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Abstract. Mathematical programs with equilibrium (or complementarity) constraints,
MPECs for short, form a difficult class of optimization problems. The feasible set has a
very special structure and violates most of the standard constraint qualifications. There-
fore, one typically applies specialized algorithms in order to solve MPECs. One very
prominent class of specialized algorithms are the regularization (or relaxation) methods.
The first regularization method for MPECs is due to Scholtes [SIAM Journal on Opti-
mization 11, 2001, pp. 918–936 ], but in the meantime, there exist a number of different
regularization schemes which try to relax the difficult constraints in different ways. How-
ever, almost all regularization methods converge to C-stationary points only, which is
a very weak stationarity concept. An exception is a recent method by Kadrani, Dus-
sault, and Benchakroun [SIAM Journal on Optimization 20, 2009, pp. 78–103 ] whose
limit points are shown to be M-stationary. Here we provide a new regularization method
which also converges to M-stationary points. The assumptions to prove this result are
significantly weaker than for all other relaxation schemes. Furthermore, our relaxed prob-
lem has a much more favourable geometric shape than the one proposed by Kadrani et al.

Key Words: Mathematical programs with complementarity constraints, regularization
method, global convergence, M-stationarity, strong stationarity, constraint qualifications.



1 Introduction

A mathematical program with complementarity (or equilibrium) constraints, MPEC for
short, is a constrained optimization problem of the form

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,

Gi(x) ≥ 0 ∀i = 1, . . . , q, (1)

Hi(x) ≥ 0 ∀i = 1, . . . , q,

Gi(x)Hi(x) = 0 ∀i = 1, . . . , q

where f, gi, hi, Gi, Hi : R
n → R are assumed to be continuously differentiable functions.

Hence an MPEC consists of an objective function f which is to be minimized subject
to some standard inequality and equality constraints defined by the mappings gi and hi,
respectively, as well as by some additional complementarity-type constraints. In many
applications, these complementarity constraints either arise directly from an equilibrium
condition, or they are part of the optimality conditions from a (convex) lower level prob-
lem. The interested reader is refered to the two monographs [27, 32] for an introduction
to and many applications of MPECs, as well as to the book [7] on the closely related class
of bilevel programs.

The main problem, both from a theoretical and a numerical point of view, for the so-
lution of MPECs comes from the complementarity constraints. In fact, these constraints
imply that almost all of the constraint qualifications known for standard nonlinear pro-
grams are violated. This, in turn, means that the convergence assumptions for basically all
standard methods for the solution of constrained optimization problems are not satisfied.
During the last decade, several authors therefore proposed different solution algorithms
which take into account the particular structure of an MPEC and try to avoid the prob-
lems arising from the complementarity constraints in one or another way. We refer the
reader to [3, 4, 6, 8, 13, 19, 20, 21, 24, 25, 34, 35, 37, 39, 38] and references therein,
where a number of different algorithmic ideas like penalization, smoothing, lifting, and
regularization are used to overcome the inherent difficulty of an MPEC.

One of the most popular approaches for the solution of an MPEC is certainly the
regularization scheme by Scholtes [37]. Besides this particular method, there are, in
the meantime, a number of other regularization schemes available which try to relax
the complementarity constraints in a different way. The regularization methods we are
currently aware of are the following ones:

• the global regularization method by Scholtes [37],

• the two-sided regularization method by DeMiguel et al. [6],

• the smooth regularization method by Lin and Fukushima [25],

• the local regularization method by Steffensen and Ulbrich [38],

• the nonsmooth regularization method by Kadrani et al. [21].
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The convergence results for these methods show that the first three methods from [37,
6, 25] converge to a C-stationary point under the MPEC-LICQ assumption (precise def-
initions of the different stationary concepts and MPEC-tailored constraint qualifications
are given in Section 2), whereas the fourth method from [38] gives convergence to a C-
stationary point under the weaker MPEC-CRCQ condition (this assumption was further
relaxed in the recent paper [18]). Finally, the last method shows convergence to M-
stationary points, again under the MPEC-LICQ assumption. This is a very interesting
property since M-stationary is a much stronger optimality criterion than C-stationarity.
Convergence to M-stationary points can also be shown for the other methods, but only
under additional assumptions that are not required in [21].

The aim of this paper is to introduce a new regularization scheme with stronger
properties than those methods considered previously. In particular, we show that our
new method has the following nice features:

• the limit points are at least M-stationary points,

• convergence to M- and even strongly stationary points can be shown under condi-
tions that are much weaker than those used by other methods,

• the shape of the feasible set of our regularized problem is much nicer than the one
of the corresponding method by Kadrani et al. [21].

Hence we get the best convergence result that is currently only known for the very recent
method by Kadrani et al. [21], but under significantly weaker assumptions and for a
regularization that we believe is much easier to handle from a numerical point of view
than the nonsmooth regularization from [21].

To this end, we organize our paper as follows: The next section recapitulates some
stationarity concepts and constraint qualifications for MPECs as well as for standard
nonlinear programs. Section 3 introduces our new relaxation and states some useful
properties of the relaxed problem, whereas Section 4 is concerned with the convergence
properties of our method. Some numerical results are given in Section 5 and a conclusion
is drawn in Section 6.

Most of the notation used in this paper is standard. For a continuously differentiable
function f : R

n → R, we write ∇f(x) for the gradient of f at x ∈ R
n, where this

gradient is interpreted as a column vector. The support of a vector a ∈ R
n is defined by

supp(a) := {i ∈ {1, . . . , n} | ai 6= 0}. Furthermore, given two vectors x, y ∈ R
q, we write

0 ≤ x ⊥ y ≥ 0 as a shorthand for x ≥ 0, y ≥ 0, xT y = 0.

2 Preliminaries

2.1 Constraint Qualifications for Standard Nonlinear Programs

Although the main topic of this paper are MPECs, the relaxed problems are standard
nonlinear programs. Hence, we need some standard constraint qualifications to guarantee
the existence of Lagrange multipliers in local minima of the relaxed problems. By now,
there is a whole variety of constraint qualifications for nonlinear programs, thus we are
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going to mention only those needed later in this work. Consider the following nonlinear
program

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m, (2)

hi(x) = 0 ∀i = 1, . . . , p

and define the set of active inequalities as

Ig(x
∗) := {i | gi(x

∗) = 0}

for any x∗ ∈ R
n feasible for the nonlinear program (2). Let Z denote the set of feasible

points of (2) and x∗ ∈ Z be arbitrarily given. The (Bouligand) tangent cone of Z at x∗

is then defined as

TZ(x∗) :=
{

d ∈ R
n | ∃{xk} ⊆ Z, ∃{τk} ↓ 0 such that xk → x∗ and

xk − x∗

τk

→ d
}

,

and the linearized cone of Z at x∗ is given by

LZ(x∗) :=
{

d ∈ R
n | ∇gi(x

∗)T d ≤ 0 (i ∈ Ig(x
∗)), ∇hi(x

∗)T d = 0 (i = 1, . . . , p)
}

.

Furthermore, the polar cone to an arbitrary cone C ⊆ R
n is defined as

C◦ := {s ∈ R
n | ∀d ∈ C : sT d ≤ 0}.

One of the constraint qualifications we are going to state uses positive-linearly dependent
vectors. We therefore first recall the definition of positive-linear dependence.

Definition 2.1. A set of vectors

{ai | i ∈ I1} ∪ {bi | i ∈ I2}

is said to be positive-linearly dependent if there exist scalars αi (i ∈ I1) and βi (i ∈ I2),
not all of them being zero, with αi ≥ 0 for all i ∈ I1 and

∑

i∈I1

αiai +
∑

i∈I2

βibi = 0.

Otherwise, we say that these vectors are positive-linearly independent.

With these definitions, we are now able to define some constraint qualifications for non-
linear programs.

Definition 2.2. A feasible point x∗ for (2) is said to satisfy the

(a) linear independence constraint qualification (LICQ) if the gradients

{∇gi(x
∗) | i ∈ Ig(x

∗)} ∪ {∇hi(x
∗) | i = 1, . . . , p}

are linearly independent;
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(b) constant positive-linear dependence constraint qualification (CPLD) if, for any sub-
sets I1 ⊆ Ig(x

∗) and I2 ⊆ {1, . . . , p} such that the gradients

{∇gi(x
∗) | i ∈ I1} ∪

{

{∇hi(x
∗) | i ∈ I2}

are positive-linearly dependent, there exists a neighbourhood N(x∗) of x∗ such that
the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2}

are linearly dependent for all x ∈ N(x∗);

(c) Abadie constraint qualification (ACQ) if TZ(x∗) = LZ(x∗);

(d) Guignard constraint qualification (GCQ) if TZ(x∗)◦ = LZ(x∗)◦.

The following relations hold between these four constraint qualifications:

LICQ =⇒ CPLD =⇒ ACQ =⇒ GCQ.

The second implication was proven in [2], whereas the first and the third implication
follow directly from the definitions. It is well known that every local minimum x∗ of
(2) such that GCQ holds in x∗ is a stationary point of (2), i.e. there are multipliers
λi (i = 1, . . . , m) and µi (i = 1, . . . , p) such that the triple (x∗, λ, µ) is a KKT-point
meaning that

0 = ∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)

with supp(λ) ⊆ Ig(x
∗) and λi ≥ 0 (i = 1, . . . , m).

2.2 Stationary Points for MPECs

In contrast to standard nonlinear programs, several stationarity concepts are known for
MPECs. To state them, we need the following index sets: Let x∗ be feasible for the
MPEC (1). Then we define

Ig := {i | gi(x
∗) = 0},

I0+ := {i | Gi(x
∗) = 0, Hi(x

∗) > 0},

I00 := {i | Gi(x
∗) = 0, Hi(x

∗) = 0},

I+0 := {i | Gi(x
∗) > 0, Hi(x

∗) = 0}.

Note that these index sets depend on the chosen point x∗. However, it will always be
clear from the context, which point they refer to. Although there are more stationarity
concepts known for MPECs, we will restrict ourselves to the most common ones.

Definition 2.3. Let x∗ be feasible for the MPEC (1). Then x∗ is said to be

(a) weakly stationary, if there are multipliers λ ∈ R
m, µ ∈ R

p, γ, ν ∈ R
q such that

∇f(x∗) +
m

∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)−

q
∑

i=1

γi∇Gi(x
∗)−

q
∑

i=1

νi∇Hi(x
∗) = 0
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and

λi ≥ 0, λigi(x
∗) = 0 (i = 1, . . . , m)

γi = 0 (i ∈ I+0), νi = 0 (i ∈ I0+);

(b) C-stationary, if it is weakly stationary and γiνi ≥ 0 for all i ∈ I00;

(c) M-stationary, if it is weakly stationary and either γi > 0, νi > 0 or γiνi = 0 for all
i ∈ I00;

(d) strongly stationary, if it is weakly stationary and γi ≥ 0, νi ≥ 0 for all i ∈ I00.

These four stationary concepts are illustrated in Figure 1.

M−stationarity strong stationarity

C−stationarityweak stationarity

νi

γi

νi

γi

νi

γi

νi

γi

Figure 1: Geometric illustration of weak, C-, M-, and strong stationarity for an index i
from the bi-active set I00

Obviously, the following implications hold between these stationarity concepts:

strong stationarity =⇒ M-stationarity =⇒ C-stationarity =⇒ weak stationarity.

Differences between these stationary concepts arise only in the bi-active set I00. If this set
is empty, all four stationary concepts coincide. Weak and C-stationarity were introduced
in [36], M-stationarity independently in [41, 30, 31, 40], and strong stationarity may
already be found in [27]. We note, however, that strong stationarity can be shown to be
equivalent to the standard KKT conditions of an MPEC, cf. [11].
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2.3 MPEC-tailored Constraint Qualifications

To guarantee that a local minimizer of the MPEC (1) is stationary in one of the above
senses, special MPEC-tailored constraint qualifications are used. By now, there is a
whole zoo of constraint qualifications for MPECs but we are going to state only the ones
used explicitly in the subsequent analysis. These are variants of some known constraint
qualifications for standard nonlinear programs to the MPEC-setting, with the second one
(constant positive-linear dependence constraint qualification) being widely unknown in
the literature. It was first introduced in [33] and further investigated in [2] for standard
nonlinear programs, and very recently modified for MPECs in [18].

Definition 2.4. A feasible point x∗ of the MPEC (1) is said to satisfy

(a) MPEC-linear independence constraint qualification (MPEC-LICQ) if the gradients

{∇gi(x
∗) | i ∈ Ig} ∪ {∇hi(x

∗) | i = 1, . . . , p}

∪ {∇Gi(x
∗) | i ∈ I00 ∪ I0+} ∪ {∇Hi(x

∗) | i ∈ I00 ∪ I+0}

are linearly independent;

(b) MPEC-constant positive-linear dependence constraint qualification (MPEC-CPLD)
if, for any subsets I1 ⊆ Ig, I2 ⊆ {1, . . . , p}, I3 ⊆ I00 ∪ I0+ and I4 ⊆ I00 ∪ I+0 such
that the gradients

{∇gi(x
∗) | i ∈ I1} ∪

{

{∇hi(x
∗) | i ∈ I2} ∪ {∇Gi(x

∗) | i ∈ I3} ∪ {∇Hi(x
∗) | i ∈ I4}

}

are positive-linearly dependent, there exists a neighbourhood N(x∗) of x∗ such that
the gradients

{∇gi(x) | i ∈ I1} ∪ {∇hi(x) | i ∈ I2} ∪ {∇Gi(x) | i ∈ I3} ∪ {∇Hi(x) | i ∈ I4}

are linearly dependent for all x ∈ N(x∗).

Note that, in the definition of MPEC-CPLD, we grouped those vectors together with
extra curly brackets for which no sign restrictions apply. Apart from those defined above,
there exist a number of other MPEC-tailored constraint qualifications like MPEC-MFCQ,
MPEC-CRCQ and MPEC-ACQ as variants of the standard MFCQ (Mangasarian-Fromo-
vitz constraint qualification), standard CRCQ (constant rank constraint qualification),
and standard ACQ, see, e.g., [10, 12, 38, 18]. The relation of MPEC-LICQ and MPEC-
CPLD to these other constraint qualifications is summarized in the following picture, cf.
[18] and references therein for more details.

MPEC-MFCQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

MPEC-LICQ

%-
SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

MPEC-CPLD +3 MPEC-ACQ

MPEC-CRCQ

19kkkkkkkkkkkkkk

kkkkkkkkkkkkkk
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We see that MPEC-LICQ is the strongest constraint qualification among all, whereas
MPEC-CPLD is much weaker and may be viewed as a common relaxation of both MPEC-
MFCQ and MPEC-CRCQ. It is a well known fact that a local minimum x∗ of the MPEC
is a strongly stationary point if MPEC-LICQ holds at x∗, whereas neither MPEC-MFCQ
nor MPEC-CRCQ implies strong stationarity. However, given a local minimum x∗ which
satisfies a relatively weak MPEC constraint qualification like, for example, MPEC-CPLD
or MPEC-ACQ, it follows that x∗ is at least an M-stationary point. Simple examples of
MPECs show, however, that even a global minimum of the MPEC might not be strongly
stationary, hence, in general, M-stationary is the best one can hope for unless relatively
strong assumptions hold.

3 Regularization

3.1 Regularization by Kadrani et al.

Among the different regularization methods that exist for the solution of MPECs, there is
only one very recent approach from Kadrani et al. [21] which converges to an M-stationary
point. All the other regularization methods we are aware of and that were mentioned in
the introduction converge, in general, only to C-stationary points. We therefore take a
closer look to this particular regularization in this section.

Kadrani et al. [21] suggest to replace the complementarity conditions

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0 ∀i = 1, . . . , l

by
Gi(x) ≥ −t, Hi(x) ≥ −t,

(

Gi(x)− t
)(

Hi(x)− t
)

≤ 0 ∀i = 1, . . . , l

for some parameter t > 0. The geometric interpretation of this particular regularization
is given in Figure 2.

(t, t)

Gi(x)

Hi(x)

Figure 2: Illustration of the Kadrani et al. [21] regularization

The objective function and the other constraints are not modified. As shown in [21],
the corresponding regularization method converges to an M-stationary point under the
MPEC-LICQ assumption. Theoretically, this result is therefore much better than what
is known for all the other regularization methods. Nevertheless, Figure 2 clearly shows a
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potential drawback of this regularization: The feasible set of the regularized problem is
almost disconnected, so one has to expect severe problems when solving the regularized
problems by a standard optimization method. Moreover, it turns out that the feasible
set of the original MPEC is not contained in the feasible set of the regularized problem,
regardless of the choice of t > 0.

Our aim is therefore to construct a new regularization scheme which also converges
to M-stationary points and which does not have these disadvantages. Moreover, we will
show that convergence to M-stationary points is obtained under the much weaker MPEC-
CPLD condition instead of the MPEC-LICQ condition.

3.2 New Regularization

Our relaxation is based on the function ϕ : R
2 → R defined by

ϕ(a, b) =

{

ab, if a + b ≥ 0,

−1
2
(a2 + b2), if a + b < 0.

This function has the following elementary properties.

Lemma 3.1. (a) ϕ is an NCP-function, i.e. ϕ(a, b) = 0 if and only if a ≥ 0, b ≥
0, ab = 0.

(b) ϕ is continuously differentiable with gradient

∇ϕ(a, b) =















(

b
a

)

, if a + b ≥ 0,
(

−a
−b

)

, if a + b < 0.

(c) ϕ has the property that

ϕ(a, b)

{

> 0, if a > 0 and b > 0,
< 0, if a < 0 or b < 0.

Proof. (a) First suppose that a ≥ 0, b ≥ 0, ab = 0. Then a + b ≥ 0, and the definition
of ϕ therefore gives ϕ(a, b) = ab = 0. Conversely, assume that ϕ(a, b) = 0. If a + b ≥ 0,
it then follows that ab = 0 and thus a ≥ 0, b = 0 or a = 0, b ≥ 0. On the other hand, if
a + b < 0, we have −1

2
(a2 + b2) = 0 which, in turn, implies a = b = 0, a contradiction to

a + b < 0.

(b) This statement follows immediately from standard calculus rules.

(c) Using the continuity of ϕ together with the NCP-function property of part (a), it fol-
lows that ϕ has the same sign in all points of the positive orthant, as well as the same sign
in all points in the other three orthants. Since ϕ(1, 1) = 1 > 0 and ϕ(−1,−1) = −1 < 0,
the statement follows. �
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Based on this function, we define a continuously differentiable mapping Φ : R
n → R

q

componentwise by

Φi(x; t) := ϕ
(

Gi(x)− t, Hi(x)− t
)

=

{

(

Gi(x)− t
)(

Hi(x)− t
)

, if Gi(x) + Hi(x) ≥ 2t,

−1
2

(

(Gi(x)− t)2 + (Hi(x)− t)2
)

, if Gi(x) + Hi(x) < 2t,

where t ≥ 0 is an arbitrary parameter. With this function, we can formulate the relaxed
or regularized problem NLP(t) for t ≥ 0 as

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,

Gi(x) ≥ 0 ∀i = 1, . . . , q, (3)

Hi(x) ≥ 0 ∀i = 1, . . . , q,

Φi(x; t) ≤ 0 ∀i = 1, . . . , q.

Hence, in our approach, we replace the complementarity conditions

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0

by
Gi(x) ≥ 0, Hi(x) ≥ 0, Φi(x; t) ≤ 0

which, from a geometric point of view, gives a set of the form shown in Figure 3.

t

t Gi(x)

Hi(x)

Figure 3: Geometric interpretation of the new regularization

Similar to the index sets used before, we define

Ig(x) := {i | gi(x) = 0},

IG(x) := {i | Gi(x) = 0},

IH(x) := {i | Hi(x) = 0},

IΦ(x; t) := {i | Φi(x; t) = 0}

9



for t ≥ 0 and x feasible for NLP(t). We also use a partition of the index set IΦ(x; t) into
the following three subsets:

I00
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t = 0, Hi(x)− t = 0},

I0+
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t = 0, Hi(x)− t > 0},

I+0
Φ (x; t) := {i ∈ IΦ(x; t) | Gi(x)− t > 0, Hi(x)− t = 0}.

Note that these sets form a partition of IΦ(x; t) since the definition of Φ implies that

Φi(x; t) = 0⇐⇒ Gi(x)− t ≥ 0, Hi(x)− t ≥ 0,
(

Gi(x)− t
)(

Hi(x)− t
)

= 0.

In view of Lemma 3.1, the function Φ is continuously differentiable with its gradient given
by

∇Φi(x; t) =

{

(Hi(x)− t)∇Gi(x) + (Gi(x)− t)∇Hi(x), if Gi(x) + Hi(x) ≥ 2t,

−(Gi(x)− t)∇Gi(x)− (Hi(x)− t)∇Hi(x), if Gi(x) + Hi(x) < 2t
(4)

for all i = 1, . . . , q.
The following result summarizes some simple properties of the regularized program

NLP(t).

Lemma 3.2. Let X be the feasible set of the MPEC (1) and X(t) the feasible set of
NLP(t) for t ≥ 0. Then the following three statements hold:

(a) X(0) = X.

(b) X(t1) ⊆ X(t2) for all 0 ≤ t1 ≤ t2.

(c)
⋂

t≥0 X(t) = X.

Proof. (a) Taking into account the properties of ϕ and the definition of Φ, the condition

Gi(x) ≥ 0, Hi(x) ≥ 0, Φi(x; 0) ≤ 0

is equivalent to
Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0

for all i = 1, . . . , q. This proves X(0) = X.

(b) Let 0 ≤ t1 ≤ t2 and x be an arbitrary element of X(t1). To prove x ∈ X(t2), we
only have to show Φi(x; t2) ≤ 0 for all i = 1, . . . , q. Let i be one of these indices. If
Gi(x)+Hi(x) < 2t2, we immediately obtain Φi(x; t2) ≤ 0 since Φi(x; t) is always nonpos-
itive in this case. Hence, the only case to consider is Gi(x) + Hi(x) ≥ 2t2. We want to
prove Φi(x; t2) = (Gi(x)− t2)(Hi(x)− t2) ≤ 0. Assume this is not true. Then either both
values Gi(x) − t2 and Hi(x) − t2 would have to be positive or both negative. However,
if both values were negative, we would have Gi(x) + Hi(x) < 2t2, a contradiction. If
both values were positive, Gi(x) − t1 and Hi(x) − t1 also were both positive and thus
Φi(x; t1) > 0, a contradiction to x ∈ X(t1).
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(c) According to part (a) and (b), we know X = X(0) ⊆ X(t) for all t ≥ 0 and thus
X ⊆

⋂

t≥0 X(t). Now let x ∈
⋂

t≥0 X(t) be an arbitrary element. To prove x ∈ X,
we only have to show Φi(x; 0) ≤ 0 for all i = 1, . . . , q. Assume that there is an i such
that Φi(x; 0) > 0. This implies (in fact is equivalent to) Gi(x) > 0 and Hi(x) > 0.
Now choose an arbitrary t̄ > 0 with t̄ < min{Gi(x), Hi(x)}. This definition of t̄ yields
Gi(x)+Hi(x) > 2t̄ and thus Φi(x; t̄) = (Gi(x)− t̄)(Hi(x)− t̄) > 0. Consequently, x /∈ X(t̄)
which is a contradiction to x ∈

⋂

t≥0 X(t). �

The previous result shows, in particular, that the feasible set X of the original MPEC is
always contained in the feasible set X(t) of the regularized program NLP(t) (in contrast
to the approach by Kadrani et al. [21]), and that our relaxation exhibits the desired
behaviour limt↓0 X(t) = X. Note also that, from a geometric point of view, our regularized
problem has a much nicer feasible set than the one by Kadrani et al. [21] which, we recall,
consists of almost disconnected pieces.

Remark 3.3. (a) The particular NCP-function ϕ used here can be replaced by other suit-
able NCP-functions. However, we stress that we cannot use an arbitrary NCP-function
that, geometrically, gives the same feasible set for the regularized problem NLP(t) since
the stationary point properties that will be shown in the subsequent section heavily de-
pend on the particular representation of this feasible set. Nevertheless, one particular
alternative is the mapping

ϕ(a, b) := θ(a) + θ(b)− θ(|a− b|)

with θ : R→ R being given by

θ(τ) :=

{

−1
2
τ 2, if τ < 0,

1
2
τ 2, if τ ≥ 0

or θ(τ) =
1

3
τ 3.

This function is a particular member of a class of NCP-functions introduced in [29]. It is
not difficult to see that our analysis goes through also for this mapping.

(b) The regularization used in this paper enlarges the feasible region coming from the
complementarity constraints to the north-eastern direction. Alternatively, we may also
use a regularization to the south-western direction by replacing the complementarity
conditions

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x)Hi(x) = 0

by
Gi(x) ≥ −t, Hi(x) ≥ −t, Φi(x; 0) ≤ 0

We may also combine the two relaxations and regularize with respect to the north-eastern
and the south-western direction simultaneously. Figure 4 illustrates the three possible
regularizations.

11



t

t

t

t− t

− t

− t

− t

Gi(x)

Hi(x)

Gi(x) Gi(x)

Hi(x) Hi(x)

Figure 4: The three possible relaxations: The picture on the left-hand side shows the
relaxation used in this paper, the picture in the middle shows an alternative relaxation,
and the picture on the right combines the two relaxations.

4 Convergence Properties

4.1 Convergence to M- and Strongly Stationary Points

In this section, we are concerned with stationarity properties of limit points of our re-
laxation method. If we solve NLP(tk) for a sequence {tk} ↓ 0 and obtain KKT-points
(xk, λk, µk, γk, νk, δk) of NLP(tk), where xk → x∗, what kind of MPEC-stationarity can
we expect in x∗? The next theorem gives an answer to this question.

Theorem 4.1. Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-points of
NLP(tk) with xk → x∗. If MPEC-CPLD holds in x∗, then x∗ is an M-stationary point of
the MPEC (1).

Proof. Obviously, x∗ is feasible for the MPEC (1) and for all k ∈ N sufficiently large, we
have

Ig(x
k) ⊆ Ig,

IG(xk) ∪ I00
Φ (xk; tk) ∪ I0+

Φ (xk; tk) ⊆ I00 ∪ I0+, (5)

IH(xk) ∪ I00
Φ (xk; tk) ∪ I+0

Φ (xk; tk) ⊆ I00 ∪ I+0.

Since all (xk, λk, µk, γk, νk, δk) are KKT-points of NLP(tk), we have

0 = ∇f(xk) +
m

∑

i=1

λk
i∇gi(x

k) +

p
∑

i=1

µk
i∇hi(x

k)−

q
∑

i=1

γk
i∇Gi(x

k)−

q
∑

i=1

νk
i ∇Hi(x

k)

+

q
∑

i=1

δk
i∇Φi(x

k; tk)

with

λk
i = 0 ∀i /∈ Ig(x

k) and λk
i ≥ 0 ∀i ∈ Ig(x

k),

γk
i = 0 ∀i /∈ IG(xk) and γk

i ≥ 0 ∀i ∈ IG(xk),

νk
i = 0 ∀i /∈ IH(xk) and νk

i ≥ 0 ∀i ∈ IH(xk),

δk
i = 0 ∀i /∈ IΦ(xk; t) and δk

i ≥ 0 ∀i ∈ IΦ(xk; tk).
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Since the representation of ∇Φi immediately gives ∇Φi(x
k; tk) = 0 for all i ∈ I00

Φ (xk; tk)
and all k ∈ N, we may also assume δk

i = 0 for all i ∈ I00
Φ (xk; tk) and all k ∈ N. Thus, we

can rewrite the equation above as

0 = ∇f(xk) +

m
∑

i=1

λk
i∇gi(x

k) +

p
∑

i=1

µk
i∇hi(x

k)−

q
∑

i=1

γk
i∇Gi(x

k)−

q
∑

i=1

νk
i ∇Hi(x

k)

+

q
∑

i=1

δG,k
i ∇Gi(x

k) +

q
∑

i=1

δH,k
i ∇Hi(x

k)

where

δG,k
i =

{

δk
i (Hi(x

k)− tk), if i ∈ I0+
Φ (xk; tk),

0, else,

δH,k
i =

{

δk
i (Gi(x

k)− tk), if i ∈ I+0
Φ (xk; tk),

0, else.

Note that the multipliers δG,k and δH,k are nonnegative, too. According to [38, Lem. A.1],
we may assume without loss of generality that the gradients corresponding to nonvanish-
ing multipliers in this equation are linearly independent for all k ∈ N (note that this may
change the multipliers, but a previously positive multiplier will stay at least nonnegative
and a vanishing multiplier will remain zero).

Our next step is to prove that the sequence (λk, µk, γk, νk, δG,k, δH,k) is bounded. If
we assume the contrary, we can find a subsequence K such that

(λk, µk, γk, νk, δG,k, δH,k)

‖(λk, µk, γk, νk, δG,k, δH,k)‖
→K (λ, µ, γ, ν, δG, δH) 6= 0.

Dividing by ‖(λk, µk, γk, νk, δG,k, δH,k)‖ and taking this limit in the equation above yields

0 =
m

∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗)−

q
∑

i=1

γi∇Gi(x
∗)−

q
∑

i=1

νi∇Hi(x
∗)

+

q
∑

i=1

δG
i ∇Gi(x

∗) +

q
∑

i=1

δH
i ∇Hi(x

∗),

i.e. the gradients

{∇gi(x
∗) | i ∈ supp(λ)} ∪

{

{∇hi(x
∗) | i ∈ supp(µ)}

∪{∇Gi(x
∗) | i ∈ supp(γ) ∪ supp(δG)} ∪ {∇Hi(x

∗) | i ∈ supp(ν) ∪ supp(δH)}
} (6)

are positive-linearly dependent. MPEC-CPLD guarantees that they remain linearly de-
pendent in a whole neighbourhood. This, however, is a contradiction to the linear inde-
pendence of these gradients in xk. Here, we used

supp(λ, µ, γ, ν, δG, δH) ⊆ supp(λk, µk, γk, νk, δG,k, δH,k)

for all k sufficiently large and (5).
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Consequently, our assumption was wrong and the sequence {(λk, µk, γk, νk, δG,k, δH,k)}
is bounded. Therefore, we can assume without loss of generality that the whole sequence
is convergent to some limit (λ∗, µ∗, γ∗, ν∗, δG,∗, δH,∗) . Since IG(xk) ∩ I0+

Φ (xk; tk) = ∅ and
IH(xk) ∩ I+0

Φ (xk; tk) = ∅ for all k ∈ N, it is easy to see that the multipliers

γ̂i =











γ∗
i if i ∈ supp(γ∗),

−δG,∗
i if i ∈ supp(δG,∗),

0 else,

ν̂i =











ν∗
i if i ∈ supp(ν∗),

−δH,∗
i if i ∈ supp(δH,∗),

0 else

are well defined, and we obtain

0 = ∇f(x∗) +

m
∑

i=1

λ∗
i∇gi(x

∗) +

p
∑

i=1

µ∗
i∇hi(x

∗)−

q
∑

i=1

γ̂i∇Gi(x
∗)−

q
∑

i=1

ν̂i∇Hi(x
∗).

Here, λ∗ ≥ 0 and

supp(λ∗) ⊆ Ig(x
k) ⊆ Ig,

supp(γ̂) = supp(γ∗) ∪ supp(δG,∗) ⊆ IG(xk) ∪ I0+
Φ (xk; tk) ⊆ I00 ∪ I0+,

supp(ν̂) = supp(ν∗) ∪ supp(δH,∗) ⊆ IH(xk) ∪ I+0
Φ (xk; tk) ⊆ I00 ∪ I+0

for all k sufficiently large. Consequently, we have γ̂i = 0 for all i ∈ I+0 and ν̂i = 0 for all
i ∈ I0+, i.e. (x∗, λ∗, µ∗, γ̂, ν̂) is at least a weakly stationary point of the MPEC (1). To
prove M-stationarity, assume that there is an i ∈ I00 with γ̂i < 0 and ν̂i 6= 0 (the case
γ̂i 6= 0 and ν̂i < 0 can be treated in a symmetric way). The condition γ̂i < 0 implies
i ∈ supp(δG,∗) ⊆ I0+

Φ (xk; tk) for all k sufficiently large. Because of

I0+
Φ (xk; tk) ∩

(

IH(xk) ∪ I+0
Φ (xk; tk)

)

= ∅

for all k ∈ N, this yields ν̂i = 0 in contradiction to our assumption. �

Under stronger assumptions like the one defined below, we can even obtain strong sta-
tionarity of the limit point.

Definition 4.2. Let {tk} ↓ 0 and {xk} be a sequence of feasible points of NLP(tk) with
xk → x∗. If for all k sufficiently large

Gi(x
k)

Hi(xk)
≤ 1 for all i ∈ I+0

Φ (xk; tk)) ∩ I00, and

Hi(x
k)

Gi(xk)
≤ 1 for all i ∈ I0+

Φ (xk; tk) ∩ I00

the sequence {xk} is called asymptotically weakly nondegenerate.
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Related asymptotic weak nondegeneracy conditions were also used in [14, 26, 21]. A direct
comparison of the different nondegeneracy conditions is not possible in general since they
depend on the particular regularization. However, our feeling is that our definition is a
relatively weak assumption that will often be satisfied in practice.

The next result shows that MPEC-CPLD together with the asymptotic weak nonde-
generacy condition already guarantees that the limit point is strongly stationary.

Theorem 4.3. Let {tk} ↓ 0 and {(xk, λk, µk, γk, νk, δk)} be a sequence of KKT-points of
NLP(tk) with xk → x∗. If MPEC-CPLD holds in x∗ and the sequence {xk} is asymptot-
ically weakly nondegenerate, then x∗ is a strongly stationary point of the MPEC (1).

Proof. Using Theorem 4.1, we know that x∗ is at least M-stationary. To verify strong
stationarity, we use the proof of Theorem 4.1 again. The only change is that, in the very
end, we now additionally apply the asymptotic weak nondegeneracy condition:

Assume that (x∗, λ∗, µ∗, γ̂, ν̂) is not a strongly stationary point of the MPEC (1).
Then we can find an i ∈ I00, where γ̂i < 0 or ν̂i < 0. Let us assume γ̂i < 0 without
loss of generality, the second case can be treated in the same way. Then, by construc-
tion, i ∈ supp(δG,∗) ⊆ I0+

Φ (xk; tk) and consequently Gi(x
k) = tk, Hi(x

k) > tk for all k

sufficiently large. This however implies Hi(xk)
Gi(xk)

> 1 for all those k in contradiction to the
assumption of asymptotic weak nondegeneracy. �

We note that both Theorem 4.1 and Theorem 4.3 require significantly weaker assumptions
than those which are used in the corresponding convergence results of existing regular-
ization methods which typically need MPEC-LICQ (instead of MPEC-CPLD) as well as
a second-order condition (not needed here). On the other hand, in this context, we also
refer to the discussion in the following section.

4.2 Existence of Multipliers

There is an implicit assumption used in the previous two convergence results, namely that
there exists a sequence of KKT points for the regularized problems NLP(tk). In particular,
we therefore require the existence of Lagrange multipliers. The aim of this section is to
show that these Lagrange multipliers indeed exist under suitable assumptions. The most
natural idea would be to show that the regularized problems NLP(tk) (at least for tk > 0
sufficiently small) inherit some constraint qualification from the original MPEC. However,
this is not true in general. In fact, the following example shows that the MPEC itself
might satisfy MPEC-LICQ at a feasible point x∗, whereas the corresponding regularized
problem violates standard LICQ.

Example 4.4 Consider the standard two-dimensional MPEC

min f(x) s.t. 0 ≤ x1 ⊥ x2 ≥ 0.

Obviously, MPEC-LICQ holds at x∗ = (0, 0). Now consider the sequences tk = 1
k

and
xk = ( 1

k
, 1

k
) for k ∈ N. It is easy to see that tk ↓ 0 and xk → x∗. Furthermore, xk is

feasible for NLP(tk) for all k ∈ N. However, for all k ∈ N the only active gradient is

∇Φ(xk; tk) =

(

xk
2 − tk

xk
1 − tk

)

=

(

0

0

)

,

15



hence LICQ for the nonlinear program NLP(tk) does not hold in xk for all k ∈ N. In fact,
not even ACQ, one of the weakest constraint qualifications known for standard nonlinear
programs, holds in xk. However, the even weaker GCQ is satisfied. ♦

Inspired by this example, we are going to prove that, whenever MPEC-LICQ holds in a
point x∗ which is feasible for (1), there is a neighbourhood of x∗ such that for all t > 0
sufficiently small and all x in this neighbourhood which are feasible for NLP(t), standard
GCQ holds. To do so, we need some auxiliary results. The first one is a lemma that
facilitates the calculation of polar cones to linearized cones. It can be found, for example,
in [5, Theorem 3.2.2].

Lemma 4.5. Consider the cones

C1 := {d ∈ R
n | aT

i d ≤ 0, ∀i = 1, . . . , m, bT
i d = 0 ∀i = 1, . . . , p}

and

C2 := {s ∈ R
n | s =

m
∑

i=1

αiai +

p
∑

i=1

βibi, αi ≥ 0 ∀i = 1, . . . , m}.

Then C2 = C◦1 and C1 = C◦2 .

In the proof of Theorem 4.7 we are going to work with some nonlinear programs that are
closely related to NLP(t) but have better properties concerning constraint qualifications.
Let t > 0 and x̂ be feasible for NLP(t). Let I be an arbitrary subset of I00

Φ (x̂; t) and
Ī := I00

Φ (x̂; t)\I its complement. We define the nonlinear program NLP(t, I) as

min f(x) s.t. gi(x) ≤ 0 ∀i = 1, . . . , m,

hi(x) = 0 ∀i = 1, . . . , p,

Gi(x) ≥ 0, Hi(x) ≥ 0, Gi(x) ≤ t ∀i ∈ I0+
Φ (x̂; t) ∪ I, (7)

Gi(x) ≥ 0, Hi(x) ≥ 0, Hi(x) ≤ t ∀i ∈ I+0
Φ (x̂; t) ∪ Ī ,

Gi(x) ≥ 0, Hi(x) ≥ 0, Φi(x; t) ≤ 0 ∀i 6∈ IΦ(x̂; t)

and denote its feasible set by X(t, I). Then it is easy to see that

X(t, I) ⊆ X(t)

and that x̂ is feasible for NLP(t, I), too. The following lemma sheds some light on the
relation between the tangent cone of NLP(t) and the tangent cones of NLP(t, I).

Lemma 4.6. For all t > 0 and all x̂ feasible for NLP(t),

TX(t)(x̂) =
⋃

I⊆I00
Φ

(x̂;t)

TX(t,I)(x̂).

Proof. To prove the first inclusion, let d be an arbitrary element of TX(t)(x̂). This implies
that there exists a sequence xk →X(t) x̂ and a sequence τk ↓ 0 such that

d = lim
k→∞

xk − x̂

τk

.
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If we can find an I ⊆ I00
Φ (x̂; t) such that xk ∈ X(t, I) for infinitely many k ∈ N, we have

proven d ∈
⋃

I⊆I00
Φ

(x̂;t) TX(t,I)(x̂). However, for every i ∈ I00
Φ (x̂; t) and all k ∈ N, either

Gi(x
k) ≤ t or Hi(x

k) ≤ t. Hence, by choosing an appropriate subsequence K ⊆ N and
defining I as the set of all indices i where Gi(x

k) ≤ t for all k ∈ K, we can construct such
a set I.

To prove the second inclusion, choose an arbitrary I ⊆ I00
Φ (x̂, t) and an arbitrary

d ∈ TX(t,I)(x̂). This implies the existence of sequences xk →X(t,I) x̂ and τk ↓ 0 such that

d = lim
k→∞

xk − x̂

τk

.

Because of X(t, I) ⊆ X(t), this yields d ∈ TX(t)(x̂). �

Now, we are in a position to state and prove the main result of this section.

Theorem 4.7. Let x∗ be feasible for the MPEC (1) such that MPEC-LICQ holds in x∗.
Then there is a t̄ > 0 and a neighbourhood U(x∗) such that the following holds for all
t ∈ (0, t̄]: If x ∈ U(x∗) is feasible for NLP(t), then standard GCQ for NLP(t) holds in x.

Proof. Since MPEC-LICQ holds in x∗, the gradients

{∇gi(x) | i ∈ Ig}∪{∇hi(x) | i = 1, . . . , p}∪{∇Gi(x) | i ∈ I00∪I0+}∪{∇Hi(x) | i ∈ I00∪I+0}
(8)

are linearly independent in x∗. Because of the continuity of the derivatives, they remain
linearly independent in a whole neighbourhood. Hence, we can choose t̄ > 0 and U(x∗)
such that for all t ∈ (0, t̄] and all x ∈ U(x∗) feasible for NLP(t) the gradients (8) are
linearly independent in x, and the following inclusions hold, cf. (5):

Ig(x) ⊆ Ig,

IG(x) ⊆ I00 ∪ I0+,

IH(x) ⊆ I00 ∪ I+0,

I00
Φ (x; t) ∪ I0+

Φ (x; t) ⊆ I00 ∪ I0+,

I00
Φ (x; t) ∪ I+0

Φ (x; t) ⊆ I00 ∪ I+0.

Now choose an arbitrary t ∈ (0, t̄] and x̂ ∈ U(x∗) such that x̂ is feasible for NLP(t). Then
x̂ is also feasible for NLP(t, I) for all I ⊆ I00

Φ (x̂, t) and the active gradients are

{∇gi(x̂) | i ∈ Ig(x̂)} ∪ {∇hi(x̂) | i = 1, . . . , p} ∪

{∇Gi(x̂) | i ∈ IG(x̂) ∪ I0+
Φ (x̂; t) ∪ I} ∪ {∇Hi(x̂) | i ∈ IH(x̂) ∪ I+0

Φ (x̂; t) ∪ Ī}.

Thus, by construction of t̄ and U(x∗), standard LICQ for NLP(t, I) holds in x̂. Since
LICQ implies ACQ, we have

TX(t,I)(x̂) = LX(t,I)(x̂)

for all I ⊆ I00
Φ (x̂; t). Together with Lemma 4.6, this yields

TX(t)(x̂) =
⋃

I⊆I00
Φ

(x̂;t)

TX(t,I)(x̂) =
⋃

I⊆I00
Φ

(x̂;t)

LX(t,I)(x̂).
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Passing to the polar cone, we obtain

TX(t)(x̂)◦ =
⋂

I⊆I00
Φ

(x̂,t)

LX(t,I)(x̂)◦, (9)

see [5, Theorem 3.1.9]. To prove that GCQ for NLP(t) holds in x̂, we only have to prove
the inclusion

TX(t)(x̂)◦ ⊆ LX(t)(x̂)◦,

the opposite inclusion is always true. By definition, the linearized tangent cone of
NLP(t, I) in x̂ is given by

LX(t,I)(x̂) = {d ∈ R
n | ∇gi(x̂)T d ≤ 0 ∀i ∈ Ig(x̂),

∇hi(x̂)T d = 0 ∀i = 1, . . . , p,

∇Gi(x̂)T d ≥ 0 ∀i ∈ IG(x̂),

∇Hi(x̂)T d ≥ 0 ∀i ∈ IH(x̂),

∇Gi(x̂)T d ≤ 0 ∀i ∈ I0+
Φ (x̂; t) ∪ I,

∇Hi(x̂)T d ≤ 0 ∀i ∈ I+0
Φ (x̂; t) ∪ Ī}.

Therefore, Lemma 4.5 yields

LX(t,I)(x̂)◦ = {s ∈ R
n | s =

∑

i∈Ig(x̂)

λi∇gi(x̂) +

p
∑

i=1

µi∇hi(x̂)−
∑

i∈IG(x̂)

γi∇Gi(x̂)

−
∑

i∈IH(x̂)

νi∇Hi(x̂) +
∑

i∈I0+

Φ
(x̂;t)∪I

δi∇Gi(x̂) +
∑

i∈I+0

Φ
(x̂;t)∪Ī

σi∇Hi(x̂)

λ, γ, ν, δ, σ ≥ 0}.

Now let s be an arbitrary element of TX(t)(x̂)◦. The repesentation of TX(t)(x̂)◦ in (9) then
implies s ∈ LX(t,I)(x̂)◦ for all I ⊆ I00

Φ (x̂, t). If we fix such an index set I, we obtain

s =
∑

i∈Ig(x̂)

λi∇gi(x̂) +

p
∑

i=1

µi∇hi(x̂)−
∑

i∈IG(x̂)

γi∇Gi(x̂)−
∑

i∈IH(x̂)

νi∇Hi(x̂)

+
∑

i∈I0+

Φ
(x̂;t)∪I

δi∇Gi(x̂) +
∑

i∈I+0

Φ
(x̂;t)∪Ī

σi∇Hi(x̂)

with some multipliers µ ∈ R
p and λ, γ, ν, δ, σ ≥ 0. On the other hand, s ∈ LX(t,Ī)(x̂)◦

also holds, thus we also have

s =
∑

i∈Ig(x̂)

λ̄i∇gi(x̂) +

p
∑

i=1

µ̄i∇hi(x̂)−
∑

i∈IG(x̂)

γ̄i∇Gi(x̂)−
∑

i∈IH(x̂)

ν̄i∇Hi(x̂)

+
∑

i∈I0+

Φ
(x̂;t)∪Ī

δ̄i∇Gi(x̂) +
∑

i∈I+0

Φ
(x̂;t)∪I

σ̄i∇Hi(x̂)

with some multipliers µ̄ ∈ R
p and λ̄, γ̄, ν̄, δ̄, σ̄ ≥ 0. However, by construction of t̄ and

U(x∗), the gradients

{∇gi(x̂) | i ∈ Ig(x̂)} ∪ {∇hi(x̂) | i = 1, . . . , p} ∪

{∇Gi(x̂) | i ∈ IG(x̂) ∪ I0+
Φ (x̂; t) ∪ I00

Φ (x̂; t)} ∪ {∇Hi(x̂) | i ∈ IH(x̂) ∪ I+0
Φ (x̂; t) ∪ I00

Φ (x̂; t)}
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are linearly independent, hence the multipliers have to be the same. In particular, this
implies

δi = 0 ∀i ∈ I and σi = 0 ∀i ∈ Ī .

Since an elementary calculation shows that

LX(t)(x̂) = {d ∈ R
n | ∇gi(x̂)T d ≤ 0 ∀i ∈ Ig(x̂),

∇hi(x̂)T d = 0 ∀i = 1, . . . , p,

∇Gi(x̂)T d ≥ 0 ∀i ∈ IG(x̂),

∇Hi(x̂)T d ≥ 0 ∀i ∈ IH(x̂),

∇Gi(x̂)T d ≤ 0 ∀i ∈ I0+
Φ (x̂; t),

∇Hi(x̂)T d ≤ 0 ∀i ∈ I+0
Φ (x̂; t)},

application of Lemma 4.5 yields s ∈ LX(t)(x̂)◦. Note that the representation of LX(t)(x̂)
above exploits the structure of ∇Φ(x; t) as given in (4). Since s ∈ TX(t)(x̂)◦ was chosen
arbitrarily, we have proven

TX(t)(x̂)◦ ⊆ LX(t)(x̂)◦,

i.e. GCQ for NLP(t) holds in x̂. �

The existence of Lagrange multipliers in local minima of NLP(t) is a direct consequence
of Theorem 4.7.

Theorem 4.8. Let x∗ be feasible for the MPEC (1) such that MPEC-LICQ holds in
x∗. Then there is a t̄ > 0 and a neighbourhood U(x∗) such that the following holds for
all t ∈ (0, t̄]: If x ∈ U(x∗) is a local minimizer of feasible for NLP(t), then there exist
Lagrange multipliers such that x together with these multipliers is a KKT-point of NLP(t).

Note that Theorem 4.8 implies the existence of multipliers at a local minimum of the
regularized problem NLP(t) since Theorem 4.7 shows that the standard GCQ holds for the
regularized problem under the MPEC-LICQ assumption. Moreover, recall that Example
4.4 indicates that we cannot expect a stronger result, even the ACQ may not hold for
NLP(t) under MPEC-LICQ. In a sense, this is similar to some results that are known for
the MPEC itself, cf. [11]. However, the following result shows that there is a significant
difference between MPECs themselves and our regularized problem NLP(t). In fact, it
is known that the MPEC does not satisfy standard LICQ (or even the weaker MFCQ)
at an arbitrary feasible point. On the other hand, the next result shows that standard
LICQ holds for NLP(t) if MPEC-LICQ is satisfied and, in addition, the index set I00

Φ (x; t)
is empty. The latter assumption excludes only points where

(

Gi(x), Hi(x)
)

= (t, t) for
at least one i. In fact, this result also shows that MPEC-CPLD for the original MPEC
implies standard CPLD for the regularized subproblems NLP(t).

Theorem 4.9. Let x∗ be feasible for the MPEC (1) such that MPEC-LICQ (MPEC-
CPLD) holds in x∗. Then there is a t̄ > 0 and a neighbourhood U(x∗) such that the
following holds for all t ∈ (0, t̄]: If x ∈ U(x∗) is feasible for NLP(t) with I00

Φ (x; t) = ∅,
then standard LICQ (CPLD) for NLP(t) holds in x.
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Proof. We first verify the assertion for MPEC-LICQ. Since MPEC-LICQ holds in x∗,
the gradients

{∇gi(x) | i ∈ Ig}∪{∇Gi(x) | i ∈ I00∪I0+}∪{∇Hi(x) | i ∈ I00∪I+0}∪{∇hi(x) | i = 1, . . . , p}
(10)

are linearly independent in x = x∗. Because of the continuity of the derivatives, they
remain linearly independent in a whole neighbourhood. Thus, we can choose t̄ > 0 and
U(x∗) such that for all t ∈ (0, t̄] and all x ∈ U(x∗) feasible for NLP(t), the gradients (10)
are linearly independent in x, and the following inclusions hold:

Ig(x) ⊆ Ig,

IG(x) ⊆ I00 ∪ I0+,

IH(x) ⊆ I00 ∪ I+0, (11)

I00
Φ (x; t) ∪ I0+

Φ (x; t) ⊆ I00 ∪ I0+,

I00
Φ (x; t) ∪ I+0

Φ (x; t) ⊆ I00 ∪ I+0.

Now choose an arbitrary t ∈ (0, t̄]. When x ∈ U(x∗) is feasible for NLP(t) with I00
Φ (x; t) =

∅, the active gradients in x are

{∇gi(x) | i ∈ Ig(x)} ∪ {∇hi(x) | i = 1, . . . , p} ∪

∪{−∇Gi(x) | i ∈ IG(x)} ∪ {(Hi(x)− t)∇Gi(x) | i ∈ I0+
Φ (x; t)}

∪{−∇Hi(x) | i ∈ IH(x)} ∪ {(Gi(x)− t)∇Hi(x) | i ∈ I+0
Φ (x; t)},

where Gi(x)− t > 0 for i ∈ I+0
Φ (x; t) and Hi(x)− t > 0 for i ∈ I0+

Φ (x; t). Hence, the choice
of t̄ and U(x∗) implies that these gradients are linearly independent, too. Therefore,
standard LICQ holds in x.

It remains to prove the assertion under MPEC-CPLD. To this end, assume that there
were sequences tk ↓ 0 and xk → x∗ with xk feasible for NLP(tk) and I00

Φ (xk; tk) = ∅ for all
k ∈ N such that standard CPLD is not satisfied in xk for all k ∈ N. Violation of CPLD
means that there are subsets Ik

1 ⊆ Ig(x
k), Ik

2 ⊆ {1, . . . , p}, Ik
3 ⊆ IG(xk), Ik

4 ⊆ IH(xk),
Ik
5 ⊆ I0+

Φ (xk; tk), Ik
6 ⊆ I+0

Φ (xk; tk) such that the gradients

{

{∇gi(x
k) | i ∈ Ik

1 } ∪ {−∇Gi(x
k) | i ∈ Ik

3} ∪ {−∇Hi(x
k) | i ∈ Ik

4 }

∪{(Hi(x
k)− tk)∇Gi(x

k) | i ∈ Ik
5} ∪ {(Gi(x

k)− tk)∇Hi(x
k) | i ∈ Ik

6 }
}

∪ {∇hi(x
k) | i ∈ Ik

2 }

are positive-linearly dependent in xk, but linearly independent in points arbitrary close
to xk. We may assume without loss of generality Ik

i = Ii for all i = 1, . . . , 6. For all
k sufficiently large, we know Ig(x

k) ⊆ Ig and thus I1 ⊆ Ig. Analogously, we obtain
I3 ∪ I5 ⊆ I00 ∪ I0+ and I4 ∪ I6 ⊆ I00 ∪ I+0. Positive-linear dependence in xk as we stated
it above also implies positive-linear dependence of the gradients

{∇gi(x
k) | i ∈ I1}∪

{

{∇hi(x
k) | i ∈ I2}∪{∇Gi(x

k) | i ∈ I3∪I5}∪{∇Hi(x
k) | i ∈ I4∪I6}

}

,

and because of the violation of CPLD, we can find a sequence yk → x∗ such that these
gradients are linearly independent in yk. If these gradients were positive-linearly inde-
pendent in x∗, by continuity they would remain positive-linearly independent in a whole
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neighbourhood. This, however, contradicts the existence of the sequence xk → x∗. On
the other hand, if they were positive-linearly dependent in x∗, MPEC-CPLD would imply
that they remain linearly dependent in a neighbourhood, which contradicts the existence
of yk → x∗. This concludes the proof. �

We close this section by noting that the previous result also holds for some other constraint
qualifications. In fact, it is possible to show that MPEC-MFCQ for the original MPEC
implies standard MFCQ for the regularized problem. Furthermore, MPEC-CRCQ for
the MPEC itself also implies standard CRCQ for the regularized problem NLP(t). The
corresponding proofs are very similar to the one of Theorem 4.9, so we skip the details
(also because MPEC-MFCQ and MPEC-CRCQ are neither defined in this paper nor used
somewhere else).

5 Numerical Results

Algorithm 5.1 Relaxation algorithm (x0, t0, σ)

Require: a starting vector x0, an initial relaxation parameter t0, and a parameter σ ∈
(0, 1)

Set k := 0.
while stopping criterion is not satisfied do

Find a solution xk+1 of NLP(tk). To solve NLP(tk), use xk as starting vector.
Let tk+1 ← tk · σ and k ← k + 1.

end while

Return: the final iterate xopt := xk, the corresponding function value f(xopt) and the
relaxation parameter tk−1 used in the last iteration

The relaxation method proposed in Section 3 leads to Algorithm 5.1. We implemented
this algorithm in MATLAB 7.8.0. As stopping criterion, we used the following condition:
If either tk < 10−8 or the maximum constraint violation in xk (for k ≥ 1) is less than
10−6, the algorithm terminates. Here, the maximum constraint violation in a point x is
defined as

maxVio(x) = max{max{0, g(x)}, |h(x)|, |min{G(x), H(x)}|}.

The reason for the first condition is that the relaxed problem NLP(tk) is very similar to
the original MPEC for extremely small relaxation parameters tk, and thus standard NLP
solvers might have trouble finding a solution. The second condition is motivated by the
fact that a local minimum of NLP(tk), which is feasible for the original MPEC, also is a
local minimum of (1). Hence, we can stop immediately in this case.

In order to illustrate the positive influence of our regularization method, we first
consider a two-dimensional toy problem. Using sophisticated NLP-solvers, this problem
can actually be solved easily, but since this does not show the potential improvements
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that can be obtained by relaxation for larger or more complicated problems, we take the
MATLAB routine fmincon to solve NLP(tk), which is a reasonable and widely available
solver, but certainly not comparable to some of the more recent software.

The particular toy problem that we consider here is

min(x1 − 1)2 + (x2 − 1)2 s.t. 0 ≤ x1 ⊥ x2 ≥ 0, (12)

which has two strongly stationary points in (1, 0)T and (0, 1)T and one C-stationary
point in (0, 0)T . We choose a grid of starting points in the rectangle [−1, 2] × [−1, 2]
and apply several relaxation algorithms (with fmincon as NLP solver and the parameters
(t0, σ) = (0.5, 0.1)) to all these starting points. If ‖xopt − (1, 0)T‖2 < 10−5, we mark the
corresponding starting point with a ∗, if ‖xopt − (0, 1)T‖2 < 10−5, we use a +, and if
‖xopt − (0, 0)T‖2 < 10−5, we mark the starting point with a ◦. Starting points with no
entry indicate that the corresponding method fails to converge to anything reasonable
from this particular starting point.

For comparison, we implemented the relaxation scheme of Scholtes [37], where

ΦS
i (x; t) = Gi(x)Hi(x)− t,

the relaxation scheme of Steffensen and Ulbrich [38], where

ΦV U
i (x; t) =

{

Gi(x) + Hi(x)− |Gi(x)−Hi(x)|, if |Gi(x)−Hi(x)| ≥ t,

Gi(x) + Hi(x)− tθ(Gi(x)−Hi(x)
t

), if |Gi(x)−Hi(x)| < t

with

θ(x) =
2

π
sin(

π

2
x + 3

π

2
),

as well as the relaxation scheme by Kadrani et al., see [21] and the corresponding dis-
cussion in Section 3.1. We also applied fmincon directly to the problem. The results are
displayed in Figure 5.
The results are as they had to be expected: Both, the direct application of fmincon to
the MPEC and the local relaxation method by Steffensen and Ulbrich are attracted by
the C-stationary point (0, 0)T for some starting points with x1 = x2 and fail to converge
or do not reach the required accuracy for some other starting points. In contrast to
that, our relaxation and the one proposed by Kadrani et al. converge to one of the two
strongly stationary solutions for all starting points. The results for Scholtes’ relaxation
are not displayed in the figure as the optimal solutions found by this method where close
to (1, 0)T or (0, 1)T for all starting points, but only up to an accuracy of 10−3.

We next want to illustrate the behaviour of our method when applied to a variety of
more serious test problems. To this end, we choose 126 of the 180 problems from the
MacMPEC collection [22]; 41 problems were discarded because of their size, 2 because an
error occured during the evaluation of the objective function or constraints by AMPL,
and 11 problems were not of the form considered in this paper. As some of the problems
considered have over 100 variables or constraints, we now use the TOMLAB 7.4.0 solver
snopt instead of the MATLAB routine fmincon. Communication between AMPL and
MATLAB is achieved using the mex function amplfunc [28], see also [15, 9] for more
information on amplfunc and on complementarity constraints in AMPL. We use the
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Figure 5: Results corresponding to Example (12)

starting vector suggested by AMPL and the parameters (t0, σ) = (1, 0.1) for all test
examples. To determine these parameters, we did some testing using the parameter
combinations (t0, σ) ∈ {1, 10} × {0.01, 0.1}, and (t0, σ) = (1, 0.1) was the pair that did
best, although we could not observe significant differences for the different pairs (t0, σ).

For every test problem the data given in Table 2 has to be interpreted according to
Table 1. Note that we changed the signs of some objective functions such that now all
test problems are minimization problems. Thus the results can be compared more easily.

Problem name of the test problem
(n, m, p, q) number of variables, inequality, equality, and complementarity constraints
fMacMPEC best known objective function value according to MacMPEC site
fopt optimal objective function value found by our algorithm
maxVio(xopt) maximal constraint violation in our solution (defined as above)
tfin relaxation parameter used in the last iteration

Table 1: Explanation of results for MacMPEC collection

Obviously, our algorithm is able to find an optimal solution for almost all test problems
with an objective function value which is equal to the best function value known so far for
the large majority of all test problems. Sometimes the optimal function values are difficult
to compare since the feasibility measure plays a central role, and we do not know which
condition was used for those methods which obtained the best function value known so
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far. We also note that there are a few problems where the algorithm has trouble achieving
feasibility. However, for some of these problems, this had to be expected: design-cent-
3 is known to be infeasible and ex9.2.2, ralph1, and scholtes4 are known to have
B-stationary solutions that are not strongly stationary, cf. [23].

We also note that, for a number of test problems, the final value of tk is equal to
its initial value t0 = 1. This means that we found the MPEC-solution by solving just
a single regularized problem. This indicates some kind of finite termination and, very
likely, corresponds to the case where, geometrically speaking, the minimum of the original
MPEC is somewhere in the south-western direction from the origin since, in this direction,
we do not relax the feasible set of the original MPEC.

Finally, we also made some preliminary numerical experiments with the alternative
formulations suggested in Remark 3.3. Basically, using the other NCP-function with the
quadratic θ-term does not seem to make a big difference. Using, however, the cubic θ-
terms seems less favourable probably due to the higher degree of nonlinearity, although
for a few test examples such as bilin for example, the solution found this way was better
than for the other methods. The other two relaxations suggested in Remark 3.3 (b) seem
to work well, although the overall behaviour is slightly worse than for the relaxation in
the north-eastern direction. But this might be problem-dependent.
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Problem (n, m, p, q) fMacMPEC fopt maxVio(xopt) tfin

bar-truss-3 (35, 7, 28, 6) 1.01666e+04 1.01666e+04 1.00e-07 1e-07
bard1 (5, 2, 1, 3) 1.70000e+01 1.70000e+01 1.00e-07 1e-07
bard2 (12, 18, 5, 3) -6.59800e+03 -6.59800e+03 7.02e-14 1e+00
bard3 (6, 6, 3, 1) -1.26787e+01 -1.26787e+01 1.78e-15 1e+00
bard1m (6, 3, 1, 3) 1.70000e+01 1.70000e+01 1.00e-07 1e-07
bard2m (12, 18, 5, 3) -6.59800e+03 -6.59800e+03 6.93e-14 1e+00
bard3m (6, 4, 1, 3) -1.26787e+01 -1.26787e+01 1.00e-06 1e-08
bilevel1 (10, 5, 2, 6) -6.00000e+01 5.00000e+00 1.00e-06 1e-08
bilevel2 (16, 13, 4, 8) -6.60000e+03 -6.60000e+03 9.98e-07 1e-07
bilevel3 (11, 4, 6, 3) -1.26787e+01 -1.26787e+01 1.00e-07 1e-07
bilevel2m (16, 13, 4, 8) -6.60000e+03 -6.60000e+03 9.98e-07 1e-07
bilin (8, 3, 0, 6) -1.84000e+01 -1.60000e+01 1.00e-07 1e-07
dempe (3, 0, 1, 1) 3.12500e+01 2.82501e+01 1.00e-06 1e-08
design-cent-1 (12, 3, 6, 3) -1.86065e+00 -1.86065e+00 1.00e-06 1e-08
design-cent-2 (13, 7, 6, 3) -3.48382e+00 -3.25025e+17 2.48e+02 1e-08
design-cent-21 (13, 7, 6, 3) -3.48382e+00 -3.48382e+00 1.00e-06 1e-08
design-cent-3 (15, 3, 6, 3) infeasible -2.46727e+15 1.00e+00 1e-08
design-cent-31 (15, 3, 6, 3) -3.72337e+00 -3.72337e+00 2.73e-07 1e-07
design-cent-4 (22, 7, 10, 8) -3.07920e+00 -3.07920e+00 1.00e-07 1e-07
desilva (6, 4, 2, 2) -1.00000e+00 -1.00000e+00 0.00e+00 1e+00
df1 (2, 4, 0, 1) 0.00000e+00 1.23260e-32 0.00e+00 1e+00
ex9.1.1 (13, 1, 7, 5) -1.30000e+01 -1.30000e+01 8.44e-15 1e-05
ex9.1.2 (8, 5, 5, 2) -6.25000e+00 -6.25000e+00 1.00e-06 1e-08
ex9.1.3 (23, 8, 15, 6) -2.92000e+01 -6.00000e+00 2.00e-06 1e-08
ex9.1.4 (8, 4, 5, 2) -3.70000e+01 -3.70000e+01 6.37e-09 1e+00
ex9.1.5 (13, 3, 7, 5) -1.00000e+00 -9.99999e-01 1.00e-06 1e-08
ex9.1.6 (14, 2, 7, 6) -1.50000e+01 -4.90000e+01 5.00e-06 1e-08
ex9.1.7 (17, 5, 9, 6) -6.00000e+00 -6.00003e+00 1.00e-06 1e-06
ex9.1.8 (11, 6, 5, 3) -3.25000e+00 -3.25000e+00 1.11e-16 1e+00
ex9.1.9 (12, 2, 6, 5) 3.11111e+00 3.11111e+00 1.00e-06 1e-08
ex9.1.10 (11, 6, 5, 3) -3.25000e+00 -3.25000e+00 1.11e-16 1e+00
ex9.2.1 (10, 2, 5, 4) 2.50000e+01 1.70000e+01 1.00e-06 1e-06
ex9.2.2 (9, 5, 4, 3) 1.00000e+02 9.99900e+01 1.00e-03 1e-08
ex9.2.3 (14, 9, 8, 4) -5.50000e+01 5.00000e+00 1.42e-14 1e-01
ex9.2.4 (8, 3, 5, 2) 5.00000e-01 4.99999e-01 1.00e-06 1e-06
ex9.2.5 (8, 2, 4, 3) 9.00000e+00 5.00000e+00 1.00e-07 1e-07
ex9.2.6 (16, 4, 6, 6) -1.00000e+00 -1.00000e+00 1.00e-06 1e-07
ex9.2.7 (10, 2, 5, 4) 2.50000e+01 1.70000e+01 1.00e-06 1e-06
ex9.2.8 (6, 3, 3, 2) 1.50000e+00 1.50000e+00 1.00e-06 1e-08
ex9.2.9 (9, 4, 5, 3) 2.00000e+00 2.00000e+00 1.00e-06 1e-06
flp2 (4, 4, 0, 2) 0.00000e+00 1.50998e-11 0.00e+00 1e-06
flp4-1 (80, 30, 0, 30) 0.00000e+00 5.52513e-15 0.00e+00 1e+00
flp4-2 (110, 50, 0, 60) 0.00000e+00 1.13150e-13 0.00e+00 1e+00
flp4-3 (140, 100, 0, 70) 0.00000e+00 9.79526e-09 0.00e+00 1e+00
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Problem (n, m, p, q) fMacMPEC fopt maxVio(xopt) tfin

flp4-4 (200, 150, 0, 100) 0.00000e+00 1.12391e-12 0.00e+00 1e+00
gauvin (3, 2, 0, 2) 2.00000e+01 2.00000e+01 1.00e-06 1e-06
gnash10 (13, 2, 4, 8) -2.30823e+02 -2.30823e+02 1.00e-06 1e-06
gnash11 (13, 2, 4, 8) -1.29912e+02 -1.29912e+02 1.00e-06 1e-06
gnash12 (13, 2, 4, 8) -3.69331e+01 -3.69331e+01 1.00e-06 1e-06
gnash13 (13, 2, 4, 8) -7.06178e+00 -7.06179e+00 1.00e-06 1e-08
gnash14 (13, 2, 4, 8) -1.79046e-01 -1.79053e-01 1.00e-05 1e-08
gnash15 (13, 2, 4, 8) -3.54699e+02 -3.54699e+02 1.00e-06 1e-08
gnash16 (13, 2, 4, 8) -2.41442e+02 -2.41442e+02 1.00e-06 1e-08
gnash17 (13, 2, 4, 8) -9.07491e+01 -9.07491e+01 1.00e-06 1e-08
gnash18 (13, 2, 4, 8) -2.56982e+01 -2.56982e+01 1.00e-06 1e-08
gnash19 (13, 2, 4, 8) -6.11671e+00 -6.11671e+00 1.00e-06 1e-08
hs044-i (20, 12, 4, 10) 1.56178e+01 2.80046e+01 1.00e+00 1e-08
incid-set1-8 (118, 77, 50, 49) 3.81600e-17 4.68375e-16 4.69e-08 1e+00
incid-set1c-8 (117, 82, 49, 49) 3.81600e-17 3.81639e-17 8.14e-07 1e+00
incid-set2-8 (117, 75, 49, 49) 4.51800e-03 5.04269e-03 2.23e-09 1e+00
incid-set2c-8 (117, 82, 49, 49) 5.47100e-03 5.63006e-03 5.12e-07 1e+00
jr1 (2, 0, 0, 1) 5.00000e-01 5.00000e-01 0.00e+00 1e+00
jr2 (2, 0, 0, 1) 5.00000e-01 4.99999e-01 1.00e-06 1e-08
kth1 (2, 0, 0, 1) 0.00000e+00 0.00000e+00 0.00e+00 1e+00
kth2 (2, 0, 0, 1) 0.00000e+00 0.00000e+00 0.00e+00 1e+00
kth3 (2, 0, 0, 1) 5.00000e-01 5.00000e-01 0.00e+00 1e-06
liswet1-050 (152, 51, 52, 50) 1.39900e-02 1.39943e-02 7.16e-14 1e+00
monteiro (136, 72, 62, 62) -3.75300e+01 -3.75300e+01 3.14e-06 1e-08
monteiroB (136, 72, 62, 62) -8.27859e+02 -8.27860e+02 3.25e-06 1e-08
nash1a (6, 4, 2, 2) 7.88861e-30 2.54196e-16 1.00e-05 1e-08
nash1b (6, 4, 2, 2) 7.88861e-30 1.91080e-22 1.00e-05 1e-08
nash1c (6, 4, 2, 2) 7.88861e-30 4.66144e-24 1.00e-05 1e-08
nash1d (6, 4, 2, 2) 7.88861e-30 9.11312e-15 1.00e-05 1e-08
nash1e (6, 4, 2, 2) 7.88861e-30 6.34667e-22 1.00e-05 1e-08
outrata31 (5, 2, 0, 4) 3.20770e+00 3.20770e+00 1.00e-06 1e-08
outrata32 (5, 2, 0, 4) 3.44940e+00 3.44940e+00 1.00e-06 1e-06
outrata33 (5, 2, 0, 4) 4.60425e+00 4.60425e+00 1.00e-06 1e-08
outrata34 (5, 2, 0, 4) 6.59268e+00 6.59268e+00 1.00e-06 1e-08
pack-comp1-8 (107, 49, 49, 49) 6.00000e-01 6.00000e-01 1.01e-05 1e-08
pack-comp1c-8 (107, 56, 49, 49) 6.00000e-01 6.00000e-01 5.92e-07 1e-07
pack-comp1p-8 (107, 34, 49, 49) 6.00000e-01 6.00000e-01 1.07e-05 1e-08
pack-comp2-8 (107, 49, 49, 49) 6.73117e-01 6.73117e-01 3.09e-09 1e+00
pack-comp2c-8 (107, 56, 49, 49) 6.73458e-01 6.73458e-01 4.18e-10 1e+00
pack-comp2p-8 (107, 34, 49, 49) 6.73117e-01 6.73901e-01 3.90e-08 1e+00
pack-rig1-8 (87, 59, 46, 32) 7.87932e-01 7.87932e-01 1.91e-17 1e-01
pack-rig1c-8 (87, 66, 46, 32) 7.88300e-01 7.88300e-01 4.86e-17 1e-01
pack-rig1p-8 (105, 62, 49, 47) 7.87932e-01 7.87932e-01 2.63e-05 1e-08
pack-rig2-8 (85, 59, 46, 30) 7.80404e-01 7.80404e-01 6.61e-10 1e+00
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Problem (n, m, p, q) fMacMPEC fopt maxVio(xopt) tfin

pack-rig2c-8 (85, 66, 46, 30) 7.99306e-01 7.99306e-01 2.47e-09 1e+00
pack-rig2p-8 (103, 62, 49, 45) 7.80404e-01 7.80404e-01 1.87e-08 1e+00
pack-rig3-8 (85, 59, 46, 30) 7.35202e-01 7.35202e-01 1.17e-13 1e-01
pack-rig3c-8 (85, 66, 46, 30) 7.53473e-01 7.53473e-01 5.68e-06 1e-08
portfl-i-1 (87, 62, 13, 12) 1.50200e-05 1.50203e-05 1.00e-07 1e-07
portfl-i-2 (87, 62, 13, 12) 1.45700e-05 1.45696e-05 1.00e-07 1e-07
portfl-i-3 (87, 62, 13, 12) 6.26500e-06 6.26305e-06 1.00e-07 1e-07
portfl-i-4 (87, 62, 13, 12) 2.17700e-06 2.16125e-06 9.95e-05 1e-08
portfl-i-6 (87, 62, 13, 12) 2.36100e-06 2.34116e-06 1.21e-04 1e-08
qpec-100-1 (105, 2, 0, 100) 9.90028e-02 9.90009e-02 1.00e-07 1e-07
qpec-100-2 (110, 2, 0, 100) -6.26049e+00 -6.43006e+00 1.00e-07 1e-07
qpec-100-3 (110, 4, 0, 100) -5.48287e+00 -5.48058e+00 1.00e-07 1e-07
qpec-100-4 (120, 4, 0, 100) -3.60073e+00 -3.98077e+00 1.00e-07 1e-07
qpec-200-1 (210, 4, 0, 200) -1.93483e+00 -1.93484e+00 1.01e-07 1e-07
qpec-200-2 (220, 4, 0, 200) -2.40299e+01 -2.36642e+01 1.00e-07 1e-07
qpec-200-3 (220, 8, 0, 200) -1.95341e+00 -1.95341e+00 1.00e-07 1e-07
qpec-200-4 (240, 8, 0, 200) -6.19323e+00 -6.18707e+00 1.00e-07 1e-07
qpec1 (30, 0, 0, 20) 8.00000e+01 8.00000e+01 0.00e+00 1e+00
qpec2 (30, 0, 0, 20) 4.50000e+01 4.49867e+01 3.32e-04 1e-08
ralph1 (2, 1, 0, 1) 0.00000e+00 -1.00028e-03 1.00e-03 1e-08
ralph2 (2, 0, 0, 1) 0.00000e+00 -3.00005e-08 1.00e-04 1e-08
ralphmod (104, 8, 0, 100) -6.83033e+02 -6.83033e+02 6.94e-05 1e-08
scale1 (2, 0, 0, 1) 1.00000e+00 1.00000e+00 0.00e+00 1e-06
scale2 (2, 0, 0, 1) 1.00000e+00 9.99998e-01 1.00e-06 1e-06
scale3 (2, 0, 0, 1) 1.00000e+00 1.00000e+00 0.00e+00 1e-06
scale4 (2, 0, 0, 1) 1.00000e+00 9.80100e-01 1.00e-04 1e-08
scale5 (2, 0, 0, 1) 1.00000e+02 9.99998e+01 1.00e-06 1e-06
scholtes1 (3, 1, 0, 1) 2.00000e+00 2.00000e+00 0.00e+00 1e+00
scholtes2 (3, 1, 0, 1) 1.50000e+01 1.50000e+01 0.00e+00 1e+00
scholtes3 (2, 0, 0, 1) 5.00000e-01 5.00000e-01 0.00e+00 1e-06
scholtes4 (3, 2, 0, 1) -3.07336e-07 -6.95884e-04 3.48e-04 1e-08
scholtes5 (3, 0, 0, 2) 1.00000e+00 1.00000e+00 0.00e+00 1e+00
sl1 (8, 6, 2, 3) 1.00000e-04 1.00000e-04 4.09e-16 1e+00
stackelberg1 (3, 2, 1, 1) -3.26667e+03 -3.26667e+03 1.42e-14 1e+00
tap-09 (86, 40, 32, 32) 1.09143e+02 1.21566e+02 2.00e-07 1e-07
tap-15 (194, 94, 68, 83) 1.84295e+02 1.87258e+02 2.00e-07 1e-07
water-fl (213, 310, 116, 44) 3.41192e+03 3.34422e+03 1.37e-05 1e-08
water-net (66, 96, 36, 14) 9.29169e+02 9.27138e+02 7.93e-03 1e-08

Table 2: Results for MacMPEC collection
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6 Final Remarks

This paper proposes a new regularization scheme for the solution of mathematical pro-
grams with complementarity constraints. The method was shown to converge at least
to M-stationary points which is a much stronger property than what is known for the
majority of other regularization methods. Moreover, convergence to these M-stationary
points (and also to strong stationary points under an additional condition) is shown under
significantly weaker assumptions than those used in related approaches. The numerical
results indicate that the methods works quite well in practice, even without special tun-
ing of the particular NLP-solver that is applied to the regularized problems. This is in
contrast, for example, to the methods by Kadrani et al. [21] and Steffensen and Ulbrich
[38] where special care has to be taken in order to overcome some difficulties arising from
the particular regularization used in these two approaches.

Finally, we believe that the new regularization idea used in this paper can also be
adapted to the class of mathematical programs with vanishing constraints in order to get
stronger convergence properties for relaxation schemes for this class of methods, see, e.g.,
[1, 16, 17, 18] for some relevant literature regarding this problem class.
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