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Abstract. This article studies continuity and differentiability properties for a reformula-
tion of a finite-dimensional quasi-variational inequality (QVI) problem using a regularized
gap function approach. For a special class of QVIs, this gap function is continuously differ-
entiable everywhere, in general, however, it has nondifferentiability points. We therefore
take a closer look at these nondifferentiability points and show, in particular, that under
mild assumptions all locally minimal points of the reformulation are differentiability points
of the regularized gap function. The results are specialized to generalized Nash equilibrium
problems. Numerical results are also included and show that the regularized gap function
provides a valuable approach for the solution of QVIs.

Key Words: Finite-dimensional quasi-variational inequalities, convex inequalities, reg-
ularized gap function, Hadamard directional differentiability, Gâteaux differentiability,
Fréchet differentiability, Generalized Nash equilibrium problem, Generalized moving set.



1 Introduction

This paper considers the finite-dimensional quasi-variational inequality problem, QVI for
short. To this end, let F : Rn → Rn be a given vector-valued function and let S : Rn ⇒ Rn

be a set-valued mapping such that S(x) are closed and convex (possibly empty) sets for
each given x ∈ Rn. Then the QVI consists of finding a solution x ∈ S(x) such that

F (x)T (y − x) ≥ 0 ∀y ∈ S(x). (1)

If the set S(x) is independent of x, i.e. S(x) = S for all x ∈ Rn with some constant set
S ⊆ Rn, then the QVI reduces to the standard variational inequality (VI) problem, cf. the
monograph [15] for an extensive discussion of VIs.

In the context of QVIs, the fixed point set of S,

X := {x ∈ Rn | x ∈ S(x)} (2)

plays a special role and is sometimes called the feasible set of the QVI from (1). In case of
a VI, this set is equal to the constant set S and therefore justifies this terminology. In the
present paper, also the (effective) domain of S,

M := domS = {x ∈ Rn | S(x) 6= ∅} ,

will play a central role. Clearly, the relation

X ⊆M (3)

holds.
We assume that S(x) has a representation of the form

S(x) = {y ∈ Rn | si(x, y) ≤ 0 ∀i = 1, . . . ,m}

with suitable functions si : Rn × Rn → R, i = 1, . . . ,m. Then the feasible set X is given
by

X = {x ∈ Rn | si(x, x) ≤ 0 ∀i = 1, . . . ,m} .

Throughout the paper, we make the following smoothness and convexity assumptions.

Assumption 1.1 (a) The function F is continuous on Rn.

(b) The functions si, i = 1, . . . ,m, are continuous on Rn × Rn.

(c) The functions si(x, ·), i = 1, . . . ,m, are convex for each fixed x ∈ Rn.

Note that, in particular, Assumptions 1.1 (b), (c) guarantee that S(x) is indeed a closed
and convex (possibly empty) set for any given x ∈ Rn.

The QVI was formally introduced in a series of papers [5, 6, 7] by Bensoussan et al. It
has soon become a powerful modelling tool for many different problems both in the finite
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and in the infinite-dimensional setting. An early summary may be found in the article
by Mosco [29], the infinite-dimensional problem with several mechanical and engineering
problems is discussed in the monograph [4] by Baiocchi and A. Capelo. For several other
applications, we refer the reader to the list of references in the recent paper [13]. In the
meantime, several applications coming from totally different origins can also be found in a
test problem collection whose details are given in [14].

Unfortunately, the QVI turns out to be a difficult class of problems, and the numerical
solution of QVIs is still a challenging task. To the best of our knowledge, the first method
was proposed by Chan and Pang [8]. They consider a projection-type algorithm and prove
a global convergence result under certain assumptions for the class of QVIs where the
set-valued mapping S is given by S(x) = c(x) + K for a suitable function c : Rn → Rn

and a fixed closed and convex set K ⊆ Rn. This particular class of problems is sometimes
called a QVI with a ‘moving set’ S(x) since the fixed set K moves along the mapping c(x).
There are a number of subsequent extensions of this approach, see, e.g., [30, 31, 33, 40, 41],
which all use a projection-type or fixed-point iteration and essentially deal with the moving
set case only in order to obtain suitable global convergence results. More recently, Pang
and Fukushima [37] suggested a penalty-multiplier-type approach where they have to solve
a sequence of (standard) VIs. They obtain a global convergence result for a class of
problems not restricted to the moving set case, but their VI-subproblems are in general
non-monotone and therefore difficult to solve. A very recent method by Facchinei et al.
[13] applies a potential-reduction-type method to the corresponding KKT conditions and
proves global convergence results for some classes of QVIs that go beyond the moving set
case. Besides these (more or less) globally convergent approaches, there also exist some
locally convergent Newton-type methods by Outrata et al., see, in particular, [34, 35, 36].

Apart from the previous classes of methods, there exist a number of different gap
functions for QVIs, cf. [3, 9, 17, 19, 43] and the corresponding discussion in Section 2. In
principal, these gap functions allow a reformulation of the QVI as an optimization problem
and therefore the application of standard software. However, the disadvantage is that these
gap functions are usually nonsmooth, so that the previous literature concentrates on error
bound results or the local Lipschitz continuity and directional differentiability of these gap
functions.

The main focus of this paper is an in-depth treatment of the (continuous) differentia-
bility properties of one class of (regularized) gap functions for QVIs. In particular, we
identify a class of QVIs with a generalized moving set where the gap function turns out to
be continuously differentiable everywhere. We also show that, except for some pathological
cases, the gap function is continuously differentiable at all minimal points.

The paper is organized in the following way: In Section 2, we recall the definition
of a regularized gap function for the QVI from [9, 17, 43] and restate some of its basic
properties. We then discuss three special classes of QVIs in Section 3, namely QVIs with a
generalization of the moving set case for which the regularized gap function turns out to be
continuously differentiable, further QVIs with set-valued mappings in product form, and
finally, as an important application, the generalized Nash equilibrium problem. After this,
we turn back to the general QVI, where the regularized gap function is typically nonsmooth.
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Hence we investigate its continuity properties in Section 4 under suitable assumptions. We
then discuss the differentiability properties of the gap function in Section 5. Our main
result of Section 5 is that, apart from special cases, all locally minimal points of the
reformulation are differentiability points of the gap function. Some numerical results are
provided in Section 6, and we conclude with some final remarks in Section 7.

The notation used in this manuscript should be rather standard. We only point out
that ∇F (x) denotes the transposed Jacobian of F at x, which is consistent with our notion
of the gradient ∇f(x) of a real-valued function since this gradient is viewed as a column
vector. Given a function f and a set X ⊆ Rn, we say that f is continuous at x̄ ∈ X relative
to X if f(xk)→ f(x̄) for all sequences {xk} ⊂ X converging to x̄.

2 Preliminaries on Gap Functions

There exist several gap functions for QVIs. All these gap functions were originally intro-
duced for standard VIs and then extended to QVIs. We therefore first recall the definitions
of the relevant gap functions for VIs in Section 2.1 and then present their counterparts for
QVIs in Section 2.2, together with some elementary properties of one of these gap func-
tions that plays a central role in our subsequent analysis. Note that there exist other gap
functions both for VIs and QVIs which, however, do not play any role in our context, see,
e.g., [32].

2.1 Gap Functions for Variational Inequalities

Recall that the (standard) variational inequality consists of finding a solution x ∈ S such
that

F (x)T (y − x) ≥ 0 ∀y ∈ S (4)

holds, where S ⊆ Rn is a nonempty, closed, and convex set, and F : Rn → Rn denotes a
continuously differentiable function. The classical gap function for VI is defined by

g(x) := − inf
y∈S

F (x)T (y − x)

and was introduced by Auslender [2], see also Hearn [23] and, e.g., the paper [28] for an
algorithmic application. The gap function is nonnegative on S, and g(x̄) = 0 for some
x̄ ∈ S holds if and only if x̄ solves the VI. Hence the VI is equivalent to the constrained
optimization problem

min g(x) s.t. x ∈ S (5)

with zero as the optimal value. However, unless S is compact, the objective function g is
typically extended-valued, moreover, g is usually nondifferentiable.

In order to avoid these problems, Fukushima [16] and Auchmuty [1] independently
developed the regularized gap function

gα(x) := −min
y∈S

[
F (x)T (y − x) +

α

2
‖y − x‖2

]
,
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where α > 0 denotes a given parameter. Similar to the gap function, one can show that
also the regularized gap function is nonnegative on S, and gα(x̄) = 0 for some x̄ ∈ S holds
if and only if x̄ solves the VI. Moreover, gα is finite-valued and continuously differentiable
(by Danskin’s Theorem) everywhere. Hence the VI is equivalent to a smooth optimization
problem of the form (5) with g being replaced by gα. This fact has been exploited, e.g.,
in the paper [45] which presents a simple globalization of the standard Josephy-Newton
method based on the regularized gap function.

The main computational burden of the regularized gap function is the fact that the
evaluation of gα(x) is quite expensive for nonlinear (non-polyhedral) sets S since then
one has to solve a convex optimization problem with a nonlinear feasible set, which is
practically impossible. Motivated by this observation, Taji and Fukushima [44] introduced
the following modification of the regularized gap function:

g̃α(x) := − min
y∈T (x)

[
F (x)T (y − x) +

α

2
‖y − x‖2

]
,

where T (x) denotes the polyhedral approximation of S at x defined by

T (x) :=
{
y | si(x) +∇si(x)T (y − x) ≤ 0 ∀i = 1, . . . ,m}

and where we assume that the feasible set S has the representation S = {x | si(x) ≤
0 ∀i = 1, . . . ,m} for some convex functions si. It was shown in [44] that, once again, the
VI is equivalent to a constrained optimization problem like (5) with g̃α replacing g, and
with zero objective function value at the solution. However, in contrast to the regularized
gap function gα, the mapping g̃α is, in general, not differentiable.

2.2 Gap Functions for Quasi-Variational Inequalities

Consider the QVI from (1). A direct extension of the classical gap function from VIs to
QVIs seems to be due to Giannessi [19], who defines the mapping

g(x) := − inf
y∈S(x)

F (x)T (y − x)

and shows that

• g(x) ≥ 0 for all x ∈ X;

• g(x̄) = 0 for some x̄ ∈ X if and only if x̄ solves the QVI,

where, we recall, X denotes the feasible set of a QVI from (2). Hence the QVI is equivalent
to the constrained optimization problem

min g(x) s.t. x ∈ X.

However, the objective function g is nondifferentiable, possibly extended-valued (both
g(x) = −∞ and g(x) = +∞ may occur if S(x) = ∅ or g is unbounded from above).
Further note that the set X might have a complicated structure.
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An extension of the regularized gap function to QVIs is due to Taji [43] and was, in
fact, introduced earlier by Dietrich [9] for a special class of QVIs in the infinite-dimensional
setting, see also the very recent paper [3] by Aussel et al. This regularized gap function
for QVIs is defined by

gα(x) := − min
y∈S(x)

[
F (x)T (y − x) +

α

2
‖y − x‖2

]
(6)

where α > 0 denotes a given parameter. In view of Assumption 1.1, the function

ϕα(x, y) := F (x)T (y − x) +
α

2
‖y − x‖2 (7)

is strongly convex in y for each fixed x ∈ Rn. We therefore have the following remark.

Remark 2.1 For any x ∈ M (the domain of S) the minimum in (6) is uniquely attained
by the solution yα(x) of the optimization problem

min
y

ϕα(x, y) s.t. y ∈ S(x). (8)

In particular, we have gα(x) = −ϕα(x, yα(x)) ∈ R. Note, however, that gα(x) = −∞
holds for x 6∈ M , so that gα is real-valued exactly on M . Consequently, due to (3), gα is
real-valued on X. ♦

The following result, whose proof may be found in [43], clarifies the relation between the
regularized gap function gα and the QVI (1) (recall once again that the set X in this result
denotes the feasible set from (2)).

Proposition 2.2 For all x ∈ X, we have gα(x) ≥ 0. Moreover, x̄ solves the QVI if and
only if gα(x̄) = 0 and x̄ ∈ X.

Proposition 2.2 shows that the QVI is equivalent to finding an optimal point x̄ of

min gα(x) s.t. x ∈ X

with gα(x̄) = 0. Unfortunately, and in contrast to standard VIs, simple examples show
that the objective function of this problem is nondifferentiable in general, and for infeasible
points x 6∈ X, it might also take the value −∞ (compare Remark 2.1).

Based on this observation, it seems natural to replace gα by the counterpart of the
modified regularized gap function g̃α from the previous subsection. In fact, this was done
by Fukushima [17], but we skip the corresponding details here, mainly because it turns
out that the regularized gap function has better differentiability properties. In fact, in an
important special case to be discussed in the following section, the regularized gap function
from (6) turns out to be smooth, whereas the modified regularized gap function from [17]
would still be nonsmooth in general.

To conclude this section, we introduce an example which not only illustrates Proposi-
tion 2.2, but will also serve to illustrate continuity and differentiability properties of gα on
X in Sections 4 and 5, respectively.
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Example 2.3 Consider the QVI with n = 2, F (x) = (1, 1)T , and S(x) = {y ∈ R2| si(x, y) ≤
0, i ∈ {1, 2, 3}}, where

s1(x, y) = −2y1 + x2, s2(x, y) = x2
1 + y2

2 − 1, s3(x, y) = −x1 − y2.

Then Assumption 1.1 is satisfied, and we have S(x) = S1(x)× S2(x) with

S1(x) = {y1 ∈ R| − 2y1 + x2 ≤ 0} =
[x2

2
,+∞

)
,

S2(x) = {y2 ∈ R| x2
1 + y2

2 − 1 ≤ 0, −x1 − y2 ≤ 0}

=

[
max

{
−x1,−

√
1− x2

1

}
,
√

1− x2
1

]
,

so that M = [−1/
√

2, 1]× R and

X = {x ∈ R2| − 2x1 + x2 ≤ 0, x2
1 + x2

2 − 1 ≤ 0, −x1 − x2 ≤ 0},

see Fig. 1. For the regularized gap function with α > 0 we obtain

X

−1 x1

x2

1

−1

1
M

Figure 1: Illustration of the sets X and M in Example 2.3

gα(x) = − min
y∈S(x)

[
F (x)T (y − x) +

α

2
‖y − x‖2

]
= x1 + x2 − min

y1∈S1(x)

(
y1 +

α

2
(y1 − x1)2

)
− min

y2∈S2(x)

(
y2 +

α

2
(y2 − x2)2

)
, (9)

and for x ∈ M the two components of yα(x) are the unique optimal points corresponding
to the two optimal values in (9). In fact, with

%1(x) := x1 −
x2

2
, %2(x) := x2 + min

{
x1,
√

1− x2
1

}
, %3(x) := x2 −

√
1− x2

1,
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we have

(yα(x))1 =

{
x1 − %1(x), if %1(x) ≤ 1

α
,

x1 − 1
α
, if 1

α
< %1(x),

(yα(x))2 =


x2 − %2(x), if %2(x) ≤ 1

α
,

x2 − 1
α
, if %3(x) < 1

α
< %2(x),

x2 − %3(x), if 1
α
≤ %3(x).

Using the corresponding indicator functions

1{1/α<%1(x)}(x) =

{
1, if 1/α < %1(x),

0, else,

etc., and (9), this results in

gα(x) =
1

2α

(
1{1/α<%1(x)}(x) + 1{%3(x)<1/α<%2(x)}(x)

)
+
(
%1(x)− α

2
%2

1(x)
)
1{%1(x)≤1/α}(x)

+
(
%2(x)− α

2
%2

2(x)
)
1{%2(x)≤1/α}(x) +

(
%3(x)− α

2
%2

3(x)
)
1{1/α≤%3(x)}(x).

Figure 2 shows the graph of the regularized gap function on the set X for α = 1. One can

Figure 2: The regularized gap function for α = 1 in Example 2.3

show that, indeed, x̄ = 0 is the unique globally minimal point of gα on X with value zero
so that, by Proposition 2.2, x̄ = 0 is the unique solution of the QVI. ♦
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3 Special Classes of QVIs

Here we consider three special classes of QVIs. The first is a generalization of QVIs with
‘moving sets’, the second are QVIs with set-valued mappings in product form, and the
third are generalized Nash equilibrium problems.

3.1 QVIs with Generalized Moving Sets

Many papers dealing with QVIs do not consider the general setting from (1), see, e.g.,
[8, 9, 30]. They only discuss the particular case where the set S(x) has the form S(x) =
c(x) + K for some function c : Rn → Rn and a fixed nonempty, closed, and convex set
K ⊆ Rn. This class of QVIs is often called the ‘moving set case’ for reasons that should
be clear from the left picture in Figure 3.

Here we consider a generalization of this case. To this end, let c be given as before and,
for p ≤ n, let K ⊆ Rp be a nonempty, closed, and convex set. In addition, assume that
we have a matrix Q(x) ∈ Rn×p of full (column) rank for all x ∈ Rn. Then we consider the
case where the set-valued mapping S : Rn ⇒ Rn has the form

S(x) = c(x) +Q(x)K := {c(x) +Q(x)z | z ∈ K} . (10)

Note that S(x) 6= ∅ holds in this case for any x ∈ Rn, that is, we have M = Rn. We call
a QVI with the mapping S defined in this way the ‘generalized moving set case’. In the
special case p = n and Q(x) = I for all x ∈ Rn we re-obtain the ‘moving set case’. Our
generalization of this case for p = n actually allows any x−dependent affine transformation
T (x,K) = c(x) + Q(x)K of K instead of just translation, that is, also scaling, rotation,
reflection, and shearing, as shown in the right picture of Figure 3 for p = n = 2. For a
further generalization of this approach see Remark 3.5 below.

With the exception of the recent paper [13], the QVIs with moving sets are essentially
the only case that have been investigated in papers dealing with the numerical solution of
QVIs, and for which a more or less complete convergence theory is available. For example,
Dietrich [9] considers QVIs with moving sets only and notes that the regularized gap
function is continuously differentiable in this case. It seems that this observation has been
widely overlooked in the subsequent literature.

In this subsection, we want to generalize this observation by showing that the regular-
ized gap function gα from (6) is still smooth in the case where the set S(x) is given by (10)
with continuously differentiable functions c and Q. To this end, we first reformulate the
minimization problem from (8) as

min
y

ϕα(x, y) s.t. y ∈ S(x)

⇐⇒ min
y

ϕα(x, y) s.t. y ∈ c(x) +Q(x)K

⇐⇒ min
y

ϕα(x, y) s.t. ∃ z ∈ K : y = c(x) +Q(x)z

⇐⇒ min
y,z

ϕα(x, y) s.t. y = c(x) +Q(x)z, z ∈ K
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K

c(x)

c(x1)

c(x2)

c(x1) +K

c(x2) +K

c(x1) +Q(x1)K

c(x)c(x1) c(x2)

c(x2) +Q(x2)K

Figure 3: Examples for a ‘moving set’ (left) and a ‘generalized moving set’ (right)

⇐⇒ min
z

ψα(x, z) s.t. z ∈ K, (11)

where

ψα(x, z) := ϕα
(
x, c(x) +Q(x)z

)
= F (x)T (c(x)− x) +

α

2
‖c(x)− x‖2

+
(
F (x) + α(c(x)− x)

)T
Q(x)z +

α

2
zTQ(x)TQ(x)z

is convex quadratic in z for each x. Note that the full rank of Q(x) is actually not needed
for the reformulation (11), but that under this assumption, for each fixed x ∈ Rn, the
function ψα(x, ·) is strongly convex with respect to z because ∇2

zzψα(x, z) = αQ(x)TQ(x)
is uniformly positive definite (in z). Therefore, problem (11) has a unique solution zα(x)
for all x ∈ Rn, and we obtain

gα(x) = − min
y∈S(x)

ϕα(x, y) = −min
z∈K

ψα(x, z) = −ψα(x, zα(x)).

The function x 7→ zα(x) turns out to be continuous on Rn. Before we prove this assertion,
we recall some definitions and results from set-valued analysis.

Definition 3.1 Let X ⊆ Rn, Y ⊆ Rp, and Φ : X ⇒ Y be a set-valued mapping. Then Φ
is called

(a) lower semicontinuous at x̄ ∈ X relative to X if for all sequences
{
xk
}
⊆ X with

xk → x̄ and all ȳ ∈ Φ(x̄) there exists a number k0 ∈ N and a sequence
{
yk
}
⊆ Y

with yk → ȳ and yk ∈ Φ(xk) for all k ≥ k0;

(b) closed at x̄ ∈ X relative to X if for all sequences
{
xk
}
⊆ X with xk → x̄ and all

sequences yk → ȳ with yk ∈ Φ(xk) for all k ∈ N sufficiently large we have ȳ ∈ Φ(x̄);
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(c) continuous at x̄ ∈ X relative to X if it is lower semicontinuous and closed at x̄ ∈ X
relative to X;

(d) lower semicontinuous, closed or continuous on X relative to X if it is lower semi-
continuous, closed or continuous at every x ∈ X relative to X.

The definition of a lower semicontinuous set-valued mapping is in the sense of Berge.
Alternative names used in the literature are ‘open mapping’ (see [25]) and ‘inner semicon-
tinuous mapping’ (see [39]). Note that, here and in the following, relative properties of
functions and mappings are meant relative to Rn if not stated otherwise. The next result,
which follows immediately from [25, Corollaries 8.1 and 9.1], is used to prove the continuity
of zα.

Lemma 3.2 Let X ⊆ Rn arbitrary, Y ⊆ Rp convex, and v : X × Y → R be concave in
y for fixed x and continuous on X × Y . Let Φ : X ⇒ Y be a set-valued mapping, which
is closed on a neighborhood of x̄ and lower semicontinuous at x̄ relative to X, and Φ(x) be
convex in a neighborhood of x̄. Define

Y (x) :=
{
z ∈ Φ(x)

∣∣ sup
y∈Φ(x)

v(x, y) = v(x, z)
}
,

and assume that Y (x̄) is a singleton. Then the set-valued mapping x 7→ Y (x) is continuous
at x̄ relative to X.

Proposition 3.3 Let F be continuous on Rn. Consider a QVI with S(x) being defined by
(10) with p ≤ n, K ⊆ Rp being nonempty, closed, and convex, c and Q being continuous,
and Q(x) having full rank for each fixed x ∈ Rn. Then the function x 7→ zα(x) is continuous
on Rn.

Proof. First recall that −ψα(x, ·) is concave for each fixed x ∈ Rn and continuous on
Rn × Rp. Since K is a closed set, the constant set-valued mapping x 7→ K is continuous
on Rn. Moreover, K is convex. Furthermore, the set

Zα(x) :=
{
ζ ∈ K

∣∣ max
z∈K

(
− ψα(x, z)

)
= −ψα

(
x, ζ
)}

is a singleton for all x ∈ Rn since the function ψα(x, ·) is strongly convex for each fixed
x ∈ Rn, and the set K is nonempty, closed, and convex. Therefore, Lemma 3.2 implies
that the (singleton-valued) set-valued mapping x 7→ Zα(x) = {zα(x)} is continuous on Rn.
Hence, the function x 7→ zα(x) is continuous on Rn. �

Since we minimize the function ψα(x, ·) with respect to a fixed set K, we may apply
Danskin’s Theorem and Proposition 3.3 and immediately obtain the following result.
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Proposition 3.4 Let F be continuously differentiable on Rn. Consider a QVI with S(x)
being defined by (10) with p ≤ n, K ⊆ Rp being nonempty, closed, and convex, c and Q
being continuously differentiable, and Q(x) having full rank for each fixed x ∈ Rn. Then
gα is continuously differentiable with gradient

∇gα(x) = −∇xψα(x, z)
∣∣
z=zα(x)

=

[
∇F (x)

(
x− c(x)−Q(x)z

)
+

+
(
I −∇c(x)−∇x (Q(x)z)

)(
α
(
c(x) +Q(x)z − x

)
+ F (x)

)]
z=zα(x)

, (12)

where zα(x) denotes the unique solution of problem (11).

Remark 3.5 A careful analysis of the above proofs shows that the introduced ‘generalized
moving set case’ with a nonempty, closed and convex set K can, in principle, be further
generalized to the case S(x) = T (x,K) with any continuously differentiable nonlinear
mapping T : Rn ×Rp → Rn such that ψα(x, z) = ϕα(x, T (x, z)) is strongly convex in z for
all fixed x ∈ Rn. In applications, however, it might be cumbersome to check the strong
convexity assumption on ψα. ♦

Example 3.6 Let p = n = 2, K = R2
+, and F be continuously differentiable on R2.

On K we simultaneously impose the translation c(x) := x, the scaling λ(x) > 0 and the
rotation by the angle ω(x) for x ∈ R2, and we assume that also the functions λ and ω are
continuously differentiable on R2. Then we may set Q(x) := λ(x)R(x) with the rotation
matrix

R(x) :=

(
cos(ω(x)) − sin(ω(x))
sin(ω(x)) cos(ω(x))

)
and S(x) = x+Q(x)K. Clearly, Q(x) is nonsingular for all x ∈ R2, and we obtain

ψα(x, z) = F (x)TQ(x)z +
αλ2(x)

2
zT z.

For given x ∈ R2 the unconstrained minimal point of ψα(x, ·) is

z∗α(x) = − 1

αλ(x)
R(x)TF (x).

Therefore, the minimal point of ψα(x, ·) on K = R2
+ is

zα(x) = max
{

0,− 1

αλ(x)
R(x)TF (x)

}
(with the maximum taken componentwise) for all x ∈ R2. The function zα is obviously
continuous on R2, and the gap function

gα(x) = −ψα(x, zα(x)) =
αλ2(x)

2
‖zα(x)‖2 =

1

2α

∥∥max{0,−R(x)TF (x)}
∥∥2

11



is also known to be continuously differentiable on R2. By Proposition 3.3 and Proposi-
tion 3.4, respectively, we get the same results for this particular example. Note that gα
does not depend on the scaling function λ.

Due to 0 ∈ K we have x ∈ S(x) = x + Q(x)K for all x, so that X = R2 and, by
Proposition 2.2, the solutions of the QVI are exactly the unconstrained minimal points of
gα with value zero, that is, the x ∈ R2 with

max{0,−R(x)TF (x)} = 0.

Thus, the solutions of the QVI are formed by the set {x ∈ R2| R(x)TF (x) ≥ 0}. For a
plot of the regularized gap function with the special choices F (x) := x, ω(x) := x1 + x2

and α = 1 see Figure 4. ♦

Figure 4: The regularized gap function with α = 1 in Example 3.6

In Section 5, we will investigate the smoothness properties of the regularized gap function
gα in the general case.

3.2 QVIs with Set-valued Mappings in Product Form

Motivated by Example 2.3 (and Section 3.3 below), let us consider QVIs with a set-valued
mapping S in product form, that is, for some N ∈ N and nν ∈ N, ν = 1, . . . , N , with

12



n1 + n2 + . . .+ nN = n there exist set-valued mappings Sν : Rn ⇒ Rnν , ν = 1, . . . , N such
that

S(x) = S1(x)× S2(x)× . . .× SN(x)

holds for all x ∈ Rn. After partitioning the variables x = (x1, . . . , xN) and y = (y1, . . . , yN)
as well as the function F (x) = (F 1(x), . . . , FN(x)) accordingly, we may use the separability
with respect to y of the function ϕα from (7) to obtain

gα(x) = − min
y∈S(x)

[
F (x)T (y − x) +

α

2
‖y − x‖2

]
= −

N∑
ν=1

min
yν∈Sν(x)

[
F ν(x)T (yν − xν) +

α

2
‖yν − xν‖2

]
=

N∑
ν=1

gνα(x) (13)

with
gνα(x) := − min

yν∈Sν(x)

[
F ν(x)T (yν − xν) +

α

2
‖yν − xν‖2

]
, ν = 1, . . . , N. (14)

Lemma 3.7 For all x ∈ X and ν ∈ {1, . . . , N}, we have gνα(x) ≥ 0.

Proof. For any ν ∈ {1, . . . , N} choose some x ∈ X. Then we have

(x1, x2, . . . , xN) ∈ S1(x)× S2(x)× . . .× SN(x)

and, in particular, xν ∈ Sν(x). Consequently, gνα(x) is minorized by the value of
−
[
F ν(x)T (yν − xν) + α

2
‖yν − xν‖2

]
at yν := xν , which shows the assertion. �

The combination of Proposition 2.2, (13), and Lemma 3.7 immediately yields the following
separation result.

Theorem 3.8 A point x̄ solves a QVI with set-valued mapping in product form if and only
if x̄ is the globally minimal point of gνα on X with value zero for all ν = 1, . . . , N .

Next, we combine the ideas of generalized moving sets from Section 3.1 with set-valued
mappings in product form. In fact, the product form and the resulting separability allow
each set Sν(x), ν = 1, . . . , N , to be written as an independent generalized moving set, that
is,

Sν(x) = {cν(x) +Qν(x)z | z ∈ Kν} (15)

where, for pν ≤ nν , the set Kν ⊆ Rpν is nonempty, closed, and convex, the functions
cν : Rn → Rnν and Qν : Rn → Rnν×pν are continuous, and Qν(x) has full rank for all
x ∈ Rn. The proof of the assertion in Proposition 3.4 then translates word by word to a
proof of the assertion that, under additional differentiability assumptions on F , cν and Qν ,
the function gνα from (14) is continuously differentiable for each ν = 1, . . . , N with known
gradient.
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To prepare the statement of this result note that, for ν = 1, . . . , N , we may rewrite the
function gνα from (14) as

gνα(x) = − min
yν∈Sν(x)

ϕνα(x, yν)

with
ϕνα(x, yν) := F ν(x)T (yν − xν) +

α

2
‖yν − xν‖2

for all x ∈ X. In analogy to (11), upon defining

ψνα(x, zν) := ϕνα(x, cν(x) +Qν(x)zν)

one can show that also
gνα(x) = − min

zν∈Kν
ψνα(x, zν)

as well as

∇gνα(x) = −∇xψ
ν
α(x, zν)

∣∣
zν=zνα(x)

(16)

hold, where zνα(x) denotes the unique solution of the problem

min
zν

ψνα(x, zν) s.t. zν ∈ Kν . (17)

Consequently, (13) yields the following result.

Theorem 3.9 Consider a QVI with set-valued mapping in product form and generalized
moving sets of the form (15) where, for pν ≤ nν, the set Kν ⊆ Rpν is nonempty, closed,
and convex, the functions F , cν and Qν are continuously differentiable, and Qν(x) has full
rank for all x ∈ Rn, ν = 1, . . . , N . Then gα is continuously differentiable with ∇gα(x) =∑N

ν=1∇gνα(x) and ∇gνα(x) given by (16).

Note that, under the above assumptions, S(x) can be written as a generalized moving set in
the form S(x) = c(x)+Q(x)K with the nonempty, closed, and convex setK = K1×. . .×KN

in product form as well as

c(x) =

 c1(x)
...

cN(x)

 and Q(x) =

Q
1(x) 0 0

0
. . . 0

0 0 QN(x)

 ,

where Q(x) has full rank for all x ∈ Rn.

3.3 Application to Generalized Nash Equilibrium Problems

A GNEP consists of a finite number of players ν = 1, . . . , N for some number N ∈ N.
Each player controls a set of variables xν ∈ Rnν for some positive number nν ∈ N. The
vector x = (x1, x2, . . . , xN) ∈ Rn with n := n1 + n2 + . . . + nN denotes the set of all
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variables stacked together. This vector is sometimes also written as (xν , x−ν), where x−ν

subsumes all subvectors xµ except for µ = ν. This notation is particularly useful in order
to stress the importance of the ν-th block vector xν within x. Each player ν has its own
objective function θν : Rn → R, possibly depending on the entire vector x, as well as
a strategy set Xν(x

−ν) ⊆ Rnν , possibly depending in the variables x−ν of all the other
players. A (generalized) Nash equilibrium or simply a solution of the GNEP is a vector
x̄ = (x̄1, . . . , x̄N) ∈ X1(x̄−1)× . . .×X1(x̄−N) such that, for each player ν, the subvector x̄ν

solves the minimization problem

min
xν

θν(x
ν , x̄−ν) s.t. xν ∈ Xν(x̄

−ν),

cf. [12] for a survey on GNEPs.
A GNEP is called player convex if for each ν and each x−ν the function θν(x

ν , x−ν)
is convex in the variable xν , and the strategy set Xν(x

−ν) is closed and convex for all
ν ∈ {1, . . . , N} and x ∈ Rn. Throughout this subsection, we therefore make the following
smoothness and convexity assumptions.

Assumption 3.10 (a) The cost functions θν : Rn → R are continuously differentiable
for all ν ∈ {1, . . . , N}.

(b) θν(·, x−ν) is convex in the variable xν for all fixed x−ν and all ν ∈ {1, . . . , N}.

(c) The sets Xν(x
−ν) are closed and convex for all ν ∈ {1, . . . , N} and x ∈ Rn.

Under Assumption 3.10, it is well-known, see, e.g., [12, 21], that a GNEP is equivalent to a
QVI in the sense that x̄ is a solution of the GNEP if and only if x̄ solves the corresponding
QVI with F being defined by

FGNEP (x) := F (x) :=

 ∇x1θ1(x)
...

∇xN θN(x)


and S(x) having the product structure (cf. Section 3.2)

S(x) := X1(x−1)× . . .×XN(x−N).

The regularized gap function of this particular QVI therefore reads

gα(x) = − min
y∈S(x)

[
FGNEP (x)T (y − x) +

α

2
‖y − x‖2

]
= − min

y∈S(x)

[
N∑
ν=1

(
∇xνθν(x

ν , x−ν)T (yν − xν) +
α

2
‖yν − xν‖2

)]

= −
N∑
ν=1

min
yν∈Xν(x−ν)

[
∇xνθν(x

ν , x−ν)T (yν − xν) +
α

2
‖yν − xν‖2

]
.
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Taking into account the convexity of θν as a function of xν , it follows that

gα(x) ≥ −
N∑
ν=1

min
yν∈Xν(x−ν)

[
θν(y

ν , x−ν)− θν(xν , x−ν) +
α

2
‖yν − xν‖2

]
= − min

y∈S(x)
Φα(x, y) =: Vα(x),

where

Φα(x, y) :=
N∑
ν=1

(
θν(y

ν , x−ν)− θν(xν , x−ν) +
α

2
‖yν − xν‖2

)
. (18)

The functions −Φα and Vα defined in this way are the regularized Nikaido-Isoda function
and the corresponding regularized value function, respectively, known both from theoretical
and numerical considerations in the GNEP context, see, e.g., [11, 24]. We summarize the
previous discussion in the following result.

Lemma 3.11 Let Assumption 3.10 hold. Consider a QVI arising from a player convex
GNEP, and let gα and Vα be the corresponding regularized gap function and regularized
value function, respectively. Then gα(x) ≥ Vα(x) holds for all x ∈ Rn.

The previous result implies, for example, that any error bound result for Vα also gives an
error bound result for the regularized gap function gα, whereas the converse might not be
true.

Next, we also study the differentiability properties of the regularized value function Vα
of player convex GNEPs in the generalized moving set case S(x) = c(x) +Q(x)K defined
by (10). In fact, due to the inherent product structure of S(x) in the GNEP case, we have

S(x) = S1(x)× . . .× SN(x)

with Sν(x) = Xν(x
−ν), ν = 1, . . . , N , so that we may use independent generalized moving

sets for each player as defined in (15):

Xν(x
−ν) = {cν(x−ν) +Qν(x−ν)z | z ∈ Kν} (19)

where, for pν ≤ nν , the set Kν ⊆ Rpν is nonempty, closed, and convex, the functions
cν : Rn−nν → Rnν and Qν : Rn−nν → Rnν×pν are continuous, and Qν(x−ν) has full rank for
all x−ν ∈ Rn−nν .

Note that, under the additional assumption of continuous differentiability of the func-
tions FGNEP (that is, twice continuous differentiability of the functions θν), c

ν and Qν ,
ν = 1, . . . , N , the regularized gap function gα is continuously differentiable with known
gradient by Theorem 3.9. The corresponding analysis for the regularized Nikaido-Isoda
function Vα is similar to the one given in Section 3.2. A first difference is that in the
description

Vα(x) = − min
y∈S(x)

Φα(x, y)
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the function Φα from (18) is not separable with respect to all components of y, while the
function ϕα from (7) in the description

gα(x) = − min
y∈S(x)

ϕα(x, y)

is. However, Φα obviously is separable with respect to the vectors y1, . . . , yN which suffices
to mimic the proof of continuous differentiability of gα in Theorem 3.9 to show continuous
differentiability of Vα. In fact, the separability allows us to write Vα(x) =

∑N
ν=1 V

ν
α (x) with

V ν
α (x) := − min

yν∈Xν(x−ν)
Φν
α(x, yν)

and
Φν
α(x, yν) := θν(y

ν , x−ν)− θν(xν , x−ν) +
α

2
‖yν − xν‖2

or, equivalently,
V ν
α (x) = − min

zν∈Kν
Ψν
α(x, zν)

with
Ψν
α(x, zν) := Φν

α(x, cν(x−ν) +Qν(x−ν)zν)

for ν = 1, . . . , N . As a second difference to the analysis of the gap function, the strong
convexity of Ψν

α in zν is slightly less apparent. In fact, the convexity of Φν
α in yν implies

the convexity of Ψν
α in zν . Moreover, by the full rank of Qν(x), the matrix

∇zνzνΨ
ν
α(x, zν) = Qν(x−ν)T

(
∇yνyνΦ

ν
α(x, yν)|yν=cν(x−ν)+Qν(x−ν)zν

)
Qν(x−ν)

with
∇yνyνΦ

ν
α(x, yν) = ∇yνyνθν(y

ν , x−ν) + αI

is uniformly positive definite (in zν), so that Ψν
α even is strongly convex in zν . Therefore,

for each ν = 1, . . . , N the problem

min
zν

Ψν
α(x, zν) s.t. zν ∈ Kν

has a unique solution zνα(x), and along the lines of Section 3.2 we obtain that V ν
α is con-

tinuously differentiable with

∇V ν
α (x) = −∇xΨ

ν
α(x, zν)|zν=zνα(x) (20)

where

∇xνΨ
ν
α(x, zν) =

(
−∇xνθ(x

ν , x−ν)− α(yν − xν)
)
|yν = cν(x−ν)+Qν(x−ν)zν ,

∇x−νΨ
ν
α(x, zν) =

(
∇x−νθν(y

ν , x−ν)−∇x−νθν(x
ν , x−ν)

+
(
∇x−νc

ν(x−ν) +∇x−ν (Q
ν(x−ν)zν)

)
·
(
∇xνθν(y

ν , x−ν) + α(yν − xν)
))
|yν = cν(x−ν)+Qν(x−ν)zν .

The following theorem summarizes the previous discussion.
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Theorem 3.12 Consider a GNEP with strategy spaces of generalized moving set form (19)
where, for pν ≤ nν, the set Kν ⊆ Rpν is nonempty, closed, and convex, the functions θν are
twice continuously differentiable, the functions cν and Qν are continuously differentiable,
and Qν(x−ν) has full rank for all x−ν ∈ Rn−nν , ν = 1, . . . , N . Then Vα is continuously
differentiable with ∇Vα(x) =

∑N
ν=1∇V ν

α (x) and ∇V ν
α (x) given by (20).

4 Continuity Properties and the Domain of gα for

General QVIs

The first part of this section shows that the solution yα of the problem (8) is continuous
at x̄ ∈ M = domS if S(x̄) satisfies the Slater condition, i.e., if there exists some ȳ ∈ Rn

satisfying si(x̄, ȳ) < 0 for all i = 1, . . . ,m. We therefore define the ‘degenerate point set’

D1 := {x ∈M | the set S(x) violates the Slater condition} .

Note that continuity of yα, in particular, implies the continuity of the regularized gap
function gα at x̄. The corresponding analysis is similar to the one given in [10] and [11]
for certain objective functions arising in the context of jointly and player convex GNEPs,
respectively.

After two generalizations of our main result, the second part of this section then studies
a topological property of the set M \D1.

Theorem 4.1 Let Assumption 1.1 hold and let the set-valued mapping S be lower semi-
continuous at x̄ ∈M . Then the functions yα and gα are continuous at x̄.

Proof. Recall that ϕα(x, ·) is convex for each fixed x ∈ Rn and continuous on Rn × Rn.
Therefore, −ϕα(x, ·) is concave for each fixed x ∈ Rn and continuous on Rn × Rn.

The set-valued mapping S is closed since its graph

{(x, y) ∈ Rn × Rn | si(x, y) ≤ 0 ∀i = 1, . . . ,m}

is a closed set in view of continuity of si, i = 1, . . . ,m, see [25, Theorem 2]. Due to
Assumption 1.1, S(x) is convex for all x ∈ Rn. Moreover, the set

Yα(x) =

{
z ∈ S(x)

∣∣∣∣ max
y∈S(x)

(
− ϕα(x, y)

)
= −ϕα(x, z)

}
is a singleton with the unique element yα(x) for all x ∈ M , see Remark 2.1. There-
fore, Lemma 3.2 implies that the (singleton-valued) set-valued mapping x 7→ {yα(x)}
is continuous at x̄. Hence, the function x 7→ yα(x) is continuous at x̄. Moreover,
gα(x) = −ϕα (x, yα(x)) is continuous at x̄ as a composition of continuous functions. �

As an immediate consequence of Theorem 4.1, we obtain the following result.
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Corollary 4.2 Let Assumption 1.1 hold. Then yα and gα are continuous on M \D1.

Proof. Let x̄ ∈ M \ D1. Due to Assumption 1.1 and the Slater condition for S(x̄),
the set-valued mapping S is lower semicontinuous at x̄ (see [25, Theorem 12]). Therefore,
Theorem 4.1 implies that the functions yα and gα are continuous at x̄. �

Let us illustrate the previous result in the context of Example 2.3.

Example 4.3 In the situation of Example 2.3, for x ∈ M the set S(x) = S1(x) × S2(x)
satisfies the Slater condition if and only if S1(x) as well as S2(x) possess a Slater point.
Clearly, S1(x) satisfies the Slater condition for all x ∈ M . On the other hand, S2(x)
violates the Slater condition exactly for all x with x1 = −1/

√
2 and for all x with x1 = 1.

Hence, we obtain D1 =
(
{−1/

√
2}∪ {1}

)
×R and, by Corollary 4.2, the functions yα and

gα are continuous on M \D1 = (−1/
√

2, 1)× R. ♦

Direct inspection of the functions yα and gα from Example 2.3 shows that they are actually
continuous at least on all of X (⊆M) (relative to X). This motivates to relax the assump-
tion of Corollary 4.2 in the spirit of [11, Theorem 3.5] for generalized Nash equilibrium
problems. To this end, let us define the set

D′1 := {x ∈M | the set S(x) violates the Slater condition and is not a singleton} .

The following result shows that yα and hence also gα are continuous on the set X \ D′1
(relative to X), i.e., they are continuous at every point x ∈ X (relative to X) where
S(x) either satisfies the Slater condition or reduces to a single point. Note that the latter
degenerate case occurs quite frequently, e.g., in the context of GNEPs.

Theorem 4.4 Let Assumption 1.1 hold. Then yα and gα are continuous on X\D′1 (relative
to X).

Proof. Let x̄ ∈ X \ D′1. In view of (3) and Corollary 4.2 we only have to consider the
case that S(x̄) is a singleton. Due to x̄ ∈ X, we actually have S(x̄) = {x̄}. Choose any
sequence {xk} ⊆ X with xk → x̄. Then for each k ∈ N we have xk ∈ S(xk), so that S
turns out to be lower semi-continuous at x̄ (relative to X). Theorem 4.1 now yields the
assertion. �

Unfortunately, in Example 2.3 we obtain X ∩ D1 = X ∩ D′1 = {(1, 0)} as S((1, 0)) =
[0,+∞)×{0} violates the Slater condition while not being a singleton. Hence, Theorem 4.4
may not be evoked to show continuity of yα and gα on all of X (relative to X). However,
the product form of the set-valued mapping S in Example 2.3 justifies to modify the
assumptions of Theorem 4.4. Let us consider the general case of a set-valued mapping in
product form (cf. Section 3.2)

S(x) = S1(x)× S2(x)× . . .× SN(x)
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and define

D′′1 := {x ∈M | For some ν ∈ {1, . . . , N} the set Sν(x) violates the Slater condition

and is not a singleton} .

Recall that this product structure of S(x) arises quite naturally in the GNEP context (s.
Sec. 3.3 below).

Theorem 4.5 Let Assumption 1.1 hold, and let S be given in product form. Then the
functions yα and gα are continuous on X \D′′1 (relative to X).

Proof. Let x̄ ∈ X \D′′1 . Then for each ν ∈ {1, . . . , N} the set Sν(x̄) either satisfies the
Slater condition or coincides with the singleton {x̄ν}. Choose any sequence {xk} ⊆ X with
xk → x̄ and any ȳ ∈ S(x̄), that is, we have xν,k → x̄ν and ȳν ∈ Sν(x̄), ν = 1, . . . , N . For
those ν ∈ {1, . . . , N} with Sν(x̄) satisfying the Slater condition, the set-valued mapping Sν
is lower semi-continuous at x̄, so that for sufficiently large k a sequence yν,k ∈ Sν(xk) with
yν,k → ȳν exists. On the other hand, for ν ∈ {1, . . . , N} with Sν(x̄) = {x̄ν}, as in the proof
of Theorem 4.4, we may choose yν,k := xν,k ∈ Sν(xk) and obtain yν,k = xν,k → x̄ν = ȳν .
This shows the lower semi-continuity of S at x̄ (relative to X), and Theorem 4.1 yields the
assertion. �

Note that in Example 2.3 we have X \ D′′1 = X, so that Theorem 4.5 finally yields the
continuity of yα and gα on all of X (relative to X).

Let us return to the set D1 which is also important in our analysis of the differentiability
properties of gα. In fact, in Section 5, we shall study differentiability of gα at points from
the topological interior of the domain of gα where, in view of Remark 2.1,

dom gα = {x ∈ Rn | gα(x) ∈ R}

coincides with M . Therefore, their topological interiors also coincide:

int dom gα = intM. (21)

The following result relates the set M \D1 to the interior of the domain of gα.

Lemma 4.6 Let Assumption 1.1 hold. Then the set M \D1 is open and satisfies

M \D1 ⊆ int dom gα. (22)

Proof. Let x̄ ∈ M \ D1. Then there exists some ȳ ∈ Rn satisfying si(x̄, ȳ) < 0 for all
i = 1, . . . ,m. Due to continuity of the functions si, i = 1, . . . ,m, we can choose a neighbor-
hood U of x̄ such that for all x ∈ U also si(x, ȳ) < 0 is satisfied for all i = 1, . . . ,m. There-
fore, for all x ∈ U the set S(x) satisfies the Slater condition, that is, we have x ∈M \D1.
This shows that M \D1 is open. In particular, U is contained in domS = M . This implies
x̄ ∈ intM and, due to (21), shows the second assertion. �
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Remark 4.7 Lemma 4.6 guarantees that the set dom gα\D1 is an open subset of int dom gα,
so that we will be able to study Fréchet differentiability of gα on dom gα \D1 in Section 5.
We point out that, under stronger convexity and regularity assumptions, along the lines
of [22, Theorem 3.9] one can also show the reverse inclusion in Lemma 4.6, that is, the
topological boundary of dom gα coincides with D1. For an illustration of this result see
Example 4.3. ♦

5 Differentiability Properties for General QVIs

Assumption 1.1 together with the following Assumption 5.1 are the blanket assumptions
for this section.

Assumption 5.1 The functions F and si, i = 1, . . . ,m, are continuously differentiable.

We want to study differentiability properties of gα. To this end, we have to make sure
that we consider differentiability only at points from the interior of the domain of gα, since
otherwise it makes no sense to talk about (Fréchet) differentiability. In view of Lemma 4.6,
it is reasonable to investigate the differentiability of the function gα on the set M \ D1.
To this end, consider once again the convex optimization problem from (8). In view of
Remark 2.1, this problem has a unique optimal point yα(x) for all x ∈ M , in particular,
for all x ∈M \D1. Let

Lα(x, y, λ) := ϕα(x, y) +
m∑
i=1

λisi(x, y)

denote the Lagrange function of the optimization problem (8), and let

KKTα(x) :=

{
λ ∈ Rm

∣∣∣∣ F (x) + α
(
yα(x)− x

)
+

m∑
i=1

λi∇ysi
(
x, yα(x)

)
= 0,

λi ≥ 0, λisi
(
x, yα(x)

)
= 0 ∀i = 1, . . . ,m

}
be the set of Karush-Kuhn-Tucker multipliers for yα(x) ∈ S(x). Note that the convex
polyhedron KKTα(x) is a convex polytope if and only if S(x) satisfies the Slater condition
[18], that is, for x ∈M \D1. Furthermore,

Iα(x) :=
{
i | si

(
x, yα(x)

)
= 0
}

will denote the set of active indices of yα(x) ∈ S(x).
Before stating the next result, we recall that a real-valued function f is called direc-

tionally differentiable at a point x if the limit

lim
t↘0

f(x+ td)− f(x)

t
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exists for all directions d, whereas f is called directionally differentiable in the Hadamard
sense or simply Hadamard directionally differentiable at x if the limit

lim
t↘0,d′→d

f(x+ td′)− f(x)

t

exists for all directions d. Note that Hadamard directional differentiability implies the
usual directional differentiability, and that we denote the common limit by f ′(x; d).

Theorem 5.2 Let Assumptions 1.1 and 5.1 hold and let x ∈M \D1. Then the regularized
gap function gα is Hadamard directionally differentiable at x with

g′α(x; d) = min
λ∈KKTα(x)

[(
F (x)−

(
∇F (x)− αI

)(
yα(x)− x

)
−

m∑
i=1

λi∇xsi
(
x, yα(x)

))T
d

]
(23)

for all d ∈ Rn.

Proof. Since x ∈ M \D1, the set S(x) satisfies the Slater condition. A standard result
from parametric optimization (see, e.g., [20, 26, 38]) then states that the optimal value
function of (8), that is, −gα, is Hadamard directionally differentiable at x with

(−gα)′(x; d) = max
λ∈KKTα(x)

(
∇xLα(x, y, λ)|y=yα(x)

)T
d

for all d ∈ Rn. After a short calculation, this shows the assertion. �

Remark 5.3 Note that, in the assertion of Theorem 5.2 and in the following, for any
x ∈ M \ D1 and any λ ∈ KKTα(x) one may replace the term

∑m
i=1 λ

i∇xsi
(
x, yα(x)

)
by∑

i∈Iα(x) λ
i∇xsi

(
x, yα(x)

)
. ♦

The formula (23) for the directional derivative of gα at some x ∈ M \D1 simplifies if not
only the optimal point set {yα(x)} of (8) is a singleton, but also the Karush-Kuhn-Tucker
set KKTα(x). This motivates to define a next ‘degenerate point set’

D2 := {x ∈M | the set KKTα(x) is not a singleton} .

As mentioned before, the convex polyhedron KKTα(x) is a convex polytope if and only
x ∈ M \ D1. Hence, for x ∈ D1 the set KKTα(x) is either empty or unbounded, but
certainly not a singleton. This shows the relation

D1 ⊆ D2. (24)

Recall that a function is called Gâteaux differentiable if it is directionally differentiable and
if the directional derivative is a linear function of the direction. Theorem 5.2 and (24) lead
to the following result.
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Corollary 5.4 Let Assumptions 1.1 and 5.1 hold, and let x ∈ M \D2 with KKTα(x) =
{λα(x)}. Then the regularized gap function gα is Gâteaux differentiable at x with

g′α(x; d) =
(
F (x)−

(
∇F (x)− αI

)(
yα(x)− x

)
−

m∑
i=1

λiα(x)∇xsi
(
x, yα(x)

))T
d (25)

for all d ∈ Rn.

For algebraic characterizations of the sets D1 and D2 recall that the Mangasarian Fromovitz
constraint qualification, MFCQ for short, holds at yα(x) ∈ S(x) if there exists a d ∈ Rn

satisfying ∇ysi
(
x, yα(x)

)T
d < 0 for all i ∈ Iα(x). Note that, because of the convexity of

the functions si(x, ·), i = 1, . . . ,m, for each fixed x, MFCQ holds at yα(x) if and only if
the Slater condition for S(x) is satisfied. Hence, we have the characterization

D1 = {x ∈M |MFCQ is violated at yα(x) in S(x)} .

Furthermore, it is known from [27] that the strict Mangasarian Fromovitz constraint qual-
ification, SMFCQ for short, at yα(x) ∈ S(x) characterizes a unique KKT multiplier λα(x)
at the optimal point yα(x); here, SMFCQ holds at yα(x) in S(x) with the multiplier
λα ∈ KKTα(x) if the gradients

∇ysi
(
x, yα(x)

)
, i ∈ I+

α (x) =
{
i ∈ Iα(x) | λiα > 0

}
,

are linearly independent, and there exists a d ∈ Rn satisfying

∇ysi
(
x, yα(x)

)T
d < 0 ∀i ∈ I0

α(x) =
{
i ∈ Iα(x) | λiα = 0

}
,

∇ysi
(
x, yα(x)

)T
d = 0 ∀i ∈ I+

α (x).

Therefore we arrive at

D2 = {x ∈M | SMFCQ is violated at yα(x) in S(x)} ,

which, since SMFCQ implies MFCQ at yα(x), yields an alternative proof of (24).
Finally, the linear independence constraint qualification, LICQ for short, is said to hold

at yα(x) ∈ S(x) if the vectors ∇ysi
(
x, yα(x)

)
(i ∈ Iα(x)) are linearly independent. As

LICQ implies SMFCQ at yα(x) ∈ S(x), the set

D3 = {x ∈M | LICQ is violated at yα(x) in S(x)}

satisfies
D1 ⊆ D2 ⊆ D3. (26)

For the proof of the next result recall that, if a function f : U → R with open domain U
is Gâteaux differentiable on U , and the partial derivatives of f are continuous at x̄ ∈ U ,
then f is continuously differentiable at x̄.
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Theorem 5.5 Let Assumptions 1.1 and 5.1 hold, and let x̄ ∈ M \ D3 with KKTα(x̄) =
{λα(x̄)}. Then the regularized gap function gα is continuously differentiable in a neighbor-
hood of x̄ with

∇gα(x̄) = F (x̄)−
(
∇F (x̄)− αI

)(
yα(x̄)− x̄

)
−

m∑
i=1

λiα(x̄)∇xsi
(
x̄, yα(x̄)

)
.

Proof. First, due to (26) and Lemma 4.6, x̄ is an interior point of dom gα, and there
is some neighborhood U of x̄ such that for all x ∈ U the optimal point yα(x) ∈ S(x)
satisfies the Slater condition. By Corollary 4.2, the function yα is actually continuous on
U . Consequently, since LICQ is stable under perturbations, U may be chosen such that
LICQ holds at yα(x) ∈ S(x) for each x ∈ U . This implies that KKTα is single-valued on
U , say KKTα(x) = {λα(x)} for x ∈ U . Corollary 5.4 thus guarantees that gα is Gâteaux
differentiable on U with (25). By [26, Lemma 2] the set-valued mapping KKTα is locally
bounded and closed on U . As it is also singleton-valued in our case, the function λα is
continuous on U , so that the partial derivatives of gα are continuous at x̄. This shows
continuous differentiability of gα at x̄ with the asserted gradient. Since the partial deriva-
tives of gα actually are continuous on all of U , also continuous differentiability of gα on U
follows. �

Remark 5.6 The main reason to use D3 instead of the smaller set D2 in the assumption of
Theorem 5.5 is the lack of stability of SMFCQ (cf. also Example 5.7 below). On the other
hand, a different sufficient condition for continuous differentiability of gα can be obtained
in cases when SMFCQ is stable. In particular, if the set I0

α(x) = {i ∈ Iα(x) | λiα = 0}
remains constant under small perturbations of x (e.g., due to I0

α(x) = ∅, i.e., strict comple-
mentary slackness), then continuity arguments show that SMFCQ is stable at yα(x) under
sufficiently small perturbations of x. After this observation, along the lines of the proof of
Theorem 5.5 one can show continuous differentiability of gα on a neighborhood of x̄. ♦

Example 5.7 Let us illustrate our results for the QVI from Example 2.3 and check dif-
ferentiability properties of the regularized gap function gα on X \D1. Note that Assump-
tions 1.1 and 5.1 hold for this example. By Theorem 5.5, gα is continuously differentiable
at each x ∈ X \ D3 with known gradient. In the following, we will determine the sets
X ∩ (D3 \D1) and X ∩ (D2 \D1) as well as the corresponding directional derivatives of gα.

By definition of D3 one has

X ∩ (D3 \D1) = {x ∈ X \D1 | LICQ is violated at yα(x) in S(x)}

so that we have to check for violation of LICQ. The involved gradients are

∇ys1(x, yα(x)) =

(
−2
0

)
, ∇ys2(x, yα(x)) =

(
0

2(yα(x))2

)
, ∇ys3(x, yα(x)) =

(
0
−1

)
.
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Some tedious calculations show that the activities are characterized as follows, where we
use the functions %i from Example 2.3:

{x ∈ X \D1| 1 ∈ Iα(x)} = {x ∈ X \D1| %1(x) ≤ 1/α},
{x ∈ X \D1| 2 ∈ Iα(x)} = {x ∈ X \D1| %2(x) ≤ 1/α, x1 ≥ 1/

√
2}

∪ {x ∈ X \D1| 1/α ≤ %3(x)},
{x ∈ X \D1| 3 ∈ Iα(x)} = {x ∈ X \D1| %2(x) ≤ 1/α, x1 ≤ 1/

√
2}.

In particular, if 2 ∈ Iα(x), for all x ∈ X \D1 with %2(x) ≤ 1/α, x1 ≥ 1/
√

2 we find

∇ys2(x, yα(x)) =

(
0

−2
√

1− x2
1

)
6= 0,

and for all x ∈ X \D1 with 1/α ≤ %3(x)

∇ys2(x, yα(x)) =

(
0

2
√

1− x2
1

)
6= 0,

so that
X ∩ (D3 \D1) = {x ∈ X \D1| {2, 3} ⊆ Iα(x)}.

As %3(x) < %2(x) holds for all x ∈ X \D1, this implies

X ∩ (D3 \D1) =

{
x ∈ X \D1

∣∣∣ %2(x) ≤ 1

α
, x1 =

1√
2

}
=

{
x ∈ X \D1

∣∣∣ x2 +
1√
2
≤ 1

α
, x1 =

1√
2

}
=

{
1√
2

}
×
[
− 1√

2
,min

{
1√
2
,

1

α
− 1√

2

}]
.

For sufficiently small α > 0, that is, for α ≤ 1/
√

2, this results in

X ∩ (D3 \D1) = {x ∈ X \D1| x1 = 1/
√

2}

and, as will become apparent below, the latter corresponds to a ‘concave kink in the graph
of gα on X along the line segment connecting the boundary points (1/

√
2,−1/

√
2) and

(1/
√

2, 1/
√

2) of X’.
The example exhibits a more interesting feature, however, for α > 1/

√
2 when

X ∩ (D3 \D1) =

{
1√
2

}
×
[
− 1√

2
,

1

α
− 1√

2

]
.

In the following we will see that this corresponds to a ‘concave kink in the graph of gα on
X along the line segment connecting the boundary point (1/

√
2,−1/

√
2) and the interior
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point (1/
√

2,−1/
√

2 + 1/α) of X’. For α = 1 (> 1/
√

2), this kink is visualized in Figure 2.
For simplicity, in the remainder of this example, let us focus on the case α = 1 with

X ∩ (D3 \D1) =

{
x(t) :=

(
1√
2
,− 1√

2
+ t

) ∣∣∣ t ∈ [0, 1]

}
.

To identify the set X ∩ (D2 \D1), next we compute the sets KKT1(x(t)) for t ∈ [0, 1]. It
is not hard to see that 1 ∈ I1(x(t)) if and only if t ≥ 3/

√
2− 2. Some more computations

show that

KKT1(x(t)) =

(1− s)

 0
1−t√

2

0

+ s

 0
0

1− t

∣∣∣∣∣ s ∈ [0, 1]


for all t ∈ [0, 3/

√
2− 2), and

KKT1(x(t)) =

(1− s)

1
2

(
1− 3

2
√

2
+ t

2

)
1−t√

2

0

+ s

1
2

(
1− 3

2
√

2
+ t

2

)
0

1− t

∣∣∣∣∣ s ∈ [0, 1]


for all t ∈ [3/

√
2 − 2, 1]. Hence, KKT1(x(t)) contains more than one multiplier for all

t ∈ [0, 1), whereas KKT1(x(1)) is a singleton. In other words, for t = 1, that is, at ‘the
interior end point of the kink’ x(1) = (1/

√
2, 1 − 1/

√
2), SMFCQ holds at y1(x(1)) in

S(x(1)) while LICQ is violated. We arrive at

X ∩ (D2 \D1) =

{
x(t) :=

(
1√
2
,− 1√

2
+ t

) ∣∣∣ t ∈ [0, 1)

}
.

In particular, by Corollary 5.4, g1 is Gâteaux differentiable at x(1), but SMFCQ is unstable
at y1(x(1)) in S(x(1)), as it is violated at y1(x(t)) in S(x(t)) with t < 1. In the following
we shall see that, indeed, g1 is not Gâteaux differentiable at x(t) with t < 1. To this
end, we compute the Hadamard directional derivatives of g1 at x(t) with the formula from
Theorem 5.2. The appearing derivatives are

∇F (x) = 0, ∇xs1(x, y1(x)) =

(
0
1

)
, ∇xs2(x, y1(x)) =

(
2x1

0

)
, ∇xs3(x, y1(x)) =

(
−1
0

)
,

and for d ∈ Rn, we obtain

g′1(x(t); d) = (1− t) ·

{
(d1 + d2), if d1 ≤ 0

(−d1 + d2), if d1 > 0

for all t ∈ [0, 3/
√

2− 2) as well as

g′1(x(t); d) =

(
1− 3

2
√

2
+
t

2

)
d1−

1

2

(
1− 3

2
√

2
+
t

2

)
d2 + (1− t) ·

{
(d1 + d2), if d1 ≤ 0

(−d1 + d2), if d1 > 0
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for all t ∈ [3/
√

2 − 2, 1). This shows that g1 is not Gâteaux differentiable at x(t) with
t < 1, but that a ‘concave kink’ occurs in the graph of g1 along X ∩ (D2 \D1). Note that
at x(1) we have

g′1(x(1); d) =
3

2

(
1− 1√

2

)(
d1 −

d2

2

)
for all d ∈ Rn.

We point out that the main argument in the proof of Theorem 5.5 needs Gâteaux
differentiability of g1 not only at the point under consideration, but also on a whole neigh-
borhood. In the present example, Gâteaux differentiability of g1 at x(1) does not extend
to a whole neighborhood. ♦

The observed differentiability properties in Example 5.7 particularly guarantee that any
local minimizer x̄ of gα on X either lies in D1, or gα is at least Gâteaux differentiable at
x̄, where usually even continuous differentiability occurs at x̄. In the sequel we will show
that, under mild assumptions, this also holds in the general case.

To this end, we will use the linearization cone to X = {x ∈ Rn| si(x, x) ≤ 0, i =
1, . . . ,m} at a point x, which is easily seen to be given by

LX(x) :=
{
d ∈ Rn

∣∣∣ (∇xsi(x, x) +∇ysi(x, x)
)T
d ≤ 0, ∀i ∈ I0(x)

}
with the active index set I0(x) := {i ∈ {1, . . . ,m} | si(x, x) = 0}. Similar to [22], we define
the ‘degenerate point set’ D4 as a set of points in D2 with

span
{
∇xsi

(
x, yα(x)

)
, i ∈ Iα(x)

}
∩ span

{
∇xsi(x, x) +∇ysi(x, x), i ∈ I0(x)

}
6= {0},

(27)

so

D4 :=
{
x ∈ D2

∣∣ (27) holds for yα(x) ∈ S(x)
}
.

For the next result, we need the following assumption which is not to be confused with
LICQ at yα(x) ∈ S(x), as here the gradients are taken with respect to x.

Assumption 5.8 The vectors ∇xsi
(
x, y
)
|y=yα(x) (i ∈ Iα(x)) are linearly independent for

all x ∈ D2 \ (D1 ∪D4).

Proposition 5.9 Let Assumptions 1.1, 5.1, and 5.8 hold, and let x̄ ∈ D2 \ (D1 ∪D4).
Then there exists a vector d ∈ Rn solving the system

g′α(x̄; d) < 0,
(
∇xsi(x̄, x̄) +∇ysi(x̄, x̄)

)T
d ≤ 0, i ∈ I0(x̄). (28)

Proof. Assume that (28) does not possess a solution d ∈ Rn. By Theorem 5.2 this
implies the inconsistency of(

F (x̄)−
(
∇F (x̄)− αI

)(
yα(x̄)− x̄

)
−
∑

i∈Iα(x̄)

λi∇xsi
(
x̄, yα(x̄)

))T
d < 0,
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(
∇xsi(x̄, x̄) +∇ysi(x̄, x̄)

)T
d ≤ 0, i ∈ I0(x̄),

for any λ ∈ KKTα(x̄). By the Lemma of Farkas, this system is inconsistent if and only if
there exist scalars γi(λ) ≥ 0, i ∈ I0(x̄), with

F (x̄)−
(
∇F (x̄)− αI

)(
yα(x̄)− x̄

)
−
∑

i∈Iα(x̄)

λi∇xsi
(
x̄, yα(x̄)

)
+
∑
i∈I0(x̄)

γi (λ)
(
∇xsi(x̄, x̄) +∇ysi(x̄, x̄)

)
= 0.

(29)

Because of x̄ ∈ D2 \D1, there exist two different multipliers λ̂ 6= λ̃ with λ̂, λ̃ ∈ KKTα(x̄).
Then equation (29) holds for λ = λ̂ as well as for λ = λ̃. Subtracting and rearranging
these two equations leads to∑

i∈I0(x̄)

(
γi
(
λ̂
)
− γi

(
λ̃
)) (
∇xsi(x̄, x̄) +∇ysi(x̄, x̄)

)
=
∑

i∈Iα(x̄)

(
λ̂i − λ̃i

)
∇xsi

(
x̄, yα(x̄)

)
,

where the left hand side is some element of

span
{
∇xsi(x̄, x̄) +∇ysi(x̄, x̄), i ∈ I0(x̄)

}
,

and the right hand side is some element of

span
{
∇xsi

(
x̄, yα(x̄)

)
, i ∈ Iα(x̄)

}
.

The right hand side cannot be trivial in view of λ̂ 6= λ̃ and Assumption 5.8. Hence, (27)
holds, which is a contradiction to x̄ ∈ D2 \D4. Therefore, our assumption is wrong, and
there exists a vector d ∈ Rn solving the system (28). �

Before we present the main result of this section, we recall that the tangent (or contingent
or Bouligand) cone to X at point x is defined by

TX(x) :=
{
d ∈ Rn

∣∣∣ ∃tk ↘ 0, dk → d : x+ tkd
k ∈ X for all k ∈ N

}
.

It is well-known that the relation TX(x) ⊆ LX(x) always holds (see, e.g., [42]), and the
Abadie constraint qualification (ACQ) is said to hold at x ∈ X if TX(x) = LX(x).

Assumption 5.10 The ACQ holds for all x ∈ D2 \ (D1 ∪D4).

Theorem 5.11 Let Assumptions 1.1, 5.1, 5.8 and 5.10 hold. Then any local minimizer x̄
of gα on X either lies in D1 ∪D4, or gα is at least Gâteaux differentiable at x̄. If, in the
latter case, LICQ holds at yα(x̄) ∈ S(x̄), then gα is continuously differentiable at x̄.
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Proof. Let x̄ be a local minimizer of gα on X. We distinguish the cases x̄ ∈ D2 and
x̄ ∈ X \D2.

First, let x̄ ∈ D2. Then either x̄ ∈ D1 ∪D4 or, by Proposition 5.9, there exists a vector
d ∈ Rn solving the system (28). We shall show that the latter leads to a contradiction. In

fact, because of
(
∇xsi(x̄, x̄) +∇ysi(x̄, x̄)

)T
d ≤ 0 for all i ∈ I0(x̄), this d is an element of

the linearization cone LX(x̄). Due to Assumption 5.10, d also belongs to the tangent cone
TX(x̄). Hence, there exist sequences tk ↘ 0 and dk → d with x̄ + tkd

k ∈ X for all k ∈ N.
As x̄ is a local minimizer of gα on X, we have gα(x̄+ tkd

k) ≥ gα(x̄) and

gα(x̄+ tkd
k)− gα(x̄)

tk
≥ 0 (30)

for all sufficiently large k ∈ N. By Theorem 5.2, the function gα is Hadamard directionally
differentiable at x̄. Hence, the limit of the left-hand side in (30) exists and is equal to
g′α(x̄, d) (note that just directionally differentiability in the ordinary sense is not sufficient
for this implication). Consequently, it holds g′α(x̄, d) ≥ 0. This is a contradiction to (28).

In the second case, let x̄ ∈ X \ D2. In view of Corollary 5.4 and (3), gα is Gâteaux
differentiable at x̄. This completes the proof of the first part of the assertion.

The second part immediately follows from Theorem 5.5. �

Corollary 5.12 Let Assumptions 1.1, 5.1, 5.8 hold, and assume that all constraint func-
tions si are linear. Then any local minimizer x̄ of gα on X either lies in D1 ∪D4, or the
function gα is at least Gâteaux differentiable at x̄. If, in the latter case, LICQ holds at
yα(x̄) ∈ S(x̄), then gα is continuously differentiable at x̄.

Proof. Due to linearity of all constraint functions si, the ACQ holds everywhere in X
(see, e.g., [42]). Then Theorem 5.11 yields the statements. �

6 Numerical Results

This section presents numerical results for the solution of QVIs based on the optimization
reformulation

min
x

gα(x) s.t. x ∈ X (31)

from Proposition 2.2, where gα denotes the regularized gap function and X is the feasible
set of the QVI, cf. (2). In order to apply suitable standard software to this problem, we
have to distinguish two cases: First, we have a QVI with a generalized moving set in which
case (31) represents a smooth (continuously differentiable) optimization problem. Second,
if the constraints are not given by a generalized moving set, gα is not necessarily everywhere
continuously differentiable, although our analysis shows that, also in this case, except for
some pathological situations, we can expect differentiability at all locally minimal points.
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Since, for the nondifferentiable case, numerical results are presented in the previous
paper [22] for the special case of generalized Nash equilibrium problems, we decided to
concentrate on QVIs defined by generalized moving sets in this section. More precisely, we
consider both QVIs with (standard) moving sets and QVIs with generalized moving sets
as defined in Section 3.1.

To this end, we recall that the generalized gap function gα is well defined for all x ∈ Rn

in the moving and generalized moving set cases whenever K 6= ∅. This observation is
important since this allows to apply software that might generate non-feasible iterates.
In particular, this enables us to use the TOMLAB/SNOPT 7.2-9 solver as the work-
ing horse for problem (31), especially since this method does not use any second-order
derivatives. However, we compare the results also with the TOMLAB/KNITRO 8.0.0
solver applied to (31) although, formally, this solver uses second-order information and,
therefore, is not a feasible method in our case since the regularized gap function gα may
not be twice continuously differentiable everywhere. For more information about TOM-
LAB/SNOPT and TOMLAB/KNITRO, we refer to the TOMLAB/SNOPT and TOMLAB
/KNITRO User Guides on the web sites http://tomopt.com/tomlab/products/snopt/

and http://tomopt.com/tomlab/products/knitro/, respectively.
For both solvers, we provide the starting point x0 as well as the function and gradient

values (including the derivative of gα from (12)) for each test problem. Moreover, for KNI-
TRO, we use the active set Sequential Linear-Quadratic Programming (SLQP) optimizer
by setting Prob.KNITRO.options.ALG=3. Apart from this, all standard options are taken
for both methods. Our implementation uses the regularization parameter α = 1 for all test
problems.

We use two groups of test examples: The first group consists of all the QVIs with
(standard) moving sets from the recent test problem collection [14] (called MovSet*). For
the second group, we modify these test problems to QVIs with generalized moving sets

(called GenMovSet*) defined by the diagonal matrix Q(x) = diag
(

1
x21+1

, . . . , 1
x2n+1

)
. The

corresponding numerical results for the first group are presented in Table 1, whereas Table
2 contains the numerical results for the second group.

For each test example, Tables 1 and 2 contain the following data: The name of the
example, the number of variables n, the number of constraints si, i = 1, . . . ,m, the starting
point x0 (all components of this starting point are equal to the number given here), and
for both solvers the number of iterations k needed until convergence and the final value
of the generalized gap function gα in column goptα (whenever a solution was found). Here,
the starting points in Table 1 are those taken from the paper [14] and implemented in
the corresponding M-file startingPoints.m. The same starting points are used for the
generalized moving set examples. The results for examples MovSet4* and GenMovSet4*
with the starting point equal to the zero vector (as suggested in [14]) are not contained in
Tables 1 and 2 since the zero vector turned out to be a solution of these test problems and
are immediately identified as such from both solvers.

Tables 1 and 2 show that all test examples can be solved within a very reasonable
number of iterations except for examples MovSet2B and GenMovSet2B with the second
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Ex. n m x0 SNOPT Solver KNITRO Solver
k goptα k goptα

MovSet1A 5 1 0 9 8.119032e-09 6 1.771996e-09
10 14 8.168694e-09 8 3.695276e-11

MovSet1B 5 1 0 57 -1.455251e-09 7 5.913887e-10
10 89 -4.106141e-08 16 5.888718e-10

MovSet2A 5 1 0 9 3.127895e-13 5 4.689504e-10
10 18 -1.963065e-11 9 4.697078e-10

MovSet2B 5 1 0 35 3.129177e-09 9 -1.499496e-05
10 – failure – failure

MovSet3A1 1000 1 0 55 1.542633e-06 6 -1.572717e-09
10 54 1.542746e-06 11 1.503841e-09

MovSet3B1 1000 1 0 57 5.208333e-08 7 4.823794e-10
10 56 5.211922e-08 12 4.416943e-10

MovSet3A2 2000 1 0 64 4.339869e-11 7 1.318250e-11
10 63 3.043553e-11 11 1.420134e-11

MovSet3B2 2000 1 0 63 1.095111e-07 7 1.616324e-11
10 63 1.095374e-07 13 9.701867e-11

MovSet4A1 400 801 10 3 4.216834e-12 3 5.494870e-13
MovSet4B1 400 801 10 3 3.046541e-12 3 -1.763913e-13
MovSet4A2 800 1601 10 4 2.139371e-12 3 7.364564e-13
MovSet4B2 800 1601 10 4 -2.618998e-13 3 8.076459e-13

Table 1: Table with numerical results for QVIs with moving sets from paper [14]

Ex. n m x0 SNOPT Solver KNITRO Solver
k goptα k goptα

GenMovSet1A 5 1 0 10 -8.048828e-13 6 2.996280e-08
10 18 4.050013e-12 13 2.996280e-08

GenMovSet1B 5 1 0 21 -1.286942e-02 11 7.618806e-06
10 18 -1.853720e-04 15 7.806321e-06

GenMovSet2A 5 1 0 8 1.976154e-11 6 7.765171e-09
10 18 -3.330922e-10 10 7.763598e-09

GenMovSet2B 5 1 0 28 1.352352e-09 14 1.985551e-06
10 – failure – failure

GenMovSet3A1 1000 1 0 29 5.991367e-10 8 9.817330e-12
10 42 6.008491e-10 17 3.991185e-10

GenMovSet3B1 1000 1 0 31 3.184530e-11 8 2.014215e-10
10 43 3.388897e-11 17 1.906384e-10

GenMovSet3A2 2000 1 0 34 1.226018e-09 9 4.932545e-10
10 51 1.221392e-09 16 -3.373292e-08

GenMovSet3B2 2000 1 0 36 7.742417e-11 8 -5.451358e-11
10 59 6.534881e-11 18 -6.147936e-10

GenMovSet4A1 400 801 10 12 5.694374e-03 10 1.327288e-08
GenMovSet4B1 400 801 10 12 4.728919e-03 10 1.370384e-08
GenMovSet4A2 800 1601 10 13 6.742428e-14 10 2.652667e-08
GenMovSet4B2 800 1601 10 12 1.069513e-02 10 2.810001e-08

Table 2: Table with numerical results for QVIs with generalized moving sets
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k xk gα(x
k) gα counts

0 (10, 10) 1.274434e+01 1
1 (9.84901583, 9.84901583) 3.854426e-01 3
2 (9.82327425, 9.82327425) 1.297152e-02 5
3 (9.81753271, 9.81753271) 1.194829e-06 6
4 (9.81747717, 9.81747717) 6.141179e-12 7
5 (9.81747704, 9.81747704) -7.787916e-20 8

Table 3: Table with numerical results for Example 3.6

starting point. These tables also indicate that the number of iterations needed by KNITRO
is sometimes significantly smaller than the corresponding numbers for SNOPT. A possible
explanation might be the fact that KNITRO uses second-order information. We also
believe that this fact is responsible for the higher accuracy that is sometimes obtained by
the KNITRO solver. In fact, SNOPT terminates for three of the four test examples called
GenMovSet4* with the function value of gα being around 10−2 − 10−3, whereas KNITRO
is able to get much closer to zero. Nevertheless, the termination by SNOPT was successful
in the sense that the standard stopping criteria of this solver were reached.

Note also that, in some cases, upon termination we have a negative function value
goptα in the corresponding columns of Tables 1 and 2. These negative values arise for two
reasons: First, if the final iterate xk is slightly outside the feasible region, then gα might
be negative. Second, negative values may arise due to inexact function evaluations (recall
that the evaluation of gα at a point x requires the solution of an optimization problem
which, fortunately, automatically also gives the gradient ∇gα(x)).

Finally, in Table 3, we come back to our Example 3.6 and present the corresponding
iteration history, with all calculations being done by SNOPT. More precisely, for each
iteration k, Table 3 provides the iteration vector xk, the value of gα at xk as well as the
cumulated number of evaluations of the mapping gα. Table 3 illustrates that the calculation
of a solution for the starting point x0 = (10, 10) finishes successfully and has a fast local
convergence rate. We also tried a number of different starting points, and were always
able to find a solution up to the required accuracy. Note, however, that Example 3.6 has
infinitely many solutions, hence the method finds different solutions when using different
starting points.

7 Final Remarks

This paper studied smoothness properties of a regularized gap function for QVIs as well as
connections between QVIs and GNEPs. While, under general convexity assumptions and
except for pathological cases, continuous differentiability of the regularized gap function
was shown at all locally minimal points of the optimization reformulation of the QVI, the
concept of generalized moving sets even allowed to show continuous differentiability of the
regularized gap function on its whole domain. Our numerical results cover the latter case,
as we treated the first case for GNEPs already in [22].
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We believe that, under stronger convexity assumptions, also the directional differen-
tiability behaviour of the regularized gap function on the degenerate point set D1 may be
understood which would lead to an improvement of Theorem 5.11. On the other hand,
under weaker convexity assumptions as, for example, quasi-convexity of the functions si,
i = 1, . . . ,m, most of the results shown in this article may still be valid. We leave these
questions for future research.
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