
RELAXATION METHODS FOR
GENERALIZED NASH EQUILIBRIUM PROBLEMS

WITH INEXACT LINE SEARCH

Anna von Heusinger and Christian Kanzow

Preprint 282 February 2008

University of Würzburg
Institute of Mathematics
Am Hubland
97074 Würzburg
Germany

e-mail: heusinger@mathematik.uni-wuerzburg.de
kanzow@mathematik.uni-wuerzburg.de

February 21, 2008



Abstract. The generalized Nash equilibrium problem (GNEP) is an extension of the stan-
dard Nash game where both the utility functions and the strategy spaces of each player
also depend on the strategies chosen by all other players. This problem is rather difficult
to solve, and there are only a few methods available in the literature. One of the most
popular ones is the so-called relaxation method which is known to be globally convergent
under a set of assumptions. Some of these assumptions, however, are rather strong or
somewhat difficult to understand. Here we present a modified relaxation method for the
solution of a certain class of GNEPs. The convergence analysis is based on completely
different arguments and avoids some of the technical conditions for the original relaxation
method. Moreover, numerical experiments indicate that the modified relaxation method
performs quite well on a number of different examples taken from the literature.

Key Words: Generalized Nash equilibrium problem; Normalized Nash equilibrium; Re-
laxation method; Regularized Nikaido-Isoda function; Global convergence.



1 Introduction

The generalized Nash equilibrium problem (GNEP for short) has recently attracted much
attention. It differs from the standard Nash equilibrium problem (NEP for short) by
allowing the strategy spaces of each player to depend on the strategies chosen by the other
players. These kind of Nash games occur quite frequently in different models, e.g., when
the pollution of a river or the air within a certain area depends on the output of several
firms (players) and is not allowed to go beyond a certain limit, when several companies
have to share the same set of wires whose capacities are bounded, or when the world’s
countries have to share a common good like all natural resources. The reader is referred
to the survey paper [9] and the references therein for more applications, some theoretical
results and an overview of existing methods for the solution of GNEPs.

One of the most popular methods for the solution of GNEPs is the so-called relaxation
method that was introduced in [26], see also [19] for a modified version. While basically
none of the existing solvers for GNEPs has been tested extensively on a large variety of
problems, the relaxation method seems to be the only one that has been applied at least by
a small group of different people to a few problems coming from different applications, see
[1, 2, 5, 6, 14, 18, 19]. However, the conditions that guarantee convergence of the relaxation
method in [26, 19] are very restrictive. Moreover, the rather general inexact stepsize rule
given in [26] leads to more or less heuristic implementations of the relaxation method,
whereas the exact stepsize rule from [19] is not really implementable, see the comments
below for more details.

Our aim is therefore to present a new convergence theory for the relaxation method
that allows weaker assumptions and that uses a clear (Armijo-type) rule for the choice of
an inexact stepsize that turns out to provide rather good numerical results.

To be more specific, let us now give a formal definition of the Nash and the generalized
Nash equilibrium problems (see, e.g., [3, 4, 7, 11, 12, 21] for some standard books on game
theory and, in particular, Nash equilibrium problems): Both problems have N players,
each player ν ∈ {1, . . . , N} controls the variables xν ∈ Rnν . Let x = (x1, . . . , xN)T ∈ Rn be
the vector comprised by all these decision variables, where n := n1+. . .+nN . To emphasize
the νth player’s variables within the vector x, we sometimes write x = (xν , x−ν)T , where
x−ν subsumes all the other players’ variables. Moreover, for both NEPs and GNEPs, let
θν : Rn → R be the νth player’s payoff (or loss or utility) function.

For a standard NEP, there is also a separate strategy set Xν ⊆ Rnν for each player ν.
Then x∗ = (x∗,1, . . . , x∗,N)T ∈ Rn is called a Nash equilibrium or a solution of the NEP if
each block component x∗,ν is a solution of the optimization problem

min
xν

θν(x
ν , x∗,−ν) s.t. xν ∈ Xν ,

i.e., x∗ is a Nash equilibrium if no player can improve his situation by unilaterally changing
his strategy.

On the other hand, in a GNEP, there is a common strategy space X ⊆ Rn for all
players, and a vector x∗ = (x∗,1, . . . , x∗,N)T ∈ Rn is called a generalized Nash equilibrium
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or a solution of the GNEP if each block component x∗,ν is a solution of the optimization
problem

min
xν

θν(x
ν , x∗,−ν) s.t. (xν , x∗,−ν) ∈ X.

Hence, if X is equal to the Cartesian product X1× · · · ×XN , then the GNEP reduces to a
standard NEP, whereas in general the feasible choices of strategies for player ν depend on
the strategies chosen by all other players, making the problem much more complicated.

Note that there exist also more general definitions of a GNEP where the feasible set of
each player depends on the strategies of all other players (as in the above setting), but is
different for each player, see [9, 8] for more details. The majority of papers, however, uses
our previous definition of a GNEP.

Throughout this paper, we make the following blanket assumptions.

Assumption 1.1 (a) The set X ⊆ Rn is nonempty, closed, and convex.

(b) The utility functions θν are continuous and, as a function of xν alone, convex.

Both assumptions are standard in the context of GNEPs. Nevertheless, we stress that
condition (a) is significantly weaker than in many related papers where X, in addition, is
assumed to be compact. In particular, this compactness assumption is used (and crucial)
in the two papers [26, 19] dealing with the relaxation method.

An important tool for both NEPs and GNEPs is the so-called Nikaido-Isoda-function

Ψ(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
,

also called the Ky Fan-function. In order to overcome some disadvantages of this function,
we use a regularized version that was first considered in [13] for standard NEPs and then
further investigated for GNEPs in [14, 15], see also [20] for a similar mapping in the context
of equilibrium programming problems. To this end, let α > 0 be a given parameter that is
assumed to be fixed throughout this paper. Then the regularized Nikaido-Isoda-function is
given by

Ψα(x, y) :=
N∑

ν=1

[
θν(x

ν , x−ν)− θν(y
ν , x−ν)

]
− α

2
‖x− y‖2. (1)

Due to the regularization term, it is easy to see, taking into account Assumption 1.1
(b), that the mapping Ψα(x, ·) is strongly concave in y (for every fixed x), hence the
maximization problem

max
y

Ψα(x, y) s.t. y ∈ X (2)

has a unique solution for each x that we call yα(x) (note that this statement is not true
for the standard Nikaido-Isoda-function), i.e.

yα(x) = arg max
y∈X

Ψα(x, y). (3)
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The corresponding value function is then defined by

Vα(x) := Ψα

(
x, yα(x)

)
. (4)

A vector x∗ ∈ X is then called a normalized Nash equilibrium if Vα(x∗) = 0 holds. Alterna-
tive names are social equilibrium or variational equilibrium. Note that our definition does
not correspond to the original one given in [24], but was shown to be equivalent to one
which is nowadays usually called a normalized Nash equilibrium in [14]. It is not difficult
to see that every normalized Nash equilibrium is a solution of the GNEP, whereas the
converse is not true in general. In fact, it is easy to find examples with infinitely many
generalized Nash equilibria which have just a single normalized Nash equilibrium.

The relaxation methods presented in [26, 19] as well as the one to be discussed in this
paper find a normalized Nash equilibrium and, therefore, a particular solution of a given
GNEP. The relaxation method itself uses the iteration

xk+1 := xk + tkd
k, dk := yα(xk)− xk, k = 0, 1, 2, . . . (5)

for the particular value α = 0 of the parameter α (since this does not guarantee existence
and uniqueness of the maximizer yα(x) in (3), the authors of [26] have to add some as-
sumptions which are not necessary in our case) and a stepsize tk ∈ (0, 1] satisfying the
conditions

tk ↓ 0 and
∞∑

k=0

tk =∞.

These conditions suggest a choice of the form tk = γ/k for some constant γ > 0, however,
in practice this choice leads to very slow convergence, so different heuristics are typically
implemented in order to improve the numerical behaviour of the relaxation method, see,
e.g., [19, 14]. The version of the relaxation method presented in [19] (again for the case
α = 0) chooses the stepsize tk by an exact minimization of the one-dimensional mapping

ϕk(t) := Vα(xk + tdk)

over the interval [0, 1]. This method was shown to have the same global convergence prop-
erty as the original relaxation method under the same set of assumptions as in [26], however,
since Vα is typically a highly nonlinear function, the computation of tk by minimizing ϕk

is usually not possible. Moreover, its computation is very expensive since each function
evaluation of ϕk corresponds to the solution of a constrained optimization problem in order
to evaluate the mapping Vα at the intermediate point xk + tdk.

Note that the iteration (5) of the standard relaxation method (with α = 0) can also
be applied to the case α > 0 considered in this paper, and that the convergence results
presented in [26, 19] for each of the above two stepsize rules also hold in this situation under
the assumptions stated there. Here, however, we present a completely different convergence
analysis motivated by standard descent methods from optimization that uses an inexact
Armijo-type line search in order to calculate a suitable stepsize tk at each iteration k.
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The organization of the remaining paper is as follows: Section 2 first recalls some of the
basic properties of the regularized Nikaido-Isoda function and then states some new ones.
In Section 3, we state our main assumption that is used in this paper and present some
sufficient conditions for this assumption to be satisfied. Section 4 then contains a precise
statement of our relaxation method and shows that this method is well-defined and glob-
ally convergent to a normalized Nash equilibrium under the main assumption introduced
in the previous section. This convergence analysis, however, relies on the continuous dif-
ferentiability of the mappings θν , while the algorithm itself is, in principle, derivative-free.
We therefore present an alternative convergence analysis for this algorithm in Section 5
which avoids any smoothness (differentiability) assumption, but which is based on a con-
vexity assumption that is stronger than the one used in Section 4. We then apply our
relaxation method to a variety of different examples in Section 6. We conclude with some
final remarks and open questions in Section 7.

The notation used in this paper is more or less standard, so we mention only a very
few things here: A square matrix A is said to be positive definite if xT Ax > 0 holds for all
x 6= 0. Note that we do not require symmetry of A here. Furthermore, the symbol ∂f(x)
denotes the subdifferential of a convex function f at the given point x, see [16, 23] for its
definition and several properties.

2 Properties of the Regularized Nikaido-Isoda-function

Let Ψα, yα, and Vα be defined by (1), (3), and (4), respectively. These mappings have a
number of important properties that we summarize in the following result whose proof can
be found in [14].

Proposition 2.1 The following statements hold:

(a) Vα(x) ≥ 0 for all x ∈ X.

(b) Vα(x∗) = 0 for some x∗ ∈ X ⇐⇒ x∗ is a normalized Nash equilibrium of the GNEP.

(c) x∗ is a fix point of the mapping x 7→ yα(x) ⇐⇒ x∗ is a normalized Nash equilibrium
of the GNEP.

(d) The mapping x 7→ yα(x) is continuous.

(e) The function Vα is continuously differentiable if all θν are continuously differentiable,
and its gradient is given by ∇Vα(x) = ∇xΨα(x, y)

∣∣
y=yα(x)

.

Note that, for continuously differentiable payoff functions θν , part (e) states that the map-
ping Vα(x) = Ψα

(
x, yα(x)

)
is continuously differentiable, whereas it does not say anything

regarding the smoothness of yα which, indeed, might be nondifferentiable.
Proposition 2.1 shows that x∗ is a normalized Nash equilibrium if and only if it is a

global minimum of the constrained minimization problem

min Vα(x) s.t. x ∈ X (6)
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with optimal function value Vα(x∗) = 0. The basic idea of our modified relaxation method
is to solve this minimization problem by a suitable feasible descent method.

Under certain assumptions, it can be shown that the objective function Vα is (strongly)
convex. In view of the definition of Vα, this (strong) convexity depends on similar properties
of the regularized mapping Ψα(x, y). In order to state a corresponding result, we recall
that the function Ψα(·, y) (as a function of x alone) is convex on a set S ⊆ Rn for any
given y if the inequality

Ψα

(
λx + (1− λ)z, y

)
≤ λΨα(x, y) + (1− λ)Ψα(z, y)

holds for all x, z ∈ S and all λ ∈ (0, 1). Moreover, Ψα(·, y) (again as a function of x alone)
is strongly convex on a set S ⊆ Rn for any given y if there is a modulus µ > 0 (possibly
depending on the particular vector y) such that the inequality

Ψα

(
λx + (1− λ)z, y

)
≤ λΨα(x, y) + (1− λ)Ψα(z, y)− µλ(1− λ)‖x− z‖2

holds for all x, z ∈ S and all λ ∈ (0, 1). If the constant µ > 0 can be chosen independently
of y ∈ S, then we call Ψα(·, y) uniformly strongly convex on S. Using this terminology, we
have the following result.

Proposition 2.2 The following statements hold:

(a) If Ψα(·, y) is convex for every y ∈ X, then Vα is also convex on X.

(b) If Ψα(·, y) is uniformly strongly convex on X, then Vα is strongly convex on X.

Proof. (a) Exploiting the convexity of Ψα(·, y) for any given y, we obtain for every
x, z ∈ X and all λ ∈ (0, 1)

Vα

(
λx + (1− λ)z

)
= Ψα

(
λx + (1− λ)z, yα(λx + (1− λ)z)

)
≤ λΨα

(
x, yα(λx + (1− λ)z)

)
+ (1− λ)Ψα

(
z, yα(λx + (1− λ)z)

)
≤ λΨα

(
x, yα(x)

)
+ (1− λ)Ψα

(
z, yα(z)

)
= λVα(x) + (1− λ)Vα(z),

where the first inequality takes into account that the vector yα(λx + (1− λ)z) belongs to
X, whereas the second inequality exploits the definitions of yα(x) and yα(z).

(b) Let µ > 0 be the uniform modulus of strong convexity of the mapping Ψα(·, y) on the
set X. Then, similar to the proof of part (a), we obtain for all x, z ∈ X and all λ ∈ (0, 1)
that

Vα

(
λx + (1− λ)z

)
= Ψα

(
λx + (1− λ)z, yα(λx + (1− λ)z)

)
≤ λΨα

(
x, yα(λx + (1− λ)z)

)
+(1− λ)Ψα

(
z, yα(λx + (1− λ)z))

)
− µλ(1− λ)‖x− z‖2
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≤ λΨα

(
x, yα(x)

)
+ (1− λ)Ψα

(
z, yα(z)

)
− µλ(1− λ)‖x− z‖2

= λVα(x) + (1− λ)Vα(z)− µλ(1− λ)‖x− z‖2.

Hence Vα is strongly convex on X with modulus µ > 0. �

In order to guarantee the (strong) convexity of Vα, we have to verify the assumptions from
Proposition 2.2, namely the (uniform strong) convexity of the mapping Ψα(·, y) for all
y ∈ X. In general, this requirement is not satisfied under standard convexity assumptions
for our payoff functions θν . However, for the case of quadratic payoff functions, we have
the following sufficient condition.

Proposition 2.3 Consider the case where the payoff functions are quadratic, say

θν(x) :=
1

2
(xν)T Aννx

ν +
N∑

µ=1
µ6=ν

(xν)T Aνµx
µ ∀ν = 1, . . . , N

for certain matrices Aνµ ∈ Rnν×nµ such that the diagonal blocks Aνν are (without loss of
generality) symmetric. Assume that

B :=


1
2
A11 A12 · · · A1N

A21
1
2
A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · 1
2
ANN

 , (7)

is positive definite and let λmin > 0 be the smallest eigenvalue of the symmetric matrix
B + BT . Then the following statements hold:

(a) The function Vα is convex on Rn for all α ∈ (0, λmin].

(b) The function Vα is strongly convex on Rn for all α ∈ (0, λmin).

Proof. We show that Ψα(·, y) is (uniformly strongly) convex and then apply Proposi-
tion 2.2. To this end, first note that the second partial derivatives of Ψα with respect to x
are given by

∇2
xνxµΨα(x, y) =

{
Aνµ + AT

µν , if µ 6= ν

Aνν − αInν , if µ = ν.
∀ν, µ = 1, . . . , N.

Hence we have ∇2
xxΨα(x, y) = B +BT −αI. Consequently, assumption (a) (or (b)) implies

that the Hessian ∇2
xxΨα(x, y) is positive semidefinite (or positive definite). This, in turn,

implies that the quadratic function Ψα(·, y) itself is convex (or uniformly strongly convex).
The statement therefore follows from Proposition 2.2. �
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Note that the previous result also holds if the utility functions θν contain additional linear
and/or constant terms since they do not change the second-order derivative of Ψα used in
the proof of that result.

The following example shows that the bounds given in Proposition 2.3 are tight.

Example 2.4 We consider the following Nash equilibrium problem, where player 1 con-
trols the single variable x1, player 2 controls the single variable x2, and the corresponding
optimization problems are given by

minx1

1
2
x2

1 minx2

1
2
x2

2

s.t. x1 ≥ 1 s.t. x2 ≥ 1.

Actually, this is a special case with two separable optimization problems. The unique
solution is x∗ = (1, 1)T , and the matrix B+BT from Proposition 2.3 has the two eigenvalues
λ1 = λ2 = 1, hence we have λmin = 1.

Given an arbitrary α > 0, an elementary calculation shows that the component func-
tions of yα are given by

[yα(x)]i =

{
α

1+α
xi, if xi ≥ 1+α

α
,

1, else.

Therefore, for all x satisfying xi < 1+α
α

, we locally have yα(x) ≡
(

1
1

)
. Consequently, the

Hessian of Vα is this area is given by

∇2Vα(x) =

(
(1− α) 0

0 (1− α)

)
,

which implies that Vα is convex in the respective area for all 0 < α ≤ 1 and nonconvex for
all α > 1. ♦

The previous results guarantee that (6) is a convex optimization problem, in particular,
every stationary point is therefore a global minimum and hence a normalized Nash equilib-
rium of the GNEP (provided there is at least one such solution of the GNEP). In the next
section, we will introduce an assumption which does not necessarily guarantee convexity
of the value function Vα, but still implies (among other things) that a stationary point is
a global minimum of (6).

3 Main Assumption and Discussion

This section is devoted to a discussion of the main assumption that is used in our subsequent
analysis. This assumption was first used in [14] and is as follows:

Assumption 3.1 (a) The utility functions θν are continuously differentiable.
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(b) For given x ∈ X with x 6= yα(x), the inequality

N∑
ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν
α(x), x−ν)

]T (
x− yα(x)

)
> 0

holds.

Note that the smoothness assumption from Assumption 3.1 (a) is necessary, in particular,
to formulate part (b). This Assumption 3.1 (b) is crucial for the development and analysis
of our relaxation method. On the one hand, it guarantees that the search direction used
in the relaxation method is a (feasible) descent direction for the value function Vα, see
Lemma 4.2 below (to this end, note that the original relaxation method from [26] does not
generate a monotonically decreasing sequence of function values), and, on the other hand,
it can be shown that any stationary point of the optimization problem (6) is already a
solution of the GNEP under Assumption 3.1. This observation is highly important, and a
proof can be found in [14], but it will not be used explicitly within this paper.

The rest of this section is devoted to a discussion of Assumption 3.1 (b). While it
looks somewhat strange in the beginning, we will show that it is satisfied under some
conditions which are much easier to verify. Further note that these conditions guarantee
that Assumption 3.1 holds for an arbitrary α > 0. The main criterion is given in the
following result.

Theorem 3.2 Let x∗ be a solution GNEP and assume that the utility functions θν are
twice continuously differentiable. Suppose that the matrix A = (Aνµ)N

ν,µ=1 with Aνµ =
∇2

xνxµθν(x
∗) is positive definite. Then there is a neighbourhood N(x∗) such that Assump-

tion 3.1 holds for all x ∈ U(x∗).

Proof. Given any x, we simplify the notation and write y and yν instead of yα(x) and
yν

α(x), respectively. From the intregral mean value theorem it follows that

∇θν(y
ν , x−ν)−∇θν(x

ν , x−ν) =
( ∫ 1

0

∇2
xxνθν

(
xν + τ(yν − xν), x−ν

)
dτ

)
(yν − xν).

Hence we get

N∑
ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν , x−ν)

]
=

N∑
ν=1

[( ∫ 1

0

∇2
xxνθν

(
xν + τ(yν − xν), x−ν

)
dτ

)
(xν − yν)

]
(8)

=
( ∫ 1

0

∇2
xx1θ1

(
x1 + τ(y1 − x1), x−1

)
dτ, . . . ,

∫ 1

0

∇2
xxN θN

(
xN + τ(yN − xN), x−N

)
dτ

)
(x− y)

=
( ∫ 1

0

[
∇2

xx1θ1

(
x1 + τ(y1 − x1), x−1

)
, . . . ,∇2

xxN θN

(
xN + τ(yN − xN), x−N

)]
dτ

)
(x− y)
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=

∫ 1

0

[
∇2

xx1θ1

(
x1 + τ(y1 − x1), x−1

)
, . . . ,∇2

xxN θN

(
xN + τ(yN − xN), x−N

)](
x− y

)
dτ.

Since the functions θν are twice continuously differentiable, and since x∗ is a fix point of
yα(·) in view of Proposition 2.1, the assumption that A is positive definite implies that
there exists a neighbourhood N(x∗) such that the slightly perturbed matrix(

∇2
xx1θ1

(
x1 + τ(y1

α(x)− x1), x−1
)
, . . . ,∇2

xxN θN

(
xN + τ(yN

α (x)− xN), x−N
))

is positive definite for all x ∈ N(x∗) and τ ∈ [0, 1]. Together with (8) this implies that
Assumption 3.1 holds for all x ∈ N(x∗) with x 6= yα(x). �

The following two corollaries are consequences of Theorem 3.2 and provide some simplified
sufficient conditions for Assumption 3.1 to be satisfied.

Corollary 3.3 Consider the case where the payoff functions θν are quadratic, say

θν(x) =
1

2
(xν)T Aννx

ν +
N∑

µ=1
µ6=ν

(xν)T Aνµx
µ

for ν = 1, . . . , N. Suppose that the matrix A = (Aνµ)N
ν,µ=1 is positive definite. Then As-

sumption 3.1 is satisfied at an arbitrary point x ∈ X with x 6= yα(x).

Proof. The statement follows immediately from Theorem 3.2 by noting that the second-
order partial derivatives of our quadratic functions θν are given by ∇2

xνxµθν(x) = Aνµ for
all x ∈ Rn. �

Note that the assumption of the matrix A = (Aνµ) being positive definite is weaker than
the corresponding condition on the matrix B defined in (7). In fact, B being positive
definite implies that the diagonal block matrix D := 1

2
diag

(
A11, . . . , ANN

)
is also positive

definite, which, in turn, gives the positive definiteness of A since this matrix is simply the
sum of B and D.

Corollary 3.4 Suppose that the utility functions θν are twice continuously differentiable

and that the matrix B(x, y) =
(
Bµν(x, y)

)N

µ,ν=1
with

Bµν(x, y) = ∇2
xµxνθν(y

ν , x−ν) (9)

is positive definite for all x, y ∈ X or equivalently, that the matrices

B(x, y) = −∇2
xyΨα(x, y)−∇2

yyΨα(x, y) (10)

are positive definite for all x, y ∈ X. Then Assumption 3.1 holds for all x ∈ X with
x 6= yα(x).
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Proof. By taking a look at the proof of Theorem 3.2, we immediately see that the
assumed positive definiteness of the matrices B(x, y) with the block components given by
(9) implies that Assumption 3.1 holds.

Hence we only have to show that the mapping B has the alternative representation
given in (10). This, however, follows directly from the expression of the second-order
derivatives ∇2

xyΨα(x, y) and ∇2
yyΨα(x, y), see, e.g., [15]. �

The following example shows that the condition given in (9) is not sufficient for the con-
vexity of the function Vα. In particular, it follows that Assumption 3.1 guarantees that
stationary points are global minima for a class of nonconvex problems.

Example 3.5 Consider a two-person game where each player controls a single variable,
and where the corresponding optimization problems are given by

minx1

1
2
x2

1 + 3
4
x1x2 minx2

1
2
x2

2 + 3
4
x1x2

s.t. x1 ≥ 1 s.t. x2 ≥ 1.

The unique Nash equilibrium is x∗ = (1, 1)T . Elementary calculations show that, for all

x ∈ X := [1,∞)× [1,∞) sufficiently close to x∗, we have yα(x) ≡
(

1
1

)
and, therefore,

∇2Vα(x) =

(
1− α 3

2
3
2

1− α

)
.

Obviously, there is no α > 0 such that this matrix is positive semidefinite. In particular,
the function Vα is not convex on X. Nevertheless, the matrix B(x, y) from (9) is equal to

B(x, y) =

(
1 3

4
3
4

1

)
and therefore positive definite for all α ∈ (0,∞) and all x, y ∈ X, which implies that
Assumption 3.1 holds for all x ∈ X. ♦

4 Algorithm and Convergence

Here we present our algorithm and prove a global convergence result. To this end, we
suppose throughout this section that Assumption 3.1 holds at every point x ∈ X or at
least at every iterate xk ∈ X that is generated by the following algorithm.

Algorithm 4.1 (Relaxation method with inexact line search)

(S.0) Choose x0 ∈ X, β, σ ∈ (0, 1), and set k := 0.

(S.1) Check a suitable termination criterion
(
like Vα(xk) ≤ ε for some ε > 0

)
.

(S.2) Compute yα(xk) and set dk := yα(xk)− xk.

10



(S.3) Compute tk = max {βl | l = 0, 1, 2, . . .} such that

Vα(xk + tkd
k) ≤ Vα(xk)− σt2k‖dk‖. (11)

(S.4) Set xk+1 := xk + tkd
k, k ←− k + 1, and go to (S.1).

Recall that we assume continuous differentiability of all utility functions θν , cf. Assump-
tion 3.1. This assumption is crucial for the subsequent convergence analysis presented in
this section. Nevertheless, we would like to point out that, at least in principle, Algo-
rithm 4.1 is a derivative-free method. In practice, the situation is somewhat different since
we have to be able to compute the function values of Vα which corresponds to the solution
of a constrained optimization problem, and this is typically done by suitable methods that
exploit the differentiability of the utility functions θν . While this section is therefore de-
voted to a convergence analysis using derivatives, we present a completely derivative-free
analysis in the next section which, however, is based on a convexity-type assumption which
is stronger than the central Assumption 3.1 used within this section.

Our first aim is to show that Algorithm 4.1 is well-defined. To this end, we first note
that dk is always a direction of descent for the merit function Vα.

Lemma 4.2 Let xk ∈ X be the current iterate and dk be the vector computed in Step (S.2)
of Algorithm 4.1. Then ∇Vα(xk)T dk < 0, i.e. dk is a direction of descent at xk (as long as
xk is not a normalized Nash equilibrium of the GNEP).

Proof. For simplicity of notation, we write yα instead of yα(x) and omit the iteration
index k. Recall from Proposition 2.1 that ∇Vα(x) = ∇xΨα(x, y)

∣∣
y=yα(x)

. Calculating the

partial derivative of Ψα with respect to x (cf. [14]), we then obtain

∇Vα(x)T d =
( N∑

ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν
α, x−ν)

]
+ . . . ∇x1θ1(y

1
α, x−1)

...
∇xN θN(yN

α , x−N)

− α(x− yα)
)T

(yα − x)

=
( N∑

ν=1

[
∇θν(x

ν , x−ν)−∇θν(y
ν
α, x−ν)

])T

(yα − x)

+
(  ∇x1θ1(y

1
α, x−1)

...
∇xN θN(yN

α , x−N)

− α(x− yα)
)T

(yα − x).

The first term of this equality is negative by Assumption 3.1, while the second term is
nonpositive due to the first order optimality condition for yα(x) := arg maxy∈X Ψα(x, y).
Altogether, we conclude that ∇Vα(x)T d < 0, hence d is a descent direction. �

11



Note that Assumption 3.1 was crucial in proving the descent property. – Based on the
previous result, we are now in the position to show that Algorithm 4.1 is well–defined.

Lemma 4.3 Algorithm 4.1 is well–defined and generates a sequence {xk} belonging to the
feasible set X.

Proof. The fact that {xk} belongs to X follows by induction: We have x0 ∈ X by our
choice of the starting point. Moreover, if xk ∈ X, we also have

xk+1 = xk + tkd
k = (1− tk)x

k + tkyα(xk) ∈ X

since xk, yα(xk) ∈ X, tk ∈ (0, 1] and X is convex by assumption. In order to show that
Algorithm 4.1 is well–defined, we only need to verify that the inner loop in (S.3) is finite
at each iteration k. To this end, let the iteration number k be fixed, and assume that the
calculation of tk is an infinite loop. Then we have

Vα(xk + βldk) > Vα(xk)− σβ2l‖dk‖ ∀ l ∈ N

or, equivalently,
Vα(xk + βldk)− Vα(xk)

βl
> −σβl‖dk‖ ∀ l ∈ N.

Taking the limit l −→ +∞ and using the fact that Vα is continuously differentiable, we ob-
tain ∇Vα(xk)T dk ≥ 0. On the other hand, we know from Lemma 4.2 that ∇Vα(xk)T dk < 0
since xk is not a solution of our GNEP

(
otherwise the algorithm would have stopped in

(S.1)
)
. This contradiction completes the proof. �

We next give a global convergence result for Algorithm 4.1.

Theorem 4.4 Every accumulation point of a sequence generated by Algorithm 4.1 is a
normalized Nash equilibrium of our GNEP.

Proof. Let x∗ be such an accumulation point, and let {xk}K be a corresponding subse-
quence converging to x∗. The continuity of the solution operator x 7−→ yα(x) then implies
{yα(xk)}K −→ yα(x∗). Hence we have {dk}K −→ yα(x∗)−x∗ =: d∗. In view of Proposition
2.1, we only need to show that d∗ = 0.

Assume we have d∗ 6= 0. Since the entire sequence {Vα(xk)} is monotonically decreasing
(by construction) and bounded from below

(
e.g., by Vα(x∗)

)
, it follows that the entire

sequence {Vα(xk)} converges. From our line search rule, we therefore get

0←− Vα(xk+1)− Vα(xk) ≤ −σt2k‖dk‖ ≤ 0 ∀ k ∈ N.

This implies
lim

k−→∞
t2k‖dk‖ = 0.

12



Since d∗ 6= 0 by assumption, we therefore have

lim
k∈K

tk = 0. (12)

Let lk ∈ N be the unique exponent such that tk = βlk in (S.3) of Algorithm 4.1. In view of
(12), we can assume without loss of generality that tk < 1 for all k ∈ K, hence the stepsize
tk
β

= βlk−1 does not satisfy the inequality from (S.3) of Algorithm 4.1. Hence we have

Vα(xk + βlk−1dk) > Vα(xk)− σ(βlk−1)2‖dk‖ ∀ k ∈ K.

This can be written as

Vα(xk + βlk−1dk)− Vα(xk)

βlk−1
> −σβlk−1‖dk‖ ∀ k ∈ K.

Taking the limit k −→ ∞ on K, using the fact that βlk−1 −→ 0 and exploiting the
continuous differentiability of Vα, we therefore obtain from the mean value theorem that

∇Vα(x∗)T d∗ ≥ 0.

On the other hand, since d∗ = yα(x∗)−x∗ 6= 0, it follows from Lemma 4.2 that∇Vα(x∗)T d∗ <
0. This contradiction shows that d∗ = 0 and, therefore, x∗ is indeed a normalized Nash
equilibrium of our GNEP. �

The previous convergence result also holds for a minor modification of Algorithm 4.1. This
observation is formally stated in the following remark.

Remark 4.5 It is not difficult to see that all our previous results remain true if we replace
the line search rule (11) in Algorithm 4.1 by the slightly modified condition

Vα(xk + tkd
k) ≤ Vα(xk)− σt2k‖dk‖2

where the only difference to the original condition (11) is that we now take the square of
‖dk‖ rather than ‖dk‖ itself.

We close this section with a simple example discussing the rate of convergence of Al-
gorithm 4.1. In fact, motivated by a somewhat similar idea for the solution of varia-
tional inequalities in [25], one might expect local quadratic convergence for the iteration
xk+1 := yα(xk) corresponding to the stepsize tk = 1 in Algorithm 4.1. However, it turns
out that this is not true even under very favourable assumptions. This is illustrated by the
following simple example.

Example 4.6 Consider the GNEP (which is actually an unconstrained NEP) with two
players, where each player controls only a single variable and where the corresponding
optimization problems are given by

minx1

1
2
x2

1 minx2

1
2
x2

2

s.t. (x1, x2) ∈ R2 s.t. (x1, x2) ∈ R2.
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The solution of this GNEP is obviously the origin x∗ = (0, 0)T . Given any x ∈ R2, an easy
calculation shows that the maximizer yα(x) of the corresponding optimization problem (2)
is given by

yα(x) =
α

1 + α
x.

Consequently, for the stepsize tk = 1 in our relaxation method, we obtain

xk+1 = xk + tkd
k = yα(xk) =

α

1 + α
xk.

Clearly, this shows that the rate of convergence is neither superlinear nor quadratic al-
though the example is very simple and has very nice properties. On the other hand, it
shows that we have a fast linear rate of convergence for small α > 0. ♦

5 Derivative-free Analysis

In this section, we consider Algorithm 4.1 once again. To this end, recall that the method
does not use any derivative information. The previous analysis, however, assumes differ-
entiability of all functions θν . Here we present a completely derivative-free analysis using,
however, the following slightly stronger assumption that we assume to hold throughout
this section.

Assumption 5.1 The function Ψα(·, y) is convex for every y taken from an open convex
neighbourhood of the set X.

In view of Proposition 2.2 and its proof, a direct consequence of Assumption 5.1 is the
convexity of the mapping Vα on the open convex neighbourhood of X. In particular, the
function Vα is therefore both directionally differentiable and locally Lipschitzian on this
set. These observations will be exploited in our subsequent analysis.

We begin our analysis with the following counterpart of Lemma 4.2.

Lemma 5.2 Let x ∈ X be any given point, and let d := yα(x)−x. Then there is a constant
t̄ > 0 (depending on x) such that Vα(x + td) < Vα(x) for all t ∈ (0, t̄] (provided that x is
not a normalized Nash equilibrium of the GNEP).

Proof. For arbitrary t ∈ (0, 1), the convexity of Ψα(·, y) implies

Vα(x + td) = Ψα

(
x + td, yα(x + td)

)
= Ψα

(
x + t(yα(x)− x), yα(x + td)

)
= Ψα

(
tyα(x) + (1− t)x, yα(x + td)

)
≤ tΨα

(
yα(x), yα(x + td)

)
+ (1− t)Ψα

(
x, yα(x + td)

)
(13)

≤ tΨα

(
yα(x), yα(x + td)

)
+ (1− t)Ψα

(
x, yα(x)

)
= tΨα

(
yα(x), yα(x + td)

)
+ (1− t)Vα(x)
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= t
[
Ψα

(
yα(x), yα(x + td)

)
− Vα(x)

]
+ Vα(x)

or, equivalently,

Vα(x + td)− Vα(x)

t
≤ Ψα

(
yα(x), yα(x + td)

)
− Vα(x). (14)

Since the function yα is continuous by Proposition 2.1, we have yα(x + td) → yα(x) for
t→ 0 and, therefore, Ψα

(
yα(x), yα(x+ td)

)
→ Ψα

(
yα(x), yα(x)

)
= 0. Hence it follows from

(14) that there is an ε = ε(x) > 0 (e.g., ε := 1
2
Vα(x)) and a t̄ = t̄(x) > 0 such that

Vα(x + td)− Vα(x)

t
≤ −ε ∀t ∈ (0, t̄]. (15)

This completes the proof. �

We next show that Algorithm 5.1 is well-defined under Assumption 5.1.

Lemma 5.3 Algorithm 4.1 is well–defined and generates a sequence {xk} belonging to the
feasible set X.

Proof. Similar to the proof of Lemma 5.3, we only have to show that the stepsize selection
in (S.3) is a finite procedure at each iteration k. To this end, we fix the iteration counter
k and assume that the calculation of tk is an infinite loop. Then

Vα(xk + βldk)− Vα(xk)

βl
> −σβl‖dk‖ ∀ l ∈ N.

Taking the limit l −→ +∞ and using the fact that Vα is convex and, therefore, directionally
differentiable at the current iterate xk ∈ X, we get

V ′
α(xk; dk) ≥ 0. (16)

On the other hand, we immediately obtain from (15) that V ′
α(xk; dk) ≤ −ε for some suffi-

ciently small ε = ε(xk) > 0, a contradiction to (16). �

We now come to the main global convergence result of Algorithm 4.1 under Assumption
5.1.

Theorem 5.4 Every accumulation point of a sequence generated by Algorithm 4.1 is a
normalized Nash equilibrium of our GNEP.

Proof. We try to copy the proof of Theorem 4.4. Basically, this is possible since Vα is
a convex function, hence we can exploit suitable properties of the convex subdifferential,
see, e.g., [16, 23] for more details.
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Let x∗ be an accumulation point, and let {xk}K be a corresponding subsequence con-
verging to x∗. The continuity of the solution operator x 7−→ yα(x) (cf. Proposition 2.1)
then implies {yα(xk)}K −→ yα(x∗). Hence we have {dk}K −→ yα(x∗)− x∗ =: d∗. In view
of Proposition 2.1, we only need to show that d∗ = 0.

Assume that d∗ 6= 0. Similar to the proof of Theorem 4.4, we know that the entire
sequence {Vα(xk)} converges and, since d∗ 6= 0, that limk∈K tk = 0. Let us write tk = βlk

for some exponent lk ∈ N. Then the line search rule is not satisfied for βlk−1 for all k ∈ K
(sufficiently large), giving

Vα(xk + βlk−1dk)− Vα(xk)

βlk−1
> −σβlk−1‖dk‖ ∀ k ∈ K. (17)

Taking the limit k −→∞ on K, the right-hand side converges to zero. In order to get the
limit of the left-hand side, we first note that the mean value theorem for convex functions
shows that, for each k ∈ K, there is a vector ξk on the line segment between xk and
xk + βlk−1dk and an element gk ∈ ∂Vα(ξk) such that

Vα(xk + βlk−1dk)− Vα(xk) = βlk−1(gk)T dk.

Hence the left-hand side of (17) simply becomes

Vα(xk + βlk−1dk)− Vα(xk)

βlk−1
= (gk)T dk

Now, on the subset K ⊆ N, we have xk → x∗, βlk−1 → 0, and dk → d∗ = yα(x∗)− x∗. This
implies xk + βlk−1dk → x∗ and, therefore, also ξk → x∗. Since the mapping x 7→ ∂Vα(x)
is locally bounded, the sequence {gk}K is bounded. Without loss of generality, we can
therefore assume that the entire subsequence {gk}K converges to some vector g∗. Taking
into account that the mapping x 7→ ∂Vα(x) is also closed, it follows that g∗ ∈ ∂Vα(x∗).
Exploiting the fact that the directional derivative is the support function of the convex
subdifferential, we obtain from (17) that

Vα(xk + βlk−1dk)− Vα(xk)

βlk−1
= (gk)T dk → (g∗)T d∗ ≤ max

g∈∂Vα(x∗)
gT d∗ = V ′

α(x∗; d∗).

In view of (17), we have (g∗)T d∗ ≥ 0, in particular, it therefore follows that V ′
α(x∗; d∗) ≥ 0.

On the other hand, since d∗ 6= 0, it follows from (15) that V ′
α(x∗; d∗) < 0. This contradic-

tion shows that d∗ = 0 and therefore completes the proof. �

6 Numerical Results

We implemented Algorithm 4.1 with the modified stepsize rule from Remark 4.5. The
method is terminated whenever Vα(xk) ≤ ε with ε := 10−12 and uses the parameters
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α = 10−4, β = 0.5, σ = 10−4. The implementation is done in MATLAB, using the build-in
function SNOPT from the TOMLAB package in order to calculate yα(xk) at each iteration
k.

Example 6.1 This test problem is the river basin pollution game taken from [19]. The
corresponding numerical results are given in Table 1. ♦

k xk
1 xk

2 xk
3 Vα(xk) stepsize

0 0.000000 0.000000 0.000000 90.878301693511 0.000
1 19.325863 17.174698 3.811533 0.118402581670 1.000
2 20.704303 16.105378 3.049526 0.003663469196 1.000
3 21.036699 16.036757 2.808432 0.000213429907 1.000
4 21.118197 16.029540 2.746408 0.000012918766 1.000
5 21.138222 16.028243 2.731024 0.000000789309 1.000
6 21.143173 16.027948 2.727213 0.000000047954 1.000
7 21.144471 16.027877 2.726212 0.000000001927 1.000
8 21.144714 16.027858 2.726025 0.000000000000 1.000

Table 1: Numerical results for Example 6.1

Example 6.2 This test problem is an internet switching model introduced by Kesselman
et al. [17] and also analysed by Facchinei et al. [8]. We modify this example slightly
and add the additional constraint xν ≥ 0.01, ν = 1, . . . , N in order to avoid possible
domain violations of the utility functions (which contain logarithmic terms). This does
not alter the solution. We set N = 10 (and B = 1 in the description of the model in
[8]) and use the starting point x0 = (0.1, . . . , 0.1)T . The exact solution of this problem
is x∗ = (0.9, . . . , 0.9)T . We only state the first two components of the iteration vector in
Table 2. This is the only example where the full stepsize tk = 1 is never accepted. A
straightforward computation yields that in the case of two players, Assumption 3.1 does
not hold whenever x1 = x2. Because of the symmetry of the game, this is probably also
true for the case of N > 2 players. Setting tk = 1 by force yields an iteration sequence
which, more or less, alternates between two vectors, cf. Table 3. Using our line search
globalization, however, we observe very fast linear convergence (see Table 2).

The situation changes if the starting point for the players is chosen unequally. Taking
x0 = (0.1, 0.11, 0.12, 0.13 . . . )T ∈ R10, for example, we obtain the results from Table 4.
Here Vα(xk) still decreases linearly, but only with a moderate rate. ♦

Example 6.3 Here we consider a simple two-player game originally suggested by Rosen [24].
The solution violates strict complementarity. More precisely, our example has the two pay-
off functions

θ1(x1, x2) =
1

2
x2

1 − x1x2 and θ2(x1, x2) = x2
2 + x1x2
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k xk
1 xk

2 Vα(xk) stepsize
0 0.100000 0.100000 0.026332722333 0.000
1 0.087172 0.087172 0.002241194298 0.250
2 0.090379 0.090379 0.000039775125 0.250
3 0.089905 0.089905 0.000002517609 0.250
4 0.090024 0.090024 0.000000156756 0.250
5 0.089994 0.089994 0.000000010751 0.250
6 0.090002 0.090002 0.000000000671 0.250
7 0.090000 0.090000 0.000000000000 0.250

Table 2: Numerical results for Example 6.2 using x0 = (0.1, 0.1, . . . , 0.1)T

k xk
1 xk

2 Vα(xk) stepsize
0 0.100000 0.100000 0.026332722333 0.000
1 0.048687 0.048687 0.344972828471 1.000
2 0.100000 0.100000 0.026332722333 1.000
3 0.048687 0.048687 0.344972828471 1.000
4 0.100000 0.100000 0.026332722333 1.000
5 0.048687 0.048687 0.344972828471 1.000
6 0.100000 0.100000 0.026332722333 1.000
7 0.048687 0.048687 0.344972828471 1.000

Table 3: Numerical results for Example 6.2 using x0 = (0.1, 0.1, . . . , 0.1)T and forcing
tk ≡ 1

and the joint constraints given by

X := {x ∈ R2 | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1}.

The unique normalized Nash equilibrium of this GNEP is x∗ = (1, 0)T and does not
satisfy strict complementarity since an easy calculation shows that yγ(x

∗) = (1, 0)T and
λγ(x

∗) = (0, 0, 1)T , hence strict complementarity does not hold in the second component.
Table 5 shows our corresponding numerical results. ♦

Example 6.4 This test problem is the Cournot oligopoly problem with shared constraints
and nonlinear payoff functions as described in Outrata et al. [22, p. 233]. Our results (using
different values for the parameter P from [22]) are given in Table 6. ♦

7 Final Remarks

We presented a slightly modified relaxation method for finding solutions of generalized
Nash equilibrium problems. The basic difference to the standard relaxation method is that
we replace the Nikaido-Isoda-function by its regularized counterpart (thus avoiding the
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k xk
1 xk

2 xk
3 Vα(xk) stepsize

0 0.100000 0.110000 0.120000 0.426072413930 0.000
1 0.055000 0.060000 0.065000 0.029845357936 0.500
2 0.090304 0.092485 0.094657 0.026443474030 1.000
3 0.078749 0.080644 0.082531 0.002346586690 0.250
4 0.083141 0.084771 0.086393 0.000111209217 0.250
5 0.083670 0.085074 0.086472 0.000056181123 0.250
6 0.087607 0.088233 0.088856 0.000050545959 1.000
7 0.087515 0.088055 0.088592 0.000010394061 0.250
8 0.088418 0.088807 0.089195 0.000009758951 0.500
9 0.088478 0.088814 0.089148 0.000003392002 0.250
10 0.088981 0.089223 0.089465 0.000002383523 0.500
11 0.089062 0.089271 0.089479 0.000001223374 0.250
12 0.089643 0.089736 0.089829 0.000001039496 1.000
13 0.089633 0.089712 0.089792 0.000000222366 0.250
14 0.089765 0.089822 0.089880 0.000000203240 0.500
15 0.089775 0.089825 0.089874 0.000000073548 0.250
16 0.089849 0.089885 0.089920 0.000000050643 0.500
17 0.089861 0.089892 0.089923 0.000000026695 0.250
18 0.089947 0.089960 0.089974 0.000000021076 1.000
19 0.089946 0.089958 0.089969 0.000000004764 0.250
20 0.089965 0.089974 0.089982 0.000000004212 0.500
21 0.089967 0.089974 0.089981 0.000000001596 0.250
22 0.089978 0.089983 0.089988 0.000000001075 0.500
23 0.089979 0.089984 0.089989 0.000000000582 0.250
24 0.089992 0.089994 0.089996 0.000000000356 1.000
25 0.089992 0.089994 0.089995 0.000000000101 0.250
26 0.089994 0.089996 0.089997 0.000000000000 0.500

Table 4: Numerical results for Example 6.2 using x0 = (0.1, 0.11, . . . , 0.19)T

assumptions that X is compact and the maximizer yα(x) is unique from [26, 19]) and that
we replace the line search rules from [26, 19] by an Armijo-type condition. The numerical
results indicate that the method has a relatively fast linear rate of convergence. A proof of
this statement is missing and part of our future research. Closely related to this project is
the question under which conditions the mapping Vα (or its square root) provides a local or
global error bound for GNEPs. So far, not much is known about error bounds for GNEPs
(in the moment, we are only aware of the preliminary error bound result from [8]), but this
topic certainly deserves further investigations.
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[4] T. Başar and G.J. Olsder: Dynamic Noncooperative Game Theory. Academic
Press, New York, second edition 1995 (reprinted by SIAM, Philadelphia, 1999).

[5] S. Berridge and J.B. Krawczyk: Relaxation algorithms in
finding Nash equilibria. Economic working papers archives, 1997,
http://econwpa.wustl.edu/eprints/comp/papers/9707/9707002.abs

[6] J. Contreras, M. Klusch, and J.B. Krawczyk: Numerical solutions to Nash-
Cournot equilibria in coupled constraint electricity markets. IEEE Transactions on
Power Systems 19, 2004, pp. 195–206.

[7] E. van Damme: Stability and Perfection of Nash Equilibria. Springer, Berlin, Ger-
many, second edition 1996.

[8] F. Facchinei, A. Fischer, and V. Piccialli: Generalized Nash equilibrium prob-
lems and Newton methods. Mathematical Programming, to appear.

[9] F. Facchinei and C. Kanzow: Generalized Nash equilibrium problems. 4OR – A
Quarterly Journal of Operations Research 5, 2007, pp. 173–210.
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k xk
1 xk

2 xk
3 Vα(xk) stepsize

P = 75
0 10.000000 10.000000 10.000000 1028.878642907024 0.000
1 13.012778 14.054536 15.077163 3.586375155786 1.000
2 11.285845 13.311206 15.235897 0.354069959857 1.000
3 10.704937 13.106986 15.332160 0.036616039323 1.000
4 10.507359 13.052947 15.377112 0.003948786754 1.000
5 10.439599 13.039442 15.395812 0.000440170522 1.000
6 10.416257 13.036372 15.403098 0.000050438731 1.000
7 10.408172 13.035815 15.405832 0.000005904036 1.000
8 10.405351 13.035815 15.406824 0.000000702526 1.000
9 10.404380 13.035815 15.407195 0.000000084802 1.000
10 10.404035 13.035852 15.407322 0.000000000000 1.000
P = 100
0 10.000000 10.000000 10.000000 1836.050150600377 0.000
1 17.833057 19.050570 20.189450 4.898567426891 1.000
2 15.207025 18.069382 20.605731 0.389727842587 1.000
3 14.408253 17.849904 20.795588 0.033154445717 1.000
4 14.161948 17.805303 20.868540 0.002976203103 1.000
5 14.085260 17.797975 20.894315 0.000278156683 1.000
6 14.061205 17.797524 20.903000 0.000026779751 1.000
7 14.053616 17.797912 20.905860 0.000002633959 1.000
8 14.051210 17.798178 20.906771 0.000000263170 1.000
9 14.050445 17.798303 20.907059 0.000000026572 1.000
10 14.050201 17.798354 20.907149 0.000000000000 1.000
P = 150
0 10.000000 10.000000 10.000000 2960.339138269361 0.000
1 27.861563 29.366476 30.558893 3.398159424100 1.000
2 24.632651 28.734752 31.626021 0.180425444160 1.000
3 23.846733 28.671683 31.919700 0.010223508454 1.000
4 23.653032 28.675775 31.995979 0.000607189161 1.000
5 23.604841 28.681019 32.015205 0.000037283006 1.000
6 23.592766 28.683240 32.019964 0.000002343399 1.000
7 23.589725 28.684005 32.021141 0.000000149536 1.000
8 23.588952 28.684235 32.021422 0.000000009467 1.000
9 23.588757 28.684300 32.021486 0.000000000000 1.000
P = 200
0 10.000000 10.000000 10.000000 3592.920967502584 0.000
1 38.595611 40.204250 41.080180 1.286880698864 1.000
2 36.344520 40.610613 42.510038 0.041767272152 1.000
3 35.896150 40.715632 42.751509 0.001512281298 1.000
4 35.807282 40.741277 42.793422 0.000057432013 1.000
5 35.789684 40.747242 42.800846 0.000002231508 1.000
6 35.786198 40.748592 42.802181 0.000000087882 1.000
7 35.785505 40.748881 42.802426 0.000000003479 1.000
8 35.785366 40.748943 42.802473 0.000000000124 1.000
9 35.785345 40.748954 42.802477 0.000000000000 1.000

Table 6: Numerical results for Example 6.4
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