.6796e-07

A.13 0 11 13 12 24 12 1.9291e-05

A.14 0.01 7 9 8 16 8 2.7034e-05

A.15 0 13 15 14 28 14 1.2743e-06

A.16a 10 135 137 136 272 136 7.8513e-05

A.16b 10 57 59 58 116 58 3.5503e-05

A.16c 10 38 40 39 78 39 1.0316e-05

A.16d 10 20 22 21 42 21 5.8677e-06

A.17 0 12 14 13 26 13 1.6255e-07

A.18 0 20 22 21 42 21 1.2181e-07

1 20 22 21 42 21 1.5177e-07

10 17 19 18 36 18 5.7671e-08

Harker 0 11 13 12 24 12 2.9432e-06

Heu 1 42 44 43 86 43 1.0943e-06

10 40 42 41 82 41 4.7362e-05

NTF1 0 8 10 9 18 9 3.5453e-06

NTF2 0 9 11 10 20 10 6.8272e-07

Spam 1 13 15 14 28 14 3.4729e-06

Lob 0.1 15 17 16 32 16 4.5537e-05

Table 10: Numerical results of STRSCNE for jointly convex GNEPs
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