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Abstract: We consider a simply constrained optimization reformulation of the Karush-
Kuhn-Tucker conditions arising from variational inequalities. Based on this reformulation,
we present a new Newton-type method for the solution of variational inequalities. The main
properties of this method are: (a) it is well-defined for an arbitrary variational inequality
problem, (b) it is globally convergent at least to a stationary point of the constrained refor-
mulation, (c) it is locally superlinearly/quadratically convergent under a certain regularity
condition, (d) all iterates remain feasible with respect to the constrained optimization refor-
mulation, and (e) it has to solve just one linear system of equations at each iteration. Some
preliminary numerical results indicate that this method is quite promising.
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1 Introduction

Consider the variational inequality problem VIP(X, F ) which is to find a vector x∗ ∈ X such
that

F (x∗)T (x− x∗) ≥ 0 for all x ∈ X,

where F : IRn → IRn is continuously differentiable and the feasible set X ⊆ IRn is described
by some equality and inequality constraints:

X := {x ∈ IRn|h(x) = 0, g(x) ≥ 0};

here, the constraint functions h : IRn → IRp and g : IRn → IRm are assumed to be twice
continuously differentiable.

The variational inequality problem has a number of important applications in operations
research, engineering problems and economic equilibrium problems. Constrained optimiza-
tion problems with a pseudoconvex objective function, saddlepoint problems, complemen-
tarity and mixed complementarity problems are special cases of a variational inequality. We
refer the reader to the survey paper [15] by Harker and Pang, to the book [24] by Nagurney
as well as to the recent work [9] by Ferris and Pang.

Many, if not most, algorithms for the solution of the variational inequality problem do not
really try to solve this problem directly; instead, they often try to solve the corresponding
Karush-Kuhn-Tucker (KKT) system. In order to state this KKT system, let us denote by

L(x, y, z) := F (x) +∇h(x)y −∇g(x)z

the Lagrangian of VIP(X, F ). The KKT system of VIP(X, F ) can now be written as follows:

L(x, y, z) = 0,

h(x) = 0,

g(x) ≥ 0, z ≥ 0, zTg(x) = 0.

Any vector w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm satisfying this system is called a KKT point
of VIP(X, F ).

The relationship between the variational inequality problem VIP(X, F ) and its KKT con-
ditions is very close and, in fact, much closer than for optimization problems. For example,
if x∗ denotes a (local) solution of VIP(X, F ) and if any of the standard constraint qualifica-
tions (like the Mangasarian-Fromovitz or the linear independence constraint qualification or
the linearity of the constraint functions) holds at this solution, then there exist multipliers
y∗ ∈ IRp and z∗ ∈ IRm such that the triple w∗ := (x∗, y∗, z∗) is a KKT point. Conversely, if
w∗ = (x∗, y∗, z∗) ∈ IRn× IRp× IRm is a KKT point, h is an affine mapping and g has concave
component functions, then x∗ is a solution of VIP(X, F ) (note that, in this case, we do not
have to assume monotonicity or anything else for the mapping F ). In particular, if both
h and g are affine, then the variational inequality VIP(X, F ) and the corresponding KKT
system are fully equivalent. The reader is referred to [15] for some more details.

The algorithm to be described in this paper is based on the following reformulation of
the KKT system: Let ϕ : IR2 → IR denote the Fischer function [10]

ϕ(a, b) :=
√

a2 + b2 − a− b,
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define
φ(g(x), z) := (ϕ(g1(x), z1), . . . , ϕ(gm(x), zm))T ∈ IRm,

and let Φ : IRn × IRp × IRm → IRn × IRp × IRm be the equation operator

Φ(w) := Φ(x, y, z) :=

 L(x, y, z)
h(x)

φ(g(x), z)

 .

Then it is easy to see that w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm is a KKT point of VIP(X, F )
if and only if this vector solves the nonlinear system of equations

Φ(w) = 0. (1)

Alternatively, w∗ = (x∗, y∗, z∗) is a KKT point of VIP(X,F ) if and only if it is a global
minimizer of the problem

min Ψ(w)

with Ψ(w∗) = 0, where

Ψ(w) :=
1

2
Φ(w)TΦ(w) =

1

2
‖Φ(w)‖2

denotes the natural merit function of the equation operator Φ. This approach has been used
in [3, 4, 5] in order to develop some (unconstrained) Newton-type methods for the solution
of problem (1) as well as in [30] for the local solution of the KKT system arising from
constrained optimization problems.

Despite the quite strong theoretical and numerical properties of these unconstrained
Newton-type methods, however, Peng [28] was able to present an example which indicates
that these methods may fail even for strongly monotone variational inequalities.

In order to overcome this problem and motivated by the fact that we know a priori that
z∗ ≥ 0 at any KKT point w∗ = (x∗, y∗, z∗) of VIP(X, F ), Facchinei et al. [7] investigated a
QP-based method for the solution of the constrained minimization problem

min Ψ(w) s.t. z ≥ 0. (2)

The main motivation for our paper is to describe an algorithm for the solution of problem
(2) which just solves one linear system of equations instead of a quadratic program at each
iteration without destroying the global and local convergence properties of the method from
[7]. In particular, our new algorithm has the following nice features:

(a) it is well-defined for an arbitrary variational inequality problem;

(b) every accumulation point of a sequence generated by this algorithm is at least a sta-
tionary point for the constrained reformulation (2);

(c) all iterates remain feasible with respect to the constraints in (2);

(d) it has to solve just one linear system of equations at each iteration; this system is
actually of reduced dimension;
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(e) it is locally superlinearly/quadratically convergent under Robinson’s [32] strong regu-
larity condition.

In particular, the combination of points (c), (d) and (e) seems to be a difficult task. As to
the knowledge of the authors, the current paper is the first one which has all these desirable
features. For some other approaches which are also based on a suitable reformulation of the
KKT conditions, we refer the reader to [12, 19, 21, 25, 26, 33, 35, 36].

The paper is organized as follows: In Section 2, we restate some background material on
the functions Φ and Ψ as well as on the constrained reformulation (2). The algorithm itself
is stated in Section 3 where we also show that it is well-defined for an arbitrary variational
inequality problem. The global convergence of this algorithm to a stationary point of (2)
is established in Section 4, whereas we prove local fast convergence in Section 5. Section 6
is devoted to some preliminary numerical results. We conclude with some final remarks in
Section 7.

Some words about our notation: A function G : IRt → IRt is called a Ck function if it
is k times continuously differentiable, and an LCk function if it is a Ck function such that
the kth derivative is locally Lipschitz continuous everywhere. The Jacobian of a C1 function
G : IRt → IRt at a point w ∈ IRt is denoted by G′(w), whereas ∇G(w) is the transposed
Jacobian. This notation is consistent with our notion of a gradient vector ∇g(w) for a
real-valued function g : IRt → IR since we view ∇g(w) as a column vector.

If M ∈ IRt×t, M = (mij), is any given matrix and I, J ⊆ {1, . . . , t} are two subsets,
then MIJ denotes the |I| × |J | submatrix with elements mij, i ∈ I, j ∈ J. Similarly, M.J

indicates the submatrix with elements mij, i ∈ {1, . . . , t}, j ∈ J, i.e., we obtain M.J from M
by removing all columns belonging to indices j 6∈ J. A similar notation is used for subvectors.

If w = (xT , yT , zT )T ∈ IRn × IRp × IRm, we often simplify our notation and write w =
(x, y, z). All vector norms used in this paper are Euclidian norms, and matrix norms are as-
sumed to be consistent with this vector norm and to satisfy the inequality ‖AB‖ ≤ ‖A‖ ‖B‖
whenever the matrix product AB is defined.

Finally, we make extensive use of the Landau symbols o(·) and O(·): If {αk} and {βk} are
two sequences of positive numbers, then αk = O(βk) if lim supk→∞ αk/βk < +∞, i.e., if there
exists a constant c > 0 such that αk ≤ cβk for all k, and αk = o(βk) if limk→∞ αk/βk = 0 for
βk → 0.

2 Mathematical Background

In this section, we restate a couple of properties of the equation operator Φ and the cor-
responding merit function Ψ. We start by noting that Φ is locally Lipschitz continuous
everywhere, so that Clarke’s [1] generalized Jacobian ∂Φ(w) is well-defined at any point
w = (x, y, z) ∈ IRn × IRp × IRm. The structure of this set is given in the following result
whose proof can be found in [4].

Proposition 2.1 Let w = (x, y, z) ∈ IRn × IRp × IRm. Then, each element H ∈ ∂Φ(w) can
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be represented as follows:

H =

 ∇xL(w) ∇h(x) ∇g(x)Da(w)
∇h(x)T 0 0
−∇g(x)T 0 Db(w)


T

,

where Da(w) = diag(a1(w), . . . , am(w)), Db(w) := diag(b1(w), . . . , bm(w)) ∈ IRm×m are diag-
onal matrices whose jth diagonal elements are given by

aj(w) =
gj(x)√

gj(x)2 + z2
j

− 1, bj(w) =
zj√

gj(x)2 + z2
j

− 1

if (gj(x), zj) 6= (0, 0), and by

aj(w) = ξj − 1, bj(w) = ζj − 1 for any (ξj, ζj) with ‖(ξj, ζj)‖ ≤ 1

if (gj(x), zj) = (0, 0).

The next property follows from the fact that Φ is a (strongly) semismooth operator under
certain smoothness assumptions for F, h and g, see, e.g., [29, 31, 27, 11].

Proposition 2.2 For any w = (x, y, z) ∈ IRn × IRp × IRm, we have

‖Φ(w + d)− Φ(w)−Hd‖ = o(‖d‖) for d→ 0 and H ∈ ∂Φ(w + d).

If F is an LC1 mapping and h, g are LC2 mappings, then

‖Φ(w + d)− Φ(w)−Hd‖ = O(‖d‖2) for d→ 0 and H ∈ ∂Φ(w + d).

The following result gives a characterization of Robinson’s [32] strong regularity condition
in terms of an important property of the equation operator Φ. A proof of this result can
be found in [4]. For the precise definition, some further characterizations and sufficient
conditions for strong regularity, we refer the reader to Robinson [32] as well as to the recent
article by Liu [20].

Proposition 2.3 A KKT point w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm of VIP(X, F ) is a
strongly regular KKT point if and only if all elements in the generalized Jacobian ∂Φ(w∗)
are nonsingular.

An immediate consequence of Proposition 2.3 and the above-mentioned semismoothness of
Φ is the following result, see, e.g., [31, 27].

Proposition 2.4 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn× IRp× IRm is a strongly regular KKT
point of VIP(X,F ). Then the following statements hold:

(a) There are constants c1 > 0 and δ1 > 0 such that the matrices H ∈ ∂Φ(w) are nonsin-
gular with

‖H−1‖ ≤ c1

for all w with ‖w − w∗‖ ≤ δ1.
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(b) There are constants c2 > 0 and δ2 > 0 such that

‖Φ(w)‖ ≥ c2‖w − w∗‖

for all w with ‖w − w∗‖ ≤ δ2.

The next result is essential for the design of our algorithm. Its proof can also be found in
[4].

Proposition 2.5 The merit function Ψ is continuously differentiable with ∇Ψ(w) = HTΦ(w)
for an arbitrary element H ∈ ∂Φ(w).

We finally restate a result from [7] which shows that, under reasonable conditions, a station-
ary point of (2) is already a KKT point of VIP(X,F ).

Proposition 2.6 Let w∗ = (x∗, y∗, z∗) ∈ IRn×IRp×IRm be a stationary point of (2). Assume
that

(a) ∇xL(w∗) is positive semidefinite on IRn;

(b) ∇xL(w∗) is positive definite on a certain cone C(x∗) ⊆ IRn (see [7] for more details);

and either of the following two conditions holds:

(c1) ∇h(x∗) has full column rank;

(c2) h is an affine function, and the system h(x) = 0 is consistent.

Then w∗ is a KKT point of VIP(X, F ).

Since z∗ ≥ 0 for any stationary point w∗ = (x∗, y∗, z∗) of (2), condition (a) in Proposition 2.6
is obviously satisfied for monotone variational inequalities where F is a monotone function,
each gi is concave and h is affine; on the other hand, the cone C(x∗) in condition (b) is
usually quite small, but even in the unlikely situation where C(x∗) = IRn, condition (b) is
satisfied for strongly monotone variational inequalities where F is strongly monotone and
h, g satisfy the assumptions for monotone problems. Finally, we note that, if h is an affine
function, then the second condition in (c2) is quite obvious since otherwise the feasible set
X would be empty.

3 Statement of Algorithm

In this section, we give a detailed description of our algorithm and show that it is well-defined
for an arbitrary variational inequality problem VIP(X,F ).

From now on, we will often abbreviate the gradient vector ∇Ψ(wk) by gk (in contrast go
g(xk) which denotes the function value of the inequality constraints at the current point xk,
so there should be no ambiguity). Moreover, we will use the index sets

I := {1, . . . , n},
P := {n + 1, . . . , n + p},
J := {n + p + 1, . . . , n + p + m},
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i.e., I denotes the index set for the variables x, P is the index set for the equality constraints
and the variables y, and J is the index set for the inequality constraints and the variables
z. For example, if w = (x, y, z) ∈ IRn × IRp × IRm is any given vector, then wI = x, wP = y
and wJ = z. We also stress that, if j ∈ J or J ⊆ J , then wj is a component of the z-part
of the vector w and wJ is a subvector of the z-part of w.

Finally, we will denote by ρ : IR→ IR a forcing function, i.e., a continuous function with
the following two properties:

(a) ρ(s) ≥ 0 for all s ∈ IR;

(b) ρ(s) = 0⇐⇒ s = 0.

We are now in the position to give a precise statement of our algorithm for the solution of
the constrained reformulation (2) of a KKT system arising from variational inequalities.

Algorithm 3.1 (QP-free Constrained Newton-type Algorithm)

(S.0) (Initialization)
Choose w0 = (x0, y0, z0) ∈ IRn × IRp × IRm with z0 ≥ 0, σ ∈ (0, 1), β ∈ (0, 1), γ ∈
(0, 1), c > 0, δ > 0, ε ≥ 0, and set k := 0.

(S.1) (Active Set Strategy)
Let

δk := min{δ, c
√
‖Φ(wk)‖}

and define
Jk := {j ∈ J |wk

j ≤ δk}.

(S.2) (Termination Criterion)
Let

vk :=

(
vk

Jk

vk
J̄k

)
be defined by

vk
Jk

= min{wk
Jk

, gk
Jk
} and vk

J̄k
= gk

J̄k
,

where J̄k := I ∪ P ∪ (J \ Jk). If ‖vk‖ ≤ ε, stop.

(S.3) (Subproblem Solution)
Select Hk ∈ ∂Φ(wk) and write Hk = (Hk

.Jk
, Hk

.J̄k
). Let dk

J̄k
be the unique solution of the

reduced linear system (
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

)
dJ̄k

= −vk
J̄k

. (3)

(S.4) (Feasibility Preserving Safeguard)
Compute the search directions

dk :=

(
−wk

Jk

dk
J̄k

)
and d̃k :=

(
−vk

Jk

dk
J̄k

)
,
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and define

τ̄k := sup{τ |wk
J\Jk

+ τdk
J\Jk

≥ 0},
τk := min{1, τ̄k}.

(S.5) (Computation of New Iterate)
If

Ψ(wk + τkd
k) ≤ γΨ(wk) (4)

then (*** fast step ***)
set wk+1 := wk + τkd

k

else (*** safe step ***)
compute tk := max{β`| ` = 0, 1, 2, . . .} such that

Ψ(wk + τktkd̃
k) ≤ (1− στkt

2
k)Ψ(wk) (5)

and set wk+1 := wk + τktkd̃
k.

(S.6) (Update)
Set k ← k + 1 and go to (S.1).

Before analysing the properties of Algorithm 3.1, let us give some explanations and motiva-
tional remarks: First of all, the set Jk defined in Step (S.1) is used as an approximation for
the set of active constraints

J∗ := {j ∈ J |w∗
j = 0}

for the constrained reformulation (2). In fact, we will show in Section 5 that Jk eventu-
ally coincides with J∗ under reasonable assumptions. The main motivation for the precise
definition of Jk originates from the recent paper [6] to which we refer for some further details.

The definition of vk in Step (S.2) plays a crucial role in the definition of the search
direction d̃k in Step (S.4) and therefore in the safe step branch of Step (S.5). In (S.2), it is
only used in order to terminate the iteration. The termination criterion will be motivated
by Lemma 3.2 below which says that vk = 0 can only happen if wk is already a stationary
point of (2).

The basic motivation behind the linear system (3) in Step (S.3) is to take the standard
Newton equation

Hkd = −Φ(wk)

for the equation operator Φ and to use a Levenberg-Marquardt-type regularization of it:(
HT

k Hk + ρ(Ψ(wk))I
)
d = −HT

k Φ(wk) = −gk, (6)

where the second equality comes from Proposition 2.5. The linear system (3) can now be
derived from (6) by taking into account that Jk is an approximation of J∗ so that we view
the variables wk

j corresponding to the indices j ∈ Jk as being fixed.
The main idea of Step (S.4) is to compute the largest possible stepsize which guarantees

that the next iterate wk+1 = (xk+1, yk+1, zk+1) also satisfies the feasibility condition zk+1 ≥ 0.
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Note that the value of τk is always positive since wk
j > 0 for all j ∈ J \ Jk, and that there is

a simple expression for τk, namely

τk = min

{
1, min

{j∈J\Jk| dk
j <0}
{−wk

j /d
k
j}
}

.

In Step (S.5), we utilize the two search directions dk and d̃k computed in the previous
step. Note, however, that there is not a big difference in these two directions; both depend
on the solution dk

J̄k
of the linear system (3) and, in fact, coincide completely if wk

j ≤ gk
j for

all j ∈ Jk. In general, however, these two vectors differ from each other in the components
j ∈ Jk, and this difference is essential in our convergence analysis for Algorithm 3.1: The
direction dk is used in order to prove local fast convergence under Robinson’s [32] strong
regularity condition. Hence, if the descent test (4) for our merit function Ψ is satisfied, we
call the iteration k a fast step (and the search direction dk itself a fast search direction),
whereas in the safe step branch in Step (S.5) we take the direction d̃k and perform a line
search for the merit function Ψ along this direction. This will guarantee global convergence
to stationary points of (2).

We now start our analysis of Algorithm 3.1. We will always assume implicitly that the
termination parameter ε in Algorithm 3.1 is equal to zero, and that the algorithm does not
terminate after finitely many iterations. This is a reasonable assumption since the next result
shows that otherwise the current iterate wk = (xk, yk, zk) would already be a stationary point
of (2).

Lemma 3.2 Let wk = (xk, yk, zk) ∈ IRn × IRp × IRm be any given point with zk ≥ 0. Then
the following statements are equivalent:

(a) wk is a stationary point of (2).

(b) (gk)Tvk = 0.

(c) vk = 0.

Proof. (a) ⇒ (b): Assume that wk is a stationary point of (2). Then

gk
I = 0, gk

P = 0, zk ≥ 0, gk
J ≥ 0, (zk)Tgk

J = 0. (7)

In order to verify statement (b), let us partition the index set Jk into the following two
subsets:

J>
k := {j ∈ Jk|wk

j > gk
j } and J≤k := {j ∈ Jk|wk

j ≤ gk
j }.

Now the definition of vk in Step (S.2) of Algorithm 3.1 implies

(gk)Tvk =
∑

j∈J̄k
(gk

j )2 +
∑

j∈Jk
gk

j min{wk
j , g

k
j }

=
∑

j∈J̄k
(gk

j )2 +
∑

j∈J>
k
(gk

j )2 +
∑

j∈J≤
k

gk
j w

k
j .

(8)

From (7) and the definitions of the index sets Jk, J
>
k and J≤k , we obtain

gk
j = 0 ∀j ∈ I ∪ P ∪ (J \ Jk) ∪ J>

k
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and
wk

j = 0 ∀j ∈ J≤k .

Hence (8) implies (gk)Tvk = 0.

(b) ⇒ (c): Assume that statement (b) holds. We then obtain from (8) that

gk
j = 0 ∀j ∈ J̄k ∪ J>

k

and
gk

j w
k
j = 0 ∀j ∈ J≤k

since gk
j w

k
j ≥ 0 for all j ∈ J≤k (recall the definition of J≤k and take into account that zk ≥ 0

by assumption). Hence the definition of vk immediately gives vk = 0.

(c) ⇒ (a): If vk = 0, we have

gk
J̄k

= 0 and min{wk
Jk

, gk
Jk
} = 0

which is equivalent to

gk
j = 0 ∀j ∈ J̄k and wk

j ≥ 0, gk
j ≥ 0, wk

j g
k
j = 0 ∀j ∈ Jk.

Since zk ≥ 0 by our general assumption, this implies that (7) holds, i.e., wk is a stationary
point of (2). 2

The following result shows that the direction vector d̃k used in the safe step branch of
Algorithm 3.1 is a descent direction for the merit function Ψ.

Lemma 3.3 Let wk = (xk, yk, zk) ∈ IRn × IRp × IRm be any given point with zk ≥ 0. Then

∇Ψ(wk)T d̃k ≤ 0.

Moreover, if wk is not a stationary point of (2), then

∇Ψ(wk)T d̃k < 0.

Proof. Using (3), we have

∇Ψ(wk)T d̃k = (gk
Jk

)T d̃k
Jk

+ (gk
J̄k

)Tdk
J̄k

= −(gk
Jk

)Tvk
Jk
− (dk

J̄k
)T
(
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

)
dk

J̄k
.

Now the first part on the right-hand side is nonpositive by the proof of Lemma 3.2, cf. (8).
Moreover, the second part is nonpositive since the matrix (Hk

.J̄k
)THk

.J̄k
+ρ(Ψ(wk))I is positive

semidefinite. This proves the first statement.
Now assume that wk is not a stationary point of (2). Then Ψ(wk) > 0 so that the matrix

(Hk
.J̄k

)THk
.J̄k

+ ρ(Ψ(wk))I is positive definite. Assume that ∇Ψ(wk)T d̃k = 0. Then we must

have (gk
Jk

)Tvk
Jk

= 0 and dk
J̄k

= 0. This implies gk
J̄k

= 0 and therefore (gk)Tvk = 0. Hence wk

is a stationary point of (2) by Lemma 3.2, a contradiction to our assumption. 2

As a simple consequence of Lemma 3.3, we now show that the line search in (5) is always
well-defined.
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Corollary 3.4 Let wk = (xk, yk, zk) ∈ IRn × IRp × IRm be any given point with zk ≥ 0, and
assume that wk is not a stationary point of (2). Then there is a finite exponent `k such that
the stepsize tk = β`k satisfies the line search test (5) in Algorithm 3.1.

Proof. Assume that condition (5) is not satisfied for any integer ` ≥ 0. Then

Ψ(wk + τkβ
`d̃k) > (1− στkβ

2`)Ψ(wk)

for all ` ≥ 0. Rearranging terms gives

Ψ(wk + τkβ
`d̃k)−Ψ(wk)

τkβ`
> −σβ`Ψ(wk)

for all ` ≥ 0. Taking the limit ` → ∞, we obtain from the continuous differentiability of Ψ
(cf. Proposition 2.5) that

∇Ψ(wk)T d̃k ≥ 0.

Hence, by Lemma 3.3, wk must be a stationary point of (2) in contrast to our assumption. 2

The following result shows that the iterates {wk} generated by Algorithm 3.1 stay feasible
with respect to the constrained reformulation (2).

Lemma 3.5 Let wk = (xk, yk, zk) ∈ IRn × IRp × IRm be any given point with zk ≥ 0, and
assume that wk is not a stationary point of (2). Then the next iterate wk+1 can be computed
by Algorithm 3.1, and it holds that zk+1 ≥ 0.

Proof. The fact that wk+1 can be computed by Algorithm 3.1 follows immediately from
Corollary 3.4. In order to prove the nonnegativity of zk+1, first assume that we take a fast
step at iteration k, i.e.,

zk+1 = zk + τkd
k
J .

Then wk+1
j ≥ 0 for all j ∈ J \ Jk by definition of τk, whereas we have

wk+1
j = wk

j + τkd
k
j = (1− τk)w

k
j ≥ 0

for j ∈ Jk since τk ≤ 1 and wk
j ≥ 0 by assumption.

If, on the other hand, we take a safe step at iteration k, we have

zk+1 = zk + τktkd̃
k
J .

Using the fact that τktk ≤ τ̄k and the definition of τ̄k, we obtain wk+1
j = wk

j + τktkd
k
j ≥ 0 for

all j ∈ J \ Jk. So assume j ∈ Jk. Then

wk+1
j = wk

j + τktkd̃
k
j

= wk
j − τktk min{wk

j , g
k
j }

≥
{

wk
j ≥ 0 if min{wk

j , g
k
j } ≤ 0,

wk
j − wk

j = 0 if min{wk
j , g

k
j } > 0,
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where we used the inequality τktk ≤ 1. This completes the proof. 2

Since the matrix of the linear system (3) is positive definite as long as wk is not a global
solution of (2), we can now apply an induction argument and summarize the previous results
into the following

Theorem 3.6 Algorithm 3.1 is well-defined and generates a sequence {wk} = {(xk, yk, zk)}
with zk ≥ 0 for all k.

4 Global Convergence

In this section, we show that any accumulation point of a sequence generated by Algorithm
3.1 is a stationary point of our constrained reformulation (2). We note that this result holds
without making any further assumptions apart from the standard differentiability conditions
stated in the beginning of Section 1.

We start our global convergence analysis with a simple perturbation result.

Lemma 4.1 Let {Ak} ⊆ IRt×t be any sequence of symmetric matrices converging to a sym-
metric and positive definite matrix A∗ ∈ IRt×t. Assume further that {bk} ⊆ IRt is a sequence
converging to a vector b∗ ∈ IRt. Let d∗ ∈ IRt be the unique solution of the linear system
A∗d = b∗. Then the linear systems Akd = bk also have a unique solution dk ∈ IRt for all k
sufficiently large, and dk → d∗.

Proof. Since A∗ is symmetric positive definite and Ak → A∗, it is easy to see that the
symmetric matrices Ak are also positive definite for all k sufficiently large. Hence the linear
systems Akd = bk are uniquely solvable for those k. Moreover, it follows from a well-known
perturbation result (see, e.g., [2, Theorem 3.1.4]) that A−1

k → A−1
∗ . Hence we obtain for k

sufficiently large:

‖dk − d∗‖ = ‖A−1
k bk − A−1

∗ b∗‖
≤ ‖A−1

k bk − A−1
∗ bk‖+ ‖A−1

∗ bk − A−1
∗ b∗‖

≤ ‖A−1
k − A−1

∗ ‖ ‖bk‖+ ‖A−1
∗ ‖‖bk − b∗‖

→ 0,

as desired. 2

Lemma 4.1 allows us to prove the following global convergence result.

Theorem 4.2 Let {wk} ⊆ IRn× IRp× IRm be a sequence generated by Algorithm 3.1. Then
every accumulation point of {wk} is a stationary point of (2).

Proof. We first note that {Ψ(wk)} is a strictly decreasing sequence which is bounded from
below by zero. Hence {Ψ(wk)} converges to an element Ψ∗ ≥ 0. If Ψ∗ = 0, then every
accumulation point of {wk} is a global minimizer and hence a KKT point of (2). So assume
Ψ∗ > 0.
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This implies that we eventually take only safe steps in Algorithm 3.1 since otherwise we
would have

Ψ(wk+1) ≤ γΨ(wk)

for infinitely many k which would imply Ψ∗ = 0 (recall that γ ∈ (0, 1)). Therefore, we can
assume without loss of generality that all steps are safe steps.

Let w∗ denote an accumulation point of {wk}, and let {wk}K1 be a subsequence converging
to w∗. Since the index set J is finite, we can find a subsequence {wk}K2 , K2 ⊆ K1, such that
the index set Jk remains unchanged, i.e., Jk = J for all k ∈ K2 and for a fixed set J ⊆ J .

In view of the decreasing property of {Ψ(wk)} and since Ψ∗ > 0, we have

δk = min{δ, c
√
‖Φ(wk)‖} ≥ min{δ, c

√
‖Φ(w∗)‖} =: δ∗ > 0.

Since the sequence {gk
J}K2 converges to g∗J := [∇Ψ(w∗)]J , the sequence of subvectors {d̃k

J}K2

converges to d̃∗J := −min{w∗
J , g∗J}. From the upper semicontinuity of the generalized Jacobian

(see [1, Proposition 2.6.2 (c)]), it also follows that the sequence {Hk}K2 remains bounded.
So, again, we can take a subsequence {Hk}K3 , K3 ⊆ K2, such that {Hk}K3 → H∗ for a matrix
H∗ which must belong to ∂Φ(w∗) since the generalized Jacobian is a closed mapping (see [1,
Proposition 2.6.2 (b)]). Let J̄ := I ∪ P ∪ (J \ J) and let d∗J̄ be the unique solution of the
nonsingular linear system

[(H∗
.J̄)TH∗

.J̄ + ρ(Ψ(w∗))I] dJ̄ = −[∇Ψ(w∗)]J̄ . (9)

Then it follows immediately from Lemma 4.1 that dk
J̄ → d∗J̄ . Therefore, we have

{d̃k}K3 =

{(
d̃k

J

dk
J̄

)}
K3

→
(

d̃∗J
d∗J̄

)
=: d̃∗.

Since {Ψ(wk)} converges to Ψ∗, we have

lim
k∈K3

(Ψ(wk+1)−Ψ(wk)) = 0

and therefore by our line search rule

lim
k∈K3

τkt
2
kΨ(wk) = 0. (10)

We now show that {τk}K3 is bounded from below by some positive number. From the
boundedness of {d̃k}K3 , say ‖d̃k‖ ≤ κ1 for a constant κ1 > 0 and all k ∈ K3, we obtain for
all j ∈ J \ J , all k ∈ K3 and all τ ≥ 0:

wk
j + τdk

j ≥ δk − τ‖d̃k‖ ≥ δ∗ − τκ1,

where the first inequality is an immediate consequence of the definition of the index set J.
Hence τ̄k in Step (S.4) satisfies the inequality

τ̄k ≥ δ∗/κ1,
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so that
τk ≥ min{1, δ∗/κ1} > 0.

This together with Ψ∗ > 0 and (10) implies

{tk}K3 → 0.

Let `k be the unique exponent such that tk = β`k in Step (S.5) of Algorithm 3.1. Then
{`k}K3 →∞ and

Ψ(wk + τkβ
`k−1d̃k)−Ψ(wk)

τkβ`k−1
> −σβ`k−1Ψ(wk)

for all k ∈ K3. Taking the limit k →K3 ∞, we thus obtain

∇Ψ(w∗)T d̃∗ ≥ 0.

Since d̃∗ = (d̃∗J , d∗J̄), where d∗J̄ is the solution of the linear system (9) and d̃∗J = −min{z∗J , g∗J},
we obtain from Lemma 3.3 that w∗ is a stationary point of (2). 2

Theorem 4.2 provides subsequential convergence to stationary points of (2) only. Fortunately,
Proposition 2.6 gives a relatively mild condition for such a stationary point to be a KKT
point of VIP(X, F ) and hence, quite often, to be a solution of VIP(X,F ) itself, see the
corresponding discussion in Section 1.

5 Local Convergence

In this section, we want to show that Algorithm 3.1 is locally superlinearly/quadratically
convergent under Robinson’s [32] strong regularity condition. In particular, we do not assume
strict complementarity in order to verify local fast convergence.

The proof of this local convergence result is given in a step-by-step way and based on
a sequence of lemmas. Basically, our first aim is to prove that the entire sequence {wk}
converges to a strongly regular KKT point w∗ whenever this KKT point is an accumulation
point of the sequence {wk}, see Lemma 5.5 below.

We then show that eventually only fast steps will be taken in Step (S.5) of Algorithm
3.1. This result, in turn, is based on the fact that, for all wk sufficiently close to w∗, we can
prove that τk = 1 and that Jk identifies the set of active constraints J∗. Using these facts, it
is quite easy to summarize all lemmas into our main local convergence result, Theorem 5.10
below.

We begin our local analysis with a relatively simple consequence of strong regularity.

Lemma 5.1 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm is a strongly regular KKT
point of VIP(X, F ). Then there is a constant c3 > 0 such that the matrices (Hk

.J̄k
)THk

.J̄k
are

nonsingular and

‖
(
(Hk

.J̄k
)THk

.J̄k

)−1
‖ ≤ c3

for all wk = (xk, yk, zk) ∈ IRn × IRp × IRm in a sufficiently small ball around w∗.
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Proof. First note that the matrices Hk
.J̄k

have full column rank for all wk sufficiently close
to w∗ since the matrices Hk themselves are nonsingular by Proposition 2.4 (a). Therefore,
the matrices (Hk

.J̄k
)THk

.J̄k
are nonsingular.

Hence, if the claim is not true, there is a sequence {wk} ⊆ IRn× IRp× IRm converging to
w∗ and a corresponding sequence {Hk} with Hk ∈ ∂Φ(wk) such that

‖
(
(Hk

.J̄k
)THk

.J̄k

)−1
‖ → ∞ (11)

From the upper semicontinuity of the generalized Jacobian, it follows that {Hk} remains
bounded. By passing to a subsequence, we may assume that {Hk} converges to a matrix H∗
which must belong to ∂Φ(w∗) since the generalized Jacobian is a closed mapping. Since J
is finite, we can find a subsequence {Hk}K such that Jk = J for all k ∈ K and a fixed set
J ⊆ J . Denote H∗ = (H∗

.J , H∗
.J̄). Then we have Hk

.J̄ → H∗
.J̄ and therefore

‖(Hk
.J̄)THk

.J̄ − (H∗
.J̄)TH∗

.J̄‖ → 0.

By (11), (H∗
.J̄)TH∗

.J̄ must be singular. On the other hand, however, reasoning as in the first
paragraph of this proof, we see that the matrix (H∗

.J̄)TH∗
.J̄ is nonsingular. This contradiction

completes the proof. 2

An application of Lemma 5.1 is given in the following

Lemma 5.2 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm is a strongly regular KKT
point of VIP(X,F ). Then there is a constant c4 > 0 such that

‖d̃k‖ ≤ c4‖Φ(wk)‖

for all wk = (xk, yk, zk) ∈ IRn × IRp × IRm sufficiently close to w∗ with zk ≥ 0, where d̃k

denotes the vector computed in Step (S.4) of Algorithm 3.1.

Proof. In view of the upper semicontinuity of the generalized Jacobian, there exists a
constant κ2 > 0 such that

‖d̃k
Jk
‖ ≤ ‖gk

Jk
‖ ≤ ‖gk‖ = ‖HT

k Φ(wk)‖ ≤ ‖Hk‖ ‖Φ(wk)‖ ≤ κ2‖Φ(wk)‖ (12)

for all wk in a sufficiently small ball around w∗ (note that we also applied Proposition 2.5
and the definition of d̃k

Jk
in the above chain of inequalities). Since[

(Hk
.J̄k

)THk
.J̄k

+ ρ(Ψ(wk))I
]
dk

J̄k
+
[
∇Ψ(wk)

]
J̄k

= 0

by (3), we further obtain from Proposition 2.5:

0 = (dk
J̄k

)T
[
HT

k Φ(wk)
]
J̄k

+ (dk
J̄k

)T
[
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

]
dk

J̄k

≥ ‖Hk
.J̄k

dk
J̄k
‖2 + (dk

J̄k
)T (Hk

.J̄k
)TΦ(wk)

≥ ‖Hk
.J̄k

dk
J̄k
‖2 − ‖Hk

.J̄k
dk

J̄k
‖ ‖Φ(wk)‖.
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Hence
‖Hk

.J̄k
dk

J̄k
‖ ≤ ‖Φ(wk)‖

for all wk sufficiently close to w∗. Using Lemma 5.1, we obtain

dk
J̄k

=
(
(Hk

.J̄k
)THk

.J̄k

)−1 (
(Hk

.J̄k
)THk

.J̄k
dk

J̄k

)
and therefore

‖dk
J̄k
‖ ≤ ‖

(
(Hk

.J̄k
)THk

.J̄k

)−1
‖ ‖Hk

.J̄k
‖ ‖Hk

.J̄k
dk

J̄k
‖

≤ c3‖Hk‖ ‖Hk
.J̄k

dk
J̄k
‖

≤ c3κ2‖Φ(wk)‖
(13)

for all wk close enough to w∗. From (12) and (13), we obtain

‖d̃k‖ ≤ ‖d̃k
Jk
‖+ ‖dk

J̄k
‖ ≤ c4‖Φ(wk)‖

with c4 := κ2(1 + c3). 2

Before stating the next result, we recall that

J∗ = {j ∈ J |w∗
j = 0}

denotes the set of active constraints for the reformulation (2) of the KKT system. The
following result gives a relation between J∗ and its approximation Jk. Later, in Lemma 5.7,
we will prove a stronger relationship which, however, is also based on a stronger assumption.

Lemma 5.3 Let w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm be a KKT point of VIP(X, F ). Then
Jk ⊆ J∗ for all wk = (xk, yk, zk) ∈ IRn × IRp × IRm sufficiently close to w∗ with zk ≥ 0.

Proof. Define
ν := min{w∗

j | j 6∈ J∗} > 0,

and let wk be sufficiently close to w∗ such that

‖wk − w∗‖ ≤ ν/4

and
c
√
‖Φ(wk)‖ ≤ ν/4.

Choose j ∈ Jk. Then
|wk

j − w∗
j | ≤ ‖wk − w∗‖ ≤ ν/4

and
wk

j ≤ δk ≤ c
√
‖Φ(wk)‖ ≤ ν/4.

Hence
w∗

j ≤ ν/4 + wk
j ≤ ν/2

so that j ∈ J∗. 2

In order to prove convergence of the entire sequence {wk}, we will apply the following result
by Moré and Sorensen [23].
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Proposition 5.4 Assume that w∗ ∈ IRt is an isolated accumulation point of a sequence
{wk} ⊆ IRt such that, for every subsequence {wk}K converging to w∗, there is an infinite
subset K̃ ⊆ K such that {‖wk+1 − wk‖}K̃ → 0. Then the whole sequence {wk} converges to
w∗.

We stress that Proposition 5.4 is slightly different from the original version given in [23].
The difference is that Moré and Sorensen assume that {‖wk+1 − wk‖}K → 0 on the whole
subset K, whereas we assume that this limit holds only on an infinite subsubset K̃ ⊆ K. It
is easy to see, however, that the proof given by Moré and Sorensen in [23] actually shows
that the slightly stronger result given in Proposition 5.4 holds.

The following sequential convergence result is an application of Proposition 5.4.

Lemma 5.5 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn×IRp×IRm is a strongly regular KKT point
of VIP(X, F ), and assume that w∗ is an accumulation point of a sequence {wk} generated
by Algorithm 3.1. Then the entire sequence {wk} converges to w∗.

Proof. Since w∗ is a strongly regular KKT point, w∗ is a locally isolated KKT point of
VIP(X, F ). Since {Ψ(wk)} decreases monotonically and {wk} → w∗ on a subsequence, we
have {Ψ(wk)} → Ψ(w∗) = 0 on the whole sequence. Hence every accumulation point of
{wk} is a global minimum of Ψ and therefore a KKT point of VIP(X,F ). The isolatedness
of the KKT point w∗ therefore implies that w∗ is necessarily an isolated accumulation point
of {wk}.

Now let {wk}K be a subsequence converging to w∗. Then, by continuity, we have

{‖Φ(wk)‖}K → ‖Φ(w∗)‖ = 0. (14)

We now consider two cases.
Case 1: There is an infinite subset K̃ ⊆ K such that Algorithm 3.1 takes safe steps for all
k ∈ K̃. Then we obtain from (14) and Lemma 5.2 that

{‖d̃k‖}K̃ → 0.

This implies
{‖wk+1 − wk‖}K̃ → 0

since τktk ≤ 1.
Case 2: There are only finitely many k ∈ K for which Algorithm 3.1 takes a safe step. Then
we can assume without loss of generality that all steps k ∈ K are fast steps. Then we still
have

‖dk
J̄k
‖ ≤ ‖d̃k‖ ≤ c4‖Φ(wk)‖

for all k ∈ K by the very definition of dk
J̄k

, d̃k and Lemma 5.2, so that at least

{‖dk
J̄k
‖}K → 0.

If j ∈ Jk, we have j ∈ J∗ by Lemma 5.3 so that also

|dk
j | = |wk

j | → w∗
j = 0,
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where the limit is taken on the subset K. Hence we also have

{‖dk‖}K → 0

which again implies

{‖wk+1 − wk‖}K → 0.

From these two cases, we obtain

{‖wk+1 − wk‖}K̃ → 0,

where K̃ denotes the infinite subset of K defined in Case 1. Hence it follows from Proposition
5.4 that the entire sequence {wk} converges to w∗. 2

We next show that we eventually have τk = 1 in Step (S.4) of Algorithm 3.1.

Lemma 5.6 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn×IRp×IRm is a strongly regular KKT point
of VIP(X, F ), and let {wk} denote a sequence generated by Algorithm 3.1 which converges
to w∗. Then τk = 1 for all k sufficiently large.

Proof. Using Lemma 5.2 and the definition of the vector d̃k, we have

‖dk
J̄k
‖ ≤ ‖d̃k‖ ≤ c4‖Φ(wk)‖

for all k sufficiently large. Hence we obtain for j ∈ J \ Jk :

wk
j + dk

j ≥ δk + dk
j

≥ δk − c4‖Φ(wk)‖
= min{δ, c

√
‖Φ(wk)‖} − c4‖Φ(wk)‖.

Since {wk} converges to w∗, we have {‖Φ(wk)‖} → 0 and therefore

wk
j + dk

j ≥ c
√
‖Φ(wk)‖ − c4‖Φ(wk)‖

=
(
c/
√
‖Φ(wk)‖ − c4

)
‖Φ(wk)‖

≥ 0

for all k sufficiently large. Thus τ̄k ≥ 1 and hence τk = 1 for all wk sufficiently close to w∗. 2

The following lemma shows that the approximation Jk is eventually equal to the set of active
constraints J∗ under the strong regularity condition.

Lemma 5.7 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn×IRp×IRm is a strongly regular KKT point
of VIP(X, F ), and let {wk} denote a sequence generated by Algorithm 3.1 which converges
to w∗. Then Jk = J∗ for all k sufficiently large.
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Proof. From Lemma 5.3, we already know that Jk ⊆ J∗ for all k sufficiently large. Con-
versely, assume that j ∈ J∗. Then w∗

j = 0, and we obtain from Proposition 2.4 (b) and all
wk = (xk, yk, zk) sufficiently close to w∗:

|wk
j | = |wk

j − w∗
j | ≤ ‖wk − w∗‖ ≤ ‖Φ(wk)‖/c2.

Since {‖Φ(wk)‖} → 0 and δk = O(
√
‖Φ(wk)‖), we have

‖Φ(wk)‖/c2 ≤ δk

for all k sufficiently large. Combining the last two inequalities, we obtain

wk
j = |wk

j | ≤ ‖Φ(wk)‖/c2 ≤ δk,

so that j ∈ Jk. Hence Jk = J∗ for all k large enough. 2

The following result has already been shown by Facchinei and Soares [8] under the additional
assumption that the mapping G is semismooth. Note that we do not need this semismooth-
ness assumption here, and that our proof is considerably simpler than the one given in [8].

Proposition 5.8 Let G : IRt → IRt be locally Lipschitz continuous, w∗ ∈ IRt with G(w∗) = 0
such that all elements in ∂G(w∗) are nonsingular, and assume that there are two sequences
{wk} ⊆ IRt and {dk} ⊆ IRt with {wk} → w∗ and ‖wk + dk − w∗‖ = o(‖wk − w∗‖). Then
‖G(wk + dk)‖ = o(‖G(wk)‖).

Proof. Let L > 0 denote the local Lipschitz constant of G around w∗. In view of our
nonsingularity assumption, we can apply Clarke’s [1] inverse function theorem and conclude
that, in a sufficiently small neighbourhood around G(w∗), the inverse function G−1 exists
and is also locally Lipschitz continuous. Hence, for all k sufficiently large, we have

‖G(wk + dk)‖ = ‖G(wk + dk)−G(w∗)‖
≤ L‖wk + dk − w∗‖
= o(‖wk − w∗‖)
= o(‖G−1(G(wk))−G−1(G(w∗))‖)
≤ o(‖G(wk)−G(w∗)‖)
= o(‖G(wk)‖).

This is precisely the statement of Proposition 5.8. 2

Proposition 5.8 is the main ingredient in order to show that, eventually, we will only take
fast steps in Algorithm 3.1.

The next lemma basically shows that the main assumption used in Proposition 5.8 is
satisfied by the fast search direction dk taken in Algorithm 3.1.
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Lemma 5.9 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn×IRp×IRm is a strongly regular KKT point
of VIP(X, F ), and let {wk} denote any sequence (not necessarily generated by Algorithm 3.1)
converging to w∗. Then

‖wk + dk − w∗‖ = o(‖wk − w∗‖),

where dk denotes the fast search direction computed in Step (S.4) of Algorithm 3.1. Moreover,

if F is an LC1 function, h, g are LC2 functions and ρ(Ψ(wk)) = O(
√

Ψ(wk)), then

‖wk + dk − w∗‖ = O(‖wk − w∗‖2).

Proof. First note that Jk = J∗ for all k sufficiently large by Lemma 5.7. In the following,
we always assume that k is large enough so that this equality holds.

Then, for j ∈ J∗, we have

|wk
j + dk

j − w∗
j | = |wk

j + dk
j | = |wk

j − wk
j | = 0 = o(‖wk − w∗‖). (15)

Now consider indices which do not belong to J∗. From the linear system (3), we obtain[
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

]
(wk

J̄k
+ dk

J̄k
− w∗

J̄k
)

=
[
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

]
dk

J̄k
+
[
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

]
(wk

J̄k
− w∗

J̄k
)

= −gk
J̄k

+ (Hk
.J̄k

)THk
.J̄k

(wk
J̄k
− w∗

J̄k
) + ρ(Ψ(wk))(wk

J̄k
− w∗

J̄k
)

= −
[
HT

k Φ(wk)
]
J̄∗

+ (Hk
.J̄∗

)THk
.J̄∗

(wk
J̄∗
− w∗

J̄∗
) + ρ(Ψ(wk))(wk

J̄∗
− w∗

J̄∗
)

= −(Hk
.J̄∗

)T (Φ(wk)− Φ(w∗)) + (Hk
.J̄∗

)THk
.J̄∗

(wk
J̄∗
− w∗

J̄∗
) + ρ(Ψ(wk))(wk

J̄∗
− w∗

J̄∗
)

= −(Hk
.J̄∗

)T
(
Φ(wk)− Φ(w∗)−Hk

.J̄∗
(wk

J̄∗
− w∗

J̄∗
)
)

+ ρ(Ψ(wk))(wk
J̄∗
− w∗

J̄∗
).

In view of Lemma 5.6, there exists an integer k0 such that τk = 1 for all k ≥ k0. We therefore
obtain for all j ∈ J∗ and all k ≥ k0 :

wk+1
j = wk

j + τkd
k
j = wk

j − wk
j = 0.

By definition of J∗, we also have w∗
j = 0. Hence it follows that

Hk
.J̄∗

(wk
J̄∗
− w∗

J̄∗
) = Hk(w

k − w∗)

for all k > k0. Since ρ(Ψ(wk))→ 0, we obtain from Lemma 5.1 that

‖
(
(Hk

.J̄k
)THk

.J̄k
+ ρ(Ψ(wk))I

)−1
‖ ≤ 2c3

for all k sufficiently large. The last displayed formulas together yield

‖wk
J̄k

+ dk
J̄k
− w∗

J̄k
‖ ≤ 2c3‖Hk

.J̄∗
‖ ‖Φ(wk)− Φ(w∗)−Hk(w

k − w∗)‖+

ρ(Ψ(wk))‖wk − w∗‖
= o(‖wk − w∗‖),

where the equality follows from Proposition 2.2.
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The second part can be shown similarly by noting that

‖Φ(wk)‖ = ‖Φ(wk)− Φ(w∗)‖ = O(‖wk − w∗‖)

in view of the local Lipschitz continuity of Φ, so that ρ(Ψ(wk)) = O(
√

Ψ(wk)) = O(‖Φ(wk)‖)
implies ρ(Ψ(wk)) = O(‖wk − w∗‖). 2

We are now in the position to state the main local convergence result for Algorithm 3.1.

Theorem 5.10 Assume that w∗ = (x∗, y∗, z∗) ∈ IRn × IRp × IRm is a strongly regular KKT
point of VIP(X, F ), and suppose that w∗ is an accumulation point of a sequence {wk} gen-
erated by Algorithm 3.1. Then the following statements hold:

(a) The whole sequence {wk} converges to w∗.

(b) Eventually, the algorithm takes only fast steps.

(c) The rate of convergence is Q-superlinear.

(d) The rate of convergence is Q-quadratic if, in addition, the assumptions of the second
part of Lemma 5.9 are satisfied.

Proof. Statement (a) follows immediately from Lemma 5.5. Hence Lemma 5.9 together
with Proposition 5.8 being applied to G = Φ shows that

‖Φ(wk + dk)‖/‖Φ(wk)‖ → 0.

Since τk = 1 for all k sufficiently large by Lemma 5.6, this shows that the descent test (4) in
Algorithm 3.1 is eventually satisfied so that only fast steps will be taken for all k sufficiently
large, i.e., statement (b) holds.

The remaining two statements on the local rate of convergence are therefore immediate
consequences of Lemma 5.9. 2

6 Preliminary Numerical Results

We implemented Algorithm 3.1 in MATLAB and tested it on a SUN Sparc 20 station. As
test problems, we took a couple of variational inequality problems from the literature. A
brief description of them is given in the following.

Example 6.1 Here n = 5 and F : IR5 → IR5 is a nonlinear function whose precise definition
can be found in Table 1 of [34]. The feasible set for this example is given by

X := {x ∈ IR5|
5∑

i=1

xi ≥ 10, x ≥ 0}.
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Example 6.2 Also in this example the dimension is n = 5, and F is again a nonlinear
function. The details can be found in Table 6 of [34]. The feasible set in this example is
polyhedral and given by

X := {x ∈ IR5|Ax ≤ b, x ≥ 0}

for a constant matrix A ∈ IR4×5 and a constant vector b ∈ IR4 whose entries are also specified
in Table 6 of [34].

Example 6.3 Here n = 4 and F is a nonlinear function which is defined precisely in Table
1 of [22]. The feasible set for this example is given by

X := {x ∈ IR4|
4∑

i=1

xi = 1, x ≥ 0}.

Example 6.4 Also this example is taken from [22]; the dimension is n = 5 and F is a
nonlinear function described in Table 4 of that paper. The feasible set for this example is
defined by

X := {x ∈ IR5|
5∑

i=1

xi = 1, x ≥ 0}.

Example 6.5 This is the first example used in the paper by Fukushima [13]. F is a nonlinear
function of dimension n = 3 and the feasible set is, in contrast to all previous examples,
nonlinear; more precisely, it is given by

X := {x ∈ IR3| 1− x2
1 − 0.4x2

2 − 0.6x2
3 ≥ 0}.

Example 6.6 This example is also taken from [13]. The dimension of this problem is n = 5,
the function F is linear, and the feasible set is described by

X := {x ∈ IR5|x1 + x2 + x3 = 210, x4 + x5 = 120, x ≥ 0}.

Example 6.7 Our last example is a variational inequality reformulation of the convex op-
timization problem 35 from the test problem collection [16] by Hock and Schittkowski. Its
dimension is n = 3, and the feasible set is given by

X := {x ∈ IR3| 3− x1 − x2 − 2x3 ≥ 0, x ≥ 0}.

We run our algorithm on these examples using the termination criterion

Ψ(wk) ≤ 10−12

and the parameter setting

σ = 10−4, β = 0.5, γ = 0.9, c = 1, δ = 1.

The forcing function used in our implementation is

ρ(Ψ(w)) = min{10−6,
√

Ψ(w)},
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so that the regularization is quite small even in the first few iterations.
The element H ∈ ∂Φ(w) was chosen as described in Proposition 2.1 with

aj(w) = −1 and bj(w) = 0

if (gj(x), zj) = (0, 0) (more precisely, if
√

gj(x)2 + z2
j ≤ 10−8). It is easy to see that this gives

an element from the generalized Jacobian ∂Φ(w).
Finally, we replaced the monotone Armijo-condition (5) by a nonmonotone line search,

see Grippo et al. [14]. This means that we replaced the line search rule (5) by the condition

Ψ(wk + τktkd̃
k) ≤ Rk − στkt

2
kΨ(wk),

where the reference value Rk is given by

Rk := max
j=k−lk,...,k

Ψ(wj)

and lk is a nonnegative integer which is updated at each iteration by the following rules: If
the safe search direction d̃k satisfies the angle condition

−∇Ψ(wk)T d̃k ≥ 10−6‖∇Ψ(wk)‖ ‖d̃k‖,

then

lk := min{lk + 1, 10},

otherwise

lk := 0;

note that the latter case corresponds to the standard Armijo-rule (5).
Our numerical results are summarized in Table 6.1, where we present the following data:

Example: number of test example
x0: x-part of the starting vector w0 = (x0, y0, z0)
it: number of iterations needed until termination
Φ-eval.: number of Φ-evaluations needed until termination
Ψ(wf ): value of Ψ(·) at the final iterate wf

safe/fast: number of safe and fast steps taken during the iteration
Jk = J∗: iteration from which on the active set was identified correctly.

Apart from the different choices of the starting vector x0, we set all components of the
initial Lagrange-multipliers y0 and z0 to one. If available, we took for x0 the starting point(s)
from the literature.

The results in Table 6.1 indicate that Algorithm 3.1 is quite promising. In general, the
number of iterations and function evaluations is very small. Moreover, the second to last
column in Table 6.1 clearly shows that the vast majority of steps taken are fast steps.

The last column shows that the set of active constraints is identified correctly at least
two or three iterations before termination. We also observed that, usually, τk = 1 during
these iterations, and sometimes this value has been accepted much earlier.
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Table 6.1: Numerical results for Algorithm 3.1.

Example x0 it Φ-eval. Ψ(wf ) safe/fast Jk = J∗

6.1 (25,0,0,0,0) 11 15 1.4e-18 2/9 k ≥ 9
(10,0,10,0,10) 7 11 6.7e-26 1/6 k ≥ 5
(10,0,0,0,0) 10 14 9.7e-15 2/8 k ≥ 8

(0,2.5,2.5,2.5,2.5) 9 11 5.5e-15 1/8 k ≥ 7
6.2 (0,0,100,0,0) 36 49 2.3e-16 7/29 k ≥ 32

(100,0,0,0,0) 81 96 1.0e-18 10/71 k ≥ 76
(1,2,3,4,5) 18 23 1.4e-17 4/14 k ≥ 13
(0,0,0,0,0) 16 21 1.8e-18 3/13 k ≥ 11

6.3 (1,0,0,0) 7 8 3.7e-15 0/7 k ≥ 1
(0,1,0,0) 6 7 1.3e-13 0/6 k ≥ 1
(0,0,0,0) 7 9 1.3e-13 1/6 k ≥ 3
(1,1,1,1) 5 6 2.5e-13 0/5 k ≥ 1

6.4 (1,0,0,0,0) 9 10 2.5e-15 0/9 k ≥ 1
(0,1,0,0,0) 9 10 2.8e-15 0/9 k ≥ 1
(0,0,0,0,0) 9 13 2.0e-13 2/7 k ≥ 3
(1,1,1,1,1) 9 10 3.5e-15 0/9 k ≥ 1

6.5 (1,1,0) 17 21 6.0e-13 1/16 k ≥ 1
(4,3,2) 89 100 9.6e-13 10/79 k ≥ 1
(1,1,1) 39 45 7.2e-13 4/35 k ≥ 1
(1,2,3) 198 301 8.1e-13 95/103 k ≥ 1

6.6 (70,70,70,60,60) 30 40 1.3e-13 8/22 k ≥ 21
(0,0,0,0,0) 18 23 5.9e-13 3/15 k ≥ 9
(1,1,1,1,1) 18 23 8.7e-13 3/15 k ≥ 9
(1,2,3,4,5) 15 18 5.8e-13 2/13 k ≥ 6

6.7 (0.5,0.5,0.5) 8 12 1.0e-14 2/6 k ≥ 6
(0,0,0) 5 7 5.1e-13 1/4 k ≥ 3
(4,3,2) 8 11 5.7e-14 2/6 k ≥ 6
(1,2,3) 8 11 5.7e-14 2/6 k ≥ 6
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The only test example for which our algorithm had some problems is Example 6.5. For
this example we observed that the descent test (4) was satisfied for the fast steps quite often
without improving the function value Ψ(wk) considerably. It is also interesting to note that
Example 6.5 is the only one which has a nonlinear feasible set. In fact, it is our feeling
that solving a nonlinearly constrained variational inequality problem is a considerably more
difficult task than solving a variational inequality on polyhedral sets. However, as far as we
know, there is not much numerical experience for solving nonlinearly constrained variational
inequalities in the literature.

7 Final Remarks

In this paper, we introduced a new constrained Newton-type method for the solution of the
general variational inequality problem which has a number of desirable properties. The fact
that this method has to solve only one linear system of equations at each iteration makes it
also applicable to large-scale problems which often arise from the discretization of continuous
problems.

Since complementarity and mixed complementarity problems can also be viewed as vari-
ational inequality problems, it would be possible to apply Algorithm 3.1 to these classes of
problems. However, due to the special structure of these problems, it should be possible to
avoid the introduction of any Lagrange multipliers.

In fact, we believe that it is relatively easy to adapt our new method in order to solve
(mixed) complementarity problems in a similar way as this was done in [17, 18] for the
QP-based method from [7]. In fact, such an algorithm seems to be quite promising since
the mapping F involved in complementarity problems is often not defined everywhere. A
suitable modification of our new method for complementarity problems would avoid this
problem since it would guarantee that all iterates would stay feasible.

Acknowledgement: The authors would like to thank Liqun Qi, Paul Tseng and the two
anonyous referees for some useful comments on the original version of this manuscript.
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