
An Infeasible Interior Proximal Method for Convex

Programming Problems with Linear Constraints1

Nobuo Yamashita 2, Christian Kanzow 3, Tomoyuki Morimoto 2, and Masao Fukushima 2

2 Department of Applied Mathematics and Physics
Graduate School of Informatics
Kyoto University
Kyoto 606-8501
JAPAN

3 Department of Mathematics
Center for Optimization and Approximation
University of Hamburg
Bundesstrasse 55
20146 Hamburg
GERMANY

October 23, 2000

Abstract. In this paper, we propose an infeasible interior proximal method for solving
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an initial point for the method must be chosen from the interior of the feasible region. The
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feasible region may not have a nonempty interior, and it can be started from an arbitrary
initial point. We establish global convergence of the proposed algorithm under appropriate
assumptions.
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1 Introduction

Let f : <p → (−∞, +∞] be a closed proper convex function and C be a polyhedral set in
<p defined by

C := {x ∈ <p |AT x ≤ b},

where A is a p × m matrix, b ∈ <m, and m ≥ p. We consider the convex programming
problem with linear constraints

(P ) min{f(x) |x ∈ C}.

In this paper, we propose an infeasible interior proximal method for solving (P). The prox-
imal method, first proposed by Martinet [20], and subsequently studied by Rockafellar
[26, 27], Güler [10], Lemaire [17, 18] and many others, is based on the concept of proximal
mapping introduced by Moreau [21]. The proximal method for problem (P) with C = <p

generates the sequence {xk} by the iterative scheme

xk := argmin{f(x) + λ−1
k ‖x− xk−1‖2}, (1)

where {λk} is a sequence of positive real numbers and ‖ · ‖ denotes the Euclidean norm.
This method has a global convergence property under very mild conditions [10, 18, 27].

Many researchers have attempted to replace the quadratic term in (1) by distance-like
functions [1, 3, 6, 7, 13, 14, 15, 28, 29]. For example, Censor and Zenios [6] proposed
the proximal minimization with D-functions, which generates the sequence {xk} by

xk := argmin{f(x) + λ−1
k D(x, xk−1)},

where the function D is the so-called Bregman’s distance [5] or D-function. Teboulle [28]
proposed the proximal method using ϕ-divergence introduced by Csiszár [8]. With ϕ-
divergence, Iusem, Svaiter and Teboulle [13] proposed the entropy-like proximal method to
solve the problem with nonnegative constraints

min{f(x) |x ∈ <p
+},

where <p
+ := {u ∈ <p |uj ≥ 0∀j = 1, . . . , p}. This method generates the sequence {xk}

with initial point x0 ∈ <p
++ by

xk := argmin{f(x) + λ−1
k d̃ϕ(x, xk−1) |x ∈ <p

+},

where <p
++ := {u ∈ <p |uj > 0∀j = 1, . . . , p}, and the function d̃ϕ : <p×<p → < is defined

by

d̃ϕ(x, y) :=
p∑

j=1

yjϕ(xj/yj)

with ϕ : <+ → < being a differentiable strictly convex function. For the general linearly
constrained problem, these methods can be applied to the dual problem, since the dual
problem is represented as the problem with nonnegative constraints. Such dual methods
are regarded as multiplier methods [26] for convex programming [4, 9, 13, 24, 30].
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For the general linearly constrained convex programming problem, the interior point
method is known to be efficient not only theoretically but also practically [22, 31, 32].
Recently, the interior proximal method, which enjoys some favorable properties of both
proximal and interior point methods, has been proposed to solve problem (P), see, for
example, [1, 2, 3, 29]. Auslender and Haddou [1] and Teboulle [29] proposed an algorithm
based on the entropy-like distance. More recently, Auslender, Teboulle and Ben-Tiba [2, 3]
proposed an algorithm based on a new function ϕ, which is constructed by adding the
quadratic regularization term to the barrier term that enforces the generated sequence to
remain in the interior of the feasible region. This method generates the sequence {xk} by

xk := argmin{f(x) + λ−1
k dϕ(L(x), L(xk−1)) |x ∈ C}, (2)

where L(x) = b− AT x, and the distance-like function dϕ : <m ×<m → < is defined by

dϕ(u, v) :=
m∑

j=1

v2
j ϕ(uj/vj). (3)

It is worth mentioning that when the function ϕ is the logarithmic-quadratic kernel in the
sense of [3], the function dϕ has the self-concordant property introduced by Nesterov and
Nemirovski [22].

We note that, if the iteration (2) is started from an interior point of the feasible region,
that is, x0 ∈ int C, then the generated sequence {xk} remains in the interior of the feasible
region automatically. In [3], the global convergence of this algorithm was established under
the following assumptions:

(H1) dom f ∩ int C 6= ∅.

(H2) A has maximal row rank, i.e., rank A = p.

The restriction of this method is that one should start from an interior point of the feasible
region, and hence problems whose feasible region have an empty interior may not be dealt
with. Moreover, even if the underlying optimization problem has a nonempty interior, it is
generally hard to find such a point. However, this is precisely what is required in order to
start the algorithm from [3].

To remove this restriction, we propose in this paper an algorithm based on the idea of
the infeasible interior point method for linear programming. We introduce a slack variable
y such that y ∈ <m

+ and y ≈ b−AT x. This allows us to start our algorithm from basically
any initial point; moreover, the method can also be applied to problems whose feasible
region may not have a nonempty interior. For the proposed algorithm we establish global
convergence under appropriate assumptions.

This paper is organized as follows. In Section 2, we review some definitions and pre-
liminary results that will be used in the subsequent analysis. In Section 3, we propose
an infeasible interior proximal method, and show that it is well-defined. In Section 4, we
establish global convergence of the proposed algorithm. In Section 5, we conclude the paper
with some remarks.

All vector norms in this paper are Euclidean norms. The matrix norm is the corre-
sponding spectral norm. The inner product in <p is denoted by 〈·, ·〉.
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2 Preliminaries

In this section, we review some preliminary results on the distance-like function defined by
(3) that will play an important role in the subsequent analysis. We begin with the definition
of the kernel ϕ that is used to define the distance-like function. Note that this definition is
slightly more general than the one in [3].

Definition 2.1 Φ denotes the class of closed proper convex functions ϕ : < → (−∞, +∞]
satisfying the following conditions:

(i) int (dom ϕ) = (0, +∞).

(ii) ϕ is twice continuously differentiable on int (dom ϕ).

(iii) ϕ is strictly convex on dom ϕ.

(iv) lim
t→0+

ϕ
′
(t) = −∞.

(v) ϕ(1) = ϕ
′
(1) = 0 and ϕ

′′
(1) > 0.

(vi) There exists ν ∈ (1
2
ϕ
′′
(1), ϕ

′′
(1)) such that

(1− 1/t)(ϕ
′′
(1) + ν(t− 1)) ≤ ϕ

′
(t) ≤ ϕ

′′
(1)(t− 1) ∀t > 0.

Note that (vi) immediately implies lim
t→+∞

ϕ
′
(t) = +∞. A few examples of functions ϕ ∈ Φ

are shown below. These are given by Auslender et al. [3].

Example 2.1 The following functions belong to the class Φ:

ϕ1(t) = t log t− t + 1 + ν
2
(t− 1)2, ν > 1, dom ϕ = [0, +∞),

ϕ2(t) = − log t + t− 1 + ν
2
(t− 1)2, ν > 1, dom ϕ = (0, +∞),

ϕ3(t) = 2(
√

t− 1)2 + ν
2
(t− 1)2, ν > 1, dom ϕ = [0, +∞).

The constant ν in these examples plays the role of the constant ν in Definition 2.1 (vi).

Based on a function ϕ ∈ Φ, we define a distance-like function dϕ as follows.

Definition 2.2 For a given ϕ ∈ Φ, the distance-like function dϕ : <m ×<m → (−∞, +∞]
is defined by

dϕ(u, v) :=


m∑

j=1

v2
j ϕ(uj/vj), if (u, v) ∈ <m

++ ×<m
++,

+∞, otherwise.

(4)
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From the strict convexity of ϕ and property (v), ϕ satisfies

ϕ(t) ≥ 0 ∀t > 0, and ϕ(t) = 0 ⇐⇒ t = 1.

Hence, dϕ satisfies

dϕ(u, v) ≥ 0 ∀(u, v) ∈ <m
++ ×<m

++, and

dϕ(u, v) = 0 ⇐⇒ u = v. (5)

Next, we introduce two technical results on nonnegative sequences of real numbers that will
be needed in the subsequent analysis.

Lemma 2.1 Let {vk} and {βk} be nonnegative sequences of real numbers satisfying

(i) vk+1 ≤ vk + βk,

(ii)
∞∑

k=1

βk < ∞.

Then the sequence {vk} converges.

Proof. See [23, Chapter 2]. 2

Lemma 2.2 Let {λj} be a sequence of positive numbers, and {aj} be a sequence of real

numbers. Let σk :=
k∑

j=1

λj and bk := σ−1
k

k∑
j=1

λjaj. If σk →∞, then

(i) lim inf
k→∞

ak ≤ lim inf
k→∞

bk ≤ lim sup
k→∞

bk ≤ lim sup
k→∞

ak.

(ii) If lim
k→∞

ak = a < ∞, then lim
k→∞

bk = a.

Proof. (i) See [19, Lemma 3.5].
(ii) This result, originally given in [16], follows immediately from (i). 2

3 Algorithm

In this section, we propose an infeasible interior proximal method for the solution of prob-
lem (P). In order to motivate this method, consider the following iterative scheme with a
sequence {δk} ⊂ <m

++ such that δk → 0:

(xk, yk) := argmin{f(x) + λ−1
k d̂k(y) | y − (b− AT x) = δk, x ∈ <p, y ∈ <m

++}, (6)

where
d̂k(y) := dϕ(y, yk−1).
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Since y = b− AT x + δk ∈ <m
++ for any feasible point of (6), the feasible region of problem

(6) may be identified with the set

Ck := {x ∈ <p |AT x ≤ b + δk}, (7)

which is considered a perturbation of the original feasible region C. Moreover, if C 6= ∅,
then C ⊂ int Ck 6= ∅ for all k. Since δk → 0 as k →∞, the sequence {Ck} converges to the
set C. The optimality conditions for (6) are given by

∂f(x) + Au 3 0,

λ−1
k ∇d̂k(y) + u = 0,
y − (b− AT x) = δk,

(8)

where u = (u1, . . . , um)T ∈ <m denotes the vector of Lagrange multipliers. From the
definition of d̂k and (4), we have

∇d̂k(y) = (yk−1
1 ϕ

′
(y1/y

k−1
1 ), . . . , yk−1

m ϕ
′
(ym/yk−1

m ))T . (9)

Hence (8) can be rewritten as

∂f(x)− λ−1
k

m∑
i=1

aiy
k−1
i ϕ

′
(yi/y

k−1
i ) 3 0,

y − (b− AT x) = δk, (10)

where ai denotes the ith column of the matrix A. This means that solving (6) is equivalent
to finding (xk, yk) that satisfies (10). The algorithm proposed below generates a sequence of
points that satisfy conditions (10) approximately. To this end, we replace the subdifferential
∂f(x) in (10) by the ε-subdifferential; recall that, for an arbitrary ε ≥ 0, the ε-subdifferential
of f at a point x is defined by

∂εf(x) := {g ∈ <p | f(y) ≥ f(x) + 〈g, y − x〉 − ε ∀y ∈ <p}.

Now we describe the algorithm.

Algorithm

Step 1. Choose ϕ ∈ Φ, a positive sequence {βk} such that
∞∑

k=1

βk < ∞, a sequence {λk}

with λk ∈ [λmin, λmax] for all k and some constants 0 < λmin ≤ λmax, and a parameter
ρ ∈ (0, 1). Choose initial points x0 ∈ <p and y0 ∈ <m

++ such that δ0 := y0 − (b −
AT x0) ∈ <m

++, and set k := 1.

Step 2. Terminate the iteration if a suitable stopping rule is satisfied.

Step 3. Choose εk ≥ 0 satisfying εk ≤ βk+1λ
−1
k , ηk ∈ (0, ρ], and set δk := ηkδ

k−1. Find
(xk, yk) ∈ <p ×<m

++ and gk ∈ <p such that

gk ∈ ∂εk
f(xk), (11)

gk − λ−1
k

m∑
i=1

aiy
k−1
i ϕ

′
(yk

i /y
k−1
i ) = 0, (12)

yk − (b− AT xk) = δk. (13)
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Step 4. Set k := k + 1, and return to Step 2.

In the above algorithm, the initial point can be chosen arbitrarily as long as δ0 belongs to
<m

++. Namely, we only have to choose y0 big enough to guarantee δ0 ∈ <m
++. Note that the

choice of the sequences {εk}, {λk}, and {δk} ensures
∞∑

k=1

εk < ∞,
∞∑

k=1

λk = ∞,
∞∑

k=1

‖δk‖ < ∞,

and
∞∑

k=1

λkεk < ∞.

It is important to guarantee the existence of (xk, yk) and gk satisfying (11)–(13) in Step
3. In fact, the next theorem shows that the proposed algorithm is well-defined under the
following two assumptions:

(A1) domf ∩ C 6= ∅.

(A2) A has maximal row rank, i.e., rank A = p.

Note that the first assumption is rather natural since otherwise the optimal value of problem
(P) would be +∞. We further stress that (A1) is somewhat weaker than the corresponding
condition (H1) mentioned in the introduction. It implies, however, that the feasible set C
is nonempty.

Also the second assumption is often satisfied, e.g., if we have nonnegativity constraints
on the variables like in the Lagrange dual of an arbitrary constrained optimization problem.
Condition (A2) can also be stated without loss of generality if we view (P) as the dual of
a linear program since then the matrix A plays the role of the constraint matrix for the
equality constraints in the primal formulation, so that linearly dependent rows can be
deleted from A without changing the problem itself.

We next recall that the recession function F∞ for a convex function F : <p → (−∞, +∞]
is given by

F∞(d) := lim
t→+∞

F (x + td)− F (x)

t
,

where x ∈ dom F . Note that the value of F∞(d) does not depend on the choice of x ∈ dom F
on the right-hand side. We further recall that if F∞(d) > 0 for all d 6= 0, then the set of
minimizers of F is nonempty and compact [25, Theorem 27.1 (d)].

Theorem 3.1 Let assumptions (A1) and (A2) be satisfied. Then, for any xk−1 ∈ int Ck−1,
yk−1 ∈ <m

++, λk > 0, εk ≥ 0, δk ∈ <m
++, there exist xk ∈ int Ck, yk ∈ <m

++ and gk ∈ <p

satisfying (11)–(13).

Proof. Let Fk : <p → (−∞, +∞] be defined by

Fk(x) := f(x) + λ−1
k d̂k(b− AT x + δk),

and Ck be defined by (7). Since C ⊂ Ck, (A1) implies dom Fk 6= ∅. Let Sk := argminxFk(x).
We show that Sk is nonempty. For this purpose, it is sufficient to show that

(Fk)∞(d) > 0 ∀d 6= 0. (14)
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From the definition of Fk, we have

(Fk)∞(d) = f∞(d) + λ−1
k (d̂k)∞(−AT d). (15)

Since (d̂k)∞(−AT d) = +∞ for all d 6= 0 from rank A = p by (A2) and the properties of ϕ
(conditions (iv) and (vi) of Definition 2.1), it follows from (15) that (Fk)∞(d) = +∞ for all
d 6= 0. Thus we have Sk 6= ∅, which means that there exists an x ∈ <p satisfying

0 ∈ ∂Fk(x) = ∂f(x)− λ−1
k A∇yd̂k(b− AT x + δk).

Since ∂f(x) ⊆ ∂εf(x) for all ε ≥ 0, there exist xk, yk and gk satisfying

gk ∈ ∂εk
f(xk),

λkg
k − A∇d̂k(y

k) = 0,

yk − (b− AT xk) = δk.

From (9), this completes the proof. 2

Note that the strict convexity of d̂k and assumption (A2) imply that Fk is also strictly
convex. Therefore, if a minimizer of Fk exists, then it is unique. In order to get another
interpretation of the vectors computed in Step 3 of the above algorithm, let us give the
following two remarks.

Remark 3.1 Let
ε-argminf(x) := {x | f(x) ≤ inf

y
f(y) + ε}.

Then, it is easy to see that

0 ∈ ∂εf(x) ⇐⇒ x ∈ ε-argminf(x).

In fact, from the definition of the ε-subgradient, we have

0 ∈ ∂εf(x) ⇐⇒ f(y) ≥ f(x)− ε ∀y ⇐⇒ inf
y

f(y) + ε ≥ f(x).

Remark 3.2 Let F : <p → (−∞, +∞] be defined by F (x) = f(x) + h(x), where f and h
are both convex functions. Even if h is differentiable, it is not necessarily true that

∂εF (x) = ∂εf(x) +∇h(x),

although ∂F (x) = ∂f(x) +∇h(x) holds. It is known that

∂εF (x) =
⋃

ε1≥0,ε2≥0
ε=ε1+ε2

{∂ε1f(x) + ∂ε2h(x)}

holds [11, Theorem 2.1]. Therefore, we have in general

∂εF (x) ⊇ ∂εf(x) +∇h(x).

If (F )∞(d) > 0 for all d 6= 0, then S :=argmin F (x) is nonempty and compact. Thus, there
exists an x such that 0 ∈ ∂F (x) = ∂f(x) + ∇h(x). Since ∂f(x) ⊆ ∂εf(x) for all ε ≥ 0,
there exists an x satisfying 0 ∈ ∂εf(x) +∇h(x), namely, there exist x and g such that{

g ∈ ∂εf(x),
g +∇h(x) = 0.
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From Remarks 3.1 and 3.2, it can be shown that

0 ∈ ∂εf(x) +∇h(x)

implies x ∈ ε-argmin F (x). Thus xk obtained in Step 3 belongs to εk-argmin Fk(x).

4 Global Convergence

In this section, we establish global convergence of the proposed algorithm. To this end,
we assume throughout this section that the sequence {xk} generated by the algorithm is
infinite.

To begin with, we prove some key lemmas. The first lemma is a slight modification of
Lemma 3.4 in [3].

Lemma 4.1 Let ϕ ∈ Φ. For any a, b ∈ <m
++ and c ∈ <m

+ , we have

〈c− b, Φ′(b/a)〉 ≤ 1

2
θ

(
‖c− a‖2 − ‖c− b‖2

)
,

where Φ′(b/a) := (a1ϕ
′(b1/a1), . . . , amϕ′(bm/am))T and θ := ϕ

′′
(1).

Proof. By the definition of ϕ, we have ϕ
′
(t) ≤ ϕ

′′
(1)(t− 1) for all t > 0. Letting t = bi/ai

and multiplying both sides by aici yield

aiciϕ
′
(bi/ai) ≤ aiciϕ

′′
(1)(bi/ai − 1) = ciϕ

′′
(1)(bi − ai). (16)

Moreover, since there exists ν ∈ (1
2
ϕ
′′
(1), ϕ

′′
(1)) such that −ϕ

′
(t) ≤ −ϕ

′′
(1)(1−1/t)−ν(t−

1)2/t for all t > 0, letting t = bi/ai again and multiplying both sides by aibi give

−aibiϕ
′
(bi/ai) ≤ −aibiϕ

′′
(1)(1− ai/bi)− aibiν(bi/ai − 1)2/(bi/ai)

= −aiϕ
′′
(1)(bi − ai)− ν(bi − ai)

2. (17)

Using the identity

〈b− a, c− a〉 =
1

2

(
‖c− a‖2 − ‖c− b‖2 + ‖b− a‖2

)
,

adding the above two inequalities (16) and (17), and summing over i = 1, . . . ,m yield

〈c− b, Φ′(b/a)〉 ≤ ϕ
′′
(1)〈b− a, c− a〉 − ν‖b− a‖2

=
1

2
ϕ
′′
(1)

(
‖c− a‖2 − ‖c− b‖2

)
+

(1

2
ϕ
′′
(1)− ν

)
‖b− a‖2

≤ 1

2
ϕ
′′
(1)

(
‖c− a‖2 − ‖c− b‖2

)
,

where the last inequality follows from ν ≥ ϕ
′′
(1)/2. 2

Let ΠC(x) denote the projection of x onto the set C, and let [x]+ be the projection of x
onto the nonnegative orthant.
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Lemma 4.2 Let dist(xk, C) denote the distance between xk and ΠC(xk). Then there exists
a constant α > 0 such that

dist(xk, C) = ‖ΠC(xk)− xk‖ ≤ α‖δk‖ (18)

for all k. Moreover, dist(xk, C) → 0 as k →∞.

Proof. From Hoffman’s lemma [12], there exists a constant α > 0 such that

dist(xk, C) = ‖ΠC(xk)− xk‖ ≤ α‖[AT xk − b]+‖

for all k. Hence, we have

dist(xk, C) ≤ α‖[AT xk − b]+‖
= α‖[AT xk − b]+ − [−yk]+‖
≤ α‖AT xk − b + yk‖
= α‖δk‖,

where the first equality follows from yk ∈ <m
++, the second inequality follows from the

nonexpansiveness of the projection operator, and the last equality follows from AT xk − b +
yk = δk. Finally (18) and the fact that δk → 0 imply dist(xk, C) → 0. 2

By using this lemma, we can also estimate the distance between yk and b− AT ΠC(xk).

Lemma 4.3 The following statements hold:

(i) There exists a positive constant β1 such that, for all k,

‖b− AT ΠC(xk)− yk‖ ≤ β1‖δk‖.

(ii) There exist positive constants β2 and β3 such that, for all k,

‖b− AT ΠC(xk−1)− yk‖2 ≥ ‖yk − yk−1‖2 − β2‖δk−1‖ − β3‖δk−1‖ ‖yk − yk−1‖.

Proof. (i) From Lemma 4.2 we have

‖b− AT ΠC(xk)− yk‖ = ‖b− AT ΠC(xk)− (b− AT xk + δk)‖
≤ ‖AT (ΠC(xk)− xk)‖+ ‖δk‖
≤ α‖A‖ ‖δk‖+ ‖δk‖

for all k. Setting β1 := α‖A‖+ 1, we get the desired inequality.
(ii) From (i) we have

‖yk − yk−1‖ ≤ ‖b− AT ΠC(xk−1)− yk‖+ ‖b− AT ΠC(xk−1)− yk−1‖
≤ ‖b− AT ΠC(xk−1)− yk‖+ β1‖δk−1‖

for all k. Squaring both sides of the inequality, we get

‖yk − yk−1‖2

≤ ‖b− AT ΠC(xk−1)− yk‖2 + β2
1‖δk−1‖2 + 2β1‖δk−1‖ ‖b− AT ΠC(xk−1)− yk‖.
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Hence, we obtain

‖b− AT ΠC(xk−1)− yk‖2

≥ ‖yk − yk−1‖2 − β2
1‖δk−1‖2 − 2β1‖δk−1‖ ‖b− AT ΠC(xk−1)− yk‖

≥ ‖yk − yk−1‖2 − β2
1‖δk−1‖2 − 2β1‖δk−1‖

(
‖b− AT ΠC(xk−1)− yk−1‖+ ‖yk − yk−1‖

)
≥ ‖yk − yk−1‖2 − 3β2

1‖δk−1‖2 − 2β1‖δk−1‖ ‖yk − yk−1‖,

where the last inequality follows from (i). Since δk → 0, there exists β2 > 0 such that

3β2
1‖δk−1‖2 ≤ β2‖δk−1‖

for all k. Setting β3 := 2β1, we have (ii). 2

The next lemma shows the relations between two consecutive iterates, which are the basis
for establishing global convergence of the algorithm.

Lemma 4.4 Let θ := ϕ
′′
(1).

(i) For any x ∈ C, y = b− AT x ∈ <m
+ , and for all k, we have

λk

(
f(xk)− f(x)

)
≤ 1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+ θ‖δk−1‖ ‖yk−1 − yk‖+ λkεk. (19)

(ii) There exist positive constants γ1, γ2 and γ3 such that, for all k, we have

f(ΠC(xk))− f(ΠC(xk−1)) ≤ γ1‖δk−1‖ ‖yk − yk−1‖ − γ2‖yk−1 − yk‖2

+ γ3‖δk−1‖+ |f(ΠC(xk))− f(xk)|+ εk. (20)

Proof. (i) For any x ∈ C and y = b− AT x ∈ <m
+ , we have

λk(f(xk)− f(x))

≤ 〈λkg
k, xk − x〉+ λkεk

= 〈A∇d̂k(y
k), xk − x〉+ λkεk

= 〈y + δk − yk,∇d̂k(y
k)〉+ λkεk

= 〈y − yk,∇d̂k(y
k)〉+ 〈δk,∇d̂k(y

k)〉+ λkεk

≤ 1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+

m∑
i=1

δk
i y

k−1
i ϕ

′
(yk

i /y
k−1
i ) + λkεk

≤ 1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+

m∑
i=1

δk
i y

k−1
i ϕ

′′
(1)(yk

i /y
k−1
i − 1) + λkεk

=
1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+ θ〈δk, yk − yk−1〉+ λkεk

≤ 1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+ θ‖δk‖ ‖yk − yk−1‖+ λkεk

≤ 1

2
θ

(
‖y − yk−1‖2 − ‖y − yk‖2

)
+ θ‖δk−1‖ ‖yk − yk−1‖+ λkεk,
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where the first inequality follows from (11), the first equality follows from (12), the second
equality follows from (13), the second inequality follows from the definition of ∇d̂k(y

k) and
Lemma 4.1, the third inequality follows from the property (vi) of ϕ, the fourth equality is
the definition of θ, the fourth inequality is a consequence of the Cauchy-Schwarz inequality,
and the last inequality follows from the updating rules for δk.

(ii) Applying (19) with (x, y) = (ΠC(xk−1), b− AT ΠC(xk−1)), we have

λk

(
f(xk)− f(ΠC(xk−1))

)
≤ 1

2
θ

(
‖b− AT ΠC(xk−1)− yk−1‖2 − ‖b− AT ΠC(xk−1)− yk‖2

)
+ θ‖δk−1‖ ‖yk−1 − yk‖+ λkεk

for all k. This implies

f(ΠC(xk))− f(ΠC(xk−1))

= f(ΠC(xk))− f(xk) + f(xk)− f(ΠC(xk−1))

≤ θ

2λk

(
‖b− AT ΠC(xk−1)− yk−1‖2 − ‖b− AT ΠC(xk−1)− yk‖2

)
+

θ

λk

‖δk−1‖ ‖yk−1 − yk‖+ |f(ΠC(xk))− f(xk)|+ εk

≤ θ

2λmin

‖b− AT ΠC(xk−1)− yk−1‖2 − θ

2λmax

‖b− AT ΠC(xk−1)− yk‖2

+
θ

λmin

‖δk−1‖ ‖yk−1 − yk‖+ |f(ΠC(xk))− f(xk)|+ εk

≤ θβ2
1

2λmin

‖δk−1‖2 − θ

2λmax

(
‖yk − yk−1‖2 − β2‖δk−1‖ − β3‖δk−1‖ ‖yk − yk−1‖

)
+

θ

λmin

‖δk−1‖ ‖yk−1 − yk‖+ |f(ΠC(xk))− f(xk)|+ εk

= θ
( β3

2λmax

+
1

λmin

)
‖δk−1‖ ‖yk − yk−1‖ − θ

2λmax

‖yk − yk−1‖2

+
θ

2

( β2

λmax

+
β2

1

λmin

‖δk−1‖
)
‖δk−1‖+ |f(ΠC(xk))− f(xk)|+ εk,

where the second inequality follows from λk ∈ [λmin, λmax], and the last inequality follows
from Lemma 4.3. Since δk → 0, we have (ii). 2

We finally introduce another technical lemma that will also be used in order to prove a
global convergence theorem for the algorithm. To show this, we need the following further
assumptions.

(A3)
∑∞

k=0 |f(xk)− f(ΠC(xk))| < ∞.

(A4) f∗ := inf{f(x) |x ∈ C} > −∞.

While (A4) is rather natural, we will include a short discussion on the necessity of (A3) at
the end of this section. For now, we just mention that (A3) requires the initial point x0 and
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the sequence {ΠC(xk)} to lie in dom f . (The algorithm ensures xk ∈ dom f for all k ≥ 1.)
This restriction can be relaxed to the weaker assumption that

∑∞
k=k̄ |f(xk)−f(ΠC(xk))| < ∞

for some k̄ > 0, which will lead to slight modifications in the proofs of the subsequent
lemmas and theorems.

Lemma 4.5 Suppose that (A1)–(A4) hold. Then

∞∑
k=1

‖δk−1‖ ‖yk − yk−1‖ < ∞.

Proof. We only have to show that the sequence {‖yk − yk−1‖} is bounded since then the
assertion follows immediately from the fact that

∑∞
k=1 ‖δk−1‖ < ∞.

Assume the sequence {‖yk − yk−1‖} is unbounded. Then there is a subsequence {‖yk −
yk−1‖}k∈K such that ‖yk−yk−1‖ → ∞ for k ∈ K, whereas the complementary subsequence
{‖yk− yk−1‖}k 6∈K is bounded (note that this complementary subsequence could be finite or
even empty). Summing the inequalities (20) over j = 1, 2, . . . , k gives

f(ΠC(xk))− f(ΠC(x0))

≤ γ1

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖ − γ2

k∑
j=1

‖yj − yj−1‖2 + γ3

k∑
j=1

‖δj−1‖

+
k∑

j=1

|f(xj)− f(ΠC(xj))|+
k∑

j=1

εj

≤ γ1

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖ − γ2

k∑
j=1
j∈K

‖yj − yj−1‖2 + γ3

k∑
j=1

‖δj−1‖

+
k∑

j=1

|f(xj)− f(ΠC(xj))|+
k∑

j=1

εj

=
k∑

j=1
j∈K

‖yj − yj−1‖(γ1‖δj−1‖ − γ2‖yj − yj−1‖) + γ3

k∑
j=1

‖δj−1‖

+γ1

k∑
j=1
j 6∈K

‖δj−1‖ ‖yj − yj−1‖+
k∑

j=1

|f(xj)− f(ΠC(xj))|+
k∑

j=1

εj. (21)

Now let us recall that we have
∑∞

k=1 εk < ∞,
∑∞

k=1 ‖δk−1‖ < ∞, and
∑∞

k=1 |f(xk) −
f(ΠC(xk))| < ∞ by (A3). Furthermore, the definition of the index set K also implies

∞∑
j=1
j 6∈K

‖δj−1‖ ‖yj − yj−1‖ < ∞

since the sequence {‖yj − yj−1‖}j 6∈K is bounded and

∞∑
j=1
j 6∈K

‖δj−1‖ < ∞.
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On the other hand, we have

k∑
j=1
j∈K

‖yj − yj−1‖
(
γ1‖δj−1‖ − γ2‖yj − yj−1‖

)
→ −∞

for k → ∞ since the term in brackets eventually becomes less than a negative constant
due to the fact that ‖δj−1‖ → 0 for j ∈ K and {‖yj − yj−1‖}j∈K is unbounded. Therefore,
taking the limit k → ∞ in (21), we see that {f(ΠC(xk))} is not bounded from below or
f(ΠC(x0)) = ∞, which contradicts (A4). This completes the proof. 2

We are now in the position to state our first global convergence result. It deals with the
behavior of the sequence {f(xk)}.

Theorem 4.1 Suppose that (A1)–(A4) hold. Then we have limk→∞ f(xk) = f∗, i.e., {xk}
is a minimizing sequence.

Proof. Throughout this proof, we use the notation σk :=
∑k

j=1 λj. Note that σk →∞ since
{λj} is bounded from below by the positive number λmin.

Summing the inequalities (19) over j = 1, . . . , k, we obtain for any x ∈ C and y =
b− AT x ∈ <m

+

−σkf(x) +
k∑

j=1

λjf(xj)

≤ 1

2
θ

(
‖y − y0‖2 − ‖y − yk‖2

)
+ θ

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+
k∑

j=1

λjεj

≤ 1

2
θ‖y − y0‖2 + θ

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+
k∑

j=1

λjεj.

This can be rewritten as

σ−1
k

k∑
j=1

λjf(xj) ≤ f(x) +
1

2
θσ−1

k ‖y− y0‖2 + θσ−1
k

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+ σ−1
k

k∑
j=1

λjεj. (22)

Since Lemma 2.2 implies that

lim inf
k→∞

f(xk) ≤ lim inf
k→∞

σ−1
k

k∑
j=1

λjf(xj)

and

0 ≤ lim sup
k→∞

σ−1
k

k∑
j=1

λjεj ≤ lim sup
k→∞

εk,

we have for any x ∈ C and y = b− AT x ∈ <m
+

lim inf
k→∞

f(xk)
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≤ lim inf
k→∞

σ−1
k

k∑
j=1

λjf(xj)

≤ lim inf
k→∞

f(x) +
1

2
θσ−1

k ‖y − y0‖2 + θσ−1
k

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+ σ−1
k

k∑
j=1

λjεj


≤ lim sup

k→∞

f(x) +
1

2
θσ−1

k ‖y − y0‖2 + θσ−1
k

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+ σ−1
k

k∑
j=1

λjεj


≤ f(x) + lim

k→∞

1

2
θσ−1

k ‖y − y0‖2 + lim sup
k→∞

θσ−1
k

k∑
j=1

‖δj−1‖ ‖yj − yj−1‖+ lim sup
k→∞

εk.

It then follows from σk →∞, εk → 0 and Lemma 4.5 that

lim inf
k→∞

f(xk) ≤ f(x) ∀x ∈ C.

We therefore have
lim inf

k→∞
f(xk) ≤ f∗. (23)

Moreover we obviously have
f(ΠC(xk)) ≥ f∗ (24)

for all k. Since (A3) implies |f(xk) − f(ΠC(xk))| → 0, it follows from (23) and (24) that
lim infk→∞ f(ΠC(xk)) = f∗. We now show that the entire sequence {f(ΠC(xk))} converges
to f∗.

Since f∗ is finite by (A4), Lemma 4.4 (ii) yields

f(ΠC(xk))− f∗ ≤ f(ΠC(xk−1))− f∗ + γ1‖δk−1‖ ‖yk − yk−1‖
+ γ3‖δk−1‖+ |f(ΠC(xk))− f(xk)|+ εk.

By Lemma 4.5, we have
∑∞

k=1 ‖δk−1‖ ‖yk−yk−1‖ < ∞. By (A3), we also have
∑∞

k=1 |f(ΠC(xk))−
f(xk)| < ∞. Furthermore, we have

∑∞
k=1 εk < ∞,

∑∞
k=1 ‖δk−1‖ < ∞. Hence Lemma 2.1

shows that the nonnegative sequence {f(ΠC(xk)) − f∗} converges. Since f∗ is just a con-
stant, this means that the sequence {f(ΠC(xk))} converges. But we already know that
lim infk→∞ f(ΠC(xk)) = f∗, i.e., there is a subsequence of {f(ΠC(xk))} converging to f∗.
Hence the entire sequence {f(ΠC(xk))} converges to f∗. Then (A3) implies that the entire
sequence {f(xk)} also converges to f∗. 2

We next state our second global convergence result. It deals with the behavior of the
sequence {xk} itself.

Theorem 4.2 Suppose that (A1)–(A4) hold. Let us denote by

X∗ := {x ∈ C | f(x) = f∗}

the solution set of problem (P). Then the following statements hold:

(i) If X∗ = ∅, then limk→∞ ‖xk‖ = ∞.
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(ii) If X∗ 6= ∅, then the entire sequence {xk} converges to a solution of problem (P).

Proof. (i) Suppose that X∗ = ∅. We show that every accumulation point of the sequence
{xk} is a solution of problem (P). Then the assumption X∗ = ∅ immediately implies that
the sequence {xk} cannot have a bounded subsequence, so that we have limk→∞ ‖xk‖ = ∞.

Therefore, let x∗ be an accumulation point of {xk} and {xk}k∈K be a corresponding
subsequence converging to x∗. Since limk→∞ f(xk) = f∗ by Theorem 4.1 and f is lower
semicontinuous at x∗, it then follows that

f(x∗) ≤ lim inf
k→∞
k∈K

f(xk) = lim
k→∞

f(xk) = f∗.

On the other hand, x∗ is feasible for problem (P) because of Lemma 4.2. Hence the
inequality f(x∗) ≥ f∗ holds. Consequently we obtain f(x∗) = f∗, i.e., the accumulation
point x∗ is a solution of problem (P).

(ii) Now assume that the solution set X∗ is nonempty, and let x∗ be an arbitrary point
in X∗. Since f(ΠC(xk)) ≥ f∗ for all k, we have

f(ΠC(xk))− f(xk) ≥ f∗ − f(xk).

Substituting x∗ ∈ X∗ and y∗ = b− AT x∗ for x and y, respectively, in (19), we have

‖y∗ − yk‖2 ≤ ‖y∗ − yk−1‖2 + 2θ−1λk(f∗ − f(xk) + εk) + 2‖δk−1‖ ‖yk − yk−1‖.

Together with the previous inequality and λk ≤ λmax, we obtain

‖y∗ − yk‖2

≤ ‖y∗ − yk−1‖2 + 2θ−1λk(f(ΠC(xk))− f(xk)) + 2θ−1λkεk + 2‖δk−1‖ ‖yk − yk−1‖
≤ ‖y∗ − yk−1‖2 + 2θ−1λmax|f(ΠC(xk))− f(xk)|+ 2θ−1λkεk + 2‖δk−1‖ ‖yk − yk−1‖.

Using (A3),
∑∞

k=1 λkεk < ∞, Lemma 4.5, and Lemma 2.1, it follows that the sequence
{‖y∗ − yk‖} converges. Since ‖y∗ − yk‖ = ‖AT (xk − x∗)− δk‖, we have

‖y∗ − yk‖ − ‖δk‖ ≤ ‖AT (xk − x∗)‖ ≤ ‖y∗ − yk‖+ ‖δk‖.

Therefore {‖AT (xk − x∗)‖} converges. Since the matrix A has maximal row rank by (A2),
the sequence {‖xk − x∗‖} also converges. In particular, {xk} is bounded, and hence it
contains a subsequence converging to some point x∞. Since x∞ ∈ C by Lemma 4.2 and
f(xk) → f∗ by Theorem 4.1, we must have x∞ ∈ X∗. It then follows that the whole
sequence {xk} converges to x∞, since {‖xk − x∗‖} is convergent for any x∗ ∈ X∗, as shown
above. 2

We note that none of our global convergence results assumes the existence of a strictly
feasible point, in contrast to several related papers like [1, 2, 3] which consider feasible
proximal-like methods.

We close this section with a short discussion regarding (A3). To this end, we first
observe that this assumption is automatically satisfied if δk = 0 for all k, i.e., if the algorithm
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generates feasible iterates. We further note that (A3) also holds if, for example, the function
f is Lipschitzian; this follows from Lemma 4.2 since

∞∑
k=1

|f(xk)− f(ΠC(xk))| ≤ L
∞∑

k=1

‖xk − ΠC(xk)‖ ≤ αL
∞∑

k=1

‖δk‖ < ∞,

where L > 0 denotes the Lipschitz constant of f . In particular, (A3) is therefore satisfied
for linear programs.

On the other hand, it should also be mentioned that (A3) is restrictive in the sense that
it requires all projected points ΠC(xk) (or at least those for sufficiently large iterates k)
to belong to the domain of f , since otherwise (A3) is certainly not satisfied. However, if,
for example, an accumulation point of the sequence {xk} is in the interior of domf , then
Lemma 4.2 automatically implies that f is finite-valued at the projected points ΠC(xk);
moreover, it is known that, in this case, f is locally Lipschitzian around the accumulation
point, so that (A3) is satisfied on such a subsequence.

To include a further motivation for the necessity of an assumption like (A3), consider
the two-dimensional example shown in Figure 1: The feasible set C is just a line with
f(x) = 0 for all x ∈ C. We further have f(x) = ∞ above this line, while f(x) < 0 below
that line. In this example, f is a closed proper convex function with C ∩ domf 6= ∅ and
C ∩ int dom f = ∅. The solution set X∗ of this example is nonempty as every feasible point
is a solution, and the optimal value is obviously f∗ = 0. On the other hand, the sequence
of function values {f(xk)} may tend to −∞ or, depending on the precise behavior of the
function f , at least to a negative number. Note that this happens although the iterates xk

get arbitrarily close to the feasible set C, i.e., to the solution set. Hence the statements of
Theorems 4.1 and 4.2 do not hold for this example. The reason is that (A3) is not satisfied.

Figure 1: Counterexample illustrating the necessity of (A3)

5 Conclusion

In this paper, we proposed an infeasible interior proximal algorithm for convex programming
problems with linear constraints, which can be started from an arbitrary initial point, and
is applicable even if there is no interior of the feasible region. Nice global convergence
properties were shown under suitable assumptions.

Among the possible future projects is an extension of the proposed algorithm to the
solution of variational inequality problems. Furthermore, the method is still rather con-
ceptual, and one should devise a practical procedure to execute step 3 in order to get an
implementable algorithm. Another important subject is the rate of convergence of the
algorithm.
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