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Abstract. We propose to solve a general quasi-variational inequality by using its
Karush-Kuhn-Tucker conditions. To this end we use a globally convergent algorithm
based on a potential reduction approach. We establish global convergence results
for many interesting instances of quasi-variational inequalities, vastly broadening the
class of problems that can be solved with theoretical guarantees. Our numerical test-
ings are very promising and show the practical viability of the approach.
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1 Introduction

We propose and analyze a globally convergent algorithm for the solution of a finite-
dimensional Quasi-Variational Inequality (QVI), which is the problem of finding a
point x∗ ∈ K(x∗) such that

F(x∗)T (y− x∗)≥ 0, ∀y ∈ K(x∗), (1)

where F : Rn→ Rn is a (point-to-point) mapping and K : Rn ⇒ Rn is a point-to-set
mapping with closed and convex images.

QVIs were introduced by Bensoussan and Lions in a series of papers [4–6] in
connection with the study of impulse control problems and soon they turned out to
be a powerful modeling tool capable of describing complex equilibrium situations
that can appear in such different fields as generalized Nash games (see e.g. [3,22,25,
42]), mechanics (see e.g. [2,7,23,27,36,37]), economics (see e.g. [25,46]), statistics
(see e.g. [26]), transportation (see e.g. [8,11]), and biology (see e.g. [21]). We refer
the reader to the monographs of Mosco [31] and Baiocchi and Capelo [2] for a more
compehensive analysis of QVIs.

In spite of their modeling power, relatively few studies have been devoted to
the numerical solution of finite-dimensional QVIs; a topic which, beside being of
great interest in its own, also forms the backbone of solution methods for infinite-
dimensional QVIs. Motivated by earlier research on the implicit complementarity
problem [31,39,40], Chan and Pang introduced in [9] what is probably the first glob-
ally convergent algorithm for a QVI. In this seminal paper, the authors use a fixed
point argument to prove convergence of a projection-type algorithm in the case in
which K(x) = c(x)+ Q, where Q is a closed convex set and c : Rn→ Rn a mapping
satisfying certain conditions. It is safe to say that practically all subsequent papers,
where globally convergent algorithms are analyzed, consider variants or extensions
of the basic setting proposed in [9] and also follow the fixed point approach, see
e.g. [32–34,43,45] and references therein. In a departure from this setting, Pang and
Fukushima [42] proposed a sequential penalty approach to general QVIs. The method
in [42] reduces the solution of a QVI to the solution of a sequence of Variational In-
equalities (VIs); however, even if this approach is very interesting and promising,
its global convergence properties are in jeopardy since they ultimately hinge of the
capability of solving a sequence of possibly very challenging VIs. More recently,
Fukushima [20] studied a class of gap functions for QVIs, reducing the solution of a
QVI to the global minimization of a nondifferentiable gap function, but no algorithms
are explicitly proposed in [20] (see [28] for a further and more detailed application of
this approach in a specialized game setting). This essentially completes the picture of
globally convergent proposals for the solution of QVIs. We also mention that Outrata
and co-workers studied some interesting local Newton methods, see [36–38], but the
globalization of these methods is not discussed.

In this paper we propose a totally different approach to the solution of a QVI. As-
suming that the feasible set mapping K(·) is described by a finite number of paramet-
ric inequalities, we consider the Karush-Kuhn-Tucker (KKT) conditions of the QVI,
reformulate them as a system of constrained equations and then apply an interior-
point method. It turns out that the convergence properties of the resulting algorithm
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depend essentially on the nonsingularity of a certain Jacobian matrix JH. Our main
contributions are therefore:

– An in-depth analysis of the nonsingularity of JH, showing that global conver-
gence of the proposed method can be obtained in the case in which K(x) =
c(x)+Q, but also in many other situations covering a wide array of new and sig-
nificant settings, thus enlarging considerably the range of QVIs that it is possible
to solve with theoretical guarantees;

– A discussion of the boundedness of the sequence generated by the algorithm;
– A numerical testing on what is, by far, the largest test set for QVIs considered so

far, demonstrating the effectiveness of the new method, and its robustness even if
compared to the PATH solver [19].

The approach we consider in this paper is based on an interior-point-like framework
introduced in [30] and it can be viewed as a generalization of the method proposed in
[14] for the solution of Generalized Nash Equilibrium Problems (GNEPs). Indeed, it
is well-known that, under mild conditions, GNEPs can be reformulated as QVIs, so
that the extension might appear quite natural. But we remark that the technical issues
that we must deal with when facing a QVI are considerably different from those
encountered in the analysis of GNEPs. This forced us to take a quite different path
from that used in [14] and, as a consequence, the results in this paper are considerably
deeper than those in [14], and the analysis is more sophisticated. This is shown also
by the fact that, when we specialize some of the results in this paper to the GNEP
setting, we improve on the results of [14].

The paper is organized as follows. In the next section, we first describe in detail
our setting and then, based on the general framework introduced in [30], introduce
the interior-point algorithm along with its main convergence properties. In Section
3, we identify several classes of QVIs for which the nonsingularity of JH can be
established. Section 4 deals with the boundedness of the sequence generated by our
algorithm while in Section 5 we report the results of our numerical experimentation.
Some definitions and auxiliary results are discussed and proved in the Appendix.

Notation: R+ denotes the set of nonnegative numbers, while R++ is the set of
positive numbers. The symbol ‖v‖ denotes the Euclidean norm of a vector v ∈ Rn.
Similarly, given a matrix M ∈ Rm×n, ‖M‖ is the spectral norm, i.e. the norm induced
by the Euclidean vector norm. We recall that ‖M‖ = max{

√
λ | λ is an eigenvalue

of MT M}. The spectral norm is compatible with the Euclidean norm in the sense
that ‖Mv‖ ≤ ‖M‖‖v‖. For a differentiable mapping F : Rn→ Rm, we denote its Ja-
cobian at x by JF(x), whereas ∇F(x) is the transposed Jacobian. Similarly, when
F : Rn×Rn→ Rm depends on two sets of variables (y,x), the notation JyF(y,x) and
∇yF(y,x) denote the corresponding partial Jacobian and its transpose, respectively,
where the derivatives are taken only with respect to y. A matrix A ∈ Rn×n (not nec-
essarily symmetric) is positive semidefinite (definite) if xT Ax≥ 0 holds for all x ∈Rn

(xT Ax > 0 for all x ∈ Rn \ {0}), whereas A ∈ Rn×n is a P0-matrix (P-matrix) if, for
each x 6= 0, there exists an index j ∈ {1, . . . ,n} such that x j 6= 0 and x j[Ax] j ≥ 0
(x j[Ax] j > 0). Note that every positive semidefinite (definite) matrix is a P0-matrix
(P-matrix). For more details, we refer to [10]. The symbol µm(A) denotes the mini-
mum eigenvalue of a square, symmetric matrix A, whereas µ+

m (A) denotes its mini-
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mum positive eigenvalue. Similarly, µs
m(A) indicates the minimum eigenvalue of the

symmetric part of the square matrix A, that is the minimum eigenvalue of the matrix
1
2 (AT +A). Finally, given two vectors x,y ∈ Rn, we denote by x◦ y := (xiyi)n

i=1 ∈ Rn

their Hadamard (componentwise) product, by x−1 its componentwise inverse vector( 1
x1

, . . . , 1
xn

)
and by y/x := y ◦ x−1 the componentwise quotient of two vectors (pro-

vided that xi 6= 0 for all i).

2 Problem Definition and Interior-Point Algorithm

Let F : Rn→Rn be a (point-to-point) continuous mapping and K : Rn ⇒ Rn a point-
to-set mapping with closed and convex images. The Quasi-Variational Inequality QVI
(K,F) is the problem of finding a point x∗ ∈ K(x∗) such that (1) holds. For sake of
simplicity, we always assume that all functions involved are defined over Rn, even if
this request could easily be weakened. A particularly well known and studied case
occurs when K(x) is actually independent of x, so that, for all x, K(x) = K for some
closed convex set K. In this case, the QVI becomes the Variational Inequality VI
(K,F), that is the problem of finding x∗ ∈ K such that F(x∗)T (y− x∗) ≥ 0, ∀y ∈ K.
For this latter problem, an extensive theory exists, see for example [18].

In most practical settings, the point-to-set mapping K is defined through a para-
metric set of inequality constraints:

K(x) := {y ∈ Rn | g(y,x)≤ 0}, (2)

where g : Rn×Rn→ Rm. We will use the following assumption

Assumption 1 gi(·,x) is convex and continuously differentiable on Rn, for each x ∈
Rn and for each i = 1, . . . ,m.

The convexity of gi(·,x) is obviously needed in order to guarantee that K(x) be con-
vex, while we require the differentiability assumption to be able to write down the
KKT conditions of the QVI. We say that a point x ∈ Rn satisfies the KKT conditions
if multipliers λ ∈ Rm exist such that

F(x)+∇yg(x,x)λ = 0,

0 ≤ λ ⊥ g(x,x) ≤ 0.
(3)

Note that g(x,x)≤ 0 means that x∈K(x) and recall that ∇yg(x,x) indicates the partial
Jacobian of g(y,x) with respect to y evaluated at y = x. These KKT conditions parallel
the classical KKT conditions for a VI, see [18], and it is quite easy to show the
following result, whose proof we omit.

Theorem 1 Suppose Assumption 1 holds. If a point x, together with a suitable vector
λ ∈ Rm of multipliers, satisfies the KKT system (3), then x is a solution of the QVI
(K,F). Vice versa, if x is a solution of the QVI (K,F) and the constraints g(·,x)
satisfy any standard constraint qualification, then multipliers λ ∈ Rm exist such that
the pair (x,λ ) satisfies the KKT conditions (3).
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In the theorem above, by “any standard constraint qualification” we mean any classi-
cal optimization constraint qualification for g(·,x) at y = x such as the linear indepen-
dence of the active constraints, the Mangasarian-Fromovitz constraint qualification,
Slater’s one and so on.

The KKT conditions (3) are central to our approach as our solution algorithm
aims at finding KKT points of the QVI (K,F). In view of Theorem 1, the solution of
these KKT conditions is essentially equivalent to the solution of the underlying QVI
and, in any case whenever we can find a solution of the KKT conditions, we are sure
that the corresponding x-part solves the QVI itself.

As we already mentioned, we propose to solve the KKT conditions (3) by an
interior-point method designed to solve constrained systems of equations. In order
to reformulate system (3) as a constrained system of equations (CE for short), we
introduce slack variables w ∈ Rm and consider the CE system

H(z) = 0, z = (x,λ ,w) ∈ Z (4)

with

H(x,λ ,w) :=

 L(x,λ )
h(x)+w

λ ◦w


and where

L(x,λ ) := F(x)+∇yg(x,x)λ , h(x) := g(x,x) (5)

and
Z := {z = (x,λ ,w) | x ∈ Rn,λ ∈ Rm

+,w ∈ Rm
+}.

It is clear that the couple (x,λ ) solves system (3) if and only if (x,λ ), together with a
suitable w, solves the CE (4). From now on, we will aim at solving the CE (4) by the
interior-point method described next.

Let p : Rn×Rm
++×Rm

++→ R be the function

p(u,v) := ζ log(‖u‖2 + ‖v‖2)−
2m

∑
i=1

log(vi), (u,v) ∈ Rn×Rm
++×Rm

++, ζ > m,

and let
ψ(z) := p(H(z))

be the potential function of the CE, which is defined for all

z ∈ ZI := H−1(Rn×Rm
++×Rm

++)∩ int Z,

where intZ denotes the interior of the set Z. In order to be able to define our potential
reduction interior-point method we need some further differentiability conditions.

Assumption 2 F(x), h(x) and ∇yg(x,x) are continuously differentiable on Rn.

The following algorithm is precisely the interior-point method from [30]; see also
[18] for further discussion and [14] for an inexact version.
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Algorithm 1: Potential Reduction Algorithm (PRA) for QVIs

(S.0) : Choose z0 ∈ ZI ,β ,γ ∈ (0,1), and set k := 0,aT = (0T
n , 1T

2m).

(S.1) : If H(zk) = 0: STOP.

(S.2) : Choose ρk ∈ [0,1) and find a solution dk of the linear system

JH(zk)dk =−H(zk)+ρk
aT H(zk)
‖a‖2 a. (6)

(S.3) : Compute a stepsize tk := max
{

β ` | ` = 0,1,2, . . .
}

such that

zk + tkdk ∈ ZI

and
ψ(zk + tkdk)≤ ψ(zk)+ γtk∇ψ(zk)T dk. (7)

(S.4) : Set zk+1 := zk + tkdk,k← k +1, and go to (S.1).

Algorithm 1 is well-defined as long as the Jacobians JH(zk) in (6) are nonsingular.
Actually, the following theorem, which can be found in [30] and [18], shows that
this condition also guarantees that every limit point of the sequence generated by the
algorithm is a solution.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Assume that JH(z) is nonsin-
gular for all z ∈ ZI , and that the sequence {ρk} from (S.2) of Algorithm 1 satisfies
the condition limsupk→∞ ρk < 1. Let {zk} be any sequence generated by Algorithm 1.
Then the following statements hold:

(a) the sequence {H(zk)} is bounded;
(b) any accumulation point of {zk} is a solution of CE (4).

In view of Theorem 2, the main question we must answer in order to make our ap-
proach viable is: for which classes of QVIs can we guarantee that the Jacobian ma-
trices JH(z) are nonsingular for all z ∈ ZI? A related, albeit practically less crucial,
question is whether we can guarantee that the sequence {zk} generated by Algorithm
1 is bounded. This obviously would guarantee that the algorithm actually has at least
a limit point and therefore that a solution is certainly found. The first question will be
answered in detail in the next section, whereas the second question will be dealt with
in Section 4.

3 Nonsingularity Conditions

As noted before, the main topic in order to guarantee global convergence of Algo-
rithm 1 to a solution of CE (4) is the nonsingularity of JH(z). The structure of this
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Jacobian is given by

JH(x,λ ,w) =

 JxL(x,λ ) ∇yg(x,x) 0
Jxh(x) 0 I

0 diag(w) diag(λ )

 .

This section is devoted entirely to the study of QVI classes for which the nonsingu-
larity of JH can be established. It is not too difficult to give conditions that guarantee
the nonsingularity of JH; what is less obvious is how we can established sensible and
significant conditions for interesting classes of QVIs. This we achieve in two stages:
in the next subsection we give several sufficient or necessary and sufficient conditions
for the nonsingularity of JH which are then used in the following subsections to an-
alyze various QVI classes. In particular, we will discuss and establish nonsingularity
results for the following QVI classes:

– Problems where K(x) = c(x)+Q (the so called “moving set” case, already men-
tioned in the introduction);

– Problems where K(x) is defined by a linear system of inequalities with a variable
right-hand side;

– Problems where K(x) is defined by box constraints with parametric upper and
lower bounds;

– Problems where K(x) is defined by “binary constraints”, i.e. parametric inequal-
ities g(x,y) ≤ 0 with each gi actually depending only on two variables: x j and
y j;

– Problems where K(x) is defined by bilinear constraints.

While we refer the reader to the following subsections for a more accurate descrip-
tion of the problem classes, we underline that, as far as we are aware of and with
the exception of the moving set case, these problem classes are all new and we can
establish here for the first time convergence results, according to Theorem 2.

3.1 General Nonsingularity Conditions

The results in this subsection do not make explicit reference to a specific structure
of the QVI and, in particular, of the feasible set mapping K. However, they are in-
strumental in proving the more specific results in the following subsections. The first
result we present is a necessary and sufficient condition for the nonsingularity of JH.

Theorem 3 Suppose that Assumptions 1 and 2 hold. Let (x,λ ,w)∈Rn×Rm
++×Rm

++
be given. Then the matrix

N(x,λ ,w) := JxL(x,λ )+∇yg(x,x)diag
(
w−1 ◦λ

)
Jxh(x) (8)

is nonsingular if and only if JH(x,λ ,w) is nonsingular.
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Proof We first prove the only-if-part. Let q =
(
q(1),q(2),q(3)) be a suitably parti-

tioned vector such that JH(x,λ ,w)q = 0. This equation can be rewritten in partitioned
form as

JxL(x,λ )q(1) +∇yg(x,x)q(2) = 0, (9)

Jxh(x)q(1) +q(3) = 0, (10)

diag(w)q(2) +diag(λ )q(3) = 0. (11)

Solving (11) for q(3) gives

q(3) =−diag
(
λ
−1 ◦w

)
q(2). (12)

Inserting this expression into (10) yields

Jxh(x)q(1)−diag
(
λ
−1 ◦w

)
q(2) = 0

which, in turn, gives

q(2) = diag
(
w−1 ◦λ

)
Jxh(x)q(1). (13)

Substituting this expression into (9) finally yields[
JxL(x,λ )+∇yg(x,x)diag

(
w−1 ◦λ

)
Jxh(x)

]
q(1) = 0.

However, the matrix in brackets is precisely the matrix N(x,λ ,w) from (8) and, there-
fore, nonsingular. Hence, it follows that q(1) = 0 which then also implies q(2) = 0 and
q(3) = 0.

Now, to prove the if-part, we show that if N(x,λ ,w) is singular, then JH(x,λ ,w)
is singular, too. If N(x,λ ,w) is singular, there exists a nonzero vector q(1) such that[

JxL(x,λ )+∇yg(x,x)diag
(
w−1 ◦λ

)
Jxh(x)

]
q(1) = 0.

Now, let q(2) and q(3) be vectors defined by (13) and (12), respectively. Then (9)–
(11) hold, and hence JH(x,λ ,w)q = 0 for q =

(
q(1),q(2),q(3)) 6= 0. This shows that

JH(x,λ ,w) is singular and, therefore, completes the proof. 2

We next state a simple consequence of Theorem 3.

Corollary 1 Suppose that Assumptions 1 and 2 hold and let (x,λ ,w) ∈ Rn×Rm
++×

Rm
++ be given. Suppose that JxL(x,λ ) is positive definite and one of the following

conditions holds:

(a) ∇yg(x,x)diag
(
w−1 ◦λ

)
Jxh(x) is positive semidefinite, or

(b) ∇yg(x,x)diag
(
w−1 ◦λ

)
Jxg(x,x) is positive semidefinite.

Then JH(x,λ ,w) is nonsingular.
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Proof In view of Theorem 3, it suffices to show that the matrix N(x,λ ,w) from (8)
is nonsingular. Since JxL(x,λ ) is positive definite by assumption, the statement is
trivially satisfied under condition (a). Hence, suppose that (b) holds. Since h(x) =
g(x,x), we have Jxh(x) = Jyg(x,x)+ Jxg(x,x). This implies

N(x,λ ,w) = JxL(x,λ )+∇yg(x,x)diag
(
w−1 ◦λ

)
Jxh(x)

= JxL(x,λ )+∇yg(x,x)diag
(
w−1 ◦λ

)
Jyg(x,x)

+∇yg(x,x)diag
(
w−1 ◦λ

)
Jxg(x,x).

Now, the first term JxL(x,λ ) in the last expression is positive definite by assumption,
the second term is obviously positive semidefinite since λ ,w > 0, and the third term
is positive semidefinite by condition (b). Consequently, N(x,λ ,w) is positive definite,
hence nonsingular. 2

Note that the previous proof actually shows that condition (b) from Corollary 1 im-
plies condition (a) which, therefore, is a weaker assumption in general, whereas con-
dition (b) might be easier to verify in some situations.

We now state another consequence of Theorem 3.

Corollary 2 Suppose that Assumptions 1 and 2 hold and let (x,λ ,w) ∈ Rn×Rm
++×

Rm
++ be given. Suppose that JxL(x,λ ) is nonsingular and

M(x,λ ) := Jxh(x)JxL(x,λ )−1
∇yg(x,x)

is a P0-matrix. Then JH(x,λ ,w) is nonsingular.

Proof For notational simplicity, let us write

A(x,λ ,w) := JxL(x,λ )−1
∇yg(x,x)diag

(
w−1 ◦λ

)
Jxh(x).

We note that diag
(
w−1 ◦λ

)
is a positive definite diagonal matrix and can therefore

be written as a product DD, where D is another positive definite diagonal matrix.
We have that the matrix N(x,λ ,w) is nonsingular if and only if I + A(x,λ ,w)

is nonsingular. In turn, recalling that µ is an eigenvalue of A(x,λ ,w) if and only if
1 + µ is an eigenvalue of I + A(x,λ ,w), we see that N(x,λ ,w) is surely nonsingular
if A(x,λ ,w) has all real eigenvalues nonnegative. But it is well known that, given
two square matrices A,B, the matrix product AB has the same eigenvalues as the
matrix product BA, see [24, Theorem 1.3.20], hence it follows that A(x,λ ,w) has
the same eigenvalues as DJxh(x)JxL(x,λ )−1∇yg(x,x)D which is exactly the matrix
DM(x,λ )D. By assumption, we have that M(x,λ ) is a P0 matrix, hence DM(x,λ )D
is also a P0 matrix since D is diagonal and positive definite, and then it has all real
eigenvalues nonnegative, see [10, Theorem 3.4.2]. This completes the proof. 2

The remaining part of this section specializes the previous results to deal with specific
constraint structures.
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3.2 The Moving Set Case

As we mentioned in the Introduction, this is the most studied class of problems in the
literature and (variants and generalizations apart) essentially the only class of prob-
lems for which clear convergence conditions are available. In this class of problems,
the feasible mapping K(·) is defined by a closed convex set Q⊆Rn and a “trajectory”
described by c : Rn→ Rn according to:

K(x) = c(x)+Q.

In order to proceed in our analysis, we suppose that Q is defined by a set of convex
inequalities:

Q = {x ∈ Rn|q(x)≤ 0},

where q : Rn→ Rm and each qi is convex on Rn. It is easy to see that, in this setting,
we have

K(x) = {y ∈ Rn | q(y− c(x))≤ 0}. (14)

By exploiting this structure, we can prove the following theorem.

Theorem 4 Let K(x) be defined as in (14), with qi convex for every i = 1, . . . ,m. Let
a point x ∈ Rn be given and assume that around x it holds that F and c are C1 and q
is C2. Suppose further that JF(x) is nonsingular and that

‖Jc(x)‖ ≤ µs
m(JF(x)−1)
‖JF(x)−1‖

. (15)

Then JH(x,λ ,w) is nonsingular for all positive λ and w.

Proof We are going to show that the conditions from Theorem 3 are satisfied. First
of all note that the hypotheses imply Assumptions 1 and 2. Taking into account (14),
we have, using the notation in (2) and (5),

g(y,x) = q(y− c(x)), h(x) = q(x− c(x))

and, hence,

∇yg(x,x) = ∇q(x− c(x)), Jxh(x) = Jq(x− c(x))(I− Jc(x)).

Therefore we can write

N(x,λ ,w) = JF(x)+ S̄(I− Jc(x)),

where

S̄ =
m

∑
i=1

λi∇
2qi(x− c(x))+∇q(x− c(x))diag(w−1 ◦λ )Jq(x− c(x)).

Note that, for any positive λ and w, S̄ is positive semidefinite and symmetric. There-
fore, we can write S̄ = SST for some suitable square matrix S. Recalling that JF(x) is
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nonsingular by assumption, we have that the matrix N(x,λ ,w) is nonsingular if and
only if

I + JF(x)−1SST (I− Jc(x))

is nonsingular. In turn, since µ is an eigenvalue of JF(x)−1SST (I−Jc(x)) if and only
if 1+µ is an eigenvalue of I +JF(x)−1SST (I−Jc(x)), we see that N(x,λ ,w) is surely
nonsingular if JF(x)−1SST (I−Jc(x)) has all real eigenvalues nonnegative. But, sim-
ilar to the proof of Corollary 2, it follows that JF(x)−1SST (I− Jc(x)) has the same
eigenvalues as ST (I − Jc(x))JF(x)−1S. If we can show that (I − Jc(x))JF(x)−1 is
positive semidefinite, we obviously also have that ST (I− Jc(x))JF(x)−1S is positive
semidefinite and, therefore, has all the real eigenvalues (if any) nonnegative. Hence, to
complete the proof, we only need to show that (15) implies that (I−Jc(x))JF(x)−1 is
positive semidefinite. In order to see this, it is sufficient to observe that for any v∈Rn

we can write

vT Jc(x)JF(x)−1v ≤ ‖Jc(x)‖‖JF(x)−1‖‖v‖2 ≤ µ
s
m(JF(x)−1)‖v‖2 ≤ vT JF(x)−1v,

where the second inequality follows from (15). From this chain of inequalities the
positive semidefiniteness of (I− Jc(x))JF(x)−1 follows readily and this concludes
the proof. 2

Note that (15) is a condition purely in terms of F and c, neither q nor the values of λ

and w are involved. The fact that q is not involved simply indicates that the nonsin-
gularity of N is not related to the “shape” of the set Q, but only to the trajectory the
moving set follows. More precisely, as will also become more clear in the following
corollary, (15) requires the trajectory described by c to be not “too steep”, where the
exact meaning of “too steep” is given by (15). The following corollary shades some
further light on this condition.

Remark 1 In part (d) of the following Corollary, and in the rest of this section we
freely use some notation and definitions for Lipschitz and monotonicity constants
that are fully explained and discussed at length in the Appendix.

Corollary 3 Assume the setting of Theorem 4 and consider the following conditions:

(a) The matrix N(x,λ ,w) is nonsingular on Rn×Rm
++×Rm

++;
(b) Condition (15) holds for all x ∈ Rn;
(c) It holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn

µs
m(JF(x)−1)
‖JF(x)−1‖

;

(d) c is Lipschitz continuous on Rn with Lipschitz modulus α , F is Lipschitz contin-
uous on Rn and strongly monotone on Rn, the moduli of Lipschitz continuity and
strong monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1
. (16)

Then it holds that
(d) =⇒ (c) =⇒ (b) =⇒ (a).
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Proof The only implication that needs a proof is (d) =⇒ (c). By Proposition 3 (a)
(see the Appendix), we have α = supx∈Rn ‖Jc(x)‖. We now recall that since F is
strongly monotone on Rn, its range is Rn, see [35, Theorem 5.4.5]. Therefore, by
Proposition 3 and taking into account that JF−1(F(x)) = JF(x)−1, we can write

σ−1

L−1
=

infy∈Rn µs
m(JF−1(y))

supy∈Rn ‖JF−1(y)‖
=

infx∈Rn µs
m(JF(x)−1)

supx∈Rn ‖JF(x)−1‖
≤ inf

x∈Rn

µs
m(JF(x)−1)
‖JF(x)−1‖

.

This completes the proof. 2

Although the sufficient condition (16) is the strongest one among those we analyzed,
it gives a clear geometric picture of the kind of conditions we need in order to guaran-
tee nonsingularity. Note that Lipschitz continuity and strong monotonicity of F imply
that also the inverse of F enjoys the same properties, see Proposition 5, so that L−1
and σ−1 are well defined. Furthermore, observe that (σ−1/L−1) ≤ 1 (this is obvious
from the very definition of these constants, see Appendix). Therefore (16) stipulates
that c(x) is rather “flat” and consequently, K(x) varies “slowly”, in some sense.

Remark 2 Reference [32] is one of the interesting papers where the moving set struc-
ture has been used in order to show convergence of some algorithm for QVIs. It is
shown in [32] that if α ≤ σ

L , where α and L are the Lipschitz moduli of c and F ,
respectively, and σ is the strong monotonicity modulus of F , then a certain gradi-
ent projection type method converges to the unique solution of the QVI. It is then
of interest to contrast this condition to our condition α ≤ σ−1

L−1
in Corollary 3 (d)

(which is the strongest among the conditions we considered). If the function F is a
gradient mapping, then Proposition 6 implies that σ/L = σ−1/L−1, so that our con-
dition and that in [32] are exactly the same. However, in general σ−1/L−1 < σ/L and
σ−1/L−1 > σ/L can both occur. In fact, consider the function

F(x) =

 1 0 1
0 1 0
0 1 1

x.

It is easy to see that σ(Rn,F) = 1− 1√
2

and L(Rn,F)' 1.8019. Moreover, we have

F−1(x) =

 1 1 −1
0 1 0
0 −1 1

x.

Again, it is easy to see that σ(Rn,F−1) = 1
2 and L(Rn,F−1)' 2.2470. Therefore, we

have
σ(Rn,F)
L(Rn,F)

' 0.1625 < 0.2225' σ(Rn,F−1)
L(Rn,F−1)

,

and then for this function our condition is less restrictive than that in [32]. But it is
sufficient to switch the function with its inverse to get exactly the opposite. Therefore
there is no one condition that dominates the other one in general. 2
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3.3 Linear Constraints with Variable Right-hand Side

We now pass to consider the case in which the feasible set K(x) is given by

K(x) = {y ∈ Rn | g(y,x) := Ey−b− c(x)≤ 0}, (17)

where E ∈ Rm×n is a given matrix, c : Rn → Rm and b ∈ Rm. In this class of QVIs,
the feasible set is defined by linear inequalities in which the right-hand side depends
on x.

Theorem 5 Let g be defined as in (17), let x ∈ Rn be a given point, and assume that
F and c are C1 around x. Suppose further that JF(x) is positive definite and that

‖Jc(x)‖ ≤ µ+
m (x)

‖JF(x)−1‖‖E‖
, (18)

where

µ
+
m (x) = min{µ+

m (A) | A is a principal submatrix of
1
2

E(JF(x)−1 + JF(x)−T )ET},

µ+
m (A) denotes the minimum positive eigenvalue of the matrix A, and A−T is the

transpose of the inverse of A. Then JH(x,λ ,w) is nonsingular for all positive λ and
w.

Proof We will show that the assumptions from Corollary 2 hold. First of all note
that the hypotheses imply Assumptions 1 and 2. Taking into account (17), we have
∇yg(x,x) = ET and Jxh(x) = E− Jc(x). Since JF(x) is nonsingular by assumption,
we can write

M := M(x,λ ) = (E− Jc(x))JF(x)−1ET .

In view of Corollary 2, we need to show that M is a P0 matrix.
To this end, we first observe that the rank of M is obviously less or equal to n (the

rank of JF(x)). Hence each principal minor of M with dimension greater than n is
equal to zero. Therefore, it suffices to show that each principal minor of M with size
less or equal to n is nonnegative.

A generic principal submatrix of M with dimension s≤ n is defined by

(Ei∗− Jc(x)i∗)i∈IsJF(x)−1(Ei∗)T
i∈Is

where Is is a subset of {1, . . . ,m} with cardinality equal to s. Therefore, each of these
subsets of indices defines a principal submatrix of M. Now we have two cases: EIs :=
(Ei∗)i∈Is has full row rank or not. If not, the principal minor corresponding to Is is
equal to zero. Otherwise, if EIs has full row rank, then we can prove that the principal
submatrix corresponding to Is is positive semidefinite. In fact, we can write

vT EIsJF(x)−1ET
Isv ≥ µ

+
m (x)‖v‖2

(18)
≥ ‖Jc(x)‖‖JF(x)−1‖‖E‖‖v‖2

≥ ‖Jc(x)Is‖‖JF(x)−1‖‖EIs‖‖v‖2

≥ vT Jc(x)Is JF(x)−1EIs v, ∀v ∈ Rn,



15

where the third inequality follows from the fact that the spectral norm of a submatrix
is less or equal to the spectral norm of the matrix itself. Then we have

vT (EIs − Jc(x)Is)JF(x)−1ET
Isv≥ 0, ∀v ∈ Rn.

Hence M is a P0 matrix, and using Corollary 2, we have the thesis. 2

By the inclusion principle (see, for example, [24, Theorem 4.3.15]) and recalling
condition (18), it is clear that if the matrix E has full row rank, then we have

µ
+
m (x) = µ

s
m(EJF(x)−1ET ).

This allows us to state the following immediate corollary.

Corollary 4 Let g be defined as in (17), let x ∈Rn be a given point, and assume that
F and c are C1 around x. Moreover, suppose that E has full row rank. Suppose that
JF(x) is positive definite and that

‖Jc(x)‖ ≤ µs
m(EJF(x)−1ET )
‖JF(x)−1‖‖E‖

.

Then JH(x,λ ,w) is nonsingular for all positive λ and w.

Technicalities apart, the meaning of Theorem 5 is that c(x) should not vary “too
quickly”. Note, however, that, in contrast to the case from the previous section, this
does not immediately imply that K(x) changes “slowly” with x, since a polyhedron
can have abrupt changes even when the right-hand side changes only slightly.

The following result parallels Corollary 3 and gives stronger, but more expressive
conditions for the nonsingularity of JH.

Corollary 5 Assume the same setting as in Theorem 5 and consider the following
conditions:

(a) The matrix M(x,λ ) is nonsingular on Rn×Rm
++;

(b) For all x ∈ Rn, JF(x) is positive definite and condition (18) holds;
(c) For all x, JF(x) is positive definite and it holds that

‖Jc(x)‖ ≤ µs
m(JF(x)−1)
‖JF(x)−1‖

µ+
m

‖E‖
,

where µ+
m = min{µ+

m (A) | A is a principal submatrix of EET};
(d) The Jacobian JF(x) is positive definite for all x ∈ Rn, and it holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn

µs
m(JF(x)−1)
‖JF(x)−1‖

µ+
m

‖E‖
;

(e) c is Lipschitz continuous on Rn with Lipschitz modulus α , F is Lipschitz contin-
uous on Rn and strongly monotone on Rn, the moduli of Lipschitz continuity and
strong monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1

µ+
m

‖E‖
,

where µ+
m is defined as before.
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Then the following implications hold:

(e) =⇒ (d) =⇒ (c) =⇒ (b) =⇒ (a).

Proof We only prove the implication (c) =⇒ (b), the other ones are very similar to
those of Corollary 3, hence they are left to the reader.

In order to verify the implication (c) =⇒ (b), we have to show that

µ
+
m (x)≥ µ

s
m(JF(x)−1)µ

+
m , ∀x ∈ Rn (19)

holds. Take an arbitrary x, and let I∗s be a set of indices such that 1
2 EI∗s (JF(x)−1 +

JF(x)−T )ET
I∗s

is a submatrix of 1
2 E(JF(x)−1 +JF(x)−T )ET for which one obtains the

minimum positive eigenvalue µ+
m (x) for the given x. Let v̄ be an eigenvector of the

matrix 1
2 EI∗s (JF(x)−1 + JF(x)−T )ET

I∗s
associated to µ+

m (x); we may assume without
loss of generality that ‖v̄‖= 1. Then we have

v̄T EI∗s JF(x)−1ET
I∗s v̄ =

1
2

v̄T EI∗s (JF(x)−1 + JF(x)−T )ET
I∗s v̄ = µ

+
m (x)‖v̄‖2 = µ

+
m (x).

(20)
Since the eigenvectors corresponding to different eigenvalues of a symmetric matrix
are orthogonal to each other, we have v̄⊥ null

( 1
2 EI∗s (JF(x)−1 +JF(x)−T )ET

I∗s

)
. How-

ever, it is easy to see that, for any positive definite (not necessarily symmetric) matrix
A, the two matrices EI∗s AET

I∗s
and EI∗s ET

I∗s
have the same null space. Hence we also have

v̄ ⊥ null
(
EI∗s ET

I∗s

)
. Now, assuming that EI∗s ET

I∗s
is an s× s-matrix, let EI∗s ET

I∗s
= QDQT

with Q ∈ Rs×s orthogonal and D = diag(λ1, . . . ,λs) be the spectral decomposition of
EI∗s ET

I∗s
, i.e. λi are the eigenvalues with corresponding eigenvectors vi being the i-th

column of Q. Suppose further that the null space of this matrix has dimension r ≤ s
and that the eigenvalues are ordered such that λ1 ≤ . . .≤ λs. Then λ1 = . . . = λr = 0
(and λr+1 ≥ µ+

m in our notation) and the eigenvectors v1, . . . ,vr form a basis of the
null space of EI∗s ET

I∗s
. We therefore have v̄T vi = 0 for all i = 1, . . . ,r. Consequently,

wi = 0 for all i = 1, . . . ,r, where w := QT v̄. It therefore follows that

v̄T EI∗s ET
I∗s v̄ = v̄T QDQT v̄ = wT Dw =

s

∑
i=1

λiw2
i

=
s

∑
i=r+1

λiw2
i ≥ µ

+
m

s

∑
i=r+1

w2
i = µ

+
m

s

∑
i=1

w2
i = µ

+
m ‖w‖2 = µ

+
m ‖v̄‖2 = µ

+
m .

Combining this inequality with (20), we obtain

µ
+
m (x) = v̄T EI∗s JF(x)−1ET

I∗s v̄≥ µ
s
m(JF(x)−1)v̄T EI∗s ET

I∗s v̄≥ µ
s
m(JF(x)−1)µ

+
m ,

and this shows that (19) holds. 2

So far, in this subsection we have considered only QVIs that are linear in the y-part.
This restriction has allowed us to give conditions that do not depend on the multipliers
λ . However, we can extend the results we have obtained to the more general setting
in which

K(x) = {y ∈ Rn |g(y,x) := q(y)− c(x)≤ 0}, (21)
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where both q and c are functions from Rn to Rm. We can prove the following theorem,
in which nonsingularity conditions now also depend on the Lagrange multiplier λ .
The proof follows lines identical to those of Theorem 5 and is therefore omitted.

Theorem 6 Let g be defined as in (21), let a point (x,λ ) ∈ Rn×Rm
++ be given and

assume that F and c are C1 while q is C2 around x. Suppose further that JxL(x,λ ) is
positive definite and that

‖Jc(x)‖ ≤ µ+
m (x,λ )

‖JxL(x,λ )−1‖‖Jq(x)‖
,

where µ+
m (x,λ ) = min{µ+

m (A) | A is a principal submatrix of 1
2 Jq(x)(JxL(x,λ )−1 +

JxL(x,λ )−T ) Jq(x)T} and µ+
m (A) denotes once again the minimum positive eigen-

value of a symmetric matrix A. Then JH(x,λ ,w) is nonsingular for all positive w.

We conclude by considering a particular structure of the constraints of the QVI that
is a subclass of that studied in this section. Suppose that

g(y,x) :=

 l− y
y−u

I± (y− c(x))

≤ 0, (22)

where I± is a diagonal matrix with elements equal to 1 or -1, that is there are box con-
straints for y with lower bounds l and upper bounds u, and n special linear constraints
with variable right-hand side.

Theorem 7 Let g be defined as in (22), let a point x ∈ Rn be given and assume that
around x it holds that F and c are C1. Suppose that JF(x) and I− Jc(x) are row
diagonally dominant with positive diagonal entries. Then JH(x,λ ,w) is nonsingular
for all positive λ and w.

Proof Let

D :=

D1 0 0
0 D2 0
0 0 D3

 := diag(w−1 ◦λ ),

where D1,D2,D3 ∈ Rn×n and w = (w1,w2,w3),λ = (λ 1,λ 2,λ 3) denote the slack
variables and Lagrange multipliers corresponding to the three blocks in the definition
of the inequality constraints from (22), respectively. Then we can write

N(x,λ ,w) = JF(x)+
(
−I I I±

)
D

 −I
I

I±(I− Jc(x))


= JF(x)+D1 +D2 +D3 (I− Jc(x)) .

Note that D3 (I− Jc(x)) is a row diagonally dominant matrix with positive diagonal
entries for all λ and w positive. Hence N(x,λ ,w) is a strictly row diagonally dominant
matrix for all λ and w positive since it is the sum of two row diagonally dominant
matrices with positive diagonal entries (JF(x) and D3 (I− Jc(x))) and two strictly
row diagonally dominant matrices with positive diagonal entries (D1 and D2). Re-
calling that every strictly row diagonally dominant matrix is nonsingular, we obtain
the thesis. 2
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It is possible to generalize constraints (22) by imposing that lower or upper bounds
may not exist for every variable and that the number of special linear constraints with
variable right-hand side may be less or greater than n:

g(y,x) :=


(li− yi)i∈L
(yi−ui)i∈U(

yi− c j
i (x)

) j∈C(i)

i∈S+(
−yi +d j

i (x)
) j∈D(i)

i∈S−

≤ 0. (23)

For QVIs with these constraints a result similar to Theorem 7 can be given. The proof
of this theorem is akin to that of Theorem 7 and hence it is left to the reader.

Theorem 8 Let g be defined as in (23), let a point x ∈ Rn be given and assume that
around x it holds that F, c and d are continuously differentiable. Suppose that JF(x)
is row diagonally dominant with positive diagonal entries and such that for every
i /∈ L∪U it holds that JF(x)ii > ∑k=1,...,n,k 6=i |JF(x)ik|. Suppose further that for all
i ∈ S+ and all j ∈C(i) it holds that

1−
∂c j

i (x)
∂xi

≥ ∑
k=1,...,n,k 6=i

∣∣∣∣∣∂c j
i (x)

∂xk

∣∣∣∣∣ ,
and that for all i ∈ S− and all j ∈ D(i) it holds that

1−
∂d j

i (x)
∂xi

≥ ∑
k=1,...,n,k 6=i

∣∣∣∣∣∂d j
i (x)

∂xk

∣∣∣∣∣ .
Then JH(x,λ ,w) is nonsingular for all positive λ and w.

3.3.1 Generalized Nash Equilibrium Problems

As we mentioned in the Introduction, the approach used in this paper is motivated
by some recent results obtained in [14] for the case of Generalized Nash Equilib-
rium Problems (GNEPs). In this subsection, we consider GNEPs, reformulate them
as QVIs and show that our new results improve on the specialized ones in [14]. For
more background material on GNEPs, we refer the interested reader to the survey
paper [16].

We consider GNEPs where each player solves a problem whose feasible set is
defined by a system of linear inequalities with variable right-hand side, i.e., player
ν (ν = 1, . . . ,N) controls xν ∈ Rnν and tries to solve the optimization problem

min
xν

θν(xν ,x−ν) s.t. Eν xν −bν − cν(x−ν)≤ 0 (24)

with given θν : Rn→ R, Eν ∈ Rmν×nν and cν : Rn−nν → Rmν , bν ∈ Rmν . Here, n :=
n1 + . . .+ nN denotes the total number of variables, m := m1 + . . .+ mN will be the
total number of (inequality) constraints, and (xν ,x−ν) is a short-hand notation for
the full vector x := (x1,x2, . . . ,xN), so that x−ν subsumes all the block vectors xµ
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with µ 6= ν . In what follows, we assume that θν(·,x−ν) is convex for every x−ν ,
and for every ν = 1, . . . ,N. Moreover, we assume that θν are C1 functions for every
ν = 1, . . . ,N.

It is well known that a solution of the GNEP (24) can be computed by solving the
following QVI:

Find x̄ ∈ {x ∈ Rn : Eν xν −bν − cν(x−ν)≤ 0,ν = 1, . . . ,N} such that

(∇xν θν(x̄))N
ν=1

T
(y− x̄)≥ 0, ∀y ∈ Rn : Eν yν −bν − cν(x̄−ν)≤ 0, ν = 1, . . . ,N.

(25)

To simplify the notation, we write

F(x) := (∇xν θν(x))N
ν=1 , E :=

E1 0
. . .

0 EN

 , c(x) :=

 c1(x−1)
...

cN(x−N)

 . (26)

Note that the QVI (25) belongs to the class of QVIs whose constraints are defined by
(17). This fact allows us to rewrite Theorem 5 for the GNEP (24).

Theorem 9 Consider a GNEP in which each player tries to solve (24). Recalling the
notation in (26), let a point x ∈ Rn be given and assume that F and c are C1 around
x. Suppose further that JF(x) is positive definite and that

‖Jc(x)‖ ≤ µ+
m (x)

‖JF(x)−1‖‖E‖
, (27)

where µ+
m (x)= min{µ+

m (A) |A is a principal submatrix of 1
2 E(JF(x)−1 +JF(x)−T )ET},

and µ+
m (A) is again the minimum positive eigenvalue of the matrix A. Then JH(x,λ ,w)

is nonsingular for all positive λ and w.

Note that a similar result is stated in [14]. In particular, Theorem 4.7 in [14] gives

JF(x) positive definite and ‖Jc(x)‖ ≤ µs
m(EJF(x)−1ET )
‖JF(x)−1‖‖E‖

, (28)

as a sufficient condition for the nonsingularity of the Jacobian of H for all λ and w
positive, in the case of the QVI (25). However, Theorem 9 gives better conditions, in
fact it is clear that

µ
s
m(EJF(x)−1ET )≤ µ

+
m (x)

and then conditions (28) imply those of Theorem 9. The following example describes
a GNEP that satisfies the conditions of Theorem 9, but violates those from (28) for
all x.

Example 1 Consider a GNEP in which there are two players controlling one variable
each one, x1 and x2 respectively. The optimization problems of the players are the
following:

min
x1

(x1−2)2

s.t. x1 + 1
2 x2 ≤ 1,

x1 ≥ 0,

min
x2

(x2−2)2

s.t. x2 + 1
2 x1 ≤ 1,

x2 ≥ 0.
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This GNEP has only one equilibrium in ( 2
3 , 2

3 ). Referring to the notation in (26), we
write

F(x) =
(

2x1−4
2x2−4

)
, E =


1 0
−1 0

0 1
0 −1

 , c(x) =


− 1

2 x2

0

− 1
2 x1

0

 .

Then

JF(x) =
(

2 0
0 2

)
� 0, JF(x)−1 =

( 1
2 0
0 1

2

)
, Jc(x) =


0 − 1

2
0 0
− 1

2 0
0 0

 .

Since ‖JF(x)−1‖= 1
2 , ‖E‖=

√
2, ‖Jc(x)‖= 1

2 , and

EJF(x)−1ET =
1
2


1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

 ,

conditions (28) do not hold since µs
m(EJF−1ET ) = 0 and therefore 1

2 6≤ 0. However,
condition (27) holds because, recalling the notation of Theorem 9, µ+

m (x) = 1
2 , and

then we have 1
2 <

1
2

1
2
√

2
= 1√

2
. 2

3.4 Box Constraints and “Binary Constraints”

We now consider the situation where each component gi of the constraint function
from (2) depends only on a single pair (y j,x j) for some index j ∈ {1, . . . ,n}. In
particular, this includes the case of bounds having parametric bound constraints. We
use the terminology “binary constraints” for this class of problems. The following
result shows how the nonsingularity Theorem 3 can be applied.

Theorem 10 Let x∈Rn and λ > 0 be given. Suppose that each constraint gi(·, ·) (i =
1, . . . ,m) depends only on a single couple (y j,x j) for some j ∈ {1, . . . ,n} and that
Assumptions 1 and 2 hold. Assume further that one of the following conditions holds:

(a) JxL(x,λ ) is a P-matrix and ∇y j gi(x j,x j)∇x j hi(x j)≥ 0 for all i and j, or
(b) JxL(x,λ ) is a P0-matrix and ∇y j gi(x j,x j)∇x j hi(x j) > 0 for all i and j.

Then JH(x,λ ,w) is nonsingular for all positive w.

Proof We verify the statement under condition (a) since the proof under (b) is essen-
tially identical.

We assume without loss of generality that the constraints g are ordered in such
a way that the first m1 constraints depend on the pair (y1,x1) only, the next m2 con-
straints depend on the couple (y2,x2) only, and so on, with the last mn constraints
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depending on (yn,xn) only. Note that mi might be equal to zero for some of the in-
dices i ∈ {1, . . . ,n}, and that we have m1 + m2 + . . .+ mn = m. Taking this ordering
into account, it is not difficult to see that

Jxh(x) =



∇x1h1(x1) 0 · · · 0
∇x1h2(x1) 0 · · · 0

...
...

...
∇x1hm1(x1) 0 · · · 0

0 ∇x2hm1+1(x2) 0
...

...
...

0 ∇x2 hm1+m2(x2) 0

0 0
. . . 0

...
...

...
...

... 0 ∇xnhm−mn+1(xn)
...

...
...

...
0 0 0 ∇xnhm(xn)



,

whereas ∇yg(x,x) is given by∇y1g1(x1,x1) · · · ∇y1gm1(x1,x1) 0 · · · · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · · · · 0 ∇yngm−mn+1(xn,xn) · · · ∇yngm(xn,xn)

 .

Then, an easy calculation shows that the matrix N(x,λ ,w) from (8) is given by

N(x,λ ,w) = JxL(x,λ )+D

with the diagonal matrix

D :=


∑

m1
i=1

λi
wi

∇y1gi(x1,x1)∇x1hi(x1) 0
. . .

0 ∑
m
i=m−mn+1

λi
wi

∇yngi(xn,xn)∇xnhi(xn)

 .

In view of assumption (a) together with λ ,w > 0, it follows that JxL(x,λ ) is a P-
matrix and the diagonal matrix D is positive semidefinite. This implies that N(x,λ ,w)
is nonsingular for all positive w, and then from Theorem 3 we obtain the thesis. 2

We give below a specialization which deals with the most important case of Theorem
10: the case in which the constraints are bound constraints of the type

ui(yi,xi) := yi−aixi ≤ ci ∀i = 1, . . . ,n and (29)
li(yi,xi) := −yi +bixi ≤ di ∀i = 1, . . . ,n. (30)

For this class of QVIs, Theorem 10 easily gives the following corollary.
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Corollary 6 Let x ∈ Rn be given, and consider a QVI whose feasible set is defined
by the constraints (29) and (30) and suppose that F is C1 around x. Assume that one
of the following conditions hold:

(a) JF(x) is a P0-matrix and ai < 1,bi < 1 for all i = 1, . . . ,n, or
(b) JF(x) is a P-matrix and ai ≤ 1,bi ≤ 1 for all i = 1, . . . ,n.

Then JH(x,λ ,w) is nonsingular for all positive λ and w.

In principle, QVIs with box constraints can be viewed as a subclass of QVIs with
linear constraints and variable right-hand sides, see (23). However, the conditions we
got here are somewhat weaker. Note in particular that the conditions in Theorem 8
require JF to be diagonally dominant with positive diagonal elements, which implies
that JF must be P0, while a P0 matrix is not necessarily diagonally dominant.

3.5 Bilinear Constraints

We conclude this section on nonsingularity results for JH by considering the case of
bilinear constraints which can be considered as a natural variant of the case of (linear)
constraints with variable right-hand side in which the right-hand sides are fixed, but
the coefficients of the linear part vary. Specifically, we consider a QVI in which the
feasible set is defined by some convex “private” constraints qi(y) ≤ 0 (that depend
only on y) and some bilinear constraints of the form

xT Qiy− ci ≤ 0

in which each matrix Qi is symmetric and positive semidefinite. Hence we consider
constraints of the form

g(y,x) :=



q1(y)
...

qp(y)
xT Q1y− c1

...
xT Qby− cb


≤ 0. (31)

In order to deal with these constraints we give a preliminary result on QVIs in which
the feasible set satisfies the condition

∇xh(x) = ∇yg(x,x)D+, (32)

where D+ is a diagonal matrix with nonnegative entries. Although this is a technical
result, it is the key to the analysis of QVIs with bilinear constraints.

Theorem 11 Suppose that Assumptions 1 and 2 hold. Let x∈Rn and λ > 0 be given.
Assume that g and h satisfy equation (32) in x, and that JxL(x,λ ) is a positive definite
matrix. Then JH(x,λ ,w) is nonsingular for all positive w.
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Proof It is easy to see that the matrix M from Corollary 2 is given by

M(x,λ ) = D+ ∇yg(x,x)T JxL(x,λ )−1
∇yg(x,x),

which is the product of a diagonal matrix with nonnegative entries and a positive
semidefinite matrix. It is well known that a matrix with this form is P0, and then by
Corollary 2 the thesis holds. 2

Now, it is not difficult to see that the constraints (31) satisfy condition (32) with D+
having the first p entries equal to 1 and the last b entries equal to 2. Therefore, the
nonsingularity of JH follows immediately from Theorem 11.

Corollary 7 Consider the constraints (31), with each qi, i = 1, . . . , p, convex and C2

and each Q j, j = 1, . . . ,b, positive semidefinite and symmetric and suppose that F is
C1. Let x ∈ Rn and λ > 0 be given and assume that JxL(x,λ ) is a positive definite
matrix. Then JH(x,λ ,w) is nonsingular for all positive w.

Note that JxL(x,λ ) is certainly positive definite if either F is strongly monotone, or
at least one qi is strongly convex or at least one Q j is positive definite.

4 Boundedness

In this section, we consider conditions guaranteeing that a sequence generated by
Algorithm 1 is bounded and, therefore, has an accumulation point. We first discuss
a general result and then its application to the moving set case. Application of the
general result to the remaining settings considered before does not require any spe-
cific investigation, so we conclude the section with a few more examples and general
considerations.

4.1 General Boundedness Conditions

We begin with a general result that shows that under a sort of coercivity condition
((a1) below) and constraint qualification ((a2) below) we can guarantee boundedness
of the sequence generated by Algorithm 1. We recall that we assume that K(x) is
defined by (2) and that h(x) := g(x,x).

Theorem 12 Let the setting and the assumptions of Theorem 2 be satisfied and sup-
pose, in addition, that

(a1) lim
‖x‖→∞

‖max{0,h(x)}‖= ∞,

(a2) for all x∈Rn there exist a d such that ∇ygi(x,x)T d < 0 for all i∈ {i : hi(x)≥ 0}.

Then any sequence generated by Algorithm 1 remains bounded, and any accumula-
tion point is a solution of the QVI.
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Proof By Theorem 2 (a), it is enough to show that ‖H(x,λ ,w)‖ has bounded level
sets over ZI . To this end, suppose that a sequence {(xk,λ k,wk)} ⊆ ZI exists such that
limk→∞ ‖(xk,λ k,wk)‖= ∞. We will show that ‖H(xk,λ k,wk)‖→ ∞ as k→ ∞.

We first claim that the sequence {xk} is bounded. Assume we have ‖xk‖ → ∞.
Then condition (a1) would imply ‖max{0,h(xk)}‖→ ∞. Hence there would exist an
index j∈{1, . . . ,m} such that, on a suitable subsequence, h j(xk)→+∞, and therefore
also ‖h(xk) + wk‖ → ∞ since wk > 0. But this would imply ‖H(xk,λ k,wk)‖ → ∞

and gives the desired contradiction. Hence it remains to consider the case in which
‖(λ k,wk)‖→ ∞ and {xk} is bounded.

Suppose that ‖wk‖ → ∞ and {xk} is bounded. Then {h(xk)} is also bounded due
to the continuity of h. We therefore obtain ‖h(xk)+ wk‖ → ∞. This, in turn, implies
‖H(xk,λ k,wk)‖→∞ which, again, is a contradiction. Thus we have to consider only
the case where ‖λ k‖→ ∞ and {(xk,wk)} is bounded.

For ‖λ k‖ → ∞, let Jλ be the set of indices such that {λ k
j } → ∞, whereas, subse-

quencing if necessary, we may assume that the remaining components stay bounded.
Without loss of generality, we may also assume that xk → x̄ and wk → w̄. If, for
some j ∈ Jλ , we have w̄ j > 0, it follows that λ k

j wk
j → +∞ and, therefore, again

‖H(xk,λ k,wk)‖ → ∞. Consequently, it remains to consider the case where w̄ j = 0
for all j ∈ Jλ .

Since (xk,λ k,wk) belongs to ZI , we have h j(xk)+wk
j > 0 which implies h j(x̄)≥ 0

for all j ∈ Jλ . Hence we can apply condition (a2) and obtain a vector d such that
∇yg j(x̄, x̄)T d < 0, ∀ j ∈ Jλ . This implies

lim
k→∞

L(xk,λ k)T d = lim
k→∞

(
F(xk)T d + ∑

j 6∈Jλ

λ
k
j ∇yg j(xk,xk)T d

)
+

+ lim
k→∞

(
∑
j∈Jλ

λ
k
j ∇yg j(xk,xk)T d

)
=−∞

since the first term is bounded (because {xk} → x̄ and the functions F and ∇yg are
continuous, and because all sequences {λ k

j } for j 6∈ Jλ are bounded by definition
of the index set Jλ ), whereas the second term is unbounded since λ k

j → +∞ and
∇yg j(x̄, x̄)T d < 0 for all j ∈ Jλ . Using the Cauchy-Schwarz inequality, we therefore
obtain

‖L(xk,λ k)‖‖d‖ ≥ |L(xk,λ k)T d| → ∞

for k→ ∞. Since d is a fixed vector, this implies ‖L(xk,λ k)‖ → ∞ which, in turn,
implies ‖H(xk,λ k,wk)‖→ ∞ for k→ ∞. This contradiction, together with Theorems
1 and 2, completes the proof. 2

Note that condition (a1) in Theorem 12 essentially guarantees boundedness of the x-
and w-parts, whereas (a2) is needed for the λ -part. Condition (a1) is a mild coercivity
condition that implies neither the boundedness of K(x) for any x nor the existence of
a compact set K such that K(x)⊆ K for all x, as one might think at first sight.

Example 2 Consider a problem with K(x) = {y ∈ R |y + x2 ≤ 1}. In this case, for
every x, the set K(x) is unbounded and yet (a1) is easily seen to hold, since h(x) =
x+ x2−1. 2
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Example 3 Consider a problem with K(x) = {y ∈R2 |‖y+x‖2 ≤ 1}. In this case, for
every x, the set K(x) is a ball of radius 1 and center in −x. We have ∪x∈RnK(x) = Rn.
But h(x) = 4‖x‖2−1 and so (a1) holds. 2

However, uniform boundedness of K(x) does imply (a1) if some, very common and
natural, further structure is assumed. So suppose K(x) = K∩K′(x), i.e. suppose that
K(x) is given by the intersection of a fixed set K and a point to set mapping K′.
Analytically, this simply means that if K(x) = {y∈Rn |g(x,y)≤ 0}, then some of the
gi actually only depend on y. Obviously, if K is bounded, K(x) is uniformly bounded
when x varies. In the proposition below we assume for simplicity that K is a bounded
polyhedron (a quite common case, but see the remark following the proposition for a
simple generalization).

Proposition 1 Let K(x) be defined by (2) with g continuous and convex in y for every
x ∈ Rn. Suppose that the first p inequalities of g are of the form Ay ≤ b and that the
polyhedron defined by these inequalities is bounded. Then (a1) in Theorem 12 holds.

Proof Denote by K the bounded polyhedron defined by the inequalities Ay ≤ b. By
Hoffman’s error bound, we know there exists a positive constant c such that for every
x ∈Rn we have dist(x,K)≤ c‖max{0,Ax−b}‖. Since K is bounded, this shows that
lim‖x‖→∞ ‖max{0,Ax−b}‖= ∞. But then (a1) in Theorem 12 follows readily. 2

Remark 3 It is clear that the polyhedrality of the set K is only used to deduce that
an error bound holds. Therefore, it is straightforward to generalize the above result
in the following way: Suppose that the first inequalities of g define a bounded set
K = {gi(y) ≤ 0, i = 1, . . . , p} and that an error bound holds for this system of p in-
equalities. Then (a1) in Theorem 12 holds. The literature on error bounds is vast and
there are many conditions that ensure the error bound condition, polyhedrality is just
one of them. We refer the interested reader to [18,41]. 2

Condition (a2) in Theorem 12 is a very mild constraint qualification. It is related
to the well-known Extended Mangasarian-Fromovitz Constraint Qualification (EM-
FCQ) for a system of inequalities.

Definition 1 We say that a system of continuously differentiable inequalities f (x)≤
0, with f : Rn → Rm, satisfies the EMFCQ if, for all x ∈ Rn, there exists a vector
d ∈ Rn such that ∇ fi(x)T d < 0, for all i such that fi(x)≥ 0.

For each given x, the set K(x) is defined by the system of inequalities g(y,x) ≤ 0. It
is then clear that condition (a2) is the requirement that an EMFCQ-like conditions
holds just at the point y = x and that this is a much weaker requirement than requiring
the EMFCQ to hold for the system g(y,x) ≤ 0. We give an example to clarify this
point.

Example 4 Consider a problem with K(x) = {y ∈ R | y2 + x2 − 1 ≤ 0}. We have
∇yg(x,x) = 2x. It is clear that we can find a d ∈R such tht 2xd < 0 at any point except
at x = 0. Therefore, (a2) holds because we have h(0) < 0. The EMFCQ, instead, is
not satisfied for the set K(1). In fact ∇yg(y,1) = 2y and for y = 0 it is immediate to
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verify that the EMFCQ fails. It is interesting to observe that for this problem also (a1)
clearly holds.

Furthermore, if x is greater than 1, we have K(x) = ∅, hence this simple example
also shows that (a1) and (a2) together do not imply K(x) 6= ∅ for all x. The latter is
a condition often encountered in papers dealing with algorithms for the solution of
QVIs. 2

Armed with the developments so far, we can now study the applicability of Theorem
12 to the moving set case, which is the only setting, among those considered in the
previous section, for which an additional analysis is useful.

4.2 The Moving Set Case

Consider the QVI structure defined in subsection 3.2:

K(x) := c(x)+Q = {y ∈ Rn |q(y− c(x))≤ 0}, Q := {y ∈ Rn |q(y)≤ 0}.

We recall that, in the previous section, we have given sufficient conditions for non-
singularity of JH. Such conditions presuppose that ‖Jc(x)‖ ≤ 1 for all x ∈ Rn. In the
next proposition, we show that if the constraints q(x) ≤ 0 define a full-dimensional
bounded set and ‖Jc(x)‖ is uniformly bounded away from 1, then conditions (a1) and
(a2) of Theorem 12 hold.

Proposition 2 In the setting described above, assume that c and q are continuously
differentiable. Suppose that:

(b1) ‖Jc(x)‖ ≤ α < 1 for all x ∈ Rn;
(b2) Q is compact and the system q(y)≤ 0 satisfies Slater’s condition, i.e. there exists

ȳ such that q(ȳ) < 0.

Then conditions (a1) and (a2) of Theorem 12 hold.

Proof Since ‖Jc(x)‖ ≤ α for all x ∈ Rn, the Cauchy-Schwarz inequality implies
yT Jc(x)y ≤ α‖y‖2 for all x,y ∈ Rn. Therefore, yT (I− Jc(x))y ≥ (1−α)‖y‖2 for all
x,y ∈ Rn, hence the function x− c(x) is strongly monotone on Rn and, consequently,
lim‖x‖→∞ ‖x−c(x)‖= ∞. Now, since qi is convex for all components i, it follows that
max{0,qi} and, therefore, also ‖max{0,q(z)}‖ is convex. Hence, the corresponding
level sets are bounded for all levels if and only if at least one level set is bounded.
But the level set with level zero is precisely the set Q which was assumed to be
compact. It therefore follows that all level sets of the function z 7→ ‖max{0,q(z)}‖
are bounded. But then lim‖x‖→∞ ‖x− c(x)‖ = ∞ implies lim‖x‖→∞ ‖max{0,q(x−
c(x))}‖= ∞, hence condition (a1) holds.

To show that also (a2) is satisfied, we first note that ∇yg(x,x) = ∇q(x− c(x)).
Therefore, taking d := ȳ− (x− c(x)), with ȳ being the Slater point from assumption
(b2), the convexity of qi implies

0 > q(ȳ)≥ qi(x− c(x))+∇qi(x− c(x))T
(
ȳ− (x− c(x)

)
for all components i such that hi(x) = qi(x− c(x)) ≥ 0. But this immediately gives
∇ygi(x,x)T d < 0 for all i with hi(x)≥ 0. 2
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4.3 Final Examples and Comments

We complete our discussion by giving a few additional examples on which we apply
the results of both this and the previous section in order to show the ability of our
algorithm to solve problems that are not solvable by other methods. This will also
give us the opportunity to discuss very briefly some existence implications of the
results obtained so far.

An often used assumption in the analysis of algorithms and also in many existence
proofs is that either K(x) is nonempty for all x ∈ Rn or that there exists a convex
compact set T ⊂ Rn such that K(T ) ⊆ T and K(x) is nonempty for all x ∈ T . The
following example shows that this assumption is not implied by our conditions.

Example 5 Consider a one dimensional QVI with F(x)= x3 and K(x)= {y∈Rn |y2 +
x2 + x4− 1 ≤ 0}. First of all note that K(x) = ∅ if x 6∈ [−a,a], where a ≈ 0.7862 is
the only positive root of the equation x2 + x4 = 1. Furthermore, it is not difficult to
see that there cannot exist a convex compact set T (which would be a closed interval
in our case) such that K(T )⊆ T holds and K(x) is nonempty for all x ∈ T . In fact, it
should be T ⊆ [−a,a] since otherwise K(x) is empty for some x ∈ T . Furthermore,
0 can not belong to T , otherwise K(0) = [−1,1] 6⊆ T . Then T should be an interval
of either all negative or all positive numbers. But if nonempty, K(x) always contains
both positive and negative points.

Nevertheless, we can show that the conditions of Theorem 10 (a) are satisfied. We
have h(x) = 2x2 +x4−1, so that ∇yg(x,x)∇xh(x) = (2x)(4x+4x3) = 8(x2 +x4)≥ 0.
Furthermore JxL(x,λ ) = 3x2 + 2λ which, for every x and positive λ , is positive. So
Theorem 10 (a) tells us that JH(x,λ ,w) is nonsingular for any x and positive λ and
w.

We next verify that also the assumptions of Theorem 12 are met. Condition (a1)
is obvious from the expression of h(x), so we consider (a2). We have ∇yg(x,x) = 2x,
and if x 6= 0, it is sufficient to take d = −x to have ∇yg(x,x)d < 0. If x = 0 this is
not possible, but in this case we also have h(x) < 0 so that (a2) is satisfied. We can
then conclude that every sequence generated by our interior-point method will be
bounded and that every limit point is a solution of the QVI. Note that this also gives
an algorithmic proof of the existence of a solution. We do not know any method
that could provably solve this example. Also proving existence by using other known
results seems not obvious. 2

As far as we are aware of, all methods for which convergence to a solution can be
proved make assumptions that imply the existence of a (at least locally) unique solu-
tion and require the function F to be strongly monotone. In the following example, we
present a problem with a monotone, but not strongly monotone F , that has infinitely
many solutions and for which we can prove convergence of our method.

Example 6 Consider again a one dimensional problem with

F(x) =


−(x+1)4 if x≤−1,

0 if x ∈ [−1,0],

x4 if x≥ 0
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and K(x) = {y ∈ R | −10≤ y≤−2x}. The function F is monotone, but not strongly
monotone, and the solutions of the problem are all points in [−1,0]. The assumptions
of Corollary 6 are easily checked to be satisfied; in fact a1 = −2, b1 = 0 and since
F is monotone, its Jacobian is positive semidefinite. Also condition (a1) in Theorem
12 holds trivially. Consider then (a2) in the same theorem. We have h(x) = (−x−
10,3x)T , so that it is clear that at most one component of h can be positive at any
point, a fact that easily permits to check that also (a2) is satisfied. We conclude that the
interior-point method is able to find a solution of this problem which admits infinitely
many solutions. 2

We remarked already several times that, when it comes to algorithms, the most stud-
ied QVIs are those with a moving set type of constraints. One of the most interesting
papers in this category is [32] where, among other things, a wider class of problems is
studied under a condition, subsequently used also by other authors, which is implied
by the moving set structure (which actually constitutes the main case in which the
condition below can be verified). This condition is

‖ΠK(x)(z)−ΠK(y)(z)‖ ≤ α‖x− y‖, α < 1, ∀x,y,z ∈ Rn, (33)

where ΠK denotes the Euclidean projector on K and α is a positive constant whose
exact definition is immaterial here. Roughly speaking, condition (33) is a strenghten-
ing of a contraction property of the point-to-set mapping K(·). The following example
shows that our assumptions do not imply condition (33).

Example 7 Consider the same problem as in the previous example and, in particular,
its feasible set mapping K(x) = {y ∈ R | −10≤ y≤−2x}. Then

‖ΠK(0)(1)−ΠK(1)(1)‖= ‖0− (−2)‖= 2≤ α‖0−1‖= α

implies α ≥ 2, so that condition (33) does not hold, whereas we have already men-
tioned in Example 6 that our method provably solves this example. 2

5 Numerical Results

In this section we report the results obtained by a preliminary implementation of the
method analyzed so far on a reasonably varied set of test problems. These results
are intended to show the viability of our approach and to give the reader a concrete
feel for the practical behavior of the interior-point method on QVI problems. All
the computations in this paper were done using Matlab 7.6.0 on a Ubuntu 10.04
64 bits PC with Intel(R) Core(TM) i7 CPU 870 and 7.8 GiB of RAM. A larger set
of experiments and a more detailed analysis, with comparisons, is currently being
performed and will be reported elsewhere.
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5.1 Implementation Details

The implemented algorithm corresponds exactly to the theoretical scheme given in
Algorithm 1. In what follows we give some implementation details.

At step (S.2), Algorithm 1 calls for the solution of an n + 2m square linear
system in order to determine the search direction dk. However, this system is very
structured and some simple manipulations permit to reduce its solution to that of a
linear system of dimension n. More precisely, we must find a solution (d̄1, d̄2, d̄3) of
the following linear system of dimension n+2m JxL(x,λ ) ∇yg(x,x) 0

Jxh(x) 0 I
0 diag(w) diag(λ )

 d1
d2
d3

=

 b1
b2
b3

 , (34)

where all the quantities involved are defined in detail in Section 2. It is easy to verify,
by substitution and by the fact that w > 0, that if we compute d̄1 as solution of(

JxL(x,λ )+∇yg(x,x)diag(w−1 ◦λ )Jxh(x)
)

d1 =

b1−∇yg(x,x)diag(w)−1b3 +∇yg(x,x)diag(w−1 ◦λ )b2

and d̄2, d̄3 by d̄3 = b2− Jxh(x)d̄1 and d̄2 = diag(w)−1b3− diag(w−1 ◦λ )d̄3, respec-
tively, this is indeed a solution of (34). This shows clearly that the main computational
burden in solving the linear system (34) is actually the solution of an n×n square lin-
ear system. In order to perform the linear algebra involved, we used Matlab’s linear
system solver mldivide.

In the line search at step (S.3) of Algorithm 1, we take β = 0.5, γ = 10−2 and
ξ = 2m. In order to stay in ZI we preliminarily rescale dk = (dk

x ,d
k
λ
,dk

w). First we
analytically compute a positive constant α such that λ k + αdk

λ
and wk + αdk

w are
greater than 10−10. This ensures that the last two blocks in zk +αdk are in the interior
of R2m

+ . Then, if necessary, we further reduce this α until h(xk +αdk
x)+wk +αdk

w ≥
10−10 thus finally guaranteeing that zk + αdk belongs to ZI . In this latter phase, an
evaluation of h is needed for each bisection. At the end of this process, we set dk ←
αdk and then perform the Armijo line-search.

The value of ρk is set to 0.1. This is only changed, and increased by 0.1, if in the
previous iteration the step size tk is smaller than 0.1. Should ρk reach the value of
0.9, it is reset to 0.1 in the following iteration.

The stopping criterion is based on an equation reformulation of the KKT con-
ditions which uses the Fischer-Burmeister function that, we recall, is defined by
φ(a,b) =

√
a2 +b2 − (a + b) and has the property that φ(a,b) = 0 if and only if

a≥ 0,b≥ 0,ab = 0. The equation reformulation is then defined by

V (x,λ ) =

(
L(x,λ )

(φ(λi,−gi(x,x)))m
i=1

)
.

The main termination criterion is ‖V (xk,λ k)‖∞ ≤ 10−4. The iterations are also stopped
if the number of iterations exceeds 1000 or the running time exceeds one hour.
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Problem n m (mc) Ref.
OUTex40 2 6 (2) [38]
OUTex41 2 6 (2) [38]
OUTex42 4 8 (4) [38]
OUTex43 4 4 (4) [38]
OUTex44 4 4 (4) [38]
OUT1 31 62 124 (62) [37]
OUT1 41 82 164 (82) [37]
Scrim2 2 4800 9600 (4800) [44]
Kun1 1 2500 2500 (2500) [29]
Kun1 2 4900 4900 (4900) [29]
Kun2 1 2500 2500 (2500) [29]
Kun2 2 4900 4900 (4900) [29]
Kun3 1 2500 2500 (2500) [29]
Kun3 2 4900 4900 (4900) [29]
Wal2 105 127 (20) [13]
Wal3 186 218 (30) [13]

Problem n m (mc) Ref.
Wal5 492 534 (40) [13]

MovSet3A 1 1000 1 (1) [17]
MovSet3A 2 2000 1 (1) [17]
MovSet3B 1 1000 1 (1) [17]
MovSet3B 2 2000 1 (1) [17]
MovSet4A 1 400 801 (801) [17]
MovSet4A 2 800 1601 (1601) [17]
MovSet4B 1 400 801 (801) [17]
MovSet4B 2 800 1601 (1601) [17]

Box2A 500 1000 (1000) [17]
Box2B 500 1000 (1000) [17]
Box3A 500 1000 (1000) [17]
Box3B 500 1000 (1000) [17]

RHS1A 1 200 199 (199) [17]
RHS2B 1 200 199 (199) [17]

Table 1 Problems, dimensions, and sources

5.2 Test Problems and Numerical Results

We solved several test problems whose detailed description can be found in [17].
Here we report a few details to make the presentation as self-contained as possible;
nevertheless, for lack of space, we refer the interested reader to [17] for a complete
description. In Table 1 we report, for each problem,

– the number n of variables;
– the number m of the constraints defining the feasible set K(x) and, among these,
– the number mc of constraints that depend on x;
– the source of the problem.

The objective functions of the QVIs are always linear, except for Wal2, Wal5,
Box2, Box3, which are non linear. The constraints of the QVIs are as follows:

– OUTex40, OUTex41, OUTex43, OUT1 (all), Scrim2 2, Box (all), MovSet4 (all),
RHS2B 1 : linear (in x and y)

– OUTex42, OUTex44, Kun (all), Wal (all), MovSet3 (all) , RHS1A 1 : non linear
(in at least x or y).

Problems OUTex (all), MovSet (all), Box (all) and RHS (all) are purely academic
problems, while the remaining problems correspond to some kind of engineering or
economic models. A few more details on these problems are given below.

OUTex40, OUTex41, OUTex42, OUTex43, OUTex44: small academic problems from
[38], where they were used to test a Newton type method;

OUT1 31, OUT1 41: QVI model of an elastic body in contrast to a rigid obstacle
with Coulomb friction (friction coefficient = 10), taken from Example 11.1 in
[37]; the two problems differ in the fragmentation degree of the obstacle in iden-
tical segments (in OUT1 31 the obstacle is divided into 30 segments, in OUT1 41
the obstacle is divided into 40 segments);
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Scrim2 2: dynamic competition on networks QVI model taken from [44], with time
instants {0, . . . ,1200};

Kun1 1, Kun1 2, Kun2 1, Kun2 2, Kun3 1, Kun3 2: discretization of an infinite di-
mensional QVI formulation of the Stefan problem (described in (3.4), (3.5) in
[29], with p = 2, Ω =

{
(z1,z2)∈R2 | 0 < z1,z2 < 1

}
, jc(t) := t2); the discretiza-

tion is performed by using forward finite differences; the six problems differ in
the discretization degree N and in the boundary function u1 used (in Kun1 1,
Kun2 1, Kun3 1: N = 50; in Kun1 2, Kun2 2, Kun3 2: N = 70; in Kun1 1,
Kun1 2: u1(x,y) := x+y+1; in Kun2 1, Kun2 2: u1(x,y) := 1−0.1(sin(2πx)+
cos(2πy)); in Kun3 1, Kun3 2: u1(x,y) := ex+y);

Wal2, Wal3, Wal5: QVI reformulation of a Walrasian pure exchange economy with
utility function without production from [13]; the three problems differ in the
number of agents, the number of exchanged goods, the utility functions and the
initial endowments (these are taken from Example A.10 in [15]);

MovSet3 (all) MovSet4 (all): problems with the structure analyzed in Section 3.2,
see [17] for the details;

In Table 2 we report the numerical results of our algorithm on the test problems
described above. For each problem we list

– the x-part of the starting point (the number reported is the value of all components
of the x-part of the starting point);

– the number of iterations, which is equal to the number of evaluations of JH;
– the number of evaluations of the constraints vector g;
– the number of evaluations of F , which is equal to the number of evaluations of

the gradients of the constraints vector ∇g;
– the value of the KKT violation measure V (x,λ ) at termination.

Note that for the (λ ,w)-part of the starting vector, we always used λ 0 = 5 and further
set w0 = max(5,5−h(x0)), so as to ensure that the starting point is “well inside” ZI .

We can see that overall the algorithm seems efficient and reliable. and able to
solve a wide array of different problems. The four failures deserve a few more com-
ments. The failures on Kun3 1 and Kun3 2 are due to the limit on computing time
(3600 seconds), but the algorithm actually appears to be converging in both cases. In
fact, the value of V (x,λ ) at the last iteration is 1.1*10−3 and 1.3*10−3, respectively.
In the case of Box3A and Box3B instead, difficulties arise because of an almost sin-
gularity of the linear system giving the search direction; this leads to a failure due
to the inability of the algorithm to find a step-size satisfying the acceptance criterion
(7).

In order to better gauge the robustness of our algorithm we also solved all the
problems using a C version of the PATH solver with a Matlab interface downloaded
from http://pages.cs.wisc.edu/~ferris/path/ and whose detailed descrip-
tion can be found in [12,19]. PATH is a well-established and mature software imple-
menting a stabilized Josephy-Newton method for the solution of Mixed Complemen-
tarity Problems and it can be used to solve the KKT conditions of a QVI, although
with no theoretical guarantee of convergence in our setting. We used the same x-part
for the starting point as we used in the testing of our method. For the λ part, we
considered two options. In the first we took λ 0 = 5, therefore using exactly the same
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Problem x0 It / JF g F /∇g V (x,λ )
OUTex40 0 8 9 9 7.4853e-05
OUTex41 0 18 19 19 9.7789e-05
OUTex42 0 8 9 9 1.4467e-05
OUTex43 0 8 9 9 1.8955e-05
OUTex44 0 8 9 9 2.9380e-05
OUT1 31 0 18 19 19 2.4473e-05
OUT1 31 10 17 18 18 1.6132e-05
OUT1 41 0 20 21 21 4.6573e-05
OUT1 41 10 20 21 21 3.5913e-05
Scrim2 2 0 17 18 18 2.5188e-05
Scrim2 2 10 19 20 20 8.9414e-05
Kun1 1 0 14 15 15 7.9623e-05
Kun1 1 10 24 40 40 8.3369e-05
Kun1 2 0 22 35 35 7.7460e-05
Kun1 2 10 25 43 43 9.0344e-05
Kun2 1 0 21 35 35 6.1531e-05
Kun2 1 10 22 33 33 4.6800e-05
Kun2 2 0 23 40 40 7.6296e-05
Kun2 2 10 23 40 40 8.9724e-05
Kun3 1 0 154 764 764 4.6276e-05
Kun3 1 10 Failure
Kun3 2 0 168 807 807 2.7577e-05
Kun3 2 10 Failure

Problem x0 It / JF g F /∇g V (x,λ )
Wal2 0 34 59 35 2.5898e-05
Wal2 10 47 95 48 5.0181e-05
Wal3 0 48 84 82 4.2859e-05
Wal3 10 63 110 110 3.4127e-05
Wal5 0 46 80 47 4.6612e-05
Wal5 10 42 43 43 6.4139e-05

MovSet3A 1 0 11 12 12 2.7945e-05
MovSet3A 2 0 11 12 12 5.6040e-05
MovSet3B 1 0 11 12 12 1.8449e-05
MovSet3B 2 0 11 12 12 3.6660e-05
MovSet4A 1 0 12 13 13 7.1662e-05
MovSet4A 2 0 12 13 13 7.1632e-05
MovSet4B 1 0 12 13 13 4.5120e-05
MovSet4B 2 0 12 13 13 7.1343e-05

Box2A 10 167 187 187 7.7965e-06
Box2B 10 195 220 220 2.3443e-06
Box3A 10 Failure
Box3B 10 Failure

RHS1A 1 0 87 140 127 6.6880e-09
RHS1A 1 10 19 20 20 3.5596e-05
RHS2B 1 0 84 98 98 1.1662e-08
RHS2B 1 10 19 20 20 2.4006e-05

Table 2 Potential Reduction Algorithm numerical results for QVIs.

starting point we used in the testing of the interior-point algorithm. In the second
option we set λ 0 = 0; this latter alternative was considered because the choice of
λ 0 = 5 is geared towards our interior-point method, while λ 0 = 0 seems more nat-
ural for PATH. In both cases, PATH was not able to solve 6 problems. For λ 0 = 5,
PATH failed on Wal2 (with x0 = 10), Wal5 (with x0 = 0 and x0 = 10), MovSet4A 2,
MovSet4B 2, and Box3B. For λ 0 = 0, PATH failed on Wal5 (with x0 = 0), Kun3 1
(with x0 = 10), Kun3 2 (with x0 = 0 and x0 = 10), MovSet4A 2, and MovSet4B 2.
These results seem to indicate that our method has the potential to become a very
robust solver for the solution of the KKT conditions arising from QVIs. A sound
comparison of computing times is not possible at this stage, since our code is totally
written in Matlab and it implements a straightforward version of our algorithm, with
none of all those crash and recover techniques that are to be found in a well developed
software as PATH. However, in spite of all this, it would seem that even the current
prototypical Matlab implementation of the interior-point method compares well to
PATH also in terms of computing times. The development of a more sophisticated
C version of our method is currently under the way and more extended and detailed
numerical results, along with comparisons, will be reported elsewhere.



33

6 Conclusions

We presented a detailed convergence theory for an interior-point method for the so-
lution of the KKT conditions of a general QVI. We could establish convergence for a
wide array of different classes of problems including QVIs with the feasible set given
by “moving sets”, linear systems with variable right-hand sides, box constraints with
variable bounds, and bilinear constraints. These results surpass by far existing con-
vergence analyses, the latter all having a somewhat limited scope. In our view, the
results in this paper constitute an important step towards the development of theoret-
ically reliable and numerically efficient methods for the solution of QVIs.
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A Appendix on Monotonicity and Lipschitz Properties

In this appendix we recall some well-known definitions and discuss some related results. Although the
latter are also mostly well-known, in some cases we could not find in the literature the exact versions we
needed. Therefore, for completeness we also report the proofs of these results.
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We begin by recalling the definitions of several classes of functions.

Definition 2 Let D⊆ Rn and F : D→ Rn be a given function. Then

(a) F is strongly monotone on D with constant σ if σ > 0 and

(x− y)T
(
F(x)−F(y)

)
≥ σ‖x− y‖2, ∀x,y ∈ D;

The largest σ for which such a relation holds is termed the monotonicity modulus of F on D:

σ(D,F) := inf
x 6=y,x,y∈D

(x− y)T
(
F(x)−F(y)

)
‖x− y‖2 .

(b) F is co-coercive on D with constant ξ if ξ > 0 and

(x− y)T
(
F(x)−F(y)

)
≥ ξ‖F(x)−F(y)‖2, ∀x,y ∈ D;

(c) F is Lipschitz continuous on D with constant L≥ 0 if

‖F(x)−F(y)‖ ≤ L‖x− y‖, ∀x,y ∈ D.

The smallest L for which such relation holds is termed the Lipschitz modulus of F on D:

L(D,F) := sup
x 6=y,x,y∈D

‖F(x)−F(y)‖
‖x− y‖

.

(d) F is a homeomorphism of D onto F(D) if F is one-to-one on D (that is F(x) 6= F(y) whenever
x,y ∈ D,x 6= y, or, in other words, F has a single-valued inverse F−1 defined on F(D)), and F and
F−1 are continuous on D and F(D), respectively. 2

Characterizations of the Lipschitz and strong monotonicity moduli are given in the following result.

Proposition 3 Let D⊆ Rn be an open, convex subset of Rn and let F : D→ Rn be a continuously differ-
entiable function. Then the following statements hold:

(a) F is Lipschitz continuous on D with constant L if and only if ‖JF(x)‖ ≤ L for all x ∈D; consequently

L(D,F) = sup
x∈D
‖JF(x)‖,

provided the sup on the right hand side is finite.
(b) F is strongly monotone on D with constant σ if and only if hT JF(x)h≥ σ‖h‖2 for all x ∈ D, h ∈ Rn;

consequently
σ(D,F) = inf

x∈D
µ

s
m(JF(x)),

provided the inf on the right hand side is positive.

Proof (a) From Theorem 3.2.3 in [35], if ‖JF(x)‖ ≤ L then L is a Lipschitz constant for F on D. Con-
versely, assume that ∥∥F(x)−F(y)

∥∥≤ L‖x− y‖, ∀x,y ∈ D (35)

holds. Applying the differential mean value theorem to each component function Fi of F , it follows that,
for any given x,y ∈ D, we can find suitable points ξ (i) ∈ (x,y) such that

Fi(x)−Fi(y) = ∇Fi(ξ (i))T (x− y) ∀i = 1, . . . ,n.

Setting

G(ξ ) :=


— ∇F1(ξ (1))T —

...
— ∇Fn(ξ (n))T —

 ∈ Rn×n,
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this can be rewritten in a compact way as

F(x)−F(y) = G(ξ )(x− y). (36)

Now, let x ∈ D be fixed, and note that
G(ξ )→ JF(x) (37)

for any sequence y→ x in view of the continuous differentiability of F . We now consider a particular
sequence y = x + td with a fixed (but arbitrary) vector d ∈ Rn \ {0} and a sequence t ↓ 0. Then (35) and
(36) together imply ∥∥G(ξ )td

∥∥=
∥∥F(x)−F(x+ td)

∥∥≤ L‖td‖.

Dividing by t and subsequently letting t ↓ 0 (note that ξ still depends on t), we obtain∥∥JF(x)d
∥∥≤ L‖d‖

in view of (37). Since d was taken arbitrarily, this implies ‖JF(x)‖ ≤ L, and this inequality is true for any
vector x ∈ D.
(b) See [35, Theorem 5.4.3]. 2

The following result gives a relation between the Lipschitz constants etc. of a given mapping F and its
inverse F−1.

Proposition 4 Let a function F : D→ Rn be given where D is an open subset of Rn. Assume that two
positive constants ` and L exist such that

`‖x− y‖ ≤ ‖F(x)−F(y)‖ ≤ L‖x− y‖, ∀x,y ∈ D. (38)

Then F is a homeomorphism from D to F(D) (which is an open set) and

1
L
‖a−b‖ ≤ ‖F−1(a)−F−1(b)‖ ≤ 1

`
‖a−b‖, ∀a,b ∈ F(D), (39)

in particular, F and F−1 are Lipschitz continuous on D and F(D), respectively.

Proof The first inequality from (38) implies that F is one-to-one on D (therefore the inverse F−1 exists
on F(D)), and that, setting a = F(x) and b = F(y), the second inequality in (39) holds. In particular,
this implies that F−1 is Lipschitz continuous on F(D), hence continuous, so that F(D) = (F−1)−1(D),
being the pre-image of a continuous map of the open set D, is also an open set. Finally, let a,b ∈ F(D) be
arbitrarily given. Setting x = F−1(a),y = F−1(b), we obtain from the second inequality in (38) that

‖F−1(a)−F−1(b)‖= ‖x− y‖ ≥ 1
L
‖F(x)−F(y)‖=

1
L
‖a−b‖,

and this completes the proof. 2

The next result considers a strongly monotone and Lipschitz continuous mapping and provides suitable
bounds for the moduli of Lipschitz continuity and strong monotonicity of the corresponding inverse func-
tion. We stress, however, that the constant of strong monotonicity of the inverse function provided by this
result is really just an estimate and typically not exact. It seems difficult to find a stronger bound in the
general context discussed here. In a more specialized situation, much better results can be obtained, see
Proposition 6 below.

Proposition 5 Let D ⊆ Rn be an open set and F : D→ Rn be strongly monotone with modulus σ and
Lipschitz continuous with modulus L on D. Then F is co-coercive with constant σ

L2 . Furthermore, it holds
that the inverse F−1 exists on F(D), is Lipschitz with constant 1

σ
and strongly monotone with constant σ

L2 .
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Proof We can write (
F(x)−F(y)

)T (x− y)≥ σ‖x− y‖2, ∀x,y ∈ D

and
‖F(x)−F(y)‖2 ≤ L2‖x− y‖2, ∀x,y ∈ D

by assumption. A combination of these two inequalities yields

‖F(x)−F(y)‖2 ≤ L2‖x− y‖2 ≤ L2

σ

(
F(x)−F(y)

)T (x− y), ∀x,y ∈ D. (40)

Hence F is co-coercive with constant σ

L2 .
By Proposition 4 we know that F is a homeomorphism from D to F(D) and F−1 is Lipschitz contin-

uous with constant 1
σ

. Finally writing a = F(x),b = F(y) in (40) gives(
F−1(a)−F−1(b)

)T (a−b)≥ σ

L2 ‖a−b‖2, ∀a,b ∈ F(D).

This completes the proof. 2

The following result gives an exact estimate of the Lipschitz and strong monotonicity moduli of the inverse
of a function under the assumption that the mapping F itself is a gradient mapping, i.e. that F = ∇ f for a
differentiable real-valued function f .

Proposition 6 Let D ⊆ Rn be an open convex set and F : D→ Rn be a gradient mapping. Assume that
F is strongly monotone with modulus σ and Lipschitz continuous with modulus L on D. Then the inverse
function F−1 exists on F(D), is Lipschitz with modulus 1

σ
and strongly monotone with modulus 1

L .

Proof The result can easily be derived from the Baillon-Haddad Theorem, see [1], when D = Rn. We give
here a direct proof which is valid also when D 6= Rn. In view of Proposition 5, we only have to verify the
statement that F−1 is strongly monotone with constant 1

L .
To this end, first consider a symmetric positive definite matrix A∈Rn×n, let A1/2 be the corresponding

(unique) symmetric positive definite square root of A so that A1/2A1/2 = A, and let A−1/2 be the inverse of
A1/2. Then the symmetry of A1/2 together with the Cauchy-Schwarz inequality implies

‖d‖2 = dT d = dT A1/2A−1/2d ≤ ‖A1/2d‖ · ‖A−1/2d‖, ∀d ∈ Rn.

Squaring both sides shows that

‖d‖4 ≤
(
dT Ad

)(
dT A−1d

)
, ∀d ∈ Rn (41)

holds. Since F is strongly monotone, the Jacobian JF(x) is positive definite for all x ∈ D; furthermore,
since F is a gradient mapping, this Jacobian is also symmetric. Hence we can apply inequality (41) to the
matrix A := JF(x) and obtain

‖d‖4 ≤
(
dT JF(x)d

)(
dT JF(x)−1d

)
≤
(
dT JF(x)−1d

)
‖d‖2‖JF(x)‖

≤
(
dT JF(x)−1d

)
L‖d‖2, ∀d ∈ Rn,

where the second inequality uses the Cauchy-Schwarz inequality once again, and the third inequality takes
into account Proposition 3. This implies

1
L

dT d =
1
L
‖d‖2 ≤

(
dT JF(x)−1d

)
, ∀d ∈ Rn ∀x ∈ D.

Since JF(x)−1 = JF−1(y) for y = F(x) by the Inverse Function Theorem, this gives

1
L

dT d ≤ dT JF−1(y)d, ∀d ∈ Rn ∀y ∈ F(D).

By a well-known result, see [35, Theorem 5.4.3] this is equivalent to saying that F−1 is strongly monotone
on F(D) with constant 1/L. 2

The sharper result from Proposition 6 regarding the modulus of strong monotonicity does, in general, not
hold for non-gradient mappings, see the corresponding discussion and (counter-) example at the end of
Subsection 3.2.


