
PENALTY METHODS FOR THE SOLUTION OF
GENERALIZED NASH EQUILIBRIUM PROBLEMS

(WITH COMPLETE TEST PROBLEMS)

Francisco Facchinei1 and Christian Kanzow2

1 Sapienza University of Rome
Department of Computer and System Sciences “A. Ruberti”
Via Ariosto 25, 00185 Roma, Italy
e-mail: facchinei@dis.uniroma1.it

2 University of Würzburg
Institute of Mathematics
Am Hubland, 97074 Würzburg, Germany
e-mail: kanzow@mathematik.uni-wuerzburg.de

February 11, 2009

Abstract

The generalized Nash equilibrium problem (GNEP) is an extension of the classical Nash
equilibrium problem where both the objective functions and the constraints of each player
may depend on the rivals’ strategies. This class of problems has a multitude of important
engineering applications and yet solution algorithms are extremely scarce. In this paper,
we analyze in detail a globally convergent penalty method that has favorable theoretical
properties. We also consider strengthened results for a particular subclass of problems
very often considered in the literature. Basically our method reduces the GNEP to a single
penalized (and nonsmooth) Nash equilibrium problem. We suggest a suitable method for
the solution of the latter penalized problem and present extensive numerical results.

Key Words: Nash equilibrium problem, Generalized Nash equilibrium problem, Jointly
convex problem, Exact penalty function, Global convergence.

1 Introduction

In this paper, we consider the Generalized Nash Equilibrium Problem (GNEP) and describe
new globally convergent methods for its solution. The GNEP is an extension of the classical
Nash Equilibrium Problem (NEP) where the feasible sets of each player may depend on
the rivals’ strategies. We assume there are N players and denote by xν ∈ Rnν the vector
representing the ν-th player’s strategy. We write

x :=

 x1
...
xN

 , x−ν :=

x1
...

xν−1

xν+1
...
xN

to denote the vector of all players’ strategies and the vector of all players’s strategies except
that of player ν. With this terminology in mind, we also write Rn 3 x = (xν ,x−ν), where
n := n1 + · · ·+ nN .

The aim of player ν, given the other players’ strategies x−ν , is to choose a vector xν that
solves the minimization problem

minimizexν θν(xν ,x−ν)

subject to xν ∈ Xν(x−ν).
(1)

Throughout this paper, we make the blanket assumption that the objective functions θν :
Rn → R are continuously differentiable and, as a function of xν alone, convex, while the
point-to-set mapping Xν : Rn−nν ⇒ Rnν is assumed to be convex valued. A point x̄ is
feasible for the GNEP if x̄ν ∈ Xν(x̄−ν) for all players ν. A generalized Nash equilibrium, or
simply a solution of the GNEP, is a feasible point x̄ such that

θν(x̄ν , x̄−ν) ≤ θν(xν , x̄−ν), ∀xν ∈ Xν(x̄−ν) (2)

holds for each player ν = 1, . . . , N . If the feasible sets Xν(x−ν) do not actually depend on
the rivals’ strategies x−ν and are therefore constant sets, we have the classical NEP. There is
a further case which has been often considered in the literature and that to some extent can
be seen as an intermediate case between the NEP and the GNEP. This intermediate case is
known as the jointly convex GNEP and it arises when the feasible sets Xν(x−ν) are given by

Xν(x−ν) := {xν ∈ Rnν : (xν ,x−ν) ∈ X, for some suitable x−ν},

where X ⊆ Rn is a non-empty closed convex set.
In this paper, we shall consider the most common case where the feasible sets Xν(x−ν)

are defined by parametric inequalities. More specifically, let gν : Rn → Rmν be given; we
assume

Xν(x−ν) :=
{
xν ∈ Rnν | gν(xν ,x−ν) ≤ 0

}
, (3)

where each gν
i , i = 1, . . . ,mν , is continuously differentiable and, as a function of xν only,

convex. Usually, the constraints defining the set Xν(x−ν) are divided into two groups: those
that actually depend on xν only and those that depend also on the other players’ variables
x−ν . From a practical point of view, it might be useful to distinguish between these two groups

1

of constraints; however, we avoid this distinction for the sake of notational simplicity, since
their consideration would not add much to our theoretical analysis, see, however, Remark 2.9.
When such practical setting is considered, it is easy to see that a problem is jointly convex if
g1 = g2 = · · · = gN =: g and g is convex with respect to the whole vector x.

The GNEP was formally introduced by Debreu [7] as early as 1952, it lies at the heart
of modern mathematical economics and, as such, its importance cannot be underestimated.
However, it is only from the mid-1990s that interesting engineering applications started to
arise along with the real need for the computation of their solutions. These applications range
from structural engineering to telecommunications, from computer science to the analysis of
deregulated markets and of pollution scenarios. We refer the interested reader to [13] for a
detailed history of the GNEP and of its many applications.

While the role of the GNEP as an important modelling tool is well established, the situa-
tion regarding solution algorithms is rather bleak. Rosen [43] popularized the jointly convex
GNEP and this setting has dominated the literature until very recently. He proposed the first
algorithm (a projected gradient-type approach) for the solution of jointly convex GNEPs, and
some other algorithms were later developed for this class of problems; prominent among these
is the relaxation method [31, 44], relying on the Nikaido-Isoda function. Other approaches
are possible to the solution of jointly convex problems; among them we may cite the recently
proposed methods from [24, 25, 26, 27], which are still based on the Nikaido-Isoda function
and therefore computationally quite intensive, or the variational inequality approaches from
[11, 34] which are also restricted to the jointly convex case. There also exist a number of
other proposals, and we refer the interested reader to the survey paper [13] and the references
therein.

If we consider the general GNEP, the situation becomes still more complex. It is well-
known [3, 13, 23] that a GNEP can be reduced to a Quasi Variational Inequality (QVI).
However, since the development of globally convergent algorithms for the solution of a QVI
is, in turn, still a challenging field, this reduction is of little algorithmic use, even if one
may conceptually use some gap function to reduce the GNEP to an optimization problem.
Reduction to an optimization problem can also be achieved through the use of the Nikaido-
Isoda function, but the computational overhead is high and the conditions for establishing
convergence are not easy to understand. Other approaches are also possible, and we again
refer the reader to [13] for a more detailed survey of existing possibilities. However, it is safe to
say that with the exception of penalty algorithms, that we discuss below, and algorithms for
very specific applications, see for example [39, 40, 41], the study of algorithms (and, especially,
of their global convergence) for general GNEPs is still in its infancy.

Penalty approaches to the solution of GNEPs are based on the usual penalization idea:
eliminate the difficult “coupling” constraints in a GNEP thus reducing it to a somewhat
simpler NEP. To this latter problem, we can then apply a host of methods based mainly on
the optimization or variational inequalities techniques, see [15], although conditions under
which the algorithms for VIs are guaranteed to work for NEPs are not well discussed so far.
Nevertheless, the VI formulation provides a strong theoretical and numerical framework for
the solution of the classical NEP. The penalization approach to GNEPs was initiated very
recently by Fukushima and Pang in [21], where they proposed a sequential penalty approach
to the solution of GNEPs in which an infinite sequence of differentiable penalized problems
is solved. The idea of using an exact penalty approach whereby a single nondifferentiable
NEP has to be solved to obtain a solution was first put forward in [16] even if in a rather
sketchy way. This topic has recently been considered also by Fukushima [20] who, among

2

other things, gives some conditions under which a penalty approach can be used to find a
solution of a GNEP. Although many issues have still to be fully addressed (among them the
practical solution of subproblems and a sound understanding of the theoretical conditions
under which useful results can be established for a penalty approach), we believe that penalty
based methods are a very promising approach to the solution of GNEPs and currently the
only practical class of methods available for their solution.

This paper is a contribution to this line of research. One of the main difficulties in
an (exact) penalization approach is how to properly choose the penalty parameters. In this
respect, we provide a very simple algorithm that automatically settles the penalty parameters
to the “right” values. This approach relies heavily on the fact that, unlike in most approaches,
we use the γ-norm with some γ ∈ (1,∞) (see below) to define the penalization. We analyze in
detail conditions which guarantee that the penalty parameters will settle to a finite value after
a finite number of iterations thus guaranteeing convergence to a solution of the GNEP. We
also consider in detail the jointly convex case for which stronger results can be obtained. We
finally provide an extensive numerical testing to show that the approach is viable in practice.

Throughout this paper, for some vector x of appropriate dimension,

‖x‖γ :=
(∑

i

|xi|γ
)1/γ

(4)

denotes the γ-norm for some fixed γ ∈ [1,∞] (as we will see, in this paper we will use mainly
γ-norms with γ ∈ (1,∞)). For the Euclidean norm we use no subscript and simply write
‖x‖. We further write g+(x) := max{0, g(x)} for a given function g : Rn → Rm, with the
maximum taken componentwise, ∇g(x) denotes the transposed Jacobian of this mapping g
(provided that g is differentiable), and ∇xνg(x) is the partial transposed Jacobian of g at x,
where the partial derivatives are taken only with respect to the components i belonging to
the subvector xν of x. When no confusion is possible, we will also write (v1, . . . , vN) instead
of ((v1)T , . . . , (vN)T)T .

2 Exact Penalization Algorithm

In this section, we present an algorithmic scheme based on exact penalization for general
GNEPs of the form (1) where the constraints are defined as in (3):

minxν θν(xν ,x−ν)
gν(xν ,x−ν) ≤ 0.

(5)

Our aim is to transform the GNEP problem into a(n unconstrained) nondifferentiable Nash
problem by using a penalty approach. To this end, we consider a penalization of the GNEP
where each player’s minimization problem is given by

minimizexν θν(xν ,x−ν) + ρν ‖gν
+(xν ,x−ν)‖γ , (6)

where the ρν are positive penalty parameters and ‖ · ‖γ denotes the γ-norm (4) for some
fixed γ ∈ (1,∞). The choice of this norm in order to define a penalty problem is somewhat
unusual. Traditionally, the norms ‖ · ‖1 and ‖ · ‖∞ have been preferred. However, the γ-norm

3

taken here is differentiable at any infeasible point. We believe that this is a clear advantage
and will put this peculiarity to fruitful use. By setting

Pν(x, ρν) := θν(xν ,x−ν) + ρν ‖gν
+(xν ,x−ν)‖γ ,

problem (6) can be rewritten as a (standard) Nash equilibrium problem, where each player’s
problem is given by

minxν Pν(x, ρν). (7)

We refer to problem (6) or, equivalently, (7) as the Penalized Nash Equilibrium Problem
(PNEP for short). Note that, for every fixed x−ν , the ν-th player’s subproblem in (6) is convex,
although nondifferentiable. In principle, the PNEP is easier than the original generalized Nash
problem (1), even if the nondifferentiability of the players’ objective functions is somewhat
problematic from the numerical point of view.

To make this idea viable in practice, we must tackle two main issues: (a) (How) can we
choose the penalty parameters ρν so that a solution of the PNEP is also a solution of the
original GNEP? (b) How can we solve the PNEP for a given choice of penalty parameters?
In order to make the analysis more general and also simpler, we discuss these two issues
separately. This section is devoted to the analysis of (a), while we shall discuss (b) in Section
3. Therefore, in what follows, we will simply assume momentarily that we have an algorithm
that solves the PNEP for given fixed values of the penalty parameters. To be more precise,
we suppose an iterative algorithm A is available that, given a point xk, generates a new point
xk+1 := A[xk]. We make the following absolutely natural blanket assumption on A.

Assumption 2.1 For every x0, the sequence {xk} obtained by setting xk+1 = A[xk] is such
that every limit point (if any) is a solution of the PNEP.

Note that all the results of this section hold independently of the algorithm A so that, on the
one hand, we have total freedom in the choice of A while, on the other hand, we need not
worry about replicating results whenever the algorithm A changes. Based on the algorithm
A we show next how we can iteratively update the values of the ρν . The idea behind the
scheme below is that if, for any value of the penalty parameters ρν , we find a solution of (7)
that is also feasible for (5), then this is easily seen to be a solution of (5). We therefore try
to force feasibility by increasing the penalty parameters if this seems to be necessary. On the
other hand, if a solution x̄ of (7) is not feasible for at least one player ν of the game (5), then
the function Pν(x, ρν) is continuously differentiable at x̄ and this entails

‖∇xνθν(x̄ν , x̄−ν)‖ = ρν

∥∥∇xν‖gν
+(x̄ν , x̄−ν)‖γ

∥∥ . (8)

The idea of the updating scheme below is then to detect when this “dangerous” situation
occurs (see the test at Step 2), and to increase the value of the penalty parameter in this
case. Here is the detailed realization of this idea.

Algorithm 2.2 (Penalty Updating Scheme for General GNEPs)

Data: x0 ∈ Rn, ρν > 0 and cν ∈ (0, 1) for all ν = 1, . . . , N . Set k := 0.

Step 1: If xk is a solution of the GNEP (1): STOP.

4

Step 2: Let Ik := {ν | (xk)ν 6∈ Xν((xk)−ν)}. For every ν ∈ Ik, if

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν

[
ρν

∥∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥∥] , (9)

then double the penalty parameters ρν .

Step 3: Compute xk+1 = A[xk], set k ← k + 1, and go to Step 1.

Regarding Step 2 of Algorithm 2.2, note that, for all ν ∈ Ik, the current iterate xk is not
feasible for the ν-th player’s optimization problem. Hence gν

+(xk) is positive, and the γ-norm
at this point is therefore differentiable. The rationale behind the test (9) is very simple:
whenever the gradient of the penalty term is not sufficiently larger than the gradient of
the objective function, we increase the penalty parameter. The effect of this increase is to
correspondingly increase the norm of the penalty term and so avoid the possibility that (8)
occurs.

Remark 2.3 Algorithm 2.2 is simple and it uses a very rough updating rule. We will discuss
many possible variants, which are probably more algorithmically attractive, later on. �

Remark 2.4 Fukushima [20] proposed an updating scheme for the value of penalty param-
eters in a penalty approach to GNEPs. This is based, more traditionally, on the use of
some suitable Lagrange multipliers to decide whether to update the penalty parameters. The
scheme in [20] and our one are substantially distinct. One key difference that we believe is
important from the practical point of view is that in [20], in order to decide whether to update
the penalty parameters, a nondifferentiable penalized Nash problem has to be solved exactly.
In our approach instead, a single iteration of a solution method has to be performed. Note
that there is not even need that the penalized problem have a solution for all values of the
penalty parameters for this to be accomplished. �

The following theorem gives a detailed picture of what we can expect from Algorithm 2.2.
Although somewhat technical, the theorem moves along lines that have proven extremely
useful in optimization and is the cornerstone on which we will elaborate to obtain more
practical results. In what follows, we indicate by I∞ the set of indices of players for which
the updating test (9) is satisfied infinitely many times. Note that I∞ = ∅ if and only if all
the penalty parameters are updated a finite number of times only.

Theorem 2.5 Let {xk} be the sequence generated by Algorithm 2.2. If I∞ = ∅ (i.e. if the
penalty parameters are updated a finite number of times only), then every limit point x̄ of this
sequence is a solution of the GNEP.

If instead I∞ 6= ∅ (i.e. if some penalty parameters grow to infinity) and the sequence {xk}
is bounded, then, for each ν ∈ I∞, there is a limit point x̄ for which one of the following
assertions is true:

(a) x̄ν is a global minimizer of the constraint violation ‖gν
+(·, x̄−ν)‖γ with ‖gν

+(x̄ν , x̄−ν)‖γ >
0;

(b) x̄ν is Fritz John point for the player’s problem (5) (when the rivals play x̄−ν), but not
a solution of (5);

(c) x̄ν is an optimal solution for the player’s problem (5) (when the rivals play x̄−ν).

5

Before proving the theorem, let us comment on it. The first part of the theorem deals with
the case in which the penalty parameters are updated a finite number of times only, that
can be interpreted as “exact penalization is working”. In this case, we have a neat result:
every limit point of {xk} is a solution of the GNEP. The second part, instead, deals with
the case in which the penalty parameters blow-up to infinity, that is with the case in which
“exact penalization is not working”. We show that in this case the algorithm does as well as
possible, in that one of the three possibilities (a), (b), or (c) must necessarily hold for some
players. In nowadays standard optimization jargon introduced in [4], this can be restated by
saying that x̄ν (for ν ∈ I∞) is a generalized stationary point. At first sight, this may seem
a weak result, but a moment thought immediately reveals that this result actually shows
that Algorithm 2.2 achieves the maximum that can be expected. In fact, observe that we
made no regularity assumptions whatsoever on problem (5) and, therefore, it could happen
that, for a given x̄−ν , a player’s optimization problem is infeasible (case (a)) or, if feasible,
does not satisfy any constraint qualification, so that Fritz John points are present (case (b)).
Obviously, the problem can also admit a solution (case (c)). In any event, the second part of
the theorem shows that the algorithm finds “meaningful” results and that, roughly speaking,
if it “does not work” it is because some problems of the players are lacking in feasibility or
constraint qualification.

Proof of Theorem 2.5: We begin by showing that if the penalty parameters are updated
a finite number of times only, then any limit point x̄ is a solution of the GNEP. Since the
penalty parameters are updated a finite number of times only, after a finite number of steps,
Algorithm 2.2 can be viewed as the application of Algorithm A to the solution of the PNEP
(for fixed values of the penalty parameters ρν). Therefore, by Assumption 2.1, every limit
point x̄ of the sequence {xk} is a Nash equilibrium of the PNEP. In order to show that x̄
is also a Nash equilibrium of the original GNEP, it is enough to show that x̄ is feasible. In
fact, if x̄ is a Nash equilibrium of the PNEP, this means that x̄ν is the optimal unconstrained
solution of the problem minxν Pν(xν , x̄−ν , ρν). But, on the feasible set Xν(x̄−ν), we have
θν(xν , x̄−ν) = Pν(xν , x̄−ν , ρν). Therefore, x̄ is also a solution of the GNEP.

Suppose then, by contradiction, that x̄ is not feasible. Subsequencing if necessary, we
may assume that the entire sequence {xk} converges to x̄. Suppose also, without loss of
generality, that the penalty parameters are not updated for any k. Since x̄ is not feasible, the
set Ī := {ν | x̄ν 6∈ Xν(x̄−ν)} is nonempty. For each ν ∈ Ī, Pν is continuously differentiable
in a neighborhood of x̄ and, therefore, since x̄ is a Nash equilibrium of the unconstrained
penalized problem (6), we have

0 = ∇xνPν(x̄ν , x̄−ν , ρν) = ∇xνθν(x̄ν , x̄−ν) + ρν∇xν‖gν
+(x̄ν , x̄−ν)‖γ ,

from which we deduce ‖∇xνθν(x̄ν , x̄−ν)‖ = ρν

∥∥∇xν‖gν
+(x̄ν , x̄−ν)‖γ

∥∥. Using cν ∈ (0, 1) and
simple continuity arguments, this shows that the test (9) must be satisfied eventually for all
ν ∈ Ī and for all k sufficiently large. Hence the corresponding penalty parameters ρν are
updated. This contradiction shows that x̄ is feasible, and thus we have shown the first part
of the theorem.

Consider now the case in which I∞ 6= ∅. Choose an index ν ∈ I∞. Since ν ∈ I∞,
subsequencing if necessary, we can assume, without loss of generality, that {xk} → x̄ and
that for all k, the penalty parameter ρν is updated. According to Step 2 of Algorithm 2.2,

6

we then have

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν

[
ρν

∥∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥∥] ∀k.

By our continuity assumptions on the functions defining the problem and the fact that the
penalty parameters go to infinity, this immediately implies that

∇xν‖gν
+((xk)ν , (xk)−ν)‖γ → 0. (10)

We now distinguish two cases, namely whether x̄ is feasible or infeasible for player ν.
First consider the case where x̄ is not feasible for player ν. Then the mapping ‖gν

+(·, x̄−ν)‖γ
is continuously differentiable at x̄ν , and we get

∇xν‖gν
+(x̄ν , x̄−ν)‖γ = 0 (11)

from (10). Since gν(·, x̄−ν) is convex by assumption, ‖gν
+(·, x̄−ν)‖γ is also convex. Then (11)

shows that x̄ν is a global minimizer of the function ‖gν
+(·, x̄−ν)‖γ with ‖gν

+(x̄ν , x̄−ν)‖γ > 0
(due to the infeasibility of x̄). In other words, case (a) occurs.

Now consider the case where x̄ is feasible for player ν. We first rewrite (10) explicitly as

∇xνgν((xk)ν , (xk)−ν)(λk)ν → 0, where (λk)ν :=
gν
+((xk)ν , (xk)−ν)γ−1

‖gν
+((xk)ν , (xk)−ν)‖γ−1

γ

,

where gν
+((xk)ν , (xk)−ν)γ−1 means that we apply the exponent γ−1 to each component of the

vector gν
+((xk)ν , (xk)−ν) (the same notation will also be used in our subsequent analysis). Now

it is not difficult to see that there are constants 0 < α1 ≤ α2 such that α1 ≤ ‖(λk)ν‖γ ≤ α2

for all k. Hence we may assume that there is a limiting vector λ̄ν 6= 0 such that

∇xνgν(x̄ν , x̄−ν)λ̄ν = 0, λ̄ν ≥ 0, (λ̄ν)Tgν(x̄ν , x̄−ν) = 0,

where the last relation follows from the fact that, by definition of (λν)k, we have (λν
i)

k = 0
for all indices i with gν

i (x̄) < 0. Hence x̄ν is a Fritz John point for problem (5). Therefore, in
this case, x̄ν either satisfies (b) or (c). �

The previous theorem describes in detail the behavior of Algorithm 2.2 and, in certain sense,
clarifies that it is the presence of generalized stationary points that are not solutions of the
GNEP that causes troubles. However, it gives no clear hint on what conditions on the problem
can guarantee a priori that no troubles will arise. Our line of attack is clearly suggested by
Theorem 2.5, and we therefore proceed to give sufficient conditions on the problem which
ensure that I∞ = ∅. This will guarantee that every limit point of the sequence generated by
the algorithm is a solution of the GNEP.

In order to do this, we first introduce a nonstandard constraint qualification that, again,
is suggested by (a) and (b) of Theorem 2.5. We denote by ∂∗xν‖gν

+(xν ,x−ν)‖γ the set

∂∗xν‖gν
+(xν ,x−ν)‖γ :=

{
ξ ∈ Rnν

∣∣ ∃{yk}with (yk)ν 6∈ Xν((yk)−ν) such that

{yk} → x and∇xν‖gν
+((yk)ν , (yk)−ν)‖γ → ξ

}
.

Note that if xν 6∈ Xν(x−ν), then ‖gν
+(xν ,x−ν)‖γ is continuously differentiable around x and

∂∗xν‖gν
+(xν ,x−ν)‖γ =

{
∇xν‖gν

+(xν ,x−ν)‖γ
}
.

7

If, instead, xν belongs to the interior of Xν(x−ν), then ∂∗xν‖gν
+(xν ,x−ν)‖γ is obviously the

empty set because no sequence {xk} such that (xk)ν 6∈ Xν((xk)−ν)
)

converging to x ex-
ists. Finally, if xν belongs to the boundary of Xν(x−ν), the set ∂∗xν‖gν

+(xν ,x−ν)‖γ can be
interpreted, roughly speaking, as the set of subgradients in ∂xν‖gν

+(xν ,x−ν)‖γ “arising” from
infeasible points, cf. the corresponding subgradient definition from [5].

Exploiting the definition of the set ∂∗xν‖gν
+(xν ,x−ν)‖γ , we give the following definition.

Definition 2.6 We say that the GNEP (5) satisfies the constraint qualification CQγ at a
point x̄ if

0 6∈ ∂∗xν‖gν
+(x̄ν , x̄−ν)‖γ , ∀ν = 1, . . . , N. (12)

In the case of optimization problems, this kind of constraint qualification was probably in-
troduced in [8], see also [9, 10]. The one above is the natural extension of this optimization
constraint qualification to GNEPs.

In order to put this constraint qualification in connection with more usual constraint qual-
ifications, we also introduce the Extended Mangasarian-Fromovitz Constraint Qualification
(EMFCQ) for GNEPs. This condition has already been used in penalty schemes for GNEPs
in [20, 21].

Definition 2.7 We say that the GNEP (5) satisfies the EMFCQ at a point x̄ if, for every
player ν = 1, . . . , N , there exists a vector dν such that

∇xνgν
i (x̄ν , x̄−ν)Tdν < 0 ∀i ∈ Iν

+(x̄),

where Iν
+(x̄) :=

{
i ∈ {1, . . . ,mν}

∣∣ gν
i (x̄ν , x̄−ν) ≥ 0

}
is the index set of all active and violated

constraints at the point x̄.

Clearly, this is nothing else than the extension to GNEPs of a well-known corresponding
condition for optimization problems.

Theorem 2.8 Assume that the sequence {xk} generated by Algorithm 2.2 applied to the
GNEP (5) is bounded. Consider the following assertions:

(a) The EMFCQ holds at every limit point x̄ of {xk};

(b) The CQγ condition holds at every limit point x̄ of {xk};

(c) The penalty parameters are updated a finite number of times only, i.e. I∞ = ∅.

Then the following implications hold:

(a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b). Suppose that EMFCQ holds at a limit point x̄, but (12) is violated.
Then there is a player ν such that 0 ∈ ∂∗xν‖gν

+(x̄ν , x̄−ν)‖γ . Hence there is a sequence {yk}
with (yk)ν 6∈ Xν((yk)−ν) such that {yk} → x̄ and ∇xν‖gν

+((yk)ν , (yk)−ν)‖γ → 0. Taking into
account the differentiability of the norm at the infeasible point yk, this implies

mν∑
i=1

(λk
i)

ν∇xνgν
i ((yk)ν , (yk)−ν)→ 0, where (λk)ν :=

gν
+((yk)ν , (yk)−ν)γ−1

‖gν
+((yk)ν , (yk)−ν)‖γ−1

γ

. (13)

8

Similar to the proof of Theorem 2.5, we may assume that both yk → x̄ and (λk)ν → λ̄ν on a
suitable subsequence, where λ̄ν ∈ Rmν is a nonzero vector. Then, (13) gives

mν∑
i=1

λ̄ν
i∇xνgν

i (x̄ν , x̄−ν) = 0.

Since we obviously have λ̄ν
i = 0 for all i 6∈ Iν

+(x̄) (this being the index set from Definition
2.7), this becomes ∑

i∈Iν
+(x̄)

λ̄ν
i∇xνgν

i (x̄ν , x̄−ν) = 0.

Note that λ̄i ≥ 0 for all i ∈ Iν
+(x̄), and that at least one component is strictly positive.

Therefore, if we multiply the above equation by dν , where dν denotes the vector from the
EMFCQ, we obtain

0 =
∑

i∈Iν
+(x̄)

λ̄ν
i∇xνgν

i (x̄ν , x̄−ν)Tdν < 0,

a contradiction. (Note that we assume Iν
+(x̄) 6= ∅ here since otherwise the statement is rather

trivially satisfied.)
(b)⇒ (c). Suppose by contradiction that I∞ 6= ∅ and let ν be an index in this set. Subse-

quencing if necessary, we may assume that ρν is updated at every iteration and {xk} → x̄ with
(xk)ν 6∈ Xν((xk)−ν). By Step 2 of Algorithm 2.2, we then have ∇xν‖gν

+((xk)ν , (xk)−ν)‖γ → 0.
The definition of ∂∗xν‖gν

+(x̄ν , x̄−ν)‖γ therefore gives 0 ∈ ∂∗xν‖gν
+(x̄ν , x̄−ν)‖γ , a contradiction to

(12). Hence all penalty parameters are updated a finite number of times only. �

The following example shows that indeed condition CQγ is weaker than EMFCQ. Consider
one player whose feasible set (in R) is defined by x ≤ 0 and −x ≤ 0. It is obvious that the
EMFCQ cannot hold at the origin (which is also the only feasible point). On the other hand,
CQγ holds at the origin. In fact, we have ∂∗x‖(x+, (−x)+)‖γ = {−1, 1}.

From a practical point of view, Algorithm 2.2 should be regarded as a starting point, and
it is easy to verify that it is possible to define several variants without affecting the properties
described in the two previous theorems. Below we describe some of these modifications. First
of all, note that at Step 2 it is not essential to double the penalty parameter. If an updating
occurs, we can well set ρν ← ανρν , where αν is any constant greater than 1. Obviously, αν

need not be the same for all iterations, what is crucial is that, if αk
ν denotes the updating

factor used at iteration k, then αk
ν ∈ [1 + α, 1 + ᾱ], where α ≤ ᾱ are positive constants.

Another logical updating strategy could be that of choosing the new penalty parameter so
that the test at Step 2 is “safely failed”, i.e. to take the new ρν so that

‖∇xνθν((xk)ν , (xk)−ν)‖+ constant ≤ cν
[
ρν

∥∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥∥] ,
where constant is a positive number.

We could also think to modify in a different way the test at Step 2. It should be clear from
the discussion in this section that we want the penalty parameters to be updated as little as
possible, because good convergence properties are related to the penalty parameters staying
finite. Therefore, it seems reasonable to look for more stringent updating rules that, however,
do not impair convergence. From the analysis carried out in this section, it is rather obvious
that we really need to update the ν-th penalty parameter if we are converging to a stationary
point of the ν-th penalized problem which is not feasible for the corresponding constrained

9

problem. From this point of view, a natural variant of the algorithm is to replace the test in
Step 2 by

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν
[
ρν

∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥]
and∥∥∇xν

[
θν((xk)ν , (xk)−ν) + ρν ‖gν

+((xk)ν , (xk)−ν)‖γ
] ∥∥ ≤ constant,

where, again, constant is a positive number. Following this line of thought, we could even
think of reducing the penalty parameters if this situation seems favorable. A possible test
indicating that we are in the position to reduce the penalty parameter is, when the test at
step 2 is failed by a large margin, for example

‖∇xνθν((xk)ν , (xk)−ν)‖ ≤ 0.01cν
[
ρν

∥∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥∥] .
It is trivial to show that reducing the penalty parameters does not change any of the conver-
gence properties of Algorithm 2.2 as long as only a finite number of reductions are permitted.

We finally note that, from a practical point of view, it might be convenient to perform
more than one step of algorithm A in Step 3. That is, it is not necessary to perform just one
step of algorithm A before checking whether to update the penalty parameters. It can be
checked that all the results in this section still hold if we perform any number of iterations
of algorithm A in Step 3, provided that there is an upper bound on the number of iterations
performed between two successive penalty parameter updating tests.

Remark 2.9 As we mentioned in the introduction, it is often the case that we can distinguish
two groups of constraints for each player ν: those depending on xν only and those depending
on the other players’ variables as well:

min
xν

θν(xν ,x−ν)

s.t. hν(xν) ≤ 0,
gν(xν ,x−ν) ≤ 0

for certain functions hν : Rnν → Rpν and gν : Rnν → Rmν .
If this is the case, we could consider a partial penalization scheme where only the “difficult”

mixed constraints gν are penalized so that the penalized problem becomes

min
xν

θν(xν ,x−ν) + ρν‖gν
+(xν ,x−ν)‖γ

s.t. hν(xν) ≤ 0.

Note that, in this case, the penalized problem is a constrained Nash game, as opposed to
the unconstrained one we considered in this paper. All the developments presented so far go
through for this partial penalization approach, with minor technical adjustments, especially
in the regularity conditions.

In this paper, we favored the “total” penalization approach for sake of simplicity of pre-
sentation, and also because it appears simpler to develop algorithms A for the solution of
the penalized problem in case all constraints have been penalized and “moved” to the objec-
tive function, see Section 3. One must note, however, that keeping the h as constraints in

10

the penalized problem has its own advantages. Foremost among them is the fact that it is
(theoretically) easy to develop algorithms that only produce iterates xk that remain feasible
for these constraints. The main advantage of this is that, in case the set defined by the
constraints h all together (i.e. the set {x ∈ Rn : hν(xν) ≤ 0, ν = 1, . . . , N}) is bounded, one
can be sure that the sequence {xk} produced by the penalty algorithm is also bounded. �

2.1 The Jointly Convex Case

We now consider the case of a Nash game with jointly convex constraints; in particular, we
consider the case where the ν-th player’s problem is

minxν θν(xν ,x−ν)
g(xν ,x−ν) ≤ 0

(14)

for a continuously differentiable function g : Rn → Rm that is convex as a function of x (recall
that the constraint function g is the same for all players in the jointly convex case, in contrast
to the more general case discussed in the first part of this section).

This is a much more structured problem than the one considered in the previous subsection
and, obviously, all the results established there are applicable to a jointly convex GNEP.
However, due to the special structure, we expect to be able to get further results for GNEPs
with jointly convex constraints.

To this end, however, we consider the following algorithm which differs from Algorithm
2.2 in the way the penalty parameters are updated.

Algorithm 2.10 (Penalty Updating Scheme for Jointly Convex Constraints)

Data: x0 ∈ Rn, ρν > 0 and cν ∈ (0, 1) for all ν = 1, . . . , N . Set k := 0.

Step 1: If xk is a solution of the GNEP (1): STOP.

Step 2: If xk is not feasible, i.e. if g(xk) 6≤ 0, and

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν

[
ρν

∥∥∥∇xν‖g+((xk)ν , (xk)−ν)‖γ
∥∥∥] ∀ν, (15)

then double ρν for all ν.

Step 3: Compute xk+1 = A[xk], set k ← k + 1, and go to Step 1.

To better appreciate the differences between this algorithm and Algorithm 2.2, we first observe
that, in the present case, if a point x is feasible, i.e. if g(x) ≤ 0, then the set Ik considered
at Step 2 of Algorithm 2.2 is empty. On the other hand, if x is not feasible, i.e. if g(x) 6≤ 0,
then the set Ik includes all the indices ν = 1, . . . , N . Having this difference in mind, we see
that Algorithm 2.10 updates all the penalty parameters if the updating test (29) holds for all
players, while in Algorithm 2.2 the test and the updating occur individually for each player.
Among other things, this implies that in Algorithm 2.10 either all the penalty parameters are
updated a finite number of times or they all grow to infinity. For simplicity, we could therefore
use in this case a single penalty parameter for all players. We prefer to keep different penalty
parameters ρν both because this may be useful numerically (we can still use different initial
penalty parameters for each player; furthermore see the comments after Theorem 2.8) and to
parallel as much as possible the notation used previously.

Theorem 2.5 can be easily extended to the current setting.

11

Theorem 2.11 Consider the GNEP (14) with jointly convex constraints. Let {xk} be the
sequence generated by Algorithm 2.10. If the penalty parameters are updated only a finite
number of times, then every limit point x̄ of this sequence is a solution of the GNEP.

If, instead, the penalty parameters are updated infinitely many times (and therefore grow
to infinity) and the sequence {xk} is bounded, then there is a limit point x̄ such that, for each
ν = 1, . . . , N , the block component x̄ν is such that one of the following assertions is true:

(a) x̄ν is a global minimizer of the constraint violation ‖g+(·, x̄−ν)‖γ with ‖g+(x̄ν , x̄−ν)‖γ >
0;

(b) x̄ν is Fritz John point for the player’s problem (14) (when the rivals play x̄−ν), but not
a solution of (14);

(c) x̄ν is an optimal solution for the player’s problem (14) (when the rivals play x̄−ν).

Proof. Let x̄ be a limit point of the sequence {xk} and assume, without loss of generality,
that the whole sequence actually converges to x̄. Similar to the proof of Theorem 2.5, it
suffices to show that x̄ is feasible for the GNEP (14). This can be shown exactly as in the
proof of Theorem 2.5.

Assume now that the penalty parameters are updated infinitely many times (for all players
ν = 1, . . . , N) in Algorithm 2.10. Since {xk} is bounded, we may assume without loss of
generality that {xk} converges to some point x̄ and that the penalty parameters are updated
at every iteration k. In view of the updating rule (15) in Algorithm 2.10, we have

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν

[
ρν

∥∥∥∇xν‖g+((xk)ν , (xk)−ν)‖γ
∥∥∥] ∀k ∀ν = 1, . . . , N.

By continuity and the fact that all penalty parameters go to infinity, this implies

∇xν‖g+((xk)ν , (xk)−ν)‖γ → 0 ∀ν = 1, . . . , N. (16)

The remaining part of the proof is essentially the same as the one of Theorem 2.5. The only
thing one has to take into account is the fact that x̄ν is feasible for one player ν if and only
if it is feasible for all players ν = 1, . . . , N (due to the joint convexity of all players’ strategy
sets). �

Note the difference in the statements of the second part of Theorem 2.5 and of the theorem
above: In Theorem 2.11 we state that there is a limit point x̄ of the sequence {xk} such
that, for all ν = 1, . . . , N, the block component x̄ν is a generalized stationary point of player
ν-th optimization problem, i.e., we have one limit point whose components yield generalized
stationary points for all players ν = 1, . . . , N . On the other hand, in Theorem 2.5, we showed
that, for each player ν, there exists a limit point x̄ (possibly depending on ν) such that x̄ν

solves the optimization problem of player ν.
Similar to the analysis carried out after Theorem 2.5, our next concern is to understand

when the penalty parameters are updated a finite number of times only. The conditions
given in the next theorem are quite natural and closer to the standard conditions used in
optimization.

Theorem 2.12 Assume that the sequence {xk} generated by Algorithm 2.10 applied at the
GNEP (14) is bounded. Consider the following assertions:

12

(a) the constraints g(x) are linear, i.e. g(x) = Ax− b;

(b) Slater’s condition holds, i.e. there exists a point x̂ such that g(x̂) < 0;

(c) In Algorithm 2.10, the penalty parameters are updated a finite number of times only.

Then the following implications hold:

(a) ⇒ (c) ⇐ (b)

Proof. (a) ⇒ (c). Suppose that the penalty parameters ρν are unbounded. Since the
sequence {xk} is bounded, we can assume without loss of generality that it converges to a
point x̄ and that the penalty parameters ρν are updated for all k. In view of Step 2 in
Algorithm 2.10, the test (15) is therefore satisfied for all k and all ν = 1, . . . , N . Using
continuity arguments, this implies

{
∇xν‖g+(xk)‖γ

}
→ 0, ∀ν = 1, . . . , N. This immediately

gives {
∇x‖g+(xk)‖γ

}
→ 0. (17)

We first claim that x̄ is feasible for all players ν. In fact, otherwise g+ would be continuously
differentiable at x̄, and (17) would imply ∇x‖g+(x̄)‖γ = 0. However, the mapping ‖g+(·)‖
is convex due to the assumed convexity of g(·), and therefore ∇x‖g+(x̄)‖γ = 0 would imply
that x̄ is a global minimizer of this function. But the global minimizers of this mapping are
precisely the feasible points, a contradiction to the assumption that x̄ is not feasible.

Hence we know that the limit point x̄ is feasible for each player ν = 1, . . . , N . On the other
hand, the iterates xk are infeasible for all k since otherwise by the rules of Step 2, ρν would
not be updated at iteration k. Hence the mapping v(x) := ‖g+(x)‖γ = ‖max{0, Ax − b}‖γ
is continuously differentiable at each point xk. Its gradient is given by

∇v(xk) = ∇g(xk)
g+(xk)γ−1

‖g+(xk)‖γ−1
γ

=
m∑

i=1

λk
i a

T
i , where λk

i =
max{0, aixk − bi}γ−1

‖max{0, aixk − bi}‖γ−1
γ

∀i

(18)
and where ai denotes the i-th row of the matrix A. Note that the definition of v and (17)
together imply

∇v(xk) =
m∑

i=1

λk
i a

T
i → 0 for k →∞. (19)

Let us denote by I(xk) := {i | aixk > bi} the set of violated constraints at the iterate xk (recall
that this index set is nonempty for each k). Subsequencing if necessary, we can assume without
loss of generality that the set I(xk) is independent of k. We denote this set by I. Obviously,
we have I ⊆ I(x̄) := {i | aix̄ = bi}. We next show that the vectors ai (i ∈ I) are positively
linearly independent. Assume this is not true. Then we can write

ai0 +
∑

i∈I\{i0}

γiai = 0

for some numbers γi ≥ 0 and an index i0 ∈ I. Hence we have

ai0 = −
∑

i∈I\{i0}

γiai. (20)

13

Furthermore, since i0 ∈ I and I ⊆ I(x̄), we have

bi0 = ai0 x̄ = −
∑

i∈I\{i0}

γiaix̄ = −
∑

i∈I\{i0}

γibi. (21)

By construction of the index set I, however, all constraints belonging to I are violated at
each iterate xk. Using (20) and γi ≥ 0, we can therefore write

bi0 < ai0x
k = −

∑
i∈I\{i0}

γiaixk ≤ −
∑

i∈I\{i0}

γibi.

This, however, contradicts (21). Consequently, the vectors ai (i ∈ I) are positively linearly
independent.

We now turn to the final contradiction: The definition of λk
i in (18) shows that, similar

to the reasoning in the proof of Theorem 2.5, that we can assume without loss of generality
that the sequence {λk} converges to a vector λ̄ 6= 0. Note also that λ̄ is nonnegative. Taking
the limit k →∞, we then get from (19) that

0 =
m∑

i=1

λ̄ia
T
i =

∑
i∈I

λ̄ia
T
i ,

with the second equality being a consequence of the fact that λ̄i = 0 for all i 6∈ I. This shows
that the vectors ai (i ∈ I) are positively linearly dependent, a contradiction.

(b) ⇒ (c). Suppose that the penalty parameters ρν are unbounded. Since the sequence
{xk} is bounded, we can assume without loss of generality, that it converges to a point x̄ and
that the penalty parameters ρν are updated for all k. Using the convexity of g, we can show
as we did for the case of linear constraints that the limit point x̄ is feasible for all players
ν = 1, . . . , N . On the other hand, the iterates xk are infeasible for all k. Hence the mapping
v(x) := ‖g+(x)‖γ = ‖max{0, g(x)}‖γ is continuously differentiable at each xk with gradient

∇v(xk) =
m∑

i=1

λk
i∇gi(xk) where λk

i :=
max{0, gi(xk)}γ−1

‖max{0, gi(xk)}‖γ−1
γ

∀i = 1, . . . ,m. (22)

Similar to the proof of the previous case, we may deduce from the fact that ρν is updated for
all k that

∇v(xk)→ 0, (23)

cf. (17), (19). Let us denote by I(xk) := {i | gi(xk) > 0} the indices of violated constraints
at the current iterate xk. Without loss of generality, we can assume that these sets are
independent of k and denote this set by I. Similar to the proof of Theorem 2.5, we can also
assume that the sequence {λk} converges to a vector λ̄ ∈ Rm satisfying

λ̄ ≥ 0 and λ̄ 6= 0. (24)

Taking the limit for k →∞ and using (22) and (23), we therefore obtain from the definition
of I that

0 =
∑
i∈I

λ̄i∇gi(x̄), (25)

14

since we obviously have λ̄i = 0 for all i 6∈ I. Since I ⊆ I(x̄) := {i | gi(x̄) = 0}, it follows from
the convexity of gi that

∇gi(x̄)T (x̂− x̄) ≤ gi(x̂)− gi(x̄) = gi(x̂) < 0 ∀i ∈ I,

where x̂ denotes the Slater point from our assumption. Premultiplication of (25) by (x̂− x̄)T

therefore gives
0 =

∑
i∈I

λ̄i∇gi(x̄)T (x̂− x̄) ≤
∑
i∈I

λ̄igi(x̂).

This, in turn, yields λ̄i = 0 for all i ∈ I. Since we also have λ̄i = 0 for all i 6∈ I, this is a
contradiction to λ̄ 6= 0. �

It may be interesting to compare the conditions in Theorem 2.8 (when applied to a jointly
convex problem) and those in Theorem 2.12. Since in the case of optimization problems
with convex and differentiable (inequality) constraints, the Mangasarian-Fromovitz constraint
qualification and Slater’s one are equivalent, one could think this goes through to GNEPs:
this is not so. The EMFCQ (at feasible points) is stronger than the Slater condition in the
theorem above. In fact, consider a feasible point x for a jointly convex GNEP and assume that
it satisfies the EMFCQ. By setting d := (d1, . . . , dN) (the vectors d1, . . ., dN being those in
the definition of the EMFCQ), it is clear that we have ∇xg(x)Td < 0 and in turn, it is classical
(and easy) to show that this implies Slater’s condition in Theorem 2.12. The converse does
not hold. In fact, consider a jointly convex GNEP in which there are two players, each one
controlling one variable, and assume m = 1 with g(x) = (x1)2 + (x2)2 − 1. It is obvious that
Slater’s condition holds (for example take x̂ to be the origin). On the other hand, consider
the point (1, 0). At this point we have ∇x2g(x) = 0 and the EMFCQ therefore cannot hold.

Passing to the CQγ , we can see that this condition neither implies the Slater’s condition
nor is implied by it. In fact, consider again the example we used above to show that the
EMFCQ may not be satisfied while Slater’s condition holds. It is easy to check that 0 ∈
∂∗x2‖((x1)2 +(x2)2−1)+‖γ at (1, 0) by using the sequence of infeasible points xk = {(1, 1/k)}.
On the other hand, consider a game with one player (i.e. an optimization problem) with
feasible set (in R) given by x ≤ 0 and −x ≤ 0. As discussed after Theorem 2.8, CQγ holds at
the origin, but it is clear that the feasible region is just the origin, hence Slater’s condition
does not hold.

Finally, the following example shows that CQγ may not be satisfied for linear constraints,
a case which is, however, covered by Theorem 2.12.

Example 2.13 Consider a game with N = 2 players given by

minx1 x2
1 minx2,x3 x2

2 + x2
3

s.t. x1 + x2 ≤ 0, s.t. x1 + x2 ≤ 0,
x3 ≤ 0, x3 ≤ 0.

Player ν = 1 has x1 as its only decision variable, whereas player ν = 2 has the two variables
x2 and x3. Obviously, x̄ := (0, 0, 0) is a Nash equilibrium of this game. Now have a look at
the first player, whose constraints can be written as

g(x) ≤ 0 with g(x) :=
(
x1 + x2

x3

)
.

15

Using the sequence {xk} := {(0, 0, 1/k)} → x̄, we can easily see that condition (12) is violated
for the first player. Obviously, EMFCQ is also violated since the gradient (with respect to
x1) of the second constraint is zero. ♦

3 Implementation and Numerical Results

What we described in the previous section is not a single algorithm, but a family of algorithms.
Independently of the many variants we mentioned after Theorem 2.8, the main point is that
we still did not specify the algorithm A: for every single choice of A, we get a different
algorithm. Although we believe that an appropriate choice of A is crucial to the numerical
success of the penalty scheme described in the previous section, it is outside the scope of this
paper to analyze and compare different algorithms A. In this section, we therefore consider
a single choice for A, a choice that we think is effective in practice, and then proceed to a
rather extensive numerical testing in order to have a feel for the efficiency of our approach.

We recall that algorithm A must be able to solve for arbitrary, but fixed, values of the
penalty parameters ρν , the penalized Nash game PNEP. The PNEP is a standard (uncon-
strained) Nash equilibrium problem whose solution is not straightforward because of the
inherent nondifferentiability of the objective functions Pν(x, ρν). In principle, there exist
methods for the solution of standard NEPs which do not require differentiability assump-
tions, see, for example, the relaxation method from [44], its modification from [26], or the
proximal-like methods from [18]. However, these methods assume that certain constrained
optimization problems can be solved, and, in practice, this is only possible for sufficiently
smooth data. In this section, we therefore give an alternative approach for the solution of the
PNEP that exploits the special structure of the nonsmooth penalty functions.

We first recall that the objective function of player ν in the PNEP is given by

Pν(x, ρν) = Pν(xν ,x−ν , ρν)
= θν(xν ,x−ν) + ρν‖gν

+(xν ,x−ν)‖γ

= θν(xν ,x−ν) + ρν

(
mν∑
i=1

max
{
0, gν

i (xν ,x−ν)
}γ

)1/γ

.

We now approximate these functions by the smooth mappings

P̃ν(x, ρν , ε) := P̃ν(xν ,x−ν , ρν , ε)

:= θν(xν ,x−ν) + ρν

(
mν∑
i=1

max
{
0, gν

i (xν ,x−ν)
}γ + ε

)1/γ

+
ε

2
‖xν‖2,

where ε > 0 is a given parameter which makes the root mapping smooth. The choice of γ is
more delicate. So far, γ was taken arbitrarily from the open interval (1,∞). From now on we
assume that γ > 2 holds. This makes the max-term twice continuously differentiable so that,
assuming that θν and gν are twice continuously differentiable, P̃ν itself is twice continuously
differentiable (note that the “obvious” choice γ = 2 only ensures that P̃ν be a C1-mapping).
This observation will be exploited in a short while. We are therefore naturally led to define
a smooth “approximation” of the PNEP, namely the PNEP(ε) where the problem of player
ν is minimizing the function P̃ν .

16

The presence of the regularization term (ε/2)‖xν‖2 guarantees that P̃ν(x, ρν , ε) is uni-
formly convex as a function of xν . While this is a nice property, it is not strictly needed, our
subsequent discussions also hold without this regularization term. We could also consider a
different ε or γ for each player; moreover, we could use two different constants for the ε under
the root and the one in the regularization term. We refrain from doing this in order to keep
things as simple as possible.

We observe that the PNEP(ε) is a game where each player’s problem is a continuously
differentiable, unconstrained, convex optimization problem. Its solutions are therefore the
solutions of the following system of equations:

Fε(x) :=

 ∇x1P̃1(x1,x−1, ρ1, ε)
...

∇xN P̃N (xN ,x−N , ρN , ε)

 = 0. (26)

Since we assumed that γ > 2, this system is C1 and, therefore, we can solve it by using a
host of widely available, powerful and efficient methods.

Proposition 3.2 below is the basis for our approach that consists in attempting to solve
the PNEP by solving inaccurately a sequence of PNEP(ε) for ε → 0. In order to prove this
proposition, we need a technical result from [17] whose proof we report here for sake of clarity
and completeness.

Lemma 3.1 Let f : Rs ×Rt → R be given and assume that f is locally Lipschitz continuous
around a point (ū, v̄) ∈ Rs × Rt and such that f(·, v) is convex for every v in a neighborhood
of v̄. Let {(uk, vk)} be a sequence of points converging to (ū, v̄) and let {ξk}, with ξk ∈
∂uf(uk, vk), be a sequence of (Clarke’s) partial generalized gradients. Then, every limit point
ξ̄ of this sequence (and there is at least one such limit point) belongs to ∂uf(ū, v̄).

Proof. By [5, Proposition 2.3.16] we know that ξk ∈ πu∂f(uk, vk) (where πu denotes
projection on the u space). Therefore we can find a sequence {ηk} such that (ξk, ηk) ∈
∂f(uk, vk) for all k ∈ N. By the local boundedness and upper-semicontinuity of the generalized
gradient of a locally Lipschitz function, we then see that we must have (renumbering if
necessary) {(ξk, ηk)} → (ξ̄, η̄) ∈ ∂f(ū, v̄). But then, by the convexity assumption and [5,
Proposition 2.5.3], we conclude that ξ̄ ∈ ∂uf(ū, v̄). �

Proposition 3.2 Let {εk} and {ηk} be two sequences of positive numbers converging to 0
and, for every k, let x(εk) be a point such that

‖Fεk
(x(εk)) ‖ ≤ ηk. (27)

Then every limit point of the sequence x(εk) is a solution of the PNEP (6).

Proof. Subsequencing if necessary, we may assume without loss of generality that x(εk)→ x̄
with x̄ ∈ Rn. In order to show that x̄ is a solution of the PNEP, it is sufficient to show that,
for all ν

0 ∈ ∂xνPν(x, ρν). (28)

17

To this end, and for a fixed ν, define the function

˜̃Pν(x, δ) := θν(xν ,x−ν) + ρν

(
mν∑
i=1

max
{
0, gν

i (xν ,x−ν)
}γ + δγ

)1/γ

+
δγ

2
‖xν‖2

(remember that ρν is a fixed quantity in the present setting), and note that ˜̃Pν is everywhere
locally Lipschitz as a function of (x̄, δ) (note that, for this observation to be correct, we had
to replace ε by δγ in the definition of ˜̃Pν). Note furthermore that Pν(x, ρν) = P̃ν(x, ρν , 0) =
˜̃P (x, 0) and that ∂xν P̃ν(x, ρν , εk) = ∂xν

˜̃P (x, (εk)1/γ). We now set

f(x, δ) := ˜̃Pν(x, δ)

and

δk := (εk)1/γ , uk := xν(εk), vk := (x−ν(εk), δk), ξk := ∇xν
˜̃Pν((xν)k, (x−ν)k, δk).

With these identifications in place and taking (26) and (27) into account, it is easy to see
that Lemma 3.1 implies (28). �

The discussion above suggests to realize algorithm A by approximately solving a sequence of
equations Fε(x) = 0 for ε ↓ 0. In fact, since our main Algorithm 2.2 does not require the exact
solution of the PNEP (just one iteration, where we are free to define what we view as one
iteration), our implementation of algorithm A uses (for each outer iteration k) a fixed value
of ε = εk and applies a certain number of steps to the single nonlinear system of equations
Fε(x) = 0 in order to compute the new iterate xk+1. Then ε = εk is updated in the outer
iteration depending on whether or not the PNEP was solved with a sufficiently high accuracy.

The following is a precise statement of our algorithm for solving general GNEPs (cf.
Algorithm 2.2) using the ideas outlined in our previous discussion.

Algorithm 3.3 (Algorithm for the solution of general GNEPs)

Data: x0 ∈ Rn, γ > 2, ρν > 0, and cν ∈ (0, 1) for all ν = 1, . . . , N , ε0 > 0, term1 > 0,
term2 > 0, term3 > 0, S > 0 and integer. Set k := 0.

Step 1: If xk is such that

1. ‖max{0, g(xk}‖ ≤ term1;

2. εk ≤ term2;

3. ‖Fεk
(x)‖ ≤ term3;

then STOP.

Step 2: Let Ik := {ν | (xk)ν 6∈ Xν((xk)−ν)}. For every ν ∈ Ik, if

‖∇xνθν((xk)ν , (xk)−ν)‖ > cν

[
ρν

∥∥∥∇xν‖gν
+((xk)ν , (xk)−ν)‖γ

∥∥∥] , (29)

then multiply by 10 the penalty parameter ρν .

18

Step 3: Perform at most S steps of an equation solver to the nonlinear system of equations
Fεk

(x) = 0. Let xk+1 be the final iterate of this equation solver.

If ‖Fεk
(xk+1)‖ ≤ 1000εk, set εk+1 = 0.1εk, otherwise let εk+1 := εk.

Set k ← k + 1, and go to Step 1.

Step 1 is our termination criterion. Recall that a solution x̄ of the PNEP is a solution of the
GNEP provided that x̄ is feasible for the GNEP. Therefore, based on the discussion in this
section, at each iteration we check whether the current point is sufficiently feasible (test 1)
and whether the point is sufficiently close to being a solution of the PNEP (tests 2 and 3.).

Step 2 is our penalty updating scheme for the case of general GNEPs and corresponds
exactly to Step 2 of Algorithm 2.2, the only difference being that we found more effective to
increase the penalty parameters by multiplying them by 10 instead of 2. In particular, note
that we did not implement any of the other variants discussed after Theorem 2.8.

Finally, Step 3 contains our realization of algorithm A and is based on the discussion in
this section. By saying that we apply at most S steps of an equation solver to the system
Fεk

(x) = 0, we mean that we either solve this system within a given accuracy in less than S
iterations, or we stop after S iterations without having solved the nonlinear equation within a
required accuracy. Step 3 also reduces the current smoothing parameter εk if we were able to
solve the system Fεk

(x) = 0 within a given tolerance. Note that, as required by Proposition
3.2, the accuracy with which the system Fεk

(x) = 0 is solved increases as the iterations
progress.

Note that Algorithm 2.10 for jointly convex problems can also be implemented in a way
similar to our realization of Algorithm 2.2 simply by replacing the penalty updating rule from
Step 2 of Algorithm 3.3 by the corresponding updating rule from Algorithm 2.10.

3.1 Numerical Results

We implemented Algorithm 3.3 (as well as its variant for the jointly convex case) in MATLAB R©

using the parameters

term1 = 10−4n, term1 = 10−5, term3 = 10−4n,

γ = 3, S = 20/50/150 and cν = 0.1 for all ν

as well as the initial values

ε0 = 10−3 and ρν = 1 for all ν = 1, . . . , N.

The parameter S should clearly depend on the dimension of the problem. We set S = 20
for all problems with a number of variables less or equal to 20, S = 50 for problems with
a number of variables between 21 and 150 and 150 for the larger problems. We used the
MATLAB R© function fsolve from the Optimization Toolbox in order to (approximately)
solve the nonlinear system of equations Fεk

(x) = 0 in Step 3. In this routine, and with
our choice of options, only function values are used; first order information is approximated
numerically. For this reason, and also because our method is globally convergent but not
superlinearly convergent, we did not insist on a very stringent termination criterion (i.e. the
parameters termi are not too small). Nevertheless, each time we could compare our solutions
with known ones, we found an accuracy that is at least of order 10−4.

19

Example N n Start. point k itotal εf ‖Fεf
(xf)‖ ‖g+(xf)‖ ρf

max

A.1 10 10 0.01 5 34 1e-7 3.6e-13 7.6e-4 10
0.1 5 33 1e-7 3.6e-13 7.6e-4 10
1 5 30 1e-7 3.6e-13 7.6e-4 10

A.2 10 10 0.01 6 46 1e-8 2.4e-12 6.2e-4 10
0.1 6 44 1e-08 7.6e-13 9.1e-4 10
1 F

A.3 3 7 0 3 4 1e-5 1.7e-11 0 1
1 3 5 1e-5 2.3e-11 0 1
10 3 8 1e-5 1.5e-11 0 10

A.4 3 7 0 16 247 1e-10 1.4e-10 5.6e-4 1e+5
1 29 510 1e-08 1.4e-10 5.6e-4 1e+5
10 22 351 1e-9 1.6e-10 3.8e-4 1e+4

A.5 3 7 0 3 43 1e-5 6.2e-6 4.3e-4 100
1 3 43 1e-5 6.2e-6 4.3e-4 100
10 5 62 1e-5 8.9e-16 4.3e-4 100

A.6 3 7 0 10 88 1e-10 5.3e-9 3.5e-4 1e+4
1 9 121 1e-9 4.7e-10 6.1e-4 1e+4
10 10 99 1e-10 5.4e-9 3.5e-4 1e+4

A.7 4 20 0 12 148 1e-9 3.6-10 0.001 1e+4
1 12 151 1e-9 3.6e-10 0.001 1e+4
10 F

A.8 3 3 0 5 81 1e-5 4.6e-13 6.3e-5 100
1 4 31 1e-6 9.4e-14 2.0e-4 10
10 F

A.9a 7 56 0 6 169 1e-8 2.8e-11 3.7e-3 100
A.9b 7 112 0 22 1034 1e-10 5.9e-8 9.6e-4 100
A.10a 8 24 see [14] 11 246 1e-9 6.4e-10 1.5e-3 1000
A.10b 25 125 see [14] 8 203 1e-8 3.1e-11 8.4e-3 100
A.10c 37 222 see [14] 101 14637 1e-8 4.8e-9 0.01 1e+4
A.10d 37 370 see [14] 11 1282 1e-7 2.3e-11 0.03 1000
A.10e 48 576 see [14] 12 1392 1e-7 1.6e-10 0.04 1000
A.11 [12] 2 2 0 9 60 1e-11 9.9e-12 9.6e-5 10
A.12 [31] 2 2 (2, 0) 3 5 1e-5 3.6e-12 0 1
A.13 [31] 3 3 0 10 84 1e-11 1.7e-9 1.5e-4 10
A.14 [29, 12] 10 10 0 3 16 1e-5 2.1e-10 0 100
A.15 [6] 3 6 0 3 9 1e-5 4.7e-10 0 1
A.16(P=75)[36] 5 5 10 10 102 1e-10 1.3e-7 3.9e-4 1000
A.16(P=100) 5 5 10 9 74 1e-10 1.7e-8 3.1e-4 1000
A.16(P=150) 5 5 10 10 101 1e-11 3.3e-8 2.9e-4 100
A.16(P=200) 5 5 10 10 73 1e-11 2.8e-8 2.3e-4 10
A.17 [33] 2 3 0 9 71 1e-10 1.5e-10 1.9e-4 100
A.18 [34] 2 12 0 19 346 1e-7 1.1e-7 0.001 1e+4

1 12 182 1e-7 4.1e-7 5.2e-4 10e+4
10 11 16 1e-7 4.4e-8 5.7e-4 1e+4

Table 1: Summary of the numerical results

20

We applied our method to two classes of problems, namely to general GNEPs where
each player might have different constraints (problems from A.1 to A.10, these are essentially
new problems) and to jointly convex problems (problems from A.11 to A.18, taken from the
literature). Note that basically all the test problems for general GNEPs are new while those
for jointly convex problems are taken from the literature (this corresponds, quite obviously,
to a lack of reported numerical results for the solution of non jointly convex problems).

The numerical results are summarized in Table 1, where the columns have the following
meaning:

Example Number of the test example taken from the appendix; for
some problems, we also report a bibliographical reference;

N Number of players involved in the GNEP;
n Total number of variables n = n1 + . . .+ nN ;
Start. point Represents the starting point. If a number is reported here,

this means that all variables have been set to that value;
otherwise the starting vector is reported;

k Number of outer iterations; an F here indicates failure;
itotal Total (cumulated) number of inner iterations (in fsolve) ;
εf Final value of the smoothing parameter ε;
‖Fεf

(xf)‖: Measures, together with εf , the accuracy with which the
PNEP is solved

‖g+(xf)‖: Constraint violation at the final iterate;
ρf
max Final (maximal) value of the penalty parameter(s).

Recall that ρν might be different for each player, hence we present the largest (final) penalty
parameter in our table. Furthermore, the function g consists of all the constraint functions
g1, . . . , gN stacked together to one vector. Therefore ‖max{0, g(xf)}‖ gives a fairly accurate
estimate of the feasibility of our solution for the general GNEP, while for jointly convex
problems, the same quantity actually underestimates feasibility because some constraints are
repeated for all players (hence, in the jointly convex case, the final point is closer to feasibility
than what the number ‖max{0, g(xf)}‖ may suggest).

The results above show that the algorithm seems able to solve rather efficiently a reason-
able array of problems. A few observations are in order:

1. The algorithm is usually able to get easily close to a solution while reaching a high
accuracy might be more problematic on some difficult problems. This had to be expected
since when we are close to a solution and ε is small, we are trying to solve a(n almost)
nondifferentiable unconstrained NEP. Note also that we use the MATLAB R© routine
fsolve to solve all the equations involved, and we use numerical differentiation to
estimate first order information. It is rather obvious that, under these circumstances, a
high accuracy cannot be expected in general. However, as we already mentioned, and
in spite of all these caveats, the accuracy we get is usually at least in the order of 10−4.

2. A point that is very important in the penalty approach is the handling of the penalty
parameters. A proper initial choice and suitable updating rules seem crucial to the
success of the algorithm. In this respect, we believe that our choices are reasonable,
but there is certainly room for improvement here. For example, on single problems we
could obtain substantially better results by appropriately choosing the initial value of
ρν (and ε), and even avoid some of the Failures.

21

3. Overall we have only three failures. In all cases, the failures were caused by the algorithm
generating unbounded sequences.

4. Related to the point above, we note that another factor that seems to influence the
behavior of the algorithm is the feasibility of the starting point. When the initial point
is not feasible, the algorithm can have more difficulties in avoiding the generation of
unbounded sequences; this is obviously connected also to the fact that, to keep the
sequence generated by the algorithm bounded, we might have to rely on high penalty
parameters, and if we start from an infeasible point, appropriate tuning may require a
few iterations, thus, in unfortunate cases, giving opportunity to the algorithm to drive
the sequence of points xk to infinity.

5. It is interesting to observe that, also when the problem has an infinite number of solu-
tions, the algorithm seems to converge always to the same solution, independent from
the starting point. This suggests that the penalty approach implicitly operates a se-
lection among the solutions. It would be extremely valuable to understand better this
phenomenon. Fukushima in [20] addressed similar issues with respect to a different
penalty scheme and got some interesting insights.

6. We also implemented a version of Algorithm 2.10 that we run on the jointly convex
problems. The numerical results we obtained are very similar to those illustrated above
and we therefore do not report them. At the moment, the main advantage of the specific
updating rule for jointly convex problems analyzed in Section 2.1 seems to be theoretical
in that convergence can be guaranteed in some interesting cases for which convergence
cannot be guaranteed by the general scheme from Algorithm 2.2.

7. It is known (see e.g. [13]) that, for the most successful algorithms for the solution of
jointly convex problems, an important feature of the problem that seems to differentiate
easy from difficult ones is the positive (semi-)definiteness of the Jacobian of the function
F defined by

F (x) :=

 ∇x1θ1(x)
...

∇xN θN (x)

 .

We propose to call the Jacobian of F the Jaco-Hessian of the underlying GNEP. Al-
though there is currently no result showing that positive (semi-) definiteness of the
Jaco-Hessian plays, for the non-jointly convex problems, a role similar to that it has in
jointly convex problems, our impression is that this property also plays a crucial role
for general GNEPs.

8. The value of the parameter S can have a considerable influence on the performance of
the algorithm. We set S to the values mentioned at the beginning of this subsection
without performing any refined analysis on the behavior of the algorithm when varying
S. However, just to show what could be expected, we mention that on Problem A.18, the
results reported are obtained with S = 20. If we set S = 50 and start the algorithm from
the origin, we get convergence in 6 iterations (and 138 inner iterations) and convergence
occurs to a different point from the one obtained with S = 20 when starting from the
origin. The opposite situation can also occur and convergence can be slower. These
changes are obviously due to the fact that, when S varies, different ”trajectories” can

22

be obtained since the penalty parameters can be updated differently. In many cases
though, a variation of S only produces a variation of the outer iterations, while the
number of inner iterations remains more or less constant.

In order to get a better feeling of how the algorithm works, we report in Table 2 the detailed
numerical results for problem A.17.

k ρk (x1
1)

k (x1
2)

k (x2
1)

k ‖max{0, g(xk)}‖ εk ‖Fεk
(xk)‖ itotal

0 1 0.00000000 0.00000000 0.00000000 0.00000000 10−3

1 1 1.94821944 14.57766447 4.41381390 31.6005704818 10−3 0.00000000 7
2 10 0.31474723 10.65786894 7.59786199 0.0652462332 10−4 3.60734452 27
3 100 0.00121253 11.00196386 7.99708624 0.0186015391 10−4 0.00000000 36
4 100 0.00038976 11.00108474 7.99882026 0.0086351352 10−5 0.00000000 41
5 100 0.00016359 11.00052084 7.99946966 0.0040083084 10−6 0.00000000 47
6 100 0.00007420 11.00024349 7.99975556 0.0018605494 10−7 0.00000000 53
7 100 0.00003427 11.00011320 7.99988671 0.0008636065 10−8 0.00000000 59
8 100 0.00001589 11.00005256 7.99994743 0.0004008557 10−9 0.00000000 65
9 100 0.00000737 11.00002440 7.99997560 0.0001860626 10−10 0.00000000 71

Table 2: Detailed numerical results for Example A.17

We can see that, in the first iteration, we jump from an initial feasible point to a “highly”
infeasible one. After this, the penalty parameter is increased to 10 and thus, the feasibility
violation having more weight, in the following iterations we easily progress towards feasibility.
A further increase of the penalty parameter is needed in order to reach a higher accuracy.
Obviously, things might not always be so “clean” and readily interpretable, and the rule for
the updating of the penalty parameters may not always detect so easily when an increase is
necessary, but in most cases the behavior is of the kind just described.

Regarding the iterates, it is easy to verify the phenomenon discussed above (Point 1):
from iteration 3, we are clearly very close to the solution we are converging to, but a lot of
effort is still needed to reach the required accuracy. As discussed above, this is due to the
numerical difficulties of solving problems that are closer and closer to being nondifferentiable
and to our method not being superlinearly convergent.

It is also interesting to look at the last column, reporting the (total) number of (inner)
iterations needed by the equation solver fsolve. We recall that we set a limit of 20 (inner)
iterations. So if, in a certain iteration k, the limit of 20 iterations is reached, this means
that the system was not solved (and remember, we do not need to solve the system, this
is one of the advantages of our approach!). For this problem, the solution of the system
Fεk

(x) = 0 seems rather easy (and this is certainly not always the case). Note that, in the
second iteration, we pass from 7 to 27 inner iterations, and in fact the residual of the system
is approximatively 3.6. In the following iterations we always stop before the limit of 20 inner
iterations, meaning that the system is solved exactly (correspondingly, we have a residual of 0
from the third iteration onwards). Note that, by the updating rule for ε at Step 3 of Algorithm
3.3, this implies that ε is reduced at each iteration from the third iteration onwards; and this
can be checked in the corresponding column.

23

4 Conclusions

We presented an exact penalty approach for the solution of GNEPs, both with general con-
straints and with jointly convex constraints. We tested the algorithm on an array of problems
considerably larger than those usually employed in the literature, and the numerical results
indicate that the method seems to work quite well in practice. We therefore believe that our
method is at least an interesting alternative to the very limited number of globally convergent
methods for the solution of (general) GNEPs.

We believe that, at this stage of research, penalty methods are the only viable approach
to the solution of general GNEPs, and intend to continue our research on this topic. There
are many points that may lead to substantial numerical improvements. An important issue
that certainly deserves central stage is the way used to solve the penalized Nash problem. In
this paper, we adopted a smoothing method, but other choices are possible and we intend to
investigate this point in detail. We think it is important that our analysis does not rely on
any specific algorithm A, thus making the analysis of alternatives relatively straightforward.
Furthermore, we believe that, in order to obtain a high accuracy, the penalty method could
be embedded in a Phase I - Phase II method where a switch is made, when appropriate,
to some local Newton methods like those described in [11, 26, 27]. On a more theoretical
level, a detailed analysis of boundedness issues is certainly paramount. With respect to this,
we want to mention that partial penalization, whereby simple constraints (for example box
constraints) are not penalized, is certainly an interesting issue to consider.

References

[1] K.J. Arrow and G. Debreu: Existence of an equilibrium for a competitive economy.
Econometrica 22, 1954, pp. 265–290.

[2] T. Basar and G.J. Olsder: Dynamic Noncooperative Game Theory. Academic Press,
New York, NY, second edition 1995.

[3] A. Bensoussan: Points de Nash dans le cas de fonctionelles quadratiques et jeux dif-
ferentiels lineaires a N personnes. SIAM Journal on Control 12, 1974, pp. 460–499.

[4] J.V. Burke: A robust trust region method for constrained nonlinear programming prob-
lems. SIAM Journal on Optimization 2, 1992, pp. 325–347.

[5] F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley, New York, 1983.

[6] J. Contreras, M. Klusch, and J.B. Krawczyk: Numerical solutions to Nash-
Cournot equilibria in coupled constraint electricity markets. IEEE Transactions on Power
Systems 19, 2004, pp. 195–206.

[7] G. Debreu: A social equilibrium existence theorem. Proceedings of the National
Academy of Sciences 38, 1952, pp. 886–893.

[8] G. Di Pillo and F. Facchinei: Exact penalty functions for nondifferentiable pro-
gramming problems. In Nonsmooth Optimization and Related Topics, F.H. Clarke,
V.F.Dem’yanov, and F. Giannessi editors, pp. 89–107. Plenum Press, New York, 1989.

24

[9] G. Di Pillo and F. Facchinei: Exact barrier methods for Lipschitz programs. Applied
Mathematics and Optimization 32, 1995, pp. 1–31.

[10] F. Facchinei: Refinements of necessary conditions for optimality in nonlinear program-
ming. Journal of Optimization Theory and Applications 73, 1992, pp. 65–74.

[11] F. Facchinei, A. Fischer, and V. Piccialli: On generalized Nash games and VIs.
Operations Research Letters 35, 2007, pp. 159–164.

[12] F. Facchinei, A. Fischer, and V. Piccialli: Generalized Nash equilibrium problems
and Newton methods. Mathematical Programming 117, 2009, pp. 163–194.

[13] F. Facchinei and C. Kanzow: Generalized Nash equilibrium problems. 4OR — A
Quarterly Journal of Operations Research 5, 2007, pp. 173–210.

[14] F. Facchinei and C. Kanzow: Penalty methods for the solution of generalized Nash
equilibrium problems (with complete test problems). Technical Report, Institute of Math-
ematics, University of Würzburg, Germany, February 2009.

[15] F. Facchinei and J.-S. Pang: Finite-Dimensional Variational Inequalities and Com-
plementarity Problems, Volume I. Springer, New York, 2003.

[16] F. Facchinei and J.-S. Pang: Exact penalty functions for generalized Nash problems.
In G. Di Pillo and M. Roma (eds): Large Scale Nonlinear Optimization. Springer,
2006, pp. 115–126.

[17] F. Facchinei, V. Piccialli, and M. Sciandrone: A decomposition algorithm for
generalized potential games. DIS Technical Report, Sapienza University of Rome, forth-
coming.

[18] S.D. Fl̊am and A.S. Antipin: Equilibrium programming using proximal-like algo-
rithms. Mathematical Programming 78, 1997, pp. 29–41.

[19] S.D. Fl̊am and A. Ruszczyński: Noncooperative convex games: Computing equilibria
by partial regularization. IIASA Working Paper 94-42, Laxenburg, Austria, May 1994.

[20] M. Fukushima: Restricted generalized Nash equilibria and controlled penalty algorithm.
Technical Report 2008-007, Department of Applied Mathematics and Physics, Kyoto
University, July 2008.

[21] M. Fukushima and J.-S. Pang: Quasi-variational inequalities, generalized Nash equi-
libria, and multi-leader-follower games. Computational Management Science 2, 2005, pp.
21–56.

[22] G. Gürkan and J.-S. Pang: Approximations of Nash equilibria. Technical Report, De-
partment of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, January
2006.

[23] P.T. Harker: Generalized Nash games and quasi-variational inequalities. European
Journal of Operational Research 54, 1991, pp. 81–94.

25

[24] A. von Heusinger and C. Kanzow: Optimization reformulations of the generalized
Nash equilibrium problem using Nikaido-Isoda-type functions. Computational Optimiza-
tion and Applications, to appear.

[25] A. von Heusinger and C. Kanzow: SC1 optimization reformulations of the gen-
eralized Nash equilibrium problem. Optimization Methods and Software 23, 2008, pp.
953–973.

[26] A. von Heusinger and C. Kanzow: Relaxation methods for generalized Nash equilib-
rium problems with inexact line search. Journal of Optimization Theory and Applications,
to appear.

[27] A. von Heusinger, C. Kanzow, and M. Fukushima: Newton’s method for com-
puting a normalized Nash equilibrium in the generalized Nash game through fixed point
formulation. Technical Report, Institute of Mathematics, University of Würzburg, Ger-
many, January 2009.

[28] B.F. Hobbs: Linear complementarity models of Nash-Cournot competition in bilateral
and POOLCO power markets. IEEE Transactions on Power Systems 16, 2001, pp. 194–
202.

[29] A. Kesselman, S. Leonardi, and V. Bonifaci: Game-theoretic analysis of internet
switching with selfish users. Lecture Notes in Computer Science 3828, 2005, pp. 236–245.

[30] J.B. Krawczyk: Coupled constraint Nash equilibria in environmental games. Resource
and Energy Economics 27, 2005, pp. 157–181.

[31] J.B. Krawczyk and S. Uryasev: Relaxation algorithms to find Nash equilibria with
economic applications. Environmental Modeling and Assessment 5, 2000, pp. 63–73.

[32] F.H. Murphy, H.D. Sherali, and A.L. Soyster: A mathematical programming
approach for determining oligopolistic market equilibrium. Mathematical Programming
24, 1982, pp. 92–106.

[33] K. Nabetani: Variational inequality approaches to generalized Nash equilibrium prob-
lems. Master Thesis, Department of Applied Mathematics and Physics, Kyoto University,
February 2008.

[34] K. Nabetani, P. Tseng, and M. Fukushima: Parametrized variational inequality
approaches to generalized Nash equilibrium problems with shared constraints. Technical
Report, Department of Applied Mathematics and Physics, Graduate School of Informat-
ics, Kyoto University, Japan, October 2008.

[35] H. Nikaido and K. Isoda: Note on noncooperative convex games. Pacific Journal of
Mathematics 5, 1955, pp. 807–815.

[36] J.V. Outrata, M. Kočvara, and J. Zowe: Nonsmooth Approach to Optimization
Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1998.

[37] J.-S. Pang: Computing generalized Nash equilibria. Technical Report, Department of
Mathematical Sciences, The Johns Hopkins University, Baltimore, MD, October 2002.

26

[38] J.-S. Pang and M. Fukushima: Quasi-variational inequalities, generalized Nash equi-
libria, and multi-leader-follower games. Computational Management Science 2, 2005, pp.
21–56.

[39] J.-S. Pang, G. Scutari, F. Facchinei, and C. Wang: Distributed power allocation
with rate constraints in gaussian parallel interference channels. IEEE Transactions on
Information Theory 54, 2008, pp. 3471–3489.

[40] S.M. Robinson: Shadow prices for measures of effectiveness, I: Linear model. Opera-
tions Research 41, 1993, pp. 518–535.

[41] S.M. Robinson: Shadow prices for measures of effectiveness, II: General model. Oper-
ations Research 41, 1993, pp. 536–548.

[42] R.T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

[43] J.B. Rosen: Existence and uniqueness of equilibrium points for concave N -person
games. Econometrica 33, 1965, pp. 520–533.

[44] S. Uryas’ev and Y. Rubinstein: On relaxation algorithms in computation of nonco-
operative equilibria. IEEE Transactions on Automatic Control 39, 1994, pp. 1263–1267.

A Test Examples

In this appendix, we report a detailed description of the test problems we used along with a
few additional information. We divide this section into two subsections, with Subsection A.1
containing examples of general (not jointly convex) GNEPs, and Subsection A.2 presenting
the jointly convex examples that we used in our numerical test runs.

A.1 General Problems

The majority of the problems presented here are new and were developed in order to test our
code.

Example A.1 This test problem is a variant of the internet switching model introduced by
Kesselman et al. [29] and further analyzed by Facchinei et al. [12], see also Example A.14
below. There are N players, each player having a single variable xν ∈ R. The objective
functions are given by

θν(x) :=
−xν

x1 + . . .+ xN

(
1− x1 + . . .+ xN

B

)
∀ν = 1, . . . , N

for some constant B. We set N = 10 and B = 1. The constraints of the first player are
0.3 ≤ x1 ≤ 0.5, while the remaining players’ constraints are

x1 + . . .+ xN ≤ B, xν ≥ 0.01.

Note that the objective functions are not continuous at x = 0 which, however, is an infeasible
point. This variant of the basic problem, described in Example A.14, gives the first player a
”privileged status”.

Convergence of Algorithm 3.3 from the three starting points used in Table 1 always occurs
to exactly the same point, given by

27

0.29923815223336
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805
0.06951127617805

Example A.2 This is a variant of the previous problem. We only report differences and
changes. The objective functions of players 2, 3, 4, and 5 are

θν(x) :=
−xν

x1 + . . .+ xN

(
1− x1 + . . .+ xN

B

)2

.

Players 5 and 6 have the additional constraint

0.99 ≤ x1 + . . .+ xN ,

while the upper bounds of players 9 and 10 are 0.06 and 0.05, respectively.
By construction, the feasible region of this problem is very ”narrow”, since the sum of the

(nonnegative) variables must be between 0.99 and 1. Convergence of Algorithm 3.3 for the
first two starting points occurs to the following points (recall that we have a failure for the
third starting point):

0.29962894677774 0.29962898846513
0.00997828224734 0.00997828313762
0.00997828224734 0.00997828313762
0.00997828224734 0.00997828313762
0.59852469355630 0.59745624992082
0.02187270661760 0.02220301920403
0.00999093169361 0.01013441012117
0.00999093169361 0.01013441012117
0.00999093169361 0.01013441012117
0.00999093169361 0.01013441012117

Example A.3 There are three players (N = 3) having 3, 2, and 2 variables, respectively.
Each player has a quadratic strongly convex objective function given by

θν(x) =
1
2
(xν)TAνxν + (xν)T (Bνx−ν + bν),

where the matrices and vectors involved are

A1 =

 20 5 3
5 5 −5
3 −5 15

 , A2 =
(

11 −1
−1 9

)
, A3 =

(
48 39
39 53

)
,

28

B1 =

 −6 10 11 20
10 −4 −17 9
15 8 −22 21

 , B2 =
(

20 1 −3 12 1
10 −4 8 16 21

)
, B3 =

(
10 −2 22 12 16
9 19 21 −4 20

)
,

b1 =

 1
−1
1

 , b2 =
(

1
0

)
, b3 =

(
−1
2

)
.

The variables all have bound constraints: −10 ≤ x ≤ 10. In addition, the first player has the
linear constraints

x1
1 + x1

2 + x1
3 ≤ 20, x1

1 + x1
2 − x1

3 ≤ x2
1 − x3

2 + 5,

the second player has the single constraint

x2
1 − x2

2 ≤ x1
2 + x1

3 − x3
1 + 7,

and the third player has the constraint

x3
2 ≤ x1

1 + x1
3 − x2

1 + 4.

The Jaco-Hessian of this example is constant, but indefinite.
Using the three starting points from Table 1, our method converges to the following points:

-0.38046562696258 -0.38046562696294 -0.38046562696275
-0.12266997083581 -0.12266997083590 -0.12266997083484
-0.99322817120517 -0.99322817120634 -0.99322817120582
0.39034789080544 0.39034789080558 0.39034789080555
1.16385412687962 1.16385412688026 1.16385412688162
0.05039533464000 0.05039533464023 0.05039533463988
0.01757740533460 0.01757740533476 0.01757740533435

Example A.4 This is a variant of the previous problem, where some terms depending on
the other players’ variables have been added to the matrices Aν :

A1 =

 20 + (x2
1)

2 5 3
5 5 + (x2

2)
2 −5

3 −5 15

 , A2 =
(

11 + (x3
1)

2 −1
−1 9

)
, A3 =

(
48 39
39 53 + (x1

1)
2

)
.

Furthermore, the lower bounds have all been set to 1 (instead of -10). The Jaco-Hessian is
neither constant nor positive (semi-) definite in general. Convergence of our method, based
on the three starting points given in Table 1, occurs to the following points:

0.99982626069210 0.99982626069210 0.99991935573409
0.99996267821636 0.99996267821636 0.99998267343165
0.99987070414176 0.99987070414176 0.99993998316707
0.99985869062731 0.99985869062731 0.99993440803353
0.99983447394048 0.99983447394048 0.99992316858615
0.99991824127925 0.99991824127925 0.99987984742324
0.99991381820076 0.99991381820076 0.99987334759435

29

Example A.5 This example has the same structure as Problem A.3, but with the following
data:

A1 =

 20 6 0
6 6 −1
0 −1 8

 , A2 =
(

11 1
1 7

)
, A3 =

(
28 14
14 29

)
,

B1 =

 −1 −2 −4 −3
0 −3 0 −4
0 1 9 6

 , B2 =
(
−1 0 0 −7 4
−2 −3 1 4 11

)
, B3 =

(
−4 0 9 −7 4
−3 −4 6 4 11

)
,

b1 =

 1
−1
1

 , b2 =
(

1
0

)
, b3 =

(
−1
2

)
.

Lower bounds on all variables are all set to 0, while the upper bounds and the linear constraints
are the same used in Problem A.3. Here, the Jaco-Hessian is constant and positive definite.
Convergence of our method using the three starting points from Table 1 occurs to the following
points:

-0.00006229891126 -0.00006229891126 -0.00006229910314
0.20279012064850 0.20279012064850 0.20279011130836
-0.00003469558295 -0.00003469558295 -0.00003469562269
-0.00028322020054 -0.00028322020054 -0.00028322027018
0.07258934064261 0.07258934064261 0.07258933626181
0.02531280162415 0.02531280162415 0.02531280221816
-0.00007396699835 -0.00007396699835 -0.00007396699882

Example A.6 This is another variant of Problem A.3 with the following data:

A1 =

 20 + (x2
1)

2 5 3
5 5 + (x2

2)
2 −5

3 −5 15

 , A2 =
(

11 + (x3
1)

2 −1
−1 9

)
, A3 =

(
48 39
39 53 + (x1

1)
2

)
,

B1 =

 −2 0 1 2
1 −4 −7 9
−3 8 22 21

 , B2 =
(
−2 1 −3 −12 −1
0 −4 8 16 21

)
, B3 =

(
1 −7 22 −12 16
2 −9 21 −1 21

)
,

b1 =

 1
−2
−3

 , b2 =
(

1
2

)
, b3 =

(
1
−2

)
.

All variables have a lower bound of 1 and an upper bound of 10. The non-bound constraints
include also nonlinear constraints. The first player has the following non-bound constraints,

x1
1 + x1

2 + x1
3 ≤ 20, x1

1 + x1
2 − x1

3 ≤ x2
1 − x3

2 + 3.7, (x1
1)

4 + x3
1x

1
2 ≤ x2

1 + 2,

30

the second player

x2
1 − x2

2 ≤ x1
2 + x1

3 − x3
1 + 7, (x2

1 − 2)2 + (x2
2)

2 ≤ 0.75 + (x1
1)

2,

while the third player has the constraints

x3
2 ≤ x1

1 + x1
3 − x2

1 + 4, 2(x3
1)

2 − (x3
2 − 2)2 ≤ x2

1x
3
1 + 1.5.

The Jaco-Hessian of this test problem is in general neither constant nor positive (semi-)
definite. Convergence of our method, using the three starting points from Table 1, occurs to
the following points:

0.99987722673822 0.99973555394222 0.99987722673822
2.31570964703584 2.31634992067271 2.31570964703584
0.99989251930167 0.99976846015730 0.99989251930167
1.31499923583926 1.31481981480565 1.31499923583926
0.99989852480755 0.99993110204166 0.99989852480755
0.99992298465841 0.99983409362034 0.99992298465841
1.09709158271764 1.09703474801283 1.09709158271764

Example A.7 This problem has 4 players, each controlling 5 variables. The structure of the
objective function is

θν =
1
2
(xν)TAνxν + (xν)TBνx−ν .

Reporting each matrix separately is very long, so we give directly the Jaco-Hessian of the
problem, which is

110 −3 22 −14 −27 1 9 19 −2 23 −7 −20 −4 22 −19 22 3 13 −12 18
−3 79 −9 −21 18 61 0 14 58 −11 4 −16 20 −19 13 −17 −1 24 22 5
22 −9 90 28 22 −9 −21 −1 −5 29 15 −7 4 30 2 9 −1 −19 −60 4
−14 −21 28 106 11 −33 −42 14 28 −10 3 6 13 22 −8 6 −3 15 −3 0
−27 18 22 11 134 4 −4 −29 39 −62 74 2 4 −34 −1 13 8 18 12 35
1 61 −9 −33 4 119 −14 12 12 −6 −23 −14 16 −4 15 −2 8 16 9 −9
9 0 −21 −42 −4 −14 72 −14 6 −9 12 2 −24 13 29 17 13 −1 19 21
19 14 −1 14 −29 12 −14 92 −10 5 8 0 −4 23 8 −50 −11 48 −8 3
−2 58 −5 28 39 12 6 −10 124 −39 −4 −16 24 −18 26 4 13 29 43 23
23 −11 29 −10 −62 −6 −9 5 −39 130 −42 −21 21 68 −24 −21 −30 −54 −23 9
−7 4 15 3 74 −23 12 8 −4 −42 138 −4 −24 −12 −27 24 21 2 −10 18
−20 −16 −7 6 2 −14 2 0 −16 −21 −4 89 −11 −14 −16 −32 −7 −5 13 −4
−4 20 4 13 4 16 −24 −4 24 21 −24 −11 107 31 −3 −2 −22 17 4 22
22 −19 30 22 −34 −4 13 23 −18 68 −12 −14 31 116 −1 5 −18 −16 −43 27
−19 13 2 −8 −1 15 29 8 26 −24 −27 −16 −3 −1 98 −4 −2 50 23 8
22 −17 9 6 13 −2 17 −50 4 −21 24 −32 −2 5 −4 102 46 −29 −17 −1
3 −1 −1 −3 8 8 13 −11 13 −30 21 −7 −22 −18 −2 46 110 −16 24 12
13 24 −19 15 18 16 −1 48 29 −54 2 −5 17 −16 50 −29 −16 102 45 14
−12 22 −60 −3 12 9 19 −8 43 −23 −10 13 4 −43 23 −17 24 45 119 21
18 5 4 0 35 −9 21 3 23 9 18 −4 22 27 8 −1 12 14 21 59

Note that it is easy to reconstruct from this matrix all the Aν and Bν . For example, A1 is
the submatrix formed by the first 5 rows and columns, B1 is the submatrix formd by the first
5 rows and columns from 6 to 20, A2 is the submatrix formed by rows 6 to 10 and columns
6 to 10 and so on. All players have lower and uppers bounds of 1 and 5, respectively. In
addition, each player has one additional linear coupling constraint given, respectively, by

x1
1 + 2x1

2 − x1
3 + 3x1

4 − 4x1
5 ≤ 2− x2

2 + 3x2
3,

−x2
1 + 3x2

2 − 2x2
3 + x2

4 + 3x2
5 ≤ 4− x3

1 + 3x3
5 − 2x4

3,

31

−2x3
1 + 3x3

2 + x3
3 − x3

4 − 2x3
5 ≤ 4− x1

1 + 4x4
5,

4x4
1 − 2x4

2 − 3x4
3 − 6x4

4 + 5x4
5 ≤ 3− x1

1 − x1
2 + x2

1 + x2
2.

The Jaco-Hessian of this example is a constant and positive definite matrix. Convergence of
our method always occurs to the following point:

0.99988245735506
0.99985542095046
0.99989138444537
0.99988866261891
0.99984494662577
0.99986703246906
0.99986897052169
0.99992059068103
0.99981225576918
1.00013812006334
0.99987211313045
1.84253230021096
0.99986555230493
0.99987070302597
0.99987574778109
0.99993185140789
0.99988068741824
0.99984157413000
0.99986193178624
0.99983143496263

Example A.8 This is the GNEP considered in [12]. There are N = 3 players, each player
ν controls a single variable xν . The GNEP is defined by the following optimization problems
of the three players:

minx1 −x1 minx2 (x2 − 0.5)2 minx3 (x3 − 1.5x1)2

s.t. x3 ≤ x1 + x2 ≤ 1, s.t. x3 ≤ x1 + x2 ≤ 1, s.t. 0 ≤ x3 ≤ 2.
x1 ≥ 0, x2 ≥ 0,

The problem has infinitely many solutions which can be calculated analytically. They are
given by {

(α, 1− α, 1.5α)T | α ∈
[1
2
,
2
3
]}
.

The Jaco-Hessian of this example is constant and negative semi-definite. Convergence of our
method occurs to the following points (recall that we have a failure for the third starting
point):

0.62503131162143 0.62510047245551
0.37500031253875 0.37500003126256

32

0.93754579549990 0.93765059147694

Example A.9 This a GNEP arising in a problem of power allocation in telecommunications.
The model is described in detail in [39] and represents a realistic communication system with
Quality of Service constraints. There are seven players transmitting to seven different Base
Stations by using K different channels. The GNEP is defined by the following optimization
problems for each of the players:

minimize
xν

K∑
i=1

xν
i

subject to xν ≥ 0,

K∑
i=1

log2

(
1 +

hνν
i xν

i

(σν
i) 2 +

∑
µ 6=ν

hνµ
i xµ

i

)
≥ Lν .

In both instances we considered, we set σν
i = 0.3162 for all ν and i, and in both cases the

starting point was the origin.
(a) For this problem K = 8, Lν = 8 for all players, and the values of the coefficient h are

0.0362 0.0008 0.0018 0.0022 0.0085 0.0008 0.0060

0.2211 0.0003 0.0014 0.0074 0.0005 0.0037 0.0006

0.3356 0.0032 0.0027 0.0043 0.0007 0.0012 0.0003

0.0077 0.0039 0.0032 0.0073 0.0089 0.0006 0.0002

0.0036 0.0019 0.0032 0.0014 0.0017 0.0038 0.0046

0.1811 0.0013 0.0014 0.0024 0.0010 0.0000 0.0121

0.0442 0.0093 0.0002 0.0036 0.0096 0.0031 0.0042

0.3507 0.0017 0.0004 0.0042 0.0034 0.0061 0.0129

0.0145 0.1487 0.0001 0.0013 0.0001 0.0005 0.0008

0.0035 0.1341 0.0021 0.0001 0.0000 0.0001 0.0000

0.0042 0.3074 0.0024 0.0002 0.0001 0.0004 0.0004

0.0006 0.3358 0.0017 0.0008 0.0002 0.0004 0.0022

0.0007 0.0083 0.0045 0.0003 0.0002 0.0000 0.0019

0.0024 0.2214 0.0011 0.0000 0.0001 0.0006 0.0016

0.0034 0.1261 0.0079 0.0002 0.0002 0.0007 0.0001

0.0032 0.0288 0.0059 0.0004 0.0001 0.0001 0.0014

0.0040 0.0051 0.1475 0.0042 0.0002 0.0000 0.0005

0.0030 0.0002 0.0300 0.0003 0.0000 0.0001 0.0001

0.0046 0.0014 0.2207 0.0089 0.0000 0.0001 0.0003

0.0059 0.0005 0.3028 0.0024 0.0002 0.0001 0.0002

0.0037 0.0002 0.0828 0.0008 0.0003 0.0001 0.0001

0.0023 0.0003 0.0167 0.0009 0.0014 0.0001 0.0002

0.0009 0.0001 0.0956 0.0001 0.0005 0.0000 0.0003

0.0006 0.0028 0.0566 0.0018 0.0000 0.0001 0.0002

0.0005 0.0002 0.0004 0.0991 0.0057 0.0000 0.0003

0.0000 0.0000 0.0016 0.0377 0.0003 0.0002 0.0003

0.0014 0.0001 0.0002 0.8100 0.0035 0.0001 0.0000

0.0019 0.0002 0.0016 0.3608 0.0141 0.0000 0.0000

0.0013 0.0005 0.0014 0.0617 0.0014 0.0006 0.0000

0.0016 0.0003 0.0004 0.0723 0.0016 0.0005 0.0001

0.0007 0.0000 0.0028 0.3314 0.0126 0.0002 0.0000

0.0011 0.0001 0.0002 0.0953 0.0026 0.0000 0.0001

0.0001 0.0000 0.0001 0.0009 0.0993 0.0015 0.0001

0.0002 0.0003 0.0003 0.0013 0.1702 0.0210 0.0000

0.0007 0.0000 0.0002 0.0024 1.1062 0.0033 0.0004

0.0012 0.0002 0.0006 0.0014 0.2817 0.0091 0.0004

0.0003 0.0003 0.0004 0.0008 0.5208 0.0024 0.0001

0.0001 0.0001 0.0001 0.0006 0.3959 0.0010 0.0001

0.0004 0.0001 0.0011 0.0009 0.1057 0.0029 0.0004

0.0000 0.0001 0.0000 0.0020 0.0932 0.0058 0.0006

0.0002 0.0010 0.0006 0.0001 0.0001 0.3905 0.0028

0.0004 0.0001 0.0000 0.0001 0.0009 0.1322 0.0032

0.0001 0.0009 0.0001 0.0003 0.0018 0.3691 0.0130

0.0004 0.0007 0.0003 0.0001 0.0018 0.1142 0.0022

0.0009 0.0010 0.0002 0.0001 0.0019 0.1127 0.0046

0.0017 0.0014 0.0000 0.0001 0.0022 0.1665 0.0015

0.0009 0.0001 0.0000 0.0002 0.0015 0.0066 0.0042

0.0004 0.0006 0.0005 0.0001 0.0022 0.2389 0.0026

0.0008 0.0054 0.0004 0.0001 0.0001 0.0040 0.1110

0.0005 0.0013 0.0008 0.0004 0.0000 0.0006 0.0834

33

0.0033 0.0063 0.0001 0.0004 0.0000 0.0013 0.4948

0.0012 0.0079 0.0000 0.0000 0.0001 0.0029 0.0355

0.0002 0.0095 0.0002 0.0002 0.0001 0.0003 0.3045

0.0010 0.0018 0.0000 0.0002 0.0003 0.0009 0.5359

0.0003 0.0045 0.0002 0.0001 0.0002 0.0007 0.0328

0.0005 0.0035 0.0006 0.0000 0.0008 0.0008 0.2950

where the value of hνµ
i is reported in the ν-th column, in position (µ− 1)K + i.

(b) For this problem K = 16, Lν = 16 for all players, and the values of the coefficient h are
0.0129 0.0010 0.0015 0.0008 0.0005 0.0088 0.0048

0.0037 0.0062 0.0020 0.0044 0.0043 0.0040 0.0029

0.0514 0.0114 0.0024 0.0094 0.0063 0.0057 0.0045

0.1382 0.0087 0.0096 0.0113 0.0040 0.0144 0.0114

0.1824 0.0026 0.0180 0.0068 0.0054 0.0140 0.0157

0.1193 0.0002 0.0135 0.0007 0.0094 0.0043 0.0132

0.0290 0.0002 0.0033 0.0019 0.0116 0.0016 0.0089

0.0188 0.0020 0.0016 0.0075 0.0192 0.0065 0.0105

0.0550 0.0074 0.0038 0.0070 0.0270 0.0076 0.0157

0.0642 0.0134 0.0024 0.0020 0.0194 0.0056 0.0136

0.0495 0.0166 0.0004 0.0019 0.0052 0.0058 0.0041

0.0318 0.0160 0.0009 0.0042 0.0017 0.0067 0.0001

0.0287 0.0098 0.0050 0.0027 0.0030 0.0050 0.0027

0.0585 0.0025 0.0102 0.0004 0.0010 0.0020 0.0021

0.0843 0.0001 0.0092 0.0002 0.0002 0.0027 0.0000

0.0586 0.0002 0.0032 0.0001 0.0002 0.0077 0.0027

0.0028 0.0288 0.0208 0.0004 0.0000 0.0002 0.0011

0.0066 0.0136 0.0127 0.0000 0.0001 0.0000 0.0006

0.0088 0.0500 0.0094 0.0001 0.0002 0.0003 0.0017

0.0039 0.0251 0.0125 0.0000 0.0002 0.0006 0.0010

0.0016 0.0091 0.0147 0.0000 0.0001 0.0003 0.0003

0.0061 0.1168 0.0130 0.0005 0.0000 0.0001 0.0005

0.0098 0.1155 0.0088 0.0009 0.0001 0.0002 0.0002

0.0121 0.0029 0.0044 0.0006 0.0001 0.0001 0.0008

0.0142 0.1913 0.0019 0.0001 0.0003 0.0000 0.0021

0.0106 0.4811 0.0009 0.0001 0.0004 0.0001 0.0011

0.0035 0.3142 0.0017 0.0002 0.0004 0.0003 0.0002

0.0004 0.0131 0.0044 0.0000 0.0003 0.0006 0.0016

0.0002 0.1289 0.0049 0.0002 0.0002 0.0007 0.0014

0.0009 0.3551 0.0038 0.0009 0.0001 0.0004 0.0002

0.0031 0.2986 0.0099 0.0014 0.0001 0.0001 0.0017

0.0034 0.1287 0.0202 0.0010 0.0000 0.0003 0.0029

0.0023 0.0011 0.0609 0.0017 0.0002 0.0001 0.0002

0.0028 0.0021 0.0588 0.0012 0.0001 0.0004 0.0002

0.0025 0.0071 0.0554 0.0028 0.0001 0.0004 0.0001

0.0008 0.0096 0.1574 0.0099 0.0000 0.0002 0.0000

0.0007 0.0045 0.2024 0.0192 0.0002 0.0001 0.0000

0.0036 0.0003 0.0726 0.0165 0.0005 0.0000 0.0001

0.0051 0.0025 0.0497 0.0032 0.0004 0.0000 0.0004

0.0024 0.0038 0.1986 0.0029 0.0004 0.0001 0.0004

0.0000 0.0016 0.2281 0.0205 0.0005 0.0002 0.0002

0.0008 0.0005 0.1334 0.0312 0.0004 0.0004 0.0000

0.0012 0.0007 0.0762 0.0231 0.0003 0.0006 0.0001

0.0006 0.0005 0.0209 0.0103 0.0004 0.0004 0.0001

0.0021 0.0005 0.0115 0.0042 0.0002 0.0001 0.0001

0.0043 0.0004 0.1096 0.0032 0.0000 0.0003 0.0001

0.0041 0.0005 0.1429 0.0034 0.0002 0.0004 0.0001

0.0026 0.0012 0.0759 0.0028 0.0004 0.0001 0.0002

0.0006 0.0001 0.0016 0.0492 0.0066 0.0011 0.0002

0.0002 0.0002 0.0014 0.0128 0.0003 0.0008 0.0002

0.0007 0.0002 0.0013 0.1154 0.0011 0.0000 0.0001

0.0005 0.0001 0.0018 0.1459 0.0010 0.0003 0.0001

0.0011 0.0000 0.0010 0.0509 0.0017 0.0005 0.0005

0.0016 0.0000 0.0001 0.0136 0.0077 0.0001 0.0006

0.0017 0.0000 0.0000 0.0487 0.0095 0.0001 0.0002

0.0014 0.0000 0.0003 0.0591 0.0041 0.0004 0.0000

0.0003 0.0002 0.0017 0.0434 0.0016 0.0002 0.0003

0.0003 0.0004 0.0030 0.0570 0.0015 0.0001 0.0005

0.0027 0.0004 0.0016 0.1731 0.0001 0.0004 0.0003

0.0030 0.0001 0.0005 0.3232 0.0019 0.0003 0.0000

0.0007 0.0000 0.0025 0.2794 0.0055 0.0001 0.0001

0.0019 0.0001 0.0030 0.0914 0.0076 0.0002 0.0002

0.0051 0.0002 0.0008 0.0519 0.0119 0.0000 0.0001

0.0039 0.0001 0.0004 0.1091 0.0139 0.0004 0.0000

0.0000 0.0001 0.0000 0.0003 0.0301 0.0023 0.0003

0.0003 0.0001 0.0000 0.0010 0.0167 0.0070 0.0002

0.0008 0.0000 0.0001 0.0018 0.0398 0.0089 0.0009

0.0007 0.0001 0.0003 0.0021 0.0606 0.0049 0.0021

0.0004 0.0003 0.0005 0.0014 0.0857 0.0010 0.0015

0.0002 0.0001 0.0002 0.0003 0.1207 0.0012 0.0003

0.0002 0.0001 0.0001 0.0002 0.0936 0.0021 0.0005

0.0005 0.0008 0.0003 0.0007 0.0217 0.0026 0.0007

0.0004 0.0011 0.0005 0.0008 0.0188 0.0035 0.0002

0.0001 0.0005 0.0003 0.0003 0.0808 0.0027 0.0003

0.0004 0.0000 0.0001 0.0002 0.1234 0.0007 0.0003

0.0007 0.0001 0.0000 0.0006 0.1248 0.0013 0.0000

0.0004 0.0000 0.0002 0.0007 0.0850 0.0029 0.0011

0.0002 0.0000 0.0003 0.0003 0.0287 0.0024 0.0022

34

0.0005 0.0001 0.0002 0.0000 0.0210 0.0009 0.0015

0.0003 0.0001 0.0000 0.0000 0.0432 0.0002 0.0005

0.0001 0.0002 0.0001 0.0002 0.0008 0.1341 0.0150

0.0004 0.0003 0.0001 0.0002 0.0027 0.0507 0.0035

0.0006 0.0002 0.0000 0.0001 0.0016 0.0187 0.0001

0.0004 0.0001 0.0000 0.0001 0.0001 0.0037 0.0008

0.0003 0.0003 0.0001 0.0001 0.0020 0.0046 0.0019

0.0007 0.0005 0.0000 0.0001 0.0032 0.0153 0.0121

0.0005 0.0006 0.0000 0.0000 0.0014 0.0351 0.0198

0.0001 0.0005 0.0000 0.0000 0.0001 0.0956 0.0113

0.0006 0.0005 0.0001 0.0003 0.0001 0.1673 0.0011

0.0011 0.0007 0.0002 0.0003 0.0006 0.1522 0.0008

0.0008 0.0009 0.0002 0.0002 0.0020 0.0527 0.0034

0.0006 0.0007 0.0002 0.0002 0.0022 0.0005 0.0057

0.0006 0.0003 0.0001 0.0004 0.0004 0.0801 0.0051

0.0003 0.0000 0.0000 0.0003 0.0003 0.2297 0.0004

0.0000 0.0000 0.0000 0.0001 0.0011 0.3127 0.0043

0.0001 0.0000 0.0001 0.0001 0.0003 0.2574 0.0162

0.0009 0.0038 0.0000 0.0000 0.0003 0.0018 0.1630

0.0024 0.0009 0.0000 0.0001 0.0006 0.0052 0.3698

0.0035 0.0016 0.0001 0.0001 0.0007 0.0053 0.2515

0.0021 0.0019 0.0002 0.0001 0.0003 0.0016 0.0571

0.0003 0.0017 0.0002 0.0002 0.0000 0.0005 0.0774

0.0004 0.0016 0.0003 0.0003 0.0001 0.0019 0.0623

0.0013 0.0018 0.0007 0.0001 0.0001 0.0012 0.0244

0.0015 0.0054 0.0012 0.0001 0.0001 0.0000 0.2083

0.0015 0.0094 0.0010 0.0002 0.0000 0.0004 0.3246

0.0009 0.0066 0.0004 0.0003 0.0001 0.0007 0.1571

0.0001 0.0011 0.0000 0.0003 0.0007 0.0005 0.0440

0.0004 0.0003 0.0000 0.0003 0.0012 0.0004 0.0953

0.0007 0.0022 0.0000 0.0002 0.0009 0.0003 0.1190

0.0002 0.0045 0.0000 0.0001 0.0004 0.0009 0.1166

0.0001 0.0082 0.0001 0.0001 0.0001 0.0015 0.0703

0.0004 0.0085 0.0001 0.0000 0.0001 0.0008 0.0079

For these two problems, we do not report the solutions found; they are available on request
from the authors.

Example A.10 This is a series of problems based on the famous Arrow and Debreu model
of a competitive economy, see [1]. In this game there are F firms, C consumers and one
market player (hence there is a total of F + C + 1 players). The economy is based on the
production and exchange of P goods. The market player sets the (normalized) prices p with
a “market clearing” problem, the firms maximize their profit deciding how much to produce
while the consumers decide how much to own of each product in order to maximize their
utility functions. In our setting, the problem of the firms, controlling the variables yj ∈ RP

is, for j = 1, . . . , F ,
maxyj pTyj

s.t. yj ≥ 0,∑P
k=1(y

j
k)

2 ≤ j ∗ 10.

The i-th consumption player controls the variables xi ∈ RP , and his problem is

maxxi ui(xi)

s.t. xi ≥ 0,

pTxi ≤ pT ξi,

where ξi ∈ RP
+ is an initial endowment of goods. Finally, the market player problem is

maxp pT

(∑C
i=1 x

i −
∑F

j=1 y
j −

∑C
i=1 ξ

i
)

s.t. p ≥ 0,∑P
h=1 ph = 1.

35

In all cases, we started the algorithm from the feasible point yj = 0, xi = 0 and pk = 1/P . In
order to define the problems, we must specify F , C, P , the utility functions ui and the initial
endowments ξi.
(a) F = 2, C = 5, P = 3. The utility functions are quadratic and convex and have the form

ui(xi) = −1
2
(xi)TQixi + (bi)Txi,

where

Qi =

 6 −2 5
−2 6 −7
5 −7 20

 , bi =

30 + i+ F
30 + i+ F
30 + i+ F

 , i = 1, 2,

while

Qi =

6 1 0
1 7 −5
0 −5 7

 , bi =

30 + (i+ F) ∗ 2
30 + (i+ F) ∗ 2
30 + (i+ F) ∗ 2

 , i = 3, 4, 5.

The initial endowments are

ξi =

2
3
4

 , i = 1, 2, ξi =

6
5
4

 , i = 3, 4, 5.

(b) F = 4, C = 20, P = 5. The utility functions are of logarithmic type and given by:

ui(xi) =
P∑

k=1

(ak + i+ F) ∗ log(xi
k + bk + 2 ∗ (i+ F)), i = 1, . . . , C/2,

and

ui(xi) =
P∑

k=1

(ck + i+ F) ∗ log(xi
k + dk + i+ F), i = C/2 + 1, . . . , C,

with

a =

1
2
4
6
8

 , b =

20
30
30
40
50

 , c =

10
6
4
10
1

 , d =

50
40
30
20
20

 ,

while the initial endowments are

ξi =

2
3
4
1
6

 , i = 1, . . . , C/2, ξi =

6
5
4
3
2

 , i = C/2 + 1, . . . , C.

Note that the logarithms are not defined if the variables become too negative. However, we
took the terms b and d with positive component large enough to make this possibility unlikely.

(c) F = 6, C = 30, P = 6. The utility functions are again convex and quadratic. We first set
A equal to

36

68.22249416536778 12.12481199690621 -8.35496210217478 -6.81177486915109 -4.66752803051747 3.64100170417482

12.12481199690621 53.51450780426463 -21.77618227261339 -15.00376305863444 -0.11788350473544 2.03354709400720

-8.35496210217478 -21.77618227261339 35.44033408387684 4.35160649036518 19.17472558234163 -3.40090742729160

-6.81177486915109 -15.00376305863444 4.35160649036518 52.25155022199242 -5.99490328518247 20.40443259092577

-4.66752803051747 -0.11788350473544 19.17472558234163 -5.99490328518247 23.32798561358070 -3.58535668529727

3.64100170417482 2.03354709400720 -3.40090742729160 20.40443259092577 -3.58535668529727 10.21258119890765

and B equal to
61.74633559943146 -23.83006225091380 16.78581949473039 14.42073900860500 -2.75188745616575 13.44307656650567

-23.83006225091380 37.64246654306209 -3.76510322128227 16.32022449045404 -39.90743633716275 11.38657250296817

16.78581949473039 -3.76510322128227 53.34843665848310 4.60388415537161 -23.04611587657949 -25.31392346426841

14.42073900860500 16.32022449045404 4.60388415537161 40.69699687713468 -30.78019133996427 17.08866411420883

-2.75188745616575 -39.90743633716275 -23.04611587657949 -30.78019133996427 66.22678445157413 -12.28091080313848

13.44307656650567 11.38657250296817 -25.31392346426841 17.08866411420883 -12.28091080313848 41.37849544246254

With reference to the notation in (a), we then have

Qi = A, bi =

50 + i+ F
60 + i+ F
70 + i+ F
60 + i+ F
60 + i+ F
50 + i+ F

 , i = 1, . . . , C/2, Qi = B, bi =

50 + 2 ∗ (i+ F)
60 + 2 ∗ (i+ F)
50 + 2 ∗ (i+ F)
70 + 2 ∗ (i+ F)
70 + 2 ∗ (i+ F)
60 + 2 ∗ (i+ F)

 , i = C/2+1, . . . , C.

The initial endowments are

ξi =

2
3
4
1
6
1

 , i = 1, . . . , C/2, ξi =

6
5
4
3
2
8

 , i = C/2 + 1, . . . , C.

(d) F = 6, C = 30, P = 10. The structure of the problem is similar to that in case (b), but
with the following data:

a =

1
2
4
6
8
7
8
10
1
5

, b =

50
60
70
60
60
50
50
80
60
70

, c =

10
6
4
10
1
2
6
4
9
4

, d =

50
60
50
70
70
60
50
50
80
50

;

while the initial endowments are

ξi =

2
3
4
1
6
1
3
6
2
10

, i = 1, . . . , C/2, ξi =

6
5
4
3
2
8
4
6
2
0

, i = C/2 + 1, . . . , C.

37

(e) F = 7, C = 40, P = 12. The structure of the problem is similar to that in case (b), but
with the following data:

a =

1
2
4
6
8
7
8
10
1
5
2
4

, b =

50
60
70
60
60
50
50
80
60
70
70
80

, c =

10
6
4
10
1
2
6
4
9
4
5
1

, d =

50
60
50
70
70
60
50
50
80
50
60
70

;

while the initial endowments are

ξi =

2
3
4
1
6
1
3
6
2
10
3
4

, i = 1, . . . , C/2, ξi =

6
5
4
3
2
8
4
6
2
0
6
0

, i = C/2 + 1, . . . , C.

For these five problems, we do not report the solutions found; they are available on request
from the authors.

A.2 Jointly Convex Problems

Here we give the details of the test examples for the jointly convex GNEPs. All examples
are taken from the literature. Some examples have known solutions which we then state in
the description of the corresponding problems. For those examples which have no known
(analytical) solution, we provide an approximate solution that has been computed by the
locally quadratically convergent method from [27], hence the numerical solution should have
a high accuracy. For a jointly convex GNEP, there also exists the notion of a normalized
equilibrium, cf. [43, 31, 24]. The normalized equilibria form a subset of all solutions and are
often the solutions which can be computed by existing methods.

Example A.11 This test problem is taken from [12]. There are two players, each player ν
has a one-dimensional decision variable xν ∈ R. The optimization problems of the two players
are given by

minx1 (x1 − 1)2 minx2

(
x2 − 1

2

)2
s.t. x1 + x2 ≤ 1 s.t. x1 + x2 ≤ 1.

38

This GNEP has infinitely many solutions {(α, 1− α) | α ∈ [1/2, 1]}, but only one normalized
equilibrium at x̄ :=

(
3
4 ,

1
4

)T . The Jaco–Hessian is symmetric positive definite everywhere. Our
method converges to the following point which is (numerically) the normalized equilibrium:

0.75002417863494
0.25002417863744

Example A.12 This is a duopoly model with N = 2 players taken from [31]. Each player ν
controls one variable xν ∈ R. The objective functions are given by

θν(x) := xν
(
ρ(x1 + x2) + λ− d

)
for ν = 1, 2,

and the constraints are
xν ∈ [−10,+10] for ν = 1, 2.

Note that this is a standard NEP. For the parameter values d = 20, λ = 4, ρ = 1, this example
has the (unconstrained) solution

x̄ :=
(16

3
,
16
3
)T
.

The Jaco-Hessian of this example is constant and symmetric positive definite. Algorithm 3.3
converges to the following point:

5.33331555561568
5.33331555561568

Example A.13 This is the river basin pollution example, also taken from [31]. There are
three players ν, each of them having control of a single decision variable xν ∈ R. The objective
functions are defined by

θν(x) := xν
(
c1ν + c2νx

ν − d1 + d2(x1 + x2 + x3)
)
∀ν = 1, 2, 3.

The joint constraints are given by

u11e1x
1 + u21e2x

2 + u31e3x
3 ≤ K1,

u12e1x
1 + u22e2x

2 + u32e3x
3 ≤ K2.

We use the parameters K1 = K2 = 100, d1 = 3, d2 = 0.01 and c1ν , c2ν , eν , uν1, uν2 as specified
in Table 3.

player ν 1 2 3 4 5
1 0.10 0.01 0.50 6.5 4.583
2 0.12 0.05 0.25 5.0 6.250
3 0.15 0.01 0.75 5.5 3.750

Table 3: Parameters for the river basin pollution game from Example A.13

39

A solution of this problem is approximately given by the vector

x̄ =
(
21.14671036, 16.02782075, 2.7242447250

)T
.

The Jaco-Hessian is constant and symmetric positive definite. Algorithm 3.3 applied to this
example converges to the following vector:

21.14480155732168
16.02785326538717
2.72597096564384

Example A.14 This test problem is an internet switching model introduced by Kesselman
et al. [29], also analyzed by Facchinei et al. [12]. There are N players, each player having a
single variable xν ∈ R. The utility functions are given by

θν(x) :=
−xν

x1 + . . .+ xN

(
1− x1 + . . .+ xN

B

)
∀ν = 1, . . . , N

for some constant B. The constraints are

x1 + . . .+ xN ≤ B, xν ≥ lν

for some lower bounds lν ≥ 0. Note that [29] uses the lower bound lν = 0, however, in order
to avoid possible divisions by zero, we take the lower bounds lν := 0.01 for all ν = 1, . . . , N
which does not change the solution for our particular instance of this test example. This
particular instance uses N = 10 players and the parameter B = 1. The problem has a known
solution at

x̄ =
(

9
100

, . . . ,
9

100

)T

.

The Jaco-Hessian is nonsingular according to [12] and non symmetric; furthermore, it is also
positive definite at the solution. Starting with x0 := (0, . . . , 0)T , Algorithm 3.3 converges to
the following point:

0.08999991899425
0.08999991899426
0.08999991899425
0.08999991899425
0.08999991899425
0.08999991899425
0.08999991899425
0.08999991899426
0.08999991899425
0.08999991899425

40

Example A.15 Here we describe the electricity market problem suggested by Contreras et
al. [6]. This model involves three players with player 1 having a single variable x1 ∈ R,
player 2 controlling a two-dimensional vector x2 = (x2

1, x
2
2) ∈ R2, and player 3 having a

three-dimensional decision variable x3 = (x3
1, x

3
2, x

3
3) ∈ R3. For simplicity of notation, we

write
x = (x1

1, x
2
1, x

2
2, x

3
1, x

3
2, x

3
3)

T =: (x1, x2, x3, x4, x5, x6).

Then the objective functions can be written as

θ1(x) := ψ(x)x1 +
(1
2
c1x

2
1 + d1x1 + e1

)
,

θ2(x) := ψ(x)(x2 + x3) +
3∑

i=2

(1
2
cix

2
i + dixi + ei

)
,

θ3(x) := ψ(x)(x4 + x5 + x6) +
6∑

i=4

(1
2
cix

2
i + dixi + ei

)
with ψ(x) := 2(x1 + . . .+ x6)− 378.4 and the parameters ci, di, ei as given in Table 4.

component i 1 2 3 4 5 6
ci 0.04 0.035 0.125 0.0166 0.05 0.05
di 2 1.75 1 3.25 3 3
ei 0 0 0 0 0 0

Table 4: Parameters corresponding to the electricity market model from Example A.15

The feasible set is given by

x1 ≤ 80, x2 ≤ 80, x3 ≤ 50, x4 ≤ 55, x5 ≤ 30, x6 ≤ 40, xi ≥ 0 ∀i = 1, . . . , 6,

hence this GNEP is actually a standard NEP. An approximate solution of this problem is

x̄ = (46.661622, 32.154050, 15.003109, 22.107198, 12.339584, 12.339584)T .

The Jaco-Hessian of this example is a constant and symmetric positive definite matrix. Algo-
rithm 3.3 being applied to this example using the starting point x0 := (0, . . . , 0)T converges
to the following vector:

46.66150692423980
32.15293850189938
15.00419467998705
22.10485810522063
12.34076570922471
12.34076570922471

Example A.16 Here we describe the details of an oligopoly model as used in [36]. It is a
GNEP-variant of a standard NEP considered in [32]. There are N players. Each player ν

41

controls a single variable xν ∈ R, the objective functions are given by

θν(x) := fν(xν)− 50001/γxν(x1 + . . .+ xN)−1/γ ∀ν = 1, . . . , N

with
fν(xν) := cνx

ν +
δν

1 + δν
K−1/δν

ν (xν)(1+δν)/δν ∀ν = 1, . . . , N.

The constraints are
x1 + . . .+ xN ≤ P, xν ≥ 0 ∀ν = 1, . . . , N.

Here γ, P, cν ,Kν , δν are given parameters. For the concrete test runs, we follow [36] and use
N = 5 players, set γ = 1.1 and take the parameters cν ,Kν , δν as specified in Table 5.

ν 1 2 3 4 5
cν 10 8 6 4 2
Kν 5 5 5 5 5
δν 1.2 1.1 1.0 0.9 0.8

Table 5: Parameters corresponding to the oligopoly model from Example A.16

For the parameter P (representing an upper bound for the total production activity of
all players), different values are used. The standard values together with the corresponding
(approximate) solutions are given in Table 6 which correspond to a normalized equilibrium.
Note that these solutions are somewhat different from those reported in [36]. In fact, the
problem seems to have many solutions, but those from Table 6 might be the only normalized
equilibria.

P x̄

75 (10.403965, 13.035817, 15.407354, 17.381556, 18.771308)T

100 (14.050088, 17.798379, 20.907187, 23.111429, 24.132916)T

150 (23.588779, 28.684248, 32.021533, 33.287258, 32.418182)T

200 (35.785329, 40.748959, 42.802485, 41.966381, 38.696846)T

Table 6: Approximate solutions of the oligopoly model from Example A.16 for different values
of P

The Jaco-Hessian of this example is non-constant. Evaluated at the four different solution
points, the eigenvalues of its symmetric part all positive so that we can conclude that the Jaco-
Hessian is positive definite at the solutions. Application of Algorithm 3.3 with the starting
point x0 := (10, . . . , 10)T suggested in [36] using the four different values P = 75, 100, 150, 200,
respectively, gives the following approximate solutions:

10.40385838022815 14.05009569254498 23.58870405660235 35.78534478322666
13.03589735757035 17.79839784112484 28.68433662443821 40.74896955849369
15.40740737819953 20.90720382090469 32.02151725264314 42.80249145810686
17.38156802485601 23.11144740620916 33.28727604396901 41.96639063661255

42

18.77134655563816 24.13291790632350 32.41822391278223 38.69685028772376

Example A.17 This GNEP is taken from [33] and consists of N = 2 players. The first
player controls the two-dimensional decision variable x1 = (x1

1, x
1
2)

T =: (x1, x2) ∈ R2, whereas
the second player has a one-dimensional decision variable x2 =: x3 ∈ R. The optimization
problems of both players are given by

minx1,x2 x2
1 + x1x2 + x2

2 + (x1 + x2)x3 − 25x1 − 38x2 minx3 x2
3 + (x1 + x2)x3 − 25x3

s.t. x1, x2 ≥ 0, s.t. x3 ≥ 0,
x1 + 2x2 − x3 ≤ 14, x1 + 2x2 − x3 ≤ 14,
3x1 + 2x2 + x3 ≤ 30, 3x1 + 2x2 + x3 ≤ 30.

This problem has an infinite number of solutions given by{
(α, 11− α, 8− α)T | α ∈ [0, 2]

}
.

For α = 0, we get a normalized equilibrium. The Jaco-Hessian is constant and (everywhere)
symmetric and positive definite. We use the starting point x0 := (0, 0, 0)T for initializing
Algorithm 3.3, and obtain convergence to the following vector:

0.00000737
11.00002440
7.99997560

Example A.18 Here we give the details of an electricity market model originally proposed
in [38] and further discussed in [34]. The formulation here is taken from the latter reference.
There are two players (companies). Each player has an electricity plant in two out of three
possible regions which are represented by the nodes of a graph. The goal is to maximize the
profit of each company. The overall model has 18 variables, however, below we only present
the reduced formulation with 12 variables. The reduction comes from the fact that both
companies have plants on only 2 of the 3 nodes, so that the constraints of the overall model
immediately imply that six variables are equal to zero.

Let us use the abbreviations

S1 := 40− 40
500

(
x1 + x4 + x7 + x10

)
,

S2 := 35− 35
400

(
x2 + x5 + x8 + x11

)
,

S3 := 32− 32
600

(
x3 + x6 + x9 + x12

)
.

The problem for player 1 is then as follows: Player 1 has the 6 variables (x1, . . . , x6) :=
(x1

1, . . . , x
1
6) and minimizes the following objective function:

θ1(x) := (15− S1)(x1 + x4) + (15− S2)(x2 + x5) + (15− S3)(x3 + x6).

43

Furthermore, player 1 has the following constraints: Nonnegativity constraints

x1, . . . , x6 ≥ 0,

capacity constraints

x1 + x2 + x3 ≤ 100,
x4 + x5 + x6 ≤ 50,

and the joint constraints

Sj − Si ≤ 1 ∀i, j = 1, 2, 3, with i 6= j.

Player 2 has a similar problem: His variables are (x7, . . . , x12) := (x2
1, . . . , x

2
6), he minimizes

his objective function

θ2(x) := (15− S1)(x7 + x10) + (15− S2)(x8 + x11) + (15− S3)(x9 + x12).

Furthermore, player 2 has the following constraints: Nonnegativity constraints

x7, . . . , x12 ≥ 0,

capacity constraints

x7 + x8 + x9 ≤ 100,
x10 + x11 + x12 ≤ 50,

and the joint constraints (as for player 1)

Sj − Si ≤ 1 ∀i, j = 1, 2, 3, with i 6= j.

44

